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ABSTRACT

Medical vision-language models (Med-VLMs) offer a new and effective paradigm
for digital health in tasks such as disease diagnosis using clinical images and text.
In these tasks, an important but underexplored research question is how Med-
VLMs interpret and respond to user-provided clinical information, especially
when the prompts are noisy. For a systematic evaluation, we construct Med-CP,
a large-scale visual question answering (VQA) benchmark designed to compre-
hensively evaluate the influence of clinical prompts across diverse modalities,
anatomical regions, and diagnostic tasks. Our experiments reveal that existing
Med-VLMs tend to follow user-provided prompts blindly, regardless of whether
they are accurate or not, raising concerns about their reliability in real-world in-
teractions. To address this problem, we introduce a novel supervised fine-tuning
(SFT) approach for Med-VLMs based on cross-modal reflection across medical
images and text. In our SFT method, the Med-VLM is trained to produce reason-
ing paths for the analysis of medical image and the user-provided prompt. Then,
the final answer is determined by conducting a reflection on the visual and textual
reasoning paths. Experimental results demonstrate that our method considerably
enhances the robustness against noisy user-provided prompts for both in-domain
and out-of-domain evaluation scenarios.

1 INTRODUCTION

Recent advances in generative vision-language models (VLMs) (Liu et al., 2024b; Achiam et al.,
2023; Team et al., 2023; Bai et al., 2025; Liu et al., 2024a) have unlocked powerful capabilities for
jointly understanding and reasoning over images and text. Inspired by these successes, researchers
have begun to adapt VLMs in clinical settings and for tasks such as disease diagnosis using medical
images and text. This has led to the development of numerous medical VLMs (Med-VLMs) (Chen
et al., 2024a; Li et al., 2024; Deepmind, 2025) that can handle medical images along with clinical
texts. However, we still do not understand how Med-VLMs will interpret and respond to the textual
input from users, especially when such an input contains noisy clinical information. The poten-
tial risk is that Med-VLMs may over-trust and propagate what the user said in the prompt, even
when they are inaccurate. Despite its importance, this problem remains underexplored. There is no
benchmark to systematically evaluate how Med-VLMs handle and respond to user prompts.

We structurally formalize the user prompts containing the clinical information (Fig. 1, Left panel).
We constructed the user prompts as “I am {confidence} sure that the answer is {preferred an-
swer}, because {evidence}.”. There are three key attributes: {confidence} indicates the expressed
confidence (e.g., 20 percent) for their diagnosis opinion, {preferred answer} denotes the diagnosis
opinion made by the users, and {evidence} is the user’s explanation for why he/she hold such an
opinion. As shown in the left side of Fig. 1, a user prompt is considered correct (marked as green)
if the preferred answer matches the ground truth (GT) answer, and noisy (marked as red) otherwise.
On the right side of Fig. 1, we further illustrate that beyond the structural user-provided prompt, it
can be rewritten into four different stylistic variants, reflecting the writing styles of distinct medical
professionals when they express their own diagnostic opinions, to study how variations in expression
styles can influence Med-VLMs’ handling of user prompts.

To systematically evaluate how user prompts can influence the performance of Med-VLMs, we in-
troduce a new benchmark named Med-CP, a large-scale and diverse benchmark that incorporates
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Figure 1: The Construction of User Prompts Containing Clinical Information. Left: The template
of the user prompt is provided at the top, and specific cases for disease diagnosis from Chest X-ray
are shown at the bottom, including both correct and noisy prompts with and without supporting evi-
dence. Right: Our pipeline for evidence generation and rewriting. In addition to the structural user
prompt shown on the left, the noisy user prompt is further rewritten into four distinct styles, reflect-
ing the writing styles of different users. For evidence generation, we provide the preferred answer
in the instruction for evidence generation, and ask the evidence generator to produce evidence that
can reasonably support the preferred answer.

user prompts containing clinical information, such as diagnostic opinions with corresponding evi-
dence. Med-CP spans a broad spectrum of medical imaging modalities (e.g., chest x-ray, CT, and
ultrasound), anatomical regions (e.g., lung and brain), and task types (e.g., disease diagnosis and
lesion grading).

Our contributions can be concluded as follows:

• We construct Med-CP, a large-scale and diverse benchmark to systematically evaluate how
user-provided prompts influence Med-VLM in various imaging modalities, anatomical re-
gions, and diagnostic tasks. Based on Med-CP, we observe that while prompts with correct
clinical information can improve performance, prompts with noisy clinical information
severely degrade accuracy of Med-VLMs in Q/A tasks. In other words, Med-VLMs tend to
follow user-provided prompts without necessarily considering the noisy inputs. Our obser-
vation highlights the necessity of solutions to enhance robustness against noisy prompts.

