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ABSTRACT

Large language models (LLMs) excel on knowledge-intensive tasks but often
fail on complex, multi-step reasoning requiring explicit inference and logical
coherence. Retrieval-augmented generation (RAG) grounds outputs in external
text, yet retrieved content is typically unstructured and misaligned with step-wise
reasoning. We introduce LogicalChain, a framework that explicitly integrates
structured logical chains—interpretable, step-by-step derivations linking context
to conclusions. We build a large corpus of chains from domain-rich sources (e.g.,
expert guidelines, worked solutions) and train a contrastive retriever to fetch task-
relevant inference paths. To close the instance–step misalignment at inference,
we propose TTT–RAG, a test-time adaptation pipeline that fine-tunes the LLM
on retrieved chains and documents during inference, tailoring behavior without
updating global weights. Experiments show consistent gains across medical and
general multi-hop domains: on MedQA, TTT–RAG lifts Qwen2.5–7B–Instruct
from 53.8% to 70.1% (14B: 73.8%), and on MedMCQA to 62.1% (14B: 64.3%).
Beyond the medical domain, TTT–RAG improves general multi-hop reasoning,
reaching 45.1/42.8 (7B) and 48.5/44.6 (14B) on MultiHopQA/2Wiki, surpassing
strong CoT baselines (e.g., rStar) and RAG systems (MedRAG, i-MedRAG). These
results indicate that injecting structured reasoning pathways at test time yields
scalable, interpretable, and state-of-the-art performance for complex reasoning
tasks across domains 1.

1 INTRODUCTION

Solving problems through structured reasoning is a hallmark of human intelligence McCarthy (1959);
Weizenbaum (1966); Winograd (1972); Shortliffe (2012); Lenat and Guha (1989). Whether tackling
complex math, diagnosing patients, or weighing hypotheses, humans construct interpretable chains of
inference that link observations to conclusions. LLMs can mimic this behavior on many benchmarks,
yet they degrade on domain-specific tasks that demand expert, multi-step reasoning Hodel and
West (2023); Dasgupta et al. (2022); Zhang et al. (2024) (Figure 1), especially when the problem
is novel or compositional Liu et al. (2023); Dziri et al. (2023). A central cause is that pretraining
data overrepresents surface heuristics and underrepresents formal reasoning procedures Sunstein
and Hastie (2015); Kahneman (2011). As a result, models default to shallow pattern matching and
lack a mechanism to diagnose which intermediate assumptions are missing or wrong and to repair
them by turning provisional chains into targeted evidence queries Dziri et al. (2023); Morishita et al.
(2023); Guiaşu and Tindale (2018); Cheng et al. (2017). Without such diagnosis-and-repair, errors
in intermediate steps persist unnoticed, producing hallucinations or logically incoherent answers on
unfamiliar inputs.

Errors in complex reasoning are often step-local, so preventing propagation requires step-level
verification at test time. Yet large models tend to leave intermediate premises implicit—a byproduct
of pretraining objectives that reward next-token prediction and surface co-occurrence rather than
explicit procedures—so the model cannot indicate which intermediate claim needs support. Hence any
retrieval component intended to curb error propagation must be conditioned on explicit, step-indexed

1Our code and data: https://anonymous.4open.science/r/TTT-RAG-50F2/README.md
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A 67-year-old man with transitional cell carcinoma of the bladder comes to the physician because of a 2-day history of ringing sensation in 
his ear. He received this first course of neoadjuvant chemotherapy 1 week ago. Pure tone audiometry shows a sensorineural hearing loss of 45 
dB. The expected beneficial effect of the drug that caused this patient's symptoms is most likely due to which of the following actions? 
A: Inhibition of proteasome                  B: Hyper Stabilization of microtubules   
C:Generation of free radicals                 D: Cross-linking of DNA 

Human: Structured and Logical Reasoning
1. Cisplatin causes the generation of free radicals, which leads to hearing loss. 
→ (Side effect: ototoxicity)

2. Its antitumor effect arises from forming covalent bonds with DNA. 
→ This leads to DNA cross-linking, which blocks replication and induces apoptosis.

3. Therefore, its therapeutic mechanism is due to DNA cross-linking. 
Final Answer: D

LLM: Hallucinated and Heuristic Response
Cisplatin is a chemotherapy drug that can cause various side effects such as nausea, vomiting, 
and hearing loss. It works by generating free radicals, which damage cells and may contribute 
to its anticancer effects. Cisplatin is commonly used in bladder cancer treatment. 

Final Answer: C (Irrelevant mixing of side effects and mechanism; lacks logical chain.)

Traditional RAG: Retrieved Facts but No Logical Alignment
[Retrieved 1] Cisplatin will leading to hearing loss…  

[Retrieved 2] Cisplatin is used as a platinum-based chemotherapy for bladder...
[Retrieved 3] Cisplatin was discovered in 1965 and is used widely in chemotherapy. It 

belongs to the platinum-based family of drugs and causes various side effects including 
nephrotoxicity and neurotoxicity…

→ Therefore, its mechanism involves generating free radicals
➜ ➜ Final Answer: C

(The model strings together retrieved facts without clarifying *which* fact is mechanism vs. 
*which* is side effect. And the documents are not personalized)

Qwen2.5-14B

Ours LogicalChain + TTT-RAG
[Step 1] Retrieved and structured logic:

• “Cisplatin → DNA cross-linking → apoptosis” (mechanism)  
• “Cisplatin → free radicals → hearing loss” (side effect)

[Step 2] TTT selectively fine-tunes reasoning to match 
question intent.

[Step 3] Identifies therapeutic mechanism, not side 
effect

Final Answer: D  
(Structured knowledge retrieval + adaptive alignment →
correct clinical reasoning.)

Qwen2.5-7B

MedRAG
iMedRAG

TTT-RAG-14B

TTT-RAG-7B

rStar-14B

rStar-7B

Figure 1: Motivation and Overview of LogicalChain + TTT-RAG Framework. (Left:) Solving clinical
reasoning problems requires structured, interpretable inference—yet most LLMs fail to distinguish
therapeutic mechanisms from side effects due to shallow heuristics and lack of logic chaining.
Human physicians reason via modular logic (e.g., free radicals → hearing loss = side effect; DNA
cross-linking → apoptosis = mechanism), enabling correct identification of causal chains. LLMs, in
contrast, mix side effects with therapeutic logic, relying on memorized heuristics without structure.
Traditional RAG retrieves scattered facts (e.g., chemotherapy side effects, DNA binding, etc.) but
fails to organize them according to the reasoning goal (e.g., mechanism vs. symptom), highlighting
the core research gap: retrieval without logical alignment and unpersonalized corpus often misleads
LLMs. (Right:) We propose LogicalChain + TTT-RAG, a framework that enhances reasoning by: 1)
Retrieving structured logical chains relevant to the question’s intent to help the general domain model
(in the green area) to answer other domain questions (in the blue domain) 2) Performing test-time
training to align model generation with retrieved reasoning.

claims. Under this requirement, conventional RAG, which retrieves against the overall query, aligns
evidence with the global question rather than the current step and often misses the weakest link
(Lewis et al., 2020); interactive RAG can issue iterative requests (Xiong et al., 2024b), but when
the model is overconfident it fails to generate the step-specific subquery needed to trigger retrieval,
leaving the mistaken claim unchecked; and test-time scaling methods that compare or repair multiple
chains (Qi et al., 2024) offer no mechanism—when failure stems from a missing fact—to insert
the right premise at the right step. These limitations motivate two questions: (RQ1) how to elicit
explicit, high-quality chains that surface step-level assumptions at inference time; and (RQ2) how to
synchronize retrieval with these chains to verify each step, supply missing premises, and repair faulty
links.

