
Learned Representations Enhance
Multi Agent Path Planning

Marius Captari 1 Herke van Hoof 1

Abstract
Multi-Agent Pathfinding (MAPF) involves coordi-
nating multiple agents to find collision-free paths
in a shared environment. For large-scale instances,
sub-optimal heuristics can be used that are ei-
ther hand-crafted or learned from data. In this
paper, we attempt to combine these approaches
by training a neural network to modify problem
representations such that Prioritized Planning, a
conventional heuristic solver, will produce closer-
to-optimal solutions. Thereby, we can leverage
the strong performance of existing heuristics with
the flexibility of data-driven algorithms. Training
the neural network requires propagating learn-
ing signals through prioritized planning. This is
achieved by calculating gradients of a relaxation
of the algorithm using a black-box differentiation
approach. Experiments on standard MAPF bench-
marks demonstrate that our approach reduces PP’s
optimality gap without significantly compromis-
ing computational efficiency.

1. Introduction
Integrating planning algorithms with learning-based meth-
ods offers a promising strategy for addressing complex
decision-making challenges. Classical planners such as
constraint solvers, graph search algorithms, and symbolic
planners, offer strong theoretical guarantees, interpretability,
and robustness derived from their structured, rule-based rep-
resentations. However, these methods often require detailed
problem formulations, potentially limiting their adaptability
in dynamic environments and fail to scale to more realis-
tic scenarios. On the other hand, learning-based methods
have demonstrated remarkable flexibility and generaliza-
tion capabilities by extracting latent structures directly from
data (Silver et al., 2016). Yet, they commonly lack the in-
terpretability, compositionality, and robustness offered by

1University of Amsterdam. Correspondence to: Marius Captari
<m.captari@uva.nl>.

ICML 2025 Workshop on Programmatic Representations for Agent
Learning, Vancouver, Canada. Copyright 2025 by the author(s).

classical symbolic or programmatic representations, mak-
ing their decisions difficult to verify or safely deploy in
real-world scenarios.

Motivated by these complementary strengths, recent work
explores hybrid planning–learning systems (Bengio et al.,
2021). Rather than replacing symbolic solvers, these meth-
ods inject learning into targeted components such as heuris-
tics, reward shaping, program synthesis, or symbolic cost
function, to blend structured reasoning with data-driven
flexibility.

In this work, we focus on Multi-Agent Pathfinding (MAPF),
a sequential decision-making task that requires coordinating
multiple agents on a shared graph to reach goals without
collisions. MAPF lies at the core of many real-world sys-
tems, ranging from automated warehouse fleets and airport
ground vehicle coordination to drone swarms and multi-
robot exploration—where efficient, collision-free routing
translates directly into higher throughput, lower energy con-
sumption, and improved safety. Classical MAPF methods
offer clear guarantees but scale poorly with increasing com-
plexity, whereas heuristic-based planners scale better but
yield suboptimal solutions. Previous efforts to enhance
MAPF solvers through learning have predominantly mod-
ified local planner decisions, such as agent prioritization
(Zhang et al., 2022) or conflict resolution (Huang et al.,
2021). However, these local modifications do not fully
leverage the global structure of the underlying representa-
tion, potentially limiting solution quality.

To address this, we propose a global, differentiable represen-
tation learning method: we train a neural network to adjust
graph edge weights such that a fast, heuristic planner, Priori-
tized Planning (PP) (Silver, 2005), produces solutions closer
to optimality. Our learned graph representation remains
structured and interpretable, aligning with the broader goal
of programmatic representation. We use black-box differen-
tiation (Pogančić et al., 2019) to propagate gradients through
the non-differentiable PP algorithm, enabling end-to-end
learning of the graph representation without compromising
solver efficiency.

Our primary contributions are twofold. First, we introduce a
differentiable representation-learning framework that glob-

1

Learned Representations Enhance Multi Agent Path Planning

ally reshapes MAPF instances by learning edge-cost ad-
justments rather than focusing on local planner heuristics
or priority decisions. Second, we demonstrate empirically
that this approach shrinks the optimality gap of PP while
preserving its computational efficiency.