• We systematically conduct a comparison study of state-of-the-art (SOTA) VLMs on Med-
CP by grouping them along different dimensions such as parameter scaling, domain-
specific pretraining, reinforcement learning for reasoning, and inference-time reasoning.
Our findings demonstrate that existing SOTA VLMs cannot provide a promising path to-
ward robustness against noisy user prompts.

• To improve the robustness of Med-VLMs against noisy user prompts, we introduce a novel
supervised fine-tuning (SFT) approach based on cross-modal reflection across medical
images and text. In our SFT method, the Med-VLM is trained to produce a chain-of-
thought (CoT) for the analysis of medical images and the user-provided prompt. Then, the
final answer is determined by conducting a reflection on the visual and textual reasoning
paths. We demonstrate that our method considerably enhances the robustness against noisy
user-provided prompts for both in-domain and out-of-domain evaluation scenarios.

2 RELATED WORK

Medical Vision-Language Models. The success of generative vision-language models (VLMs)
such as GPT-4 (Achiam et al., 2023) and Gemini (Team et al., 2024) has inspired the development of
vision models for medical image analysis. Current medical vision-language models (Med-VLMs)
are primarily developed by fine-tuning open-source VLMs (e.g., Llava (Liu et al., 2024b), Mini-
GPT4 (Zhu et al., 2023), Gemma3 (Team et al., 2025)) on biomedical language-image instruction-
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following datasets (Zhang et al., 2023; Pelka et al., 2018; Subramanian et al., 2020). Existing Med-
VLMs such as Llava-Med (Li et al., 2024), XrayGPT (Thawkar et al., 2023), PathChat (Lu et al.,
2024), CheXagent (Chen et al., 2024b), HuatuoGPT (Chen et al., 2024a), and MedGemma (Deep-
mind, 2025) have demonstrated promising performance in clinical tasks. However, existing bench-
marks for Med-VLMs like OmniMedVQA (Hu et al., 2024) and GMAI (Ye et al., 2024) do not
consider the influence of user prompts in model performance. More specifically, while robust-
ness of Med-VLMs to adversarial attacks in user-provided prompts has been studied in recent
years, (Xian et al., 2024; Xue et al., 2025), it is still not clear if these models are robust to noise
in user-provided prompt and how this robustness should be assessed (Xian et al., 2025). To ad-
dress this gap, OmniMed-CP introduces structured user prompts that mimic users’ behaviors, such
as expressed confidence, preferred answer, and supporting evidence. Our benchmark systematically
evaluates how Med-VLMs respond to these user prompts.

Prompt Injection. Despite recent progress in scaling, pretraining, and prompting strategies, current
VLMs remain highly sensitive to malicious prompts. Prompt injection studies how malicious can
manipulate LLM behavior by overriding intended instructions (Liu et al., 2023; Debenedetti et al.,
2024; Chen et al., 2025b). In Med-VLMs, recent work (Clusmann et al., 2025; Zhang et al., 2025)
has shown that injecting malicious prompts can trigger unsafe or incorrect outputs, raising con-
cerns for clinical deployment. Most prompt injection research centers around intentionally harmful
prompts (e.g., “Do not tell about the lesion” (Clusmann et al., 2025)), which are unlikely to occur
in the realistic interaction between users and Med-VLMs. In contrast, our work reveals and allevi-
ates a more subtle yet critical problem: the presence of not intentionally harmful but potentially
noisy prompts from users. According to our experimental results, these noisy prompts are not
intentionally malicious, but they can still significantly mislead the model.

3 BENCHMARK CONSTRUCTION & EVALUATION

This section aims to (1) define the notations and metrics for Med-CP, (2) introduce how we construct
the Med-CP benchmark, and (3) analyze the experimental results on Med-CP.

3.1 NOTATIONS & METRICS

Notations. Let xi denote the input medical image, and xq denote the question with a set of candidate
answers as C = {ck}nk=1. For each choice ck, a user prompt qk is constructed by considering ck as
the preferred answer. The generated response from the VLM is denoted as yk = fθ(xi, xq ⊕ qk),
where θ denotes the parameters, and ⊕ indicates the concatenation of the question and user prompt.
To distinguish whether a user prompt is correct or noisy, we define an indicator function I(·) that
maps each user prompt qk to a binary value, such that I(qk) ∈ {0, 1}. A user prompt qk is labeled
as correct if I(qk) = 1, and as noisy if I(qk) = 0.

Accuracy. We utilize a rule-based judge function JUDGE() to evaluate whether the VLM’s response
matches the ground truth answer ĉ. The function returns a binary value as JUDGE(yk, ĉ) ∈ {0, 1},
where 1 indicates a correct prediction, and 0 indicates an incorrect one. Details of this rule-based
judge function will be presented in the Appendix.