We propose Test-Time-Training RAG (TTT-RAG), an end-to-end framework (Fig. 2) that op-
erationalizes the two RQs by first eliciting and then verifying/repairing a chain. We introduce a
provisional chain: a step-indexed, to-be-checked plan that makes the model’s intended reasoning
explicit before any evidence is injected. For RQ1, we build an off-line, retrieval-ready corpus
of (Q, A, Chain) pairs from domain sources plus human-annotated chains, enforcing three princi-
ples: completeness of structured reasoning, entity-guided abstraction, and chain-enriched QA. A
retriever/re-ranker is trained to surface step-indexed chain candidates. At inference, the same ranker
assembles a small, question-conditioned minibatch of related (Q, A, Chain) exemplars (Compare-Ex.
loop). We then perform light test-time training (TTT) on this minibatch to adapt the LLM so that it
writes out its own provisional chain for the current instance, making intermediate hypotheses explicit.
For RQ2, we treat each step of the TTT-elicited provisional chain as its own query and run step-level
RAG to surface targeted logical chain—i.e., the specific premises, counter-examples, or factual cues
implicitly needed at that step. These step-aligned docs are then fed back to the LLM to enable self
correction of the chain. The retriever is also adapted at test time so that the fetched evidence tracks
the evolving chain rather than only the original question. In summary, TTT-RAG uses one unified
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Colbert

Original Corpus

Principle
1. Completeness of Structured Reasoning
2. Entity-Guided Abstraction of Clinical Logic
3. Chain-Enriched QA Construction

Human Annotated 
Logical Chain

Q1⇔ Perioperative low-dose octreotide         Prevention of organ-related and 
general complications         Pancreatic surgery and pancreatico-jejunostomy

Q2⇔ Pancreaticoduodenectomy         Internal pancreatic duct stents        Lower 
rate of pancreatic fistula

Q3⇔ Ileum         Structure: Peyer’s patches          Composition: Aggregations of 
lymphatic nodules         Contain: T and B lymphocytes

Synthesis Logical Chains

RQ1: How can we systematically construct high-quality logical 
chains and apply into reasoning tasks?

RQ2: How can these logical chains be efficiently integrated into LLM 
inference to support multi-path aggregation and deep parallel 
deliberation, thereby improving reasoning quality on complex tasks?

Query ：

Logical+：

Logical–：

Training

Cross Encoder

COT: Question Logical Chain Answer

RAG: Question Logical Chain AnswerDOC

RAG-Deep: Question Logical Chain AnswerQuery DOC

Traditional Ways

Test Time Training RAG

Question

Query Logical Chain

Finetune

Document

Pretrain

Logical Chains Candidates DOC AnswerLogical Reason

Retrieve
and Filter Recover the 

Weight of  LLM

COT: Transitional cell carcinoma…          Anthracycline-based… DNA cross-linking
RAG:   Transitional cell carcinoma…          Taxane-based chemotherapies Free radical …
RAGD: Transitional cell carcinoma…          Drug Causing Ototoxicity Mechanism: Inhibition
TTT:   Transitional cell carcinoma…          Drug Causing Ototoxicity Ototoxic involves …

Compare Ex.

Doc1. Taxanes are widely used chemotherapy …
Doc2. Anthracyclines are drugs extracted…
Doc3. In genetics, crosslinking of DNA…

Update

LLM

Figure 2: Overview of our proposed methodology, addressing two key research questions. (RQ1: Left)
How can we systematically construct high-quality logical chains for reasoning tasks? We synthesize
logical chains from both original corpora and human-annotated exemplars, guided by three core
principles: (1) completeness of structured reasoning, (2) entity-grounded abstraction of domain logic,
and (3) chain-enriched QA construction. These chains are derived from factual, domain-specific
documents (e.g., medical guidelines or problem–solution sets), and are expressed as step-by-step
derivations that map from question to answer. To support scalable integration, we train a dual-stage
retriever: a ColBERT-based embedding retriever to shortlist logical chains, and a cross-encoder to
refine selection. (RQ2: Right) How can logical chains be effectively integrated into LLM inference
to improve reasoning? We compare three common paradigms—CoT, RAG, and RAG-Deep—with
our proposed Test-Time Training RAG (TTT-RAG). Unlike prior methods that use unstructured
documents or rigid decoding, TTT-RAG retrieves reasoning-aligned chains and performs test-time
fine-tuning during inference to align generation with retrieved logic. The adapted model verifies
chains through a document-grounded filtering stage and generates final answers with improved
consistency and factual grounding. Case study comparisons (bottom row) show that TTT-RAG
produces more accurate and interpretable reasoning compared to other methods.

(Q, A, Chain) corpus both to train the retriever and to assemble the test-time minibatch for TTT
(addressing RQ1), and then applies step-indexed RAG with test-time retriever adaptation to check,
complete, and—if necessary—revise the provisional chain (addressing RQ2).

We evaluate TTT-RAG on two representative domains that require logical reasoning: medical and
mathematical reasoning. On medical benchmarks such as MedQA (Jin et al., 2021) and MedM-
CQA (Pal et al., 2022), our method improves Qwen2.5-7B-Instruct (Yang et al., 2024) by over +16
points, outperforming strong baselines like MedRAG and rStar (Qi et al., 2024). On mathematical
tasks like MATH Lightman et al. (2023) and Olympiad He et al. (2024) Bench, TTT-RAG also
significantly surpasses comparably sized open-source models.

2 PROBLEM FORMULATION

Hidden-chain view of reasoning. Let q ∈ Q be a question and Mθ a (small) language model with
parameters θ. We posit that answering proceeds through an unobserved sequence of micro–inference
states z = ⟨z1, . . . , zT ⟩ ∈ ZT (the latent logical chain), followed by emission of an answer y ∈ Y:

y = fθ(q, z) with z ∼ pθ(· | q).

Each adjacent pair τt = (zt → zt+1) is a Wtransition (claim, transformation, or sub-derivation).
Errors typically arise at a local transition τt⋆ but remain hidden because z is not externalized.