2. Related Work
Integrating planning with machine learning often involves
embedding symbolic solvers into neural architectures. For
example, Value Iteration Networks (Tamar et al., 2016) in-
sert a differentiable value-iteration module into CNNs to
perform implicit planning, and Neural A* Search (Yonetani
et al., 2021) learns heuristic functions for a differentiable A*
algorithm—improving interpretability and generalization
over reactive policies.

Predict-then-Optimize trains models to predict problem pa-
rameters (e.g., costs, demands) that are passed unchanged
into classical solvers, with learning guided by downstream
decision loss rather than raw accuracy (Elmachtoub & Gri-
gas, 2022). In contrast, our method learns to alter the prob-
lem representation itself so that a fast, suboptimal planner
produces higher-quality solutions.

To enable end-to-end gradient flow through inherently dis-
crete solvers such as shortest-path, constraint, and combi-
natorial optimizers, researchers employ continuous relax-
ations, perturbation-based approximations, or black-box
differentiation (Berthet et al., 2020; Pogančić et al., 2019),
successfully integrating solvers into learning pipelines for
ranking (Rolı́nek et al., 2020) and graph optimization (Kar-
alias & Loukas, 2020) without fundamentally altering the
solver itself.

Within Multi-Agent Path Finding (MAPF), most research
integrating learning has focused on enhancing local solver
components. For optimal solvers, such as Conflict-Based
Search (CBS) (Sharon et al., 2015), learning-based methods
have improved efficiency by guiding conflict resolution or
node selection (Huang et al., 2021). For heuristic solvers
like PP, neural models have been successfully used to learn
effective agent prioritizations (Zhang et al., 2022). Similarly,
Large Neighbourhood Search (LNS) approaches leverage
learning to intelligently select subsets of agents for iterative
replanning or to embed local sub-problems into learned ar-
chitectures (Li et al., 2021a; Huang et al., 2022; Yan & Wu,
2024). Decentralized reinforcement learning methods, such
as PRIMAL (Sartoretti et al., 2019), further scale to larger
scenarios but often compromise optimality and complete-
ness guarantees for scalability.

Despite these advancements, existing learning-augmented
MAPF approaches predominantly target local decision com-
ponents such as heuristics or priority ordering, rather than
altering the underlying global representation of the plan-

ning problem itself. To our knowledge, no prior work has
leveraged black-box differentiable optimization techniques
to globally reshape graph-based representations explicitly
to guide heuristic MAPF planners towards more optimal
solutions.

3. Method
Our work aims to bridge this gap by applying differen-
tiable optimization to learn structured graph representations,
thus globally influencing heuristic solvers to enhance the
quality of their solutions without sacrificing computational
efficiency.

We propose a differentiable learning framework for guiding
PP toward near-optimal solutions by modifying the edge
weights of the planning graph. The proposed system is
illustrated in Figure 1. A neural network predicts instance-
specific edge costs, which are used by PP to generate plans.
The network is trained to minimize the deviation from opti-
mal solutions produced by EECBS (Li et al., 2021b), com-
bining PP’s efficiency with data-driven adaptability. Since
the mapping from edge weights to solver output is piece-
wise constant, standard backpropagation yields zero gradi-
ents. To address this, we apply the black-box differentiation
technique from Pogančić et al. (2019), which enables end-
to-end training by approximating informative gradients via
perturbed planner evaluations. The remainder of this section
formalizes the MAPF setting and PP, introduces the surro-
gate gradient, describes the neural cost model, and outlines
the training procedure.

3.1. MAPF Problem Definition

A MAPF instance is defined on an undirected graph G =
(V,E) with |V | = N vertices (grid cells) and |E| = M
edges between neighbouring cells. For every vertex v ∈ V ,
we also include a self-loop {v, v} ∈ E to explicitly encode
wait actions.

We consider a set of n agents A = {a1, . . . , an}, each with
a start vertex si ∈ V and a goal vertex gi ∈ V . Each agent
moves over discrete time steps. Let w ∈ RM

≥0 denote a
non-negative vector of edge costs, indexed according to the
edges in E.

A joint plan is feasible if it avoids any vertex conflicts—two
agents occupying the same vertex at the same timestep—and
edge conflicts—two agents traversing the same undirected
edge in opposite directions simultaneously.