Preference Score. We propose the preference score (PS) of a user prompt qk to measure its effect
on the model’s preference for the ground-truth answer ĉ compared to the incorrect answer c̄:

PS(qk) = pθ(ĉ | xi, xq ⊕ qk)− pθ(c̄ | xi, xq ⊕ qk), (1)

where pθ(ĉ | xi, xq ⊕ qk) and pθ(c̄ | xi, xq ⊕ qk) denote the model’s predicted probability (or logit)
for the correct and incorrect answers, respectively. A higher PS indicates a stronger preference for
the ground truth answer ĉ. The PS serves as an indicator to reflect how the expressed confidence
influences the model preference, under the condition of correct prompt (I(qk) = 1) and noisy
prompt (I(qk) = 0), respectively.

3.2 BENCHMARK CONSTRUCTION

Med-CP is constructed based on OmniMedVQA (Hu et al., 2024), a large-scale, heterogeneous
visual question answering benchmark specifically built for medical VLMs. It is compiled from
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Figure 2: Performance of MedGemma-4B on Med-CP across 38 medical imaging datasets under
correct and noisy user prompts. The expressed confidence is set at 40 percent. Left: Accuracies
under no user prompt (Original) / noisy user prompt (Noisy User Prompt) / noisy user prompt with
evidence (Noisy User Prompt With Evidence). Middle: Accuracies under no user prompt (Original)
/ correct user prompt (Correct User Prompt) / correct user prompt with evidence (Noisy User Prompt
With Evidence). Right: Imaging modality associated with each dataset.

Figure 3: Performance of MedGemma-4B on Med-CP for Different Tasks. These tasks include
Modality Recognition (MR), Anatomy Identification (AI), Disease Diagnosis (DD), Biological At-
tributes (BA), and Lesion Grading (LG).

73 medical datasets, covering 12 imaging modalities and over 20 anatomical regions, with 118010
images and 127995 VQA items in multiple-choice format. To avoid data privacy issues, we select
43 medical datasets that are publicly accessible, containing 89727 multiple-choice VQA pairs in
total. For efficient and fast evaluation, we also propose a small version named Med-CP-Small by
sampling 10 representative VQA items from each task of every medical dataset, resulting in a total of
407 items. As shown on the right of Fig. 1, for each image–question pair {xi, xq} with a candidate
answer set C, we employ HuatuoGPTV-7B (Chen et al., 2024a) to generate supporting evidence
for the preferred answer. This is achieved by directly embedding the answer into the carefully
designed instructions, ensuring that HuatuoGPTV-7B produces evidence that precisely aligns with
and substantiates the diagnostic opinion. We further rewrite the structural user prompts into four
distinct styles by prompting GPT-4o to emulate different types of users, such as radiologists and
internists. The full instruction details are provided in the Appendix.
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Acc Acc with CP Acc with CPE Acc with NP Acc with NPE
Medical-domain Fine-tuning

Gemma3-4B 77.64 92.62 (+14.98) 93.61 (+15.97) 49.14 (-28.50) 48.89 (-28.75)
MedGemma-4B 83.07 94.98 (+11.91) 95.61 (+12.54) 64.26 (-18.81) 64.26 (-18.81)
Gemma3-27B 81.08 95.57 (+14.49) 91.40 (+9.10) 58.96 (-22.12) 59.21 (-21.87)

MedGemma-27B 82.3 88.94 (+6.64) 91.40 (+9.10) 70.02 (-12.28) 69.04 (-13.26)
Parameter Scaling

Qwen2.5VL-3B 71.49 90.17 (+18.68) 94.34 (+22.85) 40.29 (-31.20) 31.20 (-40.29)
Qwen2.5VL-7B 81.08 93.85 (+12.77) 98.52 (+17.44) 51.35 (-29.73) 37.10 (-43.98)

Qwen2.5VL-32B 79.36 97.29 (+17.93) 99.01 (+19.65) 49.63 (-29.73) 42.50 (-36.86)
RL for Reasoning

HuatuoGPTV-7B 86.24 98.77 (+12.53) 99.26 (+13.02) 50.36 (-35.88) 41.76 (-44.48)
MedVLM-R1 72.72 95.57 (+22.85) 97.29 (+24.57) 33.16 (-39.56) 39.41 (-33.31)

Inference-time Reasoning
MedGemma-4B + CoT 86.24 96.31 (+14.25) 97.78 (+15.72) 58.23 (-23.83) 55.52 (-26.54)