3
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Why naive retrieval misses the failing step. Standard retrieval conditions on the global query
(either the input q or the model’s draft answer y), yielding document sets D(q) = TopK

(
rϕ(q)

)
and D(y) = TopK

(
rϕ(y)

)
from a corpus C using retriever rϕ : X → 2C . Define a step-alignment

functional A :2C×T → [0, 1] that measures whether a set of documents directly relevant or irrelevant
a specific transition τ (e.g., contains the premise, rule, entity relation, or counterevidence needed for
that step). Empirically for the failing step t⋆,

A
(
D(q), τt⋆

)
≪ 1 and A

(
D(y), τt⋆

)
≪ 1,

because relevance to q or y is topical, not step-indexed; thus the wrong (or missing) micro-premise
persists and the error propagates.

Objective. We seek a way to (i) elicit a provisional chain ẑ = ⟨ẑ1, . . . , ẑT ⟩ that reflects the model’s
intended intermediate states for this instance, and (ii) retrieve by transition, not by q or y, so that
evidence is locally aligned:

∀t ∈ {1, . . . , T−1} : Et = TopK
(
rϕ(q, τ̂t)

)
, τ̂t = (ẑt→ ẑt+1),

with the desideratum A(Et, τt)≫A(D(q), τt), A(D(y), τt). Using step-aligned evidence E1:T−1, the
model revises its reasoning to an updated chain z′ = ⟨z′1, . . . , z′T ⟩ and emits

y′ = fθ
(
q, z′, E1:T−1

)
,

aiming for improved correctness and faithfulness.

3 LOGICAL CHAIN GENERATION

To address the core limitation that SLMs seldom externalize the intermediate steps they implicitly
rely on (RQ1), we curate a training corpus that makes high-quality chains explicit and teaches the
model what a faithful, step-indexed derivation looks like. Concretely, we construct logical chains that
(i) decompose complex reasoning into atomic, verifiable transitions, (ii) stay semantically grounded
in the entities actually present in the evidence, and (iii) are used to support question–answer pairs
so that chains are not decorative but operational. These choices let us (a) train a chain retriever and
chain-aware prompts/decoders that elicit a provisional chain at test time, and (b) provide step indices
that later enable transition-conditioned retrieval.

3.1 DESIGN PRINCIPLES FOR CONSTRUCTING LOGICAL CHAINS

To effectively support structured reasoning, our dataset construction strategy is informed by the
following design principles, grounded in formal reasoning completeness and clinical knowledge
representation theory.

Design Principle 1 (Structured Reasoning). We represent a logical chain as a sequence of latent
states z = ⟨z1 → z2 → · · · → zT ⟩, where each zt is a micro–inference state and each transition
τt = (zt→ zt+1) captures one atomic step of reasoning. Let A denote the minimal set of atomic
transition types (e.g., “premise→intermediate”, “intermediate→conclusion”), and let Z be the set
of valid chains. Any valid chain z ∈ Z is decomposed into a finite sequence of atomic transitions
z = ⟨τi1 , τi2 , . . . , τiK ⟩ with τik ∈ A. This stepwise factorization (i) makes the chain interpretable and
verifiable at the transition level and (ii) provides the indices t we later use for transition-conditioned
retrieval.

As a concrete example in the medical domain, an atomic step might be “symptom → diagnostic test
(rule)” or “lab result → disease condition (conclusion)”. While not all atomic steps immediately
yield conclusions, they are composable units that ultimately lead to a final decision or answer. We
synthesize a large corpus of logical chains by first collecting expert-written reasoning traces from
guideline documents and QA datasets where available. For documents lacking explicit reasoning, we
augment them using semi-automated paths retrieved from medical knowledge graphs or generated by
prompting GPT-4 with document-specific constraints (details in Appendix A.3). To retrieve relevant
paths, we train a ColBERT-based retriever and validate its quality using recall@k on expert-annotated
examples and manual spot-checks (see Appendix A.4.2 for evaluation).

This yields a corpus D = {(di, zi)}Ni=1, where di is a document (or case context) and zi = ⟨zi,1→
· · ·→zi,Ti⟩ is its paired logical chain; the corpus contains over 2M (document, chain) pairs.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Design Principle 2 (Entity-Guided Abstraction of Clinical Logic). Let E be the universe of
clinical entities, and let ϕ(d) ⊆ E extract the entities mentioned in document d. For each paired
example (di, zi) we enforce entity alignment:

Ent(zi) ⊆ ϕ(di),

where Ent(zi) is the set of entities referenced across the steps in zi. This grounds every transition
τi,t = (zi,t → zi,t+1) in the semantic content of di, guiding abstraction while preserving local
coherence.

Design Principle 3 (Chain-Enriched QA Construction). Each (di, zi) is extended with a QA
pair (qi, gi) such that the answer is entailed by the chain: zi |= gi (i.e., gi follows from the stepwise
inferences in zi). We generate (qi, gi) from (di, zi) using domain templates, ensuring questions
require the chain rather than isolated facts. These QA tuples are used (1) to train a chain retriever
with triplets (qi, z+i , {z

−
i,k}) and (2) to evaluate how well retrieved chains support answer generation.

4 TTT-RAG

Humans handle both RQ1 and RQ2 naturally: before answering, we jot down a tentative chain of
steps (making the reasoning explicit, RQ1) and then look up sources targeted to the weakest step to
confirm or fix it (aligning evidence to the chain, RQ2). In contrast, SLMs are pretrained to mimic
surface heuristics, keep their chains latent, and retrieve by the question (or final answer) rather than by
the failing step, so they neither expose where they’re unsure nor fetch evidence for the exact broken
link.

We operationalize the human workflow with TTT–RAG. Stage A (elicitation for RQ1). Given a
test query, we retrieve a tiny minibatch of related (Q,A, chain) exemplars and perform lightweight
test-time training so the model commits to a provisional, instance-specific chain before any external
evidence is shown. Stage B (step-aligned retrieval for RQ2). We convert each transition in that chain
into a focused query and retrieve step-aligned documents that supply the missing premise or surface
contradictions at that link; the goal is not to hard-repair the chain, but to present exactly the evidence
the model needs to revise its own step. This two-stage procedure mirrors human practice—first
externalize the plan, then read precisely for the fragile parts—thereby addressing RQ1 and RQ2
within a single, end-to-end method.

Stage A: Test-time elicitation via chain-alignment. To externalize the model’s hidden reasoning
for the current query (RQ1), we perform a brief, neighbor-conditioned test-time chain alignment so
the model first commits to an explicit, step-indexed plan before any evidence is retrieved. Given a test
query q, a chain-aware retriever rϕ (with parameters ϕ) returns a tiny exemplar set of chain triples
S(q) = {(q(i), y(i), z(i))}mi=1 of size m, where each z(i) = ⟨z(i)1 → · · · → z

(i)
Ti

⟩ is a step-indexed
logical chain paired with question q(i) and answer y(i). Starting from base model parameters θ, we
take a few gradient steps with learning rate ηcot that only align the output distribution πθ(·) to explicit
chains:

θq = θ − ηcot ∇θ

(
1

m

m∑
i=1

− log πθ
(
z(i) | q(i)

))
,

yielding query-adapted parameters θq . We then elicit a provisional chain for the instance:

ẑ = ⟨ẑ1→· · ·→ ẑT ⟩ ∼ πθq (· | q), τ̂t=(ẑt→ ẑt+1), t = 1, . . . , T−1,

where T is the length of the elicited chain and τ̂t denotes its t-th transition. By collapsing diffuse
latent hypotheses into a concrete sequence ẑ, Stage A makes intermediate states and transitions
observable on this instance—fulfilling RQ1 and furnishing the step queries {τ̂t} used in Stage B.