We further define the edge-usage vector y ∈ NM , where

ye =
∑
i,t

1
[
(vti , v

t+1
i) = e

]
(1)

counts how many times edge e is traversed (including self-

2

Learned Representations Enhance Multi Agent Path Planning

Figure 1. Differentiable MAPF training framework that learns edge-cost adjustments via black-box gradients from expert plan comparisons.

loops for waits). Given the edge costs w, the total plan cost
is the sum of each edge’s cost multiplied by its usage

c(w, y) =
∑
e∈E

we ye. (2)

Let Y be the set of all feasible edge-usage vectors (i.e.
collision-free plans). Then the planner solves the following
discrete optimization problem:

y⋆(w) = argmin
y∈Y

c(w, y). (3)

Prioritized planning solves this problem heuristically by
assigning a fixed priority order to agents and planning their
paths sequentially. Each agent computes its shortest path
using A* on a space–time graph, treating reserved vertices
and edges from higher-priority agents as dynamic obstacles
(Silver, 2005). This defines a deterministic mapping from
edge costs w to a feasible joint plan y(w). While PP is
fast and scales well with the number of agents, its greedy
structure often results in suboptimal global solutions. The
goal of this work is to learn cost vectors w such that y(w)
more closely approximates a globally optimal plan and thus
minimizes the total sum-of-costs.

3.2. Black-Box Differentiation through PP

Intuitively we can think of PP as a mapping w 7→ y(w)
which is piecewise constant, yielding zero gradients almost
everywhere. To obtain meaningful learning signals, we
apply the continuous perturbation method of Pogančić et al.
(2019). Specifically, we define the task loss L(ŷ, y⋆) as the
mean squared error between the predicted (ŷ) and optimal
(y⋆) directed edge-usage vectors:

L(ŷ, y⋆) =
1

M

∑
e∈E

(ŷe − y⋆e)
2, (4)

where each directed edge e = (u, v) is treated distinctly
from its reverse edge (v, u). Given a scalar λ > 0, a per-
turbed cost vector is constructed as:

w′ = w + λ
∂L

∂ŷ
. (5)

Evaluating PP with w′ yields a perturbed solution yλ =
y(w′), from which we compute the surrogate gradient:

∇wfλ(w) = −
1

λ
(ŷ − yλ). (6)

This approximation enables backpropagation through the
planner with exactly two calls to PP and without modifying
its internals.

3.3. Neural Cost Shaping

We now introduce a neural networkNθ which maps instance
features x (the map, static obstacles, and agent start/goal
pairs) into a vector of edge costs w = Nθ(x).

Gradients obtained via (6) are propagated through Nθ to
update the parameters θ. Our aim is that this process en-
courages the network to inflate costs along edges that lead
to downstream conflicts and to discount those that promote
globally efficient paths.

During planning, the predicted edge weights w are used as
cost values in the single-agent A* searches performed by
PP. However, to preserve the validity of the reservation table
which encodes blocked edges and vertices over time we re-
tain the original graph costs to determine traversal durations.
We employ a true distance heuristic in A*, computed as the
shortest-path distance from each agent’s start to its goal on
the obstacle-free graph: this heuristic is admissible (it never
overestimates the true cost). During training, we recompute
this heuristic under the current learned weights to ensure it
remains admissible relative to the modified cost function.
This maintains consistency with the underlying environment
dynamics while allowing the learned weights to influence
the planner’s route preferences.

3.4. Training

Training is performed on scenarios—sets of n agent
start–goal pairs defined on the same map as outlined in
Algorithm 1. Each mini-batch consists of B independent
scenarios. For each scenario, edge costs are predicted, the
plan is computed via PP, a perturbed plan is obtained, and
the surrogate gradient is applied.

3

Learned Representations Enhance Multi Agent Path Planning

Algorithm 1 One training epoch with differentiable PP
Input: Mini-batch {xj , y

⋆
j }Bj=1, smoothing parameter

λ
Output: Updated network parameters θ
for j = 1 to B do
wj ← Nθ(xj) {predict edge costs}
ŷj ← PP(wj) {forward pass}
w′

j ← wj + λ∂L/∂ŷj
yλ,j ← PP(w′

j) {perturbed pass}
∇wj

← −(ŷj − yλ,j)/λ
end for
Back-propagate {∇wj

} and update θ

The model is trained for T epochs using randomly sampled
training scenarios. Evaluation is performed on held-out
start/goal configurations drawn from the same map. Gener-
alization to new maps is left for future work.