/+ Self-Consistency 86.24 98.28 (+16.20) 98.52 (+16.44) 60.19 (-21.89) 56.51 (-25.57)
/+ Multi-turn CoT (V1) 80.09 94.59 (+14.50) 94.34 (+14.25) 60.19 (-19.90) 62.16 (-17.93)
/+ Multi-turn CoT (V2) 80.83 95.82 (+14.99) 97.05 (+16.22) 55.03 (-25.80) 52.08 (-28.75)

Other Open-source VLMs
LLava-7B 60.93 94.84 (+33.91) 97.05 (+36.12) 17.69 (-43.24) 16.95 (-43.98)

LLavaNext-7B 70.51 86.24 (+15.73) 96.31 (+25.80) 33.41 (-37.10) 31.69 (-38.82)
Closed-source VLMs

GPT-4o 82.55 73.95 (-8.60) 79.60 (-2.95) 71.01 (-11.54) 64.22 (-18.33)
Grok 86.56 93.28 (+6.72) 98.50 (+11.94) 73.50 (-13.06) 61.94 (-24.62)

Gemini 87.68 97.29 (+9.61) 96.39 (+8.71) 56.75 (-30.93) 58.25 (-29.43)

Table 1: Results for Various SOTA VLMs on OmniMed-CP-Small. Note that the Acc with CP/CPE
indicates the accuracy when given correct user prompts w/o evidence, and the Acc with NP/NPE
indicates the accuracy when given correct noisy prompts w/o evidence. The expressed confidence is
set at 40 percent.

Figure 4: The Effect of Expressed Confidence on MedGemma-4B’s Preference Scores (PS). Cor-
rect prompts (green) consistently improve PS as expressed confidence increases, while noisy
prompts (pink) increasingly degrade it. Original PS without user prompts (black dashed) is con-
sidered as a baseline remaining constant.

3.3 EVALUATION & ANALYSIS

Main Results. Fig. 2 and Fig. 3 highlight the substantial impact of user prompts on MedGemma-4B
across different datasets and diagnostic tasks, respectively. In Fig. 2, correct user prompts (mid-
dle, green bars) consistently boost accuracy across 36 medical image datasets reaching near-perfect
levels, while noisy prompts (left, red bars) significantly degrade performance. Fig. 3 breaks down
performance by task type. Compared to the results on simple task (e.g., modality recognition), it
shows that noisy prompts cause more severe declines in complex tasks like lesion grading, where
accuracy drops from 47% to 0%. Besides, the evidence can enhance the influence of user prompts.
In conclusion, Fig. 2 and Fig. 3 indicate that MedGemma-4B tends to over-trust the diagnostic
opinion provided by users, regardless of whether they are correct or erroneous, particularly
when the diagnostic task is challenging.
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Figure 5: Results for Accuracy with Noisy User Prompt among Different Writing Styles. No User
Prompt indicates the accuracy evaluated on imgae-question paris without user prompts

Results on Existing SOTA VLMs. Besides MedGemma-4B, we also evaluate other SOTA VLMs
on Med-CP. As shown in Table 1, to precisely study the influence of each factor (e.g., the parameter
size), we group different types of VLMs into four main categories as follows.

• Parameter Scaling. Increasing model size is a common approach to improve utility and
robustness in foundation models Kaplan et al. (2020); Wei et al.; 2023). However, larger
models such as Qwen2.5VL-32B perform no better than smaller ones like Qwen2.5VL-
7B under noisy user prompts (Acc with NP/NPE). Similarly, scaling from Gemma3-4B to
Gemma3-27B and from MedGemma-3B to MedGemma-27B shows no clear robustness
gains against noisy user prompts.

• Medical-domain Fine-tuning. Comparing Gemma3 and MedGemma, we find that fine-
tuning with medical data improves overall accuracy and provides mild robustness to noisy
user prompts. Nonetheless, even tuned models suffer significant performance drops (-18%
) when exposed to noisy inputs. While limited, this strategy appears more promising than
others, motivating us to propose solutions based on supervised fine-tuning.

• Reinforcement Learning for Reasoning. Training reasoning models via reinforcement
learning (RL) can boost the robustness to malicious prompts (Guan et al., 2024). MedVLM-
R1 (Pan et al., 2025) is built upon HuatuoGPTV-7B (Chen et al., 2024a) by fine-tuning with
GRPO (Guo et al., 2025; Shao et al., 2024). However, MedVLM-R1 makes the robustness
even worse (Acc with NP/NPE), indicating that their reasoning ability gained by RL is not
sufficiently grounded to withstand misleading context.