Stage B: Step-aligned retrieval and answer generation. To align evidence with the model’s
provisional reasoning from Stage A, we retrieve documents by transition rather than by the raw
question. Given the elicited chain ẑ and its transitions τ̂t for t=1, . . . , T−1, a chain-aware retriever
rϕ (parameters ϕ) forms a step-conditioned query from (q, τ̂t) and returns a small, ranked set of
step-aligned documents

Et = TopKk
(
rϕ(q, τ̂t)

)
with E1:T ={Et}T−1

t=1 .
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Optionally, a step-level alignment scorer sψ(d ; q, τ̂t)∈ [0, 1] (parameters ψ) filters each pool by a
threshold τ :

Ẽt = { d ∈ Et : sψ(d ; q, τ̂t) ≥ τ }, Ẽ1:T = {Ẽt}T−1
t=1 .

We condition the model on the step-aligned evidence bundle and let it give the final answer:

y′ ∼ πθq
(
·
∣∣ q, ẑ, Ẽ1:T ),

optionally emitting an updated chain z′ along with y′. By conditioning retrieval on each transition
τ̂t, Stage B supplies precisely the missing premises or contradictions at the fragile links of the
chain—thereby aligning evidence to the model’s stepwise plan and addressing RQ2.

5 EXPERIMENT

5.1 DATASETS & MODELS

Datasets We evaluate on three medical QA sets—MedQA (Jin et al., 2021) (USMLE Step
1/2CK/3, Jun 2022–Mar 2023), MedMCQA (Pal et al., 2022) (194k MCQs across 21 subjects),
and MMLU–Medical (Hendrycks et al., 2020) (nine medical areas)—and two general multi-hop
benchmarks: 2WikiMultihopQA (Ho et al., 2020) and MultiHopQA (Song et al., 2018), which
require cross-document evidence and step-wise verification.

Models Our backbone is Qwen2.5 (7B/14B). Baselines include instruction-tuned LLMs (Qwen2.5-
Instruct), RAG systems (MedRAG, i-MedRAG), and test-time reasoning (rStar–Qwen2.5); for
broader comparison we include open-source reasoning models (e.g., NuminaMath, LLaMA3,
Mathstral) and proprietary LLMs (GPT-4o, Claude 3.5). TTT–RAG consistently outperforms
open-source and RAG baselines across medical and general multi-hop tasks.

5.2 EVALUATION SETTINGS

RQ1: Does TTT–RAG elicit high-quality logical chains? We test chain–elicitation by directly
evaluating the produced reasoning chains. Concretely, we prompt models to “think then answer” and
compare a no-adaptation CoT baseline and strong open models (Qwen2.5 7B/14B/32B, Llama3.1 8B,
Mistral-7B, Phi-4 14B) against TTT–RAG-14B. To further assess the quality of generated logical
chains, we conduct both automatic and human evaluations. Automatically, we measure the alignment
between generated chains and gold references using string similarity and step-level entailment
accuracy(Atomic Cov.). For human evaluation, we randomly sample 100 logical chains from different
model variants (e.g., instruction-tuned, RAG-based, logical chain-based) and ask annotators to rate
them on three criteria: (1) logical coherence, (2) domain correctness. We will compare each model’s
logical chain with our method and calculate the win rate.

RQ2: Does TTT–RAG correct the wrong step and improve accuracy? We use two complemen-
tary settings. Cross–domain comparison: on the medical (MedQA, MedMCQA, MMLU–Medical)
and general multi–hop suites (MultiHopQA, 2Wiki), we run the same backbones (Qwen2.5–7B/14B)
and compare four method families designed to isolate confounds: (i) CoT baselines (Qwen2.5 CoT,
rStar) to control for “more thinking” without retrieval; (ii) Only RAG (MedRAG) to control for
document access without chain guidance; (iii) CoT+RAG (interactive) (i–MedRAG) to control for
queryable evidence without step indexing; and (iv) TTT–RAG (ours), which first elicits a step–indexed
chain and then converts each step into a subquery whose retrieved evidence conditions the final
answer. Furthermore, within MedQA we further isolate our components with three controlled con-
figurations that match backbone, prompts, and decoding: Setting 1 TTT (no logical–chain data, no
retrieval; direct answer), Setting 2 TTT (Logical) (with logical–chain synthesis data, still direct
answer; no retrieval), and Setting 3 TTT–RAG (generate a structured chain, map steps to subqueries,
retrieve step–aligned evidence, then answer). This design tests RQ2 mechanistically: if gains appear
only when elicited chains drive step–specific retrieval (Setting 3) and persist against (i)–(iii) across
domains, the accuracy lift is attributable to correcting the specific erroneous step by injecting the right
premise at the right step, rather than to CoT alone, TTT alone, vanilla RAG, or interactive CoT+RAG.
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6 RESULTS

6.1 RQ1: TTT–RAG ELICIT HIGH-QUALITY LOGICAL CHAINS

Model ROUGE-1 Atomic Cov. Human
Qwen2.5 7B 0.2841± 0.0063 0.3541± 0.0063 31%
Llama3.1 8B 0.2640± 0.0146 0.3215± 0.0270 39%
Mistral-7B 0.2617± 0.0012 0.3211± 0.0021 30%
Phi-4 (14B) 0.2438± 0.0012 0.3213± 0.0040 45%
Qwen2.5 14B 0.2429± 0.0646 0.5437± 0.0682 41%
Qwen2.5 32B 0.2225± 0.0003 0.5936± 0.0017 41%
TTT-RAG-14B 0.3318 ± 0.0130 0.6112 ± 0.0210 –

Table 1: Performance of different models on reasoning qual-
ity in the MedQA dataset.

Relative to plain CoT baselines,
test-time adaptation stabilizes rea-
soning but still trails chain-aware
variants, as the chain–quality com-
parison on MedQA shows (Table 1).
Among strong non-TTT open models,
ROUGE-1 clusters in a narrow band
(Qwen2.5-7B 0.2841 ± 0.0063,
Llama3.1-8B 0.2640 ± 0.0146,
Mistral-7B 0.2617 ± 0.0012, Phi-
4-14B 0.2438 ± 0.0012), while
step-level entailment (Atomic Cov.) grows mainly with scale on the same backbone (Qwen2.5-14B
0.5437 ± 0.0682 → Qwen2.5-32B 0.5936 ± 0.0017), indicating larger models assert more facts
that are actually supported without necessarily improving lexical/structural alignment to reference
chains. Human ratings for these baselines (30–45%) similarly suggest fluent but heuristic chains. By
contrast, our pipeline’s chains (TTT-RAG-14B) achieve the strongest automatic quality—ROUGE-1
0.3318 ± 0.0130 (absolute gain ≈+0.048 over the best baseline, Qwen2.5-7B) and Atomic Cov.
0.6112 ± 0.0210 (gain ≈ +0.018 over Qwen2.5-32B)—showing both tighter alignment to gold
chains and higher factual support per step.