4. Experiments
We evaluate our method on scenarios from the
random-32-32-20 map, which is part of a stan-
dard benchmark from the MAPF definitions and variants
suite (Stern et al., 2019). We consider instances with
n ∈ {50, 75, 100} agents to assess performance across
varying levels of congestion and complexity.

Training Setup. We use Enhanced Edge-Conflict Based
Search (EECBS) (Li et al., 2021b), a CBS variant with edge
constraints and focal search, to generate expert plans and
their edge-usage vectors ŷ for loss computation. We employ
a sub optimality bound of 1.0 for 50-agent scenarios and
1.05 for more challenging ones, trading off optimality and
runtime. On a 36-core machine, we were able to generate
solutions for all 500 training scenarios within a total time
budget of approximately 1 hour.

We use 500 training and 25 test scenarios (20 % of training
for validation). The edge predictor is trained with our earlier
loss, matching PP’s directed edge-usage to EECBS, starting
from uniform costs of 1. Agents are ordered by ascending
true distance so shorter-path agents plan first; if PP fails, we
fix a single random permutation. The same ordering is used
throughout training (for ŷ) and testing for a fair comparison.

Model Architectures and Optimization. We compare
two variants of our differentiable MAPF framework. The
Edge model maintains a learnable scalar cost for each graph
edge (initialized to the original unit weight values of 1.0) and
ignores start/goal inputs, directly predicting the full edge-
weight vector. The GNN model instead computes edge
weights via a two-layer GraphSAGE network (Hamilton
et al., 2017) over the grid: node features encode a simple de-

mand signal (starts vs. goals), sinusoidal positional embed-
dings, and a small agent ID embedding; after message pass-
ing, each edge’s weight is produced by a lightweight MLP
over its two endpoint embeddings. Both models are trained
end-to-end using the described loss with Adam (learning
rate 5e− 4) and a λ = 1.0.

Evaluation. Model selection uses validation delay (PP’s
sum-of-costs minus the collision-free lower bound). The
model checkpoint that achieves the lowest validation delay
is selected as the final model. The selected model is then
evaluated on 25 held-out test scenarios, reporting delay and
optimality gap relative to EECBS.

Table 1. Average delay and optimality gap (relative to EECBS) on
25 unseen test scenarios. Lower is better.

M
A

P

AGENTS
AVERAGE DELAY (% GAP)

EECBS
PP (ORIG.) PP (EDGE) PP (GNN)

R
A
N
D
O
M 50 56.20 (134.6%) 52.96 (121.0%) 51.36 (114.3%) 23.96

75 163.08 (141.8%) 151.68 (124.9%) 149.64 (121.9%) 67.44
100 354.20 (118.9%) 333.44 (106.1%) 317.12 (95.9%) 161.80

Discussion. Experiments on the random-32-32-20
map (Table 1) demonstrate that learning a structured
graph representation can improve the solution quality of
a fast heuristic planner without sacrificing its efficiency.
Across all agent counts (50, 75, 100), both learned mod-
els—direct per-edge parameters and the GNN-based predic-
tor—consistently reduce the average delay of PP relative to
the original uniform-cost baseline. The GNN model yields
the largest gains highlighting the value of conditioning edge
costs on global context and agent interactions.

Importantly, these benefits incur minimal overhead. PP
alone takes 0.0183s versus 0.0263s with our learned model
(+0.0080s), since learned weights don’t alter PP’s inner loop,
preserving scalability for real-time systems.

5. Conclusion
In this work, we combine black-box differentiable plan-
ning with learned edge-cost shaping to enhance an existing
MAPF heuristic solver, offering a practical bridge between
structured planning and data-driven adaptability.

While our experiments demonstrate gains on a single map
topology using EECBS demonstrations, future extensions
should evaluate the framework on diverse graph structures
to assess generalization and develop expert-free approaches
such as reinforcement learning to reduce reliance on costly
expert demonstrations.