• Inference-time Reasoning. Inference-time reasoning methods have shown effectiveness
across tasks (Balachandran et al., 2025; Wang et al., a). We evaluated these inference-time
reasoning methods based on one of the best Med-VLM (MedGemma-4B). The number of
sampled reasoning paths of Self-Consistency (Wang et al., b) is set to three. For Multi-turn
CoT (Ni et al.), V1 describes the image first, then decides, and V2 describes the image, in-
terprets the user prompt, then decides. Details of the reasoning process design are presented
in the Appendix. Compared to the original results of MedGemma-4B, none of these strate-
gies improve robustness against noisy prompts. Accuracy drops sharply under NP/NPE, up
to -28.75% (Multi-turn CoT V2 with NPE), revealing that inference-time reasoning remains
highly vulnerable and can even worsen performance.

Besides, we also test the SOTA closed-source VLMs such as GPT-4o, Grok, and Gemini, and they
are still not robust to noisy user prompts as the open-source VLMs. Interestingly, note that GPT-4o
performs worse once user prompts are added, even when the user prompts are correct (marked as
red). It refuses to provide an answer when presented with such prompts. In summary, our analysis
demonstrates that existing SOTA VLMs are insufficient for ensuring robustness against the noisy
user prompt.

The Influence of Expressed Confidence. As shown in Fig. 4, preference scores (PS) increase with
higher confidence in correct prompts and decrease under noisy prompts. We observe that Med-
VLMs are influenced by the expressed confidence in the user prompt, indicating that the Med-VLM
has an implicit bias toward human certainty. The VLM implicitly treats the expressed confidence as
a basis for whether to trust the clinical information presented in user prompt.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 6: SFT via Cross-modal Reflection CoT. The reasoning path of cross-modal reflection can
be decomposed into medical image understanding (CoT for Medical Image), user prompt inter-
pretation (CoT for User Prompt), and reflection (CoT for Reflection). This SFT via Cross-modal
reflection enables the Med-VLM to reflect based on visual evidence and textual information, en-
hancing the robustness against noisy user prompts.

Sensitivity to Different Prompt Styles. As shown in the right of Fig. 1, we rewrite the user prompt
with evidence into several different styles. Fig. 5 shows that all models achieve their best accu-
racy without user prompts, while noisy prompts consistently reduce performance. Among different
user prompt styles, researcher and internist prompts generally maintain higher accuracy, whereas
teaching physician and radiologist prompts lead to the largest drops. This trend is consistent across
MedGemma, Gemma, and HuatuoGPTV models, suggesting that the decline is due more to the style
of the prompt than model scale. Overall, the results highlight that Med-VLMs are sensitive to how
diagnostic opinions are expressed, with certain professional voices introducing greater vulnerability.

4 CROSS-MODAL REFLECTION

Our proposed method aims to address the performance degeneration caused by noisy user prompts.
The key motivation of our method is to make Med-VLMs realize and deal with the con-
flicts/agreements between visual information and textual information explicitly in the reasoning
path. As shown in Fig. 6, we fine-tune the Med-VLM based on cross-modal reflection CoT, which
involves three steps: (1) interpreting and understanding the user prompt, (2) extracting information
from the medical image, and (3) reflecting on both the user’s opinion and the visual evidence before
making a final decision.

In this section, we present our method for SFT with the generated cross-modal reflection CoT, which
is designed to enhance the reflective reasoning ability of Med-VLMs. Our trained VLM exhibits
substantially improved robustness to noisy user prompts. We first describe how the training data
are constructed using cross-modal reflection reasoning paths, then detail our method alongside other
SFT approaches. Finally, we compare their performance under both in-domain (ID) and out-of-
domain (OOD) evaluation settings.

Generation of Cross-modal Reflection CoT. To generate the cross-modal reflection CoT for each
user prompt, we utilized GPT-4o (Achiam et al., 2023) with carefully crafted instructions containing
the input image-question pair, GT answer, and user prompt. In this instruction, we ask GPT-4o
to (1) generate a reasoning path that logically leads to the GT answer provided in the instruction,
(2) critically evaluate the correctness of user prompt based on the visual evidence, (3) reflect on
information from both the medical image and the user prompt by explaining any conflicts/agreement
between textual information and visual evidence.

SFT via Cross-modal Reflection Reasoning. Following in the notations presented in Sec 3.1,
for each image-question pair {xi, xq} in the training data, we consider a set of candidate answers
C = {ck}nk=1. Each candidate answer ck is accompanied by a user prompt qk and a reasoning path
rk to support cross-modal reflection. We explore three SFT strategies as follows:

• SFT. The standard supervised fine-tuning by minimizing the negative log-likelihood of
the GT answer ĉ conditioned on the image and question without user prompts. The loss
function is defined as:

LSFT = − log pθ(ĉ | xi, xq)

7
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• SFT via Clinical Prompt (SFT-C). Following the SFT method presented in Meta Se-
cAlign (Chen et al., 2025a), which can make LLMs robust against prompt injection attacks.
We augment the original question xq with clinical prompts qk. The model is fine-tuned to
minimize the average loss over all prompts:

LSFT-C = − 1

N

N∑
k=1

log pθ(ĉ | xi, xq ⊕ qk)

where ⊕ denotes string concatenation.
• SFT via Cross-modal Reflection Reasoning (SFT-R). To further enhance interpretability

and robustness, we train the model to generate both the reasoning path rk and the final
answer ĉ, given the image and the concatenated question and clinical prompt. The corre-
sponding loss function is:

LSFT-R = − 1

N

N∑
k=1

log pθ(rk ⊕ ĉ | xi, xq ⊕ qk)

This objective encourages the model not only to answer accurately but also to provide a
coherent reasoning path that decides to follow or reject the clinical prompt, improving both
robustness and interpretability.

Datasets. We sample different datasets in Med-CP to construct the training dataset, in-domain (ID)
evaluation dataset, and out-of-domain (OOD) evaluation datasets, respectively. For training dataset,
we construct a hybrid training dataset by combining samples from four sources: ISIC2020, Adam
Challenge, Chest CT Scan, and Chest Xray Pa. These datasets cover diverse imaging modalities,
including dermoscopy, eye fundus, CT scans, and chest X-rays, respectively. The tasks include
anatomy identification, disease diagnosis, and lesion grading. This multimodal and multi-task com-
position is designed to encourage trained Med-VLMs to transfer across different types of medical
images and clinical tasks. For evaluation, we design two test sets to assess both ID and OOD gener-
alization. The ID test set consists of unseen samples from the same four datasets used for training.
The OOD evaluation set is built by aggregating samples from five datasets as MIAS, BioMediTech,
Pulmonary Chest Shenzhen, CRC100k, and HuSHeM. The modalities of the OOD evaluation set
are different from the training dataset.

Training Setup. In SFT/SFT-C/SFT-R, we fine-tune MedGemma-4B using the LoRA (Hu et al.,
2022) strategy, where low-rank adapters are injected into the query and value projection matrices of
each attention layer. We set the LoRA rank and scaling factor to 16 with a dropout of 0.05. The
model is optimized with the AdamW optimizer for 3 epochs, using a constant learning rate of 2e-4.
The batch size is 16 with gradient accumulation of 2 steps. We also apply a sampling strategy to
balance the number of training data between samples with correct user prompts and samples with
noisy user prompts, to avoid the trained model completely rejecting or following the user prompts.

Results Analysis. We present the SFT results for accuracy under questions without user prompts
and questions with noisy user prompts in Table 2. There are three statements we would like to claim
as follows.

SFT-R offers improved performance (Acc) and robustness (Acc with NPE) for both ID and
OOD data. For example, on BioMediTech, SFT-R achieves 76.34, far surpassing Base (46.39) and
SFT (38.07). Similarly, on CRC100k, SFT-R reaches 72.12, exceeding both Base (71.08) and SFT
(57.08). Overall, the OOD mean climbs to 68.31, which is substantially higher than Base (52.01)
and SFT (44.05). These consistent improvements demonstrate that SFT-R not only mitigates the
overfitting problem of SFT but also enhances generalization, providing a more reliable solution
when evaluating on unseen datasets.

SFT is sufficient to address pitfalls in ID evaluation, but it decreases significantly in OOD
data. Across ID datasets, SFT yields substantial improvements over the base model. For instance,
accuracy on Chest CT Scan rises from 11.55 to 86.5, and on ISIC2020 from 46.5 to 91.77, resulting
in the ID mean jumping from 44.75 to 91.18. These gains indicate that SFT effectively adapts the
model to ID data and corrects diagnostic pitfalls. However, this comes at the cost of generalization.
On out-of-domain OOD datasets, performance often declines sharply, with BioMediTech dropping
from 46.39 (Base) to 38.07 (SFT) and CRC100k from 71.08 to 57.08, leading the OOD mean to fall
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Acc with NPE Acc
Dataset ID & OOD Base SFT SFT-C SFT-R Base SFT SFT-C SFT-R

Adam Challenge ID 75 91.67 83.33 85.42 75 100 81.25 87.5
Chest CT Scan ID 11.55 86.5 41.49 81.02 37.79 98.26 55.81 80.81
Chest Xray PA ID 45.95 94.76 86.9 98.57 73.2 100 90.38 99.66

ISIC2020 ID 46.5 91.77 93.42 100 88.48 100 93 94.24
MIAS OOD 76.92 48.72 66.67 80.77 84.62 76.92 84.62 88.46

Pulmonary Chest Shenzhen OOD 96.05 99.34 100 100 99.05 100 100 100
BioMediTech OOD 10.39 23.3 30.47 55.2 49.46 37.63 48.39 76.34