6.2 RQ2: TTT–RAG CORRECT THE WRONG STEP AND IMPROVE ACCURACY

Figure 3: Ablation study analyzing two
design choices in TTT-RAG: (Top) the
proportion of logical chains retained dur-
ing test-time training, and (Bottom) the
number of parallel users processed in
batch-wise adaptation.

Adding step–indexed supervision during TTT yields a
modest but consistent gain when the model answers with-
out retrieval (TTT (Logical) in Fig. 3 Top: 55.6 → 58.7 on
MedQA; consistent with the small Only TTT → TTT+CoT
lift in Table 3). This indicates that supervision helps the
model articulate cleaner intermediate premises, but it does
not correct wrong steps caused by missing facts: without
evidence injection, a mistaken premise remains unveri-
fied and the final answer often stays wrong. The correc-
tion appears only when the elicited chain drives retrieval:
mapping each step to a subquery boosts MedQA to 70.1
for TTT–RAG in Fig. 3, and the same mechanism scales
across domains and sizes in Table 2 (e.g., TTT–RAG–14B
= 73.8/64.3 on MedQA/MedMCQA and 48.5/44.6 on
MultiHopQA/2Wiki, surpassing CoT, rStar, MedRAG, and
i–MedRAG). These controlled comparisons explain why
competing methods fall short: CoT/rStar provide longer
reasoning but cannot inject missing facts; MedRAG re-
trieves at the question level and often misaligns evidence with the needed step; and i–MedRAG issues
ad-hoc queries without explicit step IDs, so overconfidence can suppress the very query required. In
contrast, TTT–RAG uses elicited, step-indexed chains to localize the failing link and fetch the right
premise at the right step, yielding the observed accuracy gains.

6.3 EFFICIENCY

The table 3 disentangles the contributions of CoT, RAG, and TTT to accuracy and latency. Pure CoT
(55.1, +0s) is the weakest. Adding more “thinking” without retrieval via rStar yields only a small gain
(58.1, +497s), indicating poor accuracy–latency efficiency (≈+3.0/497). Either component alone
helps modestly: Only RAG improves to 58.7 at no extra time (+3.6, +0s), while Only TTT reaches
59.1 with moderate overhead (+4.0, +24s). Combining CoT with generic interactive RAG (iMedRAG)
produces a larger boost (62.5, +26s), showing synergy between reasoning and document access, yet
accuracy remains limited because retrieval is not aligned to specific steps. Introducing TTT on top of
CoT but without retrieval (TTT+CoT) barely moves the needle (59.3, +25s), implying that elicited
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Medical Domain General Domain
Model MedQA MedMCQA MMLU MultiHopQA 2Wiki
Qwen2.5-7B-Instruct 53.2 54.1 70.3 26.3 27.4
Qwen2.5-14B-Instruct 60.8 55.7 75.2 32.5 30.1
MedRAG-Qwen2.5-7B 51.0 56.9 68.1 33.2 31.2
i-MedRAG-Qwen2.5-7B 54.3 57.6 74.4 35.6 34.4
rStar-Qwen2.5-7B 58.1 55.9 69.8 29.1 28.5
rStar-Qwen2.5-14B 63.2 56.7 77.2 34.1 30.6
TTT-RAG-7B 70.1 62.1 75.4 45.1 42.8
TTT-RAG-14B 73.8 64.3 78.5 48.5 44.6

Table 2: Model Performance split by Medical vs General domains.

Method Uses CoT Uses RAG Uses TTT Accuracy (MedQA) Time / Q (s)

Qwen-2.5 (CoT) ✓ ✗ ✗ 55.1 +0s
Qwen-2.5-rStar ✓ ✗ ✗ 58.1 +497s
Only TTT ✗ ✗ ✓ 59.1 +24s
Only RAG (MedRAG) ✗ ✓ ✗ 58.7 +0s
CoT+RAG (iMedRAG) ✓ ✓ ✗ 62.5 +26s
TTT+CoT ✓ ✗ ✓ 59.3 +25s
TTT+CoT+RAG ✓ ✓ ✓ 70.1 +32s

Table 3: Component usage, accuracy, and latency on MedQA (Figure 2). Time / Q reports additional
per-question latency relative to the Qwen-2.5 (CoT) baseline.

chains alone do not reliably correct mistakes caused by missing facts. The full TTT+CoT+RAG is
the clear winner (70.1, +32s): relative to iMedRAG, it delivers +7.6 points for only +6s additional
latency, and relative to Only RAG it adds +11.4 points with acceptable overhead. These contrasts
isolate the active ingredient: converting elicited, step-indexed chains into subqueries (TTT–RAG)
enables step-synchronized retrieval that fixes the failing link, whereas “more CoT,” TTT alone, or
question-level/interactive RAG cannot consistently target and repair the erroneous step.

6.4 ROBUSTNESS: EVALUATION ON MATH DOMAIN.

Figure 4: Ablation study for TTT-RAG.
(Top) Effect of the number of retained
small-batch samples used in logical
chain supervision. (Bottom) Impact of
varying the number of parallel users dur-
ing batch-wise test-time training.

For mathematical reasoning, we conduct a comprehensive
evaluation on four widely-used benchmarks: MATH Light-
man et al. (2023), AMC 2023 (Team, 2024), Olympiad
Bench He et al. (2024), and GSM8K Cobbe et al. (2021).
We conduct further ablation studies to better understand
the behavior of our TTT-RAG framework:

Impact of Small-Batch Size during Test-Time Training.
We systematically vary the size of the adaptation batch
used in TTT (e.g., 1, 2, 4, 8 examples) to assess how
the quantity of retrieved supervision affects the quality of
adaptation and final accuracy. This ablation helps reveal
the trade-off between adaptation speed and generalization
performance.

Parallel Multi-Query Test-Time Adaptation. To simu-
late a multi-user inference setting and evaluate scalability,
we group concurrent user queries (e.g., 3, 6, 9, 12 queries)
and perform joint adaptation using a concatenated retrieval
batch. This parallel strategy aims to amortize the cost of
TTT while enabling more efficient resource sharing. We
measure how this affects accuracy and adaptation stability
across different parallelism levels.

Ablation Study: Mathematical Domain. To investigate
how different configurations of logical chain integration

8
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and test-time parallelization affect mathematical reasoning performance, we conduct two sets of
ablation studies, visualized in Table 4.