4

Learned Representations Enhance Multi Agent Path Planning

Acknowledgements

Funded by

the European Union

This research project is part of the
AI4REALNET project. AI4REALNET
has received funding from European
Union’s Horizon Europe Research and
Innovation programme under the Grant

Agreement No 101119527. Views and opinions expressed
are however those of the author(s) only and do not nec-
essarily reflect those of the European Union. Neither the
European Union nor the granting authority can be held re-
sponsible for them.

References
Bengio, Y., Lodi, A., and Prouvost, A. Machine learning

for combinatorial optimization: a methodological tour
d’horizon. European Journal of Operational Research,
290(2):405–421, 2021.

Berthet, Q., Blondel, M., Teboul, O., Cuturi, M., Vert, J.-
P., and Bach, F. Learning with differentiable pertubed
optimizers. Advances in neural information processing
systems, 33:9508–9519, 2020.

Elmachtoub, A. N. and Grigas, P. Smart “predict, then
optimize”. Management Science, 68(1):9–26, 2022.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. Advances in neural
information processing systems, 30, 2017.

Huang, T., Koenig, S., and Dilkina, B. Learning to resolve
conflicts for multi-agent path finding with conflict-based
search. In Proceedings of the AAAI conference on artifi-
cial intelligence, volume 35, pp. 11246–11253, 2021.

Huang, T., Li, J., Koenig, S., and Dilkina, B. Anytime multi-
agent path finding via machine learning-guided large
neighborhood search. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 36, pp. 9368–9376,
2022.

Karalias, N. and Loukas, A. Erdos goes neural: an unsuper-
vised learning framework for combinatorial optimization
on graphs. Advances in Neural Information Processing
Systems, 33:6659–6672, 2020.

Li, J., Chen, Z., Harabor, D., Stuckey, P. J., and Koenig, S.
Anytime multi-agent path finding via large neighborhood
search. In International Joint Conference on Artificial
Intelligence 2021, pp. 4127–4135. Association for the
Advancement of Artificial Intelligence (AAAI), 2021a.

Li, J., Ruml, W., and Koenig, S. Eecbs: A bounded-
suboptimal search for multi-agent path finding. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 35, pp. 12353–12362, 2021b.

Pogančić, M. V., Paulus, A., Musil, V., Martius, G., and
Rolinek, M. Differentiation of blackbox combinatorial
solvers. In International Conference on Learning Repre-
sentations, 2019.

Rolı́nek, M., Musil, V., Paulus, A., Vlastelica, M., Michaelis,
C., and Martius, G. Optimizing rank-based metrics with
blackbox differentiation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 7620–7630, 2020.

Sartoretti, G., Kerr, J., Shi, Y., Wagner, G., Kumar, T. S.,
Koenig, S., and Choset, H. Primal: Pathfinding via re-
inforcement and imitation multi-agent learning. IEEE
Robotics and Automation Letters, 4(3):2378–2385, 2019.

Sharon, G., Stern, R., Felner, A., and Sturtevant, N. R.
Conflict-based search for optimal multi-agent pathfinding.
Artificial intelligence, 219:40–66, 2015.

Silver, D. Cooperative pathfinding. In Proceedings of the
aaai conference on artificial intelligence and interactive
digital entertainment, volume 1, pp. 117–122, 2005.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

Stern, R., Sturtevant, N., Felner, A., Koenig, S., Ma, H.,
Walker, T., Li, J., Atzmon, D., Cohen, L., Kumar, T., et al.
Multi-agent pathfinding: Definitions, variants, and bench-
marks. In Proceedings of the International Symposium
on Combinatorial Search, volume 10, pp. 151–158, 2019.

Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P.
Value iteration networks. Advances in neural information
processing systems, 29, 2016.

Yan, Z. and Wu, C. Neural neighborhood search for multi-
agent path finding. In The Twelfth International Confer-
ence on Learning Representations, 2024.

Yonetani, R., Taniai, T., Barekatain, M., Nishimura, M., and
Kanezaki, A. Path planning using neural a* search. In
International conference on machine learning, pp. 12029–
12039. PMLR, 2021.

Zhang, S., Li, J., Huang, T., Koenig, S., and Dilkina, B.
Learning a priority ordering for prioritized planning in
multi-agent path finding. In Proceedings of the Interna-
tional Symposium on Combinatorial Search, volume 15,
pp. 208–216, 2022.

5