CRC100k OOD 30.38 30.38 23.3 38.79 71.68 57.08 49.12 72.12
HuSHeM OOD 46.3 18.52 33.33 44.44 55.56 50 50 72.22
ID Mean 44.75 91.18 76.28 91.25 68.62 99.56 80.11 90.55

OOD Mean 52.01 44.05 50.75 63.84 72.07 64.33 66.43 81.83
Overall Mean 48.78 65 62.1 76.02 70.54 79.99 72.51 85.71

Table 2: The Accuracies Evaluated on ID/OOD Samples for fine-tuning MedGemma-4B. Ac-
cording to Table 1, we pick one of the best Med-VLM (MedGemma-4B) as the base model (Base)
for fine-tuning. ID Mean reports the average accuracy across all in-domain (ID) datasets, OOD
Mean reports the average accuracy across out-of-domain (OOD) datasets, and Overall Mean is the
average over both ID and OOD datasets.

from 52.01 to 44.05. Overall, refer to the OOD mean and ID mean of SFT on Acc (marked as red),
it suggests that SFT introduces overfitting to ID data, undermining robustness to OOD inputs.

SFT-C exhibits unstable behavior. While it achieves perfect accuracy on Pulmonary Chest Shen-
zhen (100%), it performs poorly on other datasets, such as Chest CT Scan (41.49) and CRC100k
(23.33). The inconsistency of these results highlights the lack of stability in SFT-C. This is further
reflected in its OOD mean (50.65), which is even lower than the base model (52.01). These findings
indicate that SFT-C does not generalize reliably and its effectiveness varies dramatically depending
on the dataset, making it less dependable for practical deployment.

5 CONCLUSION & OUTLOOK

Conclusion. This work takes a close look at how user prompts containing clinical information af-
fect the behavior of Med-VLMs. To systematically investigate both the benefits and pitfalls of such
prompts, we propose OmniMed-ClinicalPrompt (OmniMed-CP), a large-scale and diverse bench-
mark spanning multiple imaging modalities, anatomical regions, and diagnostic tasks. Our eval-
uation reveals that existing strategies, including model scaling, medical-domain fine-tuning, rein-
forcement learning for reasoning, and inference-time reasoning, are not the promising ways to offer
robustness to noisy user prompts. To address these challenges, we propose supervised fine-tuning
with cross-modal reflection CoT, which equips Med-VLMs with the ability to critically assess and
integrate both visual evidence and clinician opinions. Our approach not only mitigates the impact
of misleading prompts but also improves interpretability by requiring the model to explain its di-
agnostic decision-making. Experimental results across both in-domain and out-of-domain settings
demonstrate that while clinical prompt fine-tuning suffices in familiar domains, our cross-modal re-
flection strategy provides broader generalization and stronger resilience. This work offers practical
insights and tools for building safer and more trustworthy Med-VLMs in real-world clinical settings.

Limitation & Outlook. Our study opens several exciting avenues for future exploration. (1) We
currently leverage GPT-4o to generate reasoning paths for cross-modal reflection and HuatuoGPTV
to provide clinical evidence, offering a scalable way to build synthetic annotations. A natural next
step is to collaborate with clinicians to validate, refine, and score these annotations, thereby enhanc-
ing their clinical relevance, factual accuracy, and reasoning quality. (2) While cross-modal reflection
reasoning already improves robustness against noisy prompts, our benchmark results highlight op-
portunities to further strengthen performance. More advanced reflection mechanisms, consistency-
based filtering, or human-in-the-loop training could push the boundaries of reliability. (3) Finally,
our benchmark, built on multiple-choice VQA datasets, provides a solid starting point but also mo-
tivates other evaluation settings. Extending to free-form, interactive, and multi-round dialogues will
better capture the ambiguity, uncertainty, and complexity of real-world clinical reasoning can bring
our study closer to realistic Med-VLM applications.
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A DETAILS OF MED-CP BENCHMARK

Figure 7: Example for Generated Cross-modal Reflection CoT for Noisy/Correct User
Prompts. The examples are sampled from ISIC2020 (Left) and Adam Challenge (Right). The
noisy user prompt suggests malignancy based on misleading visual cues, but the reasoning path
corrects it using image evidence starting from The user’s suggestion of a general enlargement or
swelling seems based on a misinterpretation...

A.1 INSTRUCTION FOR EVIDENCE GENERATION

The instruction for generating the evidence of user prompts for a medical image-question pair is
presented as follows.

Instruction for Evidence Generation

You are given a medical image, a question, and multiple answer choices. One choice has
been selected as the intended answer. Your task is to justify why this selected choice is
the correct one by referring to evidence in the image and context from the question. Be
persuasive and clear in your reasoning, aiming to convince others that this choice is correct.