In the Figure 4, we vary the retention percentage of retrieved logical chains during test-time
training—from 20 to 100 samples and observe a monotonic increase in accuracy. This indicates that
maintaining a greater proportion of logical reasoning steps during adaptation substantially benefits
the model’s ability to solve complex symbolic problems, improving accuracy from 60.9% to 63.2%.
We also evaluate the effect of parallel user batch size, where retrieved batches from 3, 6, 9, or 12
users are aggregated and jointly used for test-time training. We find that moderate parallelism (6
users) improves performance by reducing variance in reasoning paths, while excessive parallelism
(12 users) introduces noise and leads to degraded accuracy. This suggests a trade-off between parallel
efficiency and reasoning fidelity, and highlights the importance of controlled batch-level adaptation
for symbolic reasoning tasks.

7 RELATED WORK

Reasoning with LLMs and RAG. LLMs excel broadly yet still struggle with explicit, multi-step
inference and modular logic (Liu et al., 2023; Wu et al., 2024; Dziri et al., 2023). Prompting (CoT,
self-consistency) improves fluency but not verifiability or coherence in expert domains (Wei et al.,
2022; Wang et al., 2022). RAG injects external knowledge (Lewis et al., 2020; Guu et al., 2020), but
retrieved text is often unstructured or only loosely related to the step that needs support (Ye et al.,
2023; Xiong et al., 2024a); even structured variants (e.g., MedRAG, iMedRAG) reduce hallucinations
but still misalign with step-wise reasoning. We address this gap with LogicalChain—a retrieval-ready
corpus of interpretable, step-indexed derivations (e.g., cause → mechanism → effect) that equips
LLMs with structured scaffolds rather than heuristic completions.

Model MATH AMC2023 Olympiad GSM8K

Qwen2-7B-Instruct 49.6 25.0 0.04 82.3
NuminaMath-7B-COT 55.8 27.5 0.03 76.3
rStar-Qwen2 60.4 30.0 20.0 87.2
TTT-RAGs 63.2 30.0 24.7 87.0

Table 4: Comparison of model performance across
mathematical benchmarks. rStar-Math shows
strong performance across all metrics.

Test-Time Training and Adaptation. TTT
adapts models during inference using test-
specific signals; while effective in vision for do-
main robustness (Sun et al., 2020; Behrouz et al.,
2024), its use for NLP—especially LLM rea-
soning—remains limited (Lee et al.), and prior
work largely relies on unsupervised objectives
(e.g., shift detection, contrastive reconstruction)
with little task structure or semantic alignment.
In reasoning settings, we observe persistent in-
stance–step misalignment: chains retrieved by pretrained retrievers often reflect corpus-level relevance
rather than the step-specific trajectory needed for a given case. We therefore combine TTT with RAG,
adapting the model at test time via structured supervision on retrieved logical chains and supporting
documents so that reasoning focuses on the current instance without global parameter updates. To
our knowledge, this is the first approach to inject instance-specific logical supervision into a TTT
pipeline for LLMs, enabling more robust and interpretable reasoning across medical and general
multi-hop domains.

8 CONCLUSION

We present LOGICALCHAIN + TTT-RAG, a retrieval-augmented reasoning framework that en-
hances LLM performance by integrating structured logical chains through test-time adaptation. By
dynamically aligning the model’s reasoning process with retrieved inference paths, TTT-RAG sig-
nificantly enhances performance on medical and mathematical benchmarks, surpassing existing
retrieval-augmented and instruction-tuned baselines. Experimental results show that incorporating
structured reasoning pathways during inference improves both the accuracy and logical coherence
of model outputs. These findings demonstrate the effectiveness of logic-guided, instance-specific
adaptation in advancing the reasoning capabilities of LLMs for complex tasks.
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9 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. All models and algorithms are
described in detail in the main text (Sections 3 and 4). The description of datasets and preprocessing
steps is given in Section 3 and Appendix. Hyperparameters and training configurations are reported
in Section 5.
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A APPENDIX

A.1 LLM USAGE

In accordance with the ICLR 2026 policies on LLM usage, we disclose how LLMs were used in
this work. LLMs were employed to assist with grammar polishing, wording improvements, and
drafting text during paper preparation. All technical content, proofs, experiments, and analyses were
conceived, implemented, and validated by the authors. Authors remain fully responsible for the
correctness of the claims and results.

No LLMs were used to generate research ideas or produce results. No confidential information was
shared with LLMs, and no prompt injections or other inappropriate uses were involved.

This disclosure aligns with the ICLR Code of Ethics: contributions of tools are acknowledged, while
accountability and verification rest entirely with the human authors.

A.2 ERROR ANALYSIS

To better understand the limitations of different retrieval strategies, we conducted an error analysis
comparing a baseline RAG approach with our proposed TTT-RAG framework. Using Qwen2.5-14B
as the base model, we retrieve documents and directly generate answers, and compared this with
TTT-RAG’s test-time adapted retrieval and inference. We randomly sampled 100 test cases and
manually categorized each incorrect prediction into one or more of the following four error types:
(1) irrelevant or missing evidence, (2) misleading evidence, (3) insufficient reasoning ability, and (4)
forgotten knowledge.

The ColBERT-RAG setup produced 15 errors due to irrelevant or missing documents, 6 from
misleading content, 20 due to reasoning failures, and 6 involving forgotten background knowledge. In
contrast, TTT-RAG reduced these numbers to 7, 0, 12, and 5 respectively. These results highlight that
TTT-RAG not only improves retrieval relevance but also reduces reasoning and knowledge-related
errors, suggesting that test-time adaptation provides more reliable and contextually aligned inputs for
downstream inference.

A.3 DATA CONSTRUCTION PIPELINE

We categorize documents into two types: (1) Expert-authored documents with explicit reasoning
traces, such as clinical guidelines, medical board exam explanations, or textbook problem solutions.
These documents often contain structured logic that can be extracted or lightly reformatted to form
usable reasoning chains. (2) Factual documents without explicit reasoning, including textbook
paragraphs, curated QA datasets, and encyclopedic resources such as Wikipedia. These texts provide
rich medical knowledge but require additional processing to reveal the underlying reasoning structure.
The details are shown in Table 5

For type (2), we synthesize logical chains by prompting GPT-4 with a structured instruction template.
Each input includes a factual medical passage, and the model is asked to generate a step-by-step
logical chain that connects context to conclusion while avoiding large logical jumps. We include
constraints to ensure that:

• The logical chain begins with the key facts or conditions in the document;
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• Intermediate reasoning steps are included (e.g., physiological mechanisms, diagnostic steps,
or treatment justifications);

• The final step logically derives the medically relevant conclusion (e.g., diagnosis, mechanism,
treatment);

• Language remains generalizable and concise, avoiding unnecessary specifics (e.g., age, lab
values) unless clinically necessary.

A representative prompt looks like this:

“The text below contains a medical fact. Your task is to generate a logical

chain that explains the underlying reasoning. Be concise but complete. Return

format: Logical Chain: A → B → C”

This process allows us to convert static medical knowledge into dynamic reasoning trajectories that
can be retrieved and aligned at inference time.