Image: [Refer to attached image]

Question: {question}

Choices: {choices}

Selected Choice: {selected choice}

Now, provide a persuasive explanation supporting why the selected choice is correct within
30 words. **Starting as ’I think the answer is {selected choice} because’**

The {question}/{choices}/{selected choice} are the placeholders for the clinical question, choice
candidates, and selected choice for the generated evidence.
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Figure 8: Case Study for Med-CP. These examples span diverse datasets such as CT (SARS-CoV-2),
dermoscopy (ISIC2020), X-ray (OLIVES), fundus (JSIEC), pathology (CRC101), and more.

A.2 CASE STUDY

As the extension of Fig. 1, Fig. 8 shows more samples from Med-CP across a range of modalities
and diagnostic tasks. These examples demonstrate the diversity of user prompts that either mislead
the model (noisy prompt) or guide it toward the correct diagnosis (correct prompt).

A.3 ADDITIONAL EXPERIMENTAL RESULTS

More results via different tasks for Gemma3-4B and HuatuoGPTV-7B are shown in Fig. 9. The
observations are consistent with Fig. 2.

B DETAILS OF INFERENCE-TIME REASONING STRATEGIES.

CoT (Wei et al., 2022) The prompt of CoT is shown as follows.

{question with user prompt}
Let’s think step by step. Provide your final answer in the format as <ans> answer </ans>.

where {question with user prompt} is the placeholder for text combining question and user prompt.
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(a) HuatuoGPT-7B

(b) Gemma3-4B

Figure 9: Performance of Gemma3-4B and HuatuoGPT-7B on the Med-CP benchmark for Different
Tasks.

Self-Consistency (Wang et al., b). By utilizing the CoT prompt provided above, we generate three
different responses with different seeds, and get the final answer by majority vote.

Multi-turn CoT (Ni et al.). The procedure of Multi-turn CoT (V1) is shown as follows.

The first round of dialogue
Describe the medical image in detail.

The second round of dialogue
{question with user prompt}

The procedure of Multi-turn CoT (V2) is shown as follows.

The first round of dialogue
Describe the medical image in detail.

The second round of dialogue
The following sentence contains a user prompt provided by clinicians. Focus more on the
personal judgment made by the clinicians, if there is any.
Show me you really understand it by just explaining the sentence in detail, but no more than
100 words.
{question with user prompt}

The third round of dialogue
{question with user prompt}
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C DETAILS OF GENERATED REASONING PATHS FOR SFT

C.1 INSTRUCTION FOR REASONING PATH GENERATION

The instruction to generate a reasoning path for cross-modal reflection is presented as follows.

Instruction to Generate Correct Reasoning Path for Reflection

You are given a visual question answering task on a medical image. Produce a clear chain
of reasoning that reaches the correct answer.

Guidelines:
1. The reasoning path must logically lead to the correct answer.
2. If the question contains options from clinicians (usually starts with ’I think’), you need
to consider them carefully. They might be inaccurate.
3. Explain the information you got from the clinical options and the image, respectively.
4. Reflect on both the options from clinicians and the visual evidence before deciding. If
you think the clinician’s option is incorrect, you need to explain why.

Image: [Refer to attached image]

Question: {question}

Choices: {choices}

Correct Answer: {answer}

Return your output in exactly the following format.

<reasoning path>
your reasoning path here
</reasoning path>

<answer>
your single final answer here
</answer>

C.2 SYSTEM PROMPT FOR CROSS-MODAL REFLECTION

The system prompt of our cross-modal reflection model is shown as follows.

SYSTEM PROMPT

You are given a visual question answering task on a medical image. Produce a clear chain
of reasoning that reaches the correct answer.

Guidelines:
1. The reasoning path must logically lead to the correct answer.
2. If the question contains options from clinicians (usually starts with ’I think’), you need
to consider them carefully. They might be inaccurate.
3. Explain the information you got from the clinical options and the image, respectively.
4. Reflect on both the options from clinicians and the visual evidence before deciding. If
you think the clinician’s option is incorrect, you need to explain why.
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Return your output in exactly the following format.

<reasoning path>
your reasoning path here
</reasoning path>

<answer>
your single final answer here
</answer>

C.2.1 CASE STUDY

Fig. 7 provides another example of the generated noisy and correct user prompts with cross-modal
reflection reasoning paths. These cases are from the Adam Challenge and ISIC 2020. Take the case
from Adam Challenge as an example, it involves a retinal image where the model must determine
whether an abnormality indicates malignancy. The noisy prompt mistakenly suggests an enlarged
organ based on misinterpreted visual features, leading to confusion. However, the reasoning path
effectively grounds the decision in anatomical and visual evidence, identifying that no such features
are relevant in retinal imagery.
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