A.4 RETRIEVER TRAINING AND EVALUATION

A.4.1 LOGICAL CHAIN RETRIEVER TRAINING

We retrieve logical chains using a two-stage retrieval–reranking pipeline . First, we use ColBERT
to retrieve the top-K candidate logical chains for each query q. Then, a cross-encoder is applied
to rerank these candidates. This pipeline balances retrieval efficiency with reranking effectiveness,
leveraging ColBERT’s fast dense retrieval and the cross-encoder’s stronger semantic matching
capabilities. Specifically, the cross encoder is trained to map a query q (typically a user question)
to its corresponding logical chain l+, sampled from a shared document d. Each training instance is
constructed as a triplet (q, l+, {l−i }Ni=1), where l+ is the gold reasoning path and l−i are hard negatives
sampled from neighboring chains within the same document d. The training objective minimizes the
following contrastive loss:

L = − log
exp(Sim(q, l+))

exp(Sim(q, l+)) +
∑N
i=1 exp(Sim(q, l−i ))

, (1)

where Sim(q, l) denotes the similarity score between query q and candidate logical chain l, computed
via a dual-encoder architecture. The softmax denominator encourages the model to assign the highest
score to the gold chain.

Each query q is associated with a unique logical chain l, such that the retrieved logical chain l+ implies
both the supporting document and the reasoning steps required to answer q. This alignment enables
the retriever to support dual downstream tasks. QA-to-Chain Retrieval: Given a clinical question
q, retrieve the corresponding logical chain l+ that reflects guideline-based reasoning. Guideline-to-
Chain Retrieval: Given a document excerpt d, retrieve an appropriate reasoning path l+ for diagnostic
or therapeutic inference. By training jointly on both tasks, the retriever learns generalizable alignment
between questions, reasoning chains, and medical documents, supporting structured retrieval across
diverse input scenarios.

A.4.2 EVALUATON RESULTS

Logical Chain Retriever 73.27 77.49 80.13 81.79
ColBERT Retriever 62.33 65.12 67.48 70.51

Logical Chain Retriever 73.27 77.49 80.13 81.79
ColBERT Retriever 62.33 65.12 67.48 70.51

Table 6: Top-k retrieval accuracy (%) comparison between
Logical Chain Retriever and ColBERT Retriever.

We compare the retrieval accuracy of
our proposed Logical Chain Retriever
against a strong baseline, ColBERT
Retriever, on top-k evidence selec-
tion. For the test datasets, we construct
QA pairs based on Pubmed corpus to
test. As shown in Table 6, the Logical
Chain Retriever consistently outper-
forms ColBERT across all values of k.
Notably, it achieves 73.27% top-5 accuracy, compared to 62.33% with ColBERT. This performance
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Table 5: Prompt Template for Logical Rule Generation.

System Prompt The text below contains medical information. Your task is to create rules based on
the medical knowledge presented, ensuring each rule comprehensively represents the
information in the evidence text without omitting any significant details.

1. Clear Distinction
Between Conditions and

Outcomes
Each rule should clearly reflect when certain items are conditions, patient characteristics,
or prerequisites (such as specific diagnoses, clinical findings, or circumstances) and
when others are outcomes, actions, or recommendations. Always list conditions at the
start of the rule, followed by the recommended actions or results.

2. Multiple Rules for
Complex Evidence If an evidence statement includes multiple distinct aspects, create separate rules for

each part. This ensures that each concept is represented fully and clearly, preventing
unrelated ideas from being merged into a single rule. Reuse the evidence as needed for
each distinct rule.

3. Parallel Items and
Logical Structure Arrange items logically within each rule.

• For items that have a natural sequence based on real-world logic (e.g., patient
characteristics → diagnostics → treatment recommendations), follow this
order.

• If items are parallel without a strict sequence, indicate them at the same level
within the rule without imposing order (e.g., “PET benefits → Diagnosis,
Staging, Treatment Response”).

4. Real-World Logical
Order When applicable, follow a natural sequence based on real-world relationships rather

than sentence order. The preferred structure is:
• Conditions or Requirements
• Diagnostics
• Findings or Results
• Treatment Recommendations or Actions
• Follow-Up or Monitoring Plans (if applicable)

Present these elements in this logical order, regardless of how they are arranged in the
original text.

5. Reconstruct Guideline Ensure that the generated set of evidence and rules covers the guideline comprehen-
sively, allowing the guideline to be reconstructed accurately from these parts. Use exact
phrasing from the original guideline text where feasible.

6. Include Every Key
Detail Represent every significant term, phrase, or concept from the evidence. Each rule

should be as concise as possible while fully representing all critical details. Avoid
redundancy, but include all essential information.

7. Direct Language
Without Conditionals Use clear and direct language without excessive use of conditionals like “if” or “when.”

Each rule should be logically complete and self-contained, conveying the full context
of the information.

8. Output Format Key Terms to Include: {key_words}
Medical Text:
{medical_text}

Example Rule Format:
Correct:
Evidence: “A patient presents with abdominal pain, followed by a CT scan, which
shows an abscess. Treatment includes antibiotics.”
Rule: Abdominal pain → CT scan → Abscess detected → Treatment: Antibiotics.
Incorrect:
Evidence: “A patient presents with abdominal pain, followed by a CT scan, which
shows an abscess. Treatment includes antibiotics.”
Rule: Abdominal pain → Abscess detected → CT scan → Treatment: Antibiotics.

Return Format
• Evidence:
• Rule:
• Evidence:
• Rule:

Return only the specified output format without additional commentary or explanation.

gap widens with larger k, reaching 81.79% at top-20 retrieval, demonstrating the effectiveness of
incorporating structured reasoning signals during retrieval. These results indicate that explicitly mod-
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eling logical chains not only improves alignment with the query intent, but also facilitates retrieval of
more relevant and explanatory evidence.

A.5 QA GENERATION EXAMPLES

Given a logical chain, we automatically generate QA pairs by framing the final step as the answer
and rephrasing the earlier reasoning path as a question. This alignment ensures that the question
is logically entailed by the steps in the chain, and that the answer is the natural conclusion of the
reasoning process.

For example, given the input:

Document: “Cisplatin binds DNA and induces cross-linking, which causes apoptosis.”
Logical chain: “Cisplatin → DNA crosslinking → blocks replication → apoptosis”

We generate:

Q: What is the therapeutic mechanism of Cisplatin?
A: DNA cross-linking

This question-answer pair reflects both the factual content and the reasoning structure, enabling it to
be used in alignment tasks or as a target for supervised fine-tuning. When needed, we apply controlled
variation (e.g., passive voice, question style) to increase linguistic diversity while preserving the
underlying logic.

A.6 EVALUATION PROMPT DESIGN

When evaluating close QA, we only need to calculate accuracy. However, many open QA tasks, such
as diagnostic reasoning questions in the Amboss Dataset, present additional challenges. Although
several methods exist for measuring textual similarity, such as F1 or ROUGE, both approaches have
significant limitations in the medical domain. Therefore, we propose a very strict evaluation pipeine
by using two evaluation metrics: the USMLE-Factuality score and the GPT-4o score. For the GPT-4o
score, directly allowing GPT-4o to grade the answers is often ineffective, as GPT-4o tends to favor
answers that align with its preferred linguistic style, which may not match our intended criteria. Thus,
we introduce a scoring framework to evaluate model’s fine grained diagnostic ability based on three
aspects: Key Points, Inference, and Evidence which is designed by doctors:

• Key Points assess whether the model’s answer includes the critical elements present in the
ground truth.

• Inference evaluates whether the diagnostic reasoning in the model’s answer is correct,
follows the same steps as the ground truth, and whether any key steps are omitted.

• Evidence examines whether the model’s answer provides the crucial evidence to support its
conclusions or diagnostic reasoning.

Finally, an average score will be calculated to represent the overall quality of the answer. To further
reduce the influence of linguistic style on GPT-4’s scoring, we propose revising all model-generated
answers through GPT-4, ensuring that all outputs align with GPT-4’s own style distribution. During
this revision, GPT-4 will only see the model’s answer, without access to any other information.

When scoring, GPT-4 will generate its own summaries of Key Points, Inference, and Evidence
based on the ground truth. When assigning scores to these aspects, GPT-4 will no longer see the
original answer but will only reference its summarized Key Points, Inference, and Evidence.
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Table 7: Evaluation Pipeline Prompt Example Template.

System Prompt
The text below contains medical information. Your task is to create
rules based on the medical knowledge presented, ensuring each rule
comprehensively represents the information in the evidence text without
omitting any significant details.

Clear Distinction
Each rule should clearly reflect when certain items are conditions, pa-
tient characteristics, or prerequisites (such as specific diagnoses, clinical
findings, or circumstances) and when others are outcomes, actions, or
recommendations. Always list conditions at the start of the rule, followed
by the recommended actions or results.

Multiple Rules for
Complex Evidence

If an evidence statement includes multiple distinct aspects, create sep-
arate rules for each part. This ensures that each concept is represented
fully and clearly, preventing unrelated ideas from being merged into a
single rule. Reuse the evidence as needed for each distinct rule.

Parallel Items
and Logical
Structure

Arrange items logically within each rule. - For items that have a natural
sequence based on real-world logic (e.g., patient characteristics -> diag-
nostics -> treatment recommendations), follow this order. - If items are
parallel without a strict sequence, indicate them at the same level within
the rule without imposing order, such as "PET benefits -> Diagnosis,
Staging, Treatment Response" if they all apply equally.

Real-World Logical
Order

Over Sentence Structure**: When applicable, follow a natural sequence
based on real-world relationships rather than sentence order. The pre-
ferred sequence generally follows: - **Conditions or Requirements**
(e.g., patient characteristics or specific criteria) - **Diagnostics** (e.g.,
tests performed) - **Findings or Results** (e.g., outcomes of diag-
nostics) - **Treatment Recommendations or Actions** (e.g., proposed
treatments based on findings) - **Follow-Up or Monitoring Plans** (if
applicable) Present these elements in this logical order, regardless of
how they are arranged in the original text.

Reconstruct
Guideline

Ensure that the generated set of evidence and rules covers the guideline
comprehensively, allowing the guideline to be reconstructed accurately
from these parts. Each evidence should be presented as close to the
original guideline text as possible, using exact phrasing where feasible.

Include Details

Represent every significant term, phrase, or concept from the evidence.
Each rule item should be as concise as possible while fully representing
all critical details. Avoid unnecessary redundancy but ensure all essential
information is included. Use clear and direct language without excessive
use of conditionals like “if” or “when.” Each rule should be logically
complete and self-contained, conveying the full context of the informa-
tion.

Output Format

**Key Terms to Include**: key words **Medical Text**: medical text
**Medical Path**: medical path **Example Rule Format**: - **Cor-
rect**: - **Evidence**: "A patient presents with abdominal pain, fol-
lowed by a CT scan, which shows an abscess. Treatment includes antibi-
otics." - **Rule**: Abdominal pain -> CT scan -> Abscess detected ->
Treatment: Antibiotics. - **Incorrect** (based purely on sentence order):
- **Evidence**: "A patient presents with abdominal pain, followed by
a CT scan, which shows an abscess. Treatment includes antibiotics." -
**Rule**: Abdominal pain -> Abscess detected -> CT scan -> Treatment:
Antibiotics. **Return Format**: 1. Evidence: Rule: 2. Evidence: Rule:
Return only the specified output format without additional commentary
or explanation.

B CASE STUDY
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Table 8: Evaluation Pipeline Prompt Example Template.

Extract Key Points
Based on the question and answer, summarize ten key points that you
consider to be the most crucial from the standard answer. Return the re-
sponse in the following format: {1.2.3....} Here is the question:{question}
Here is the answer:{answer} Please do not provide any additional infor-
mation.

Key Points
1. Multifocal electroretinogram (ERG) showed reduced signal in the
right eye throughout the macula, confirming the diagnosis of AZOOR.2.
Acute zonal occult outer retinopathy (AZOOR) was first described by
Gass in 1993...

Extract Diagnostic
Reasoning

Based on the question and answer, please provide a detailed summary of
the diagnostic reasoning from the standard answer. Return the response
in the following format: {1.2.3....} Here is the question:{question} Here
is the answer:{answer} Please do not provide any additional information.

Diagnostic
Reasoning

1. The patient is a 7-year-old boy with a slowly growing, asymptomatic
lump on the left lower neck since birth.2. Physical examination showed
a yellowish, hump-like mass with a hairy surface and cartilage-like
consistency near the left sternocleidomastoid muscle...

Extract Evidence

Based on the question and answer, please provide a detailed evidence
list which is proposed by correct answer. Return the response in the
following format: {1.2.3....} Here is the question:{question} Here is the
answer:{answer} Please do not provide any additional information.

Evidence

1. Slowly growing, asymptomatic lump on left lower neck since birth.2.
Physical examination revealed a yellowish, hump-like mass with hairy
surface and cartilage-like consistency.3. Ultrasonography indicated a hy-
poechoic, avascular, bulging nodule with an anechoic tubular structure.4.
MRI demonstrated a protuberant nodule with diffuse...

Key Points Score

Act as a USMLE evaluator, your role involves assessing and comparing
a medical student’s explanation to the provided target answer. Begin
the assessment by carefully reviewing the provided target answer. Then,
based on following specific criteria, determine the score for the student’s
answer. Please judge whether medical student’s answer include these
key points(or some other relevant points. But the amount of points must
be complete). For example, ground truth have 10 key points, if student
answer include one key he will get 0.5 point(if the answer include 5
points so should be 2.5). Medical student’s answer: {answer} Key Points:
{Key Point} Please only return a float number(from 0 to 5). You should
check each point one by one(shouldn’t judge based on language style
such as fluence and so on. Only judge based on whether the student’s
answer include correct or relevant and complete key points). Don’t
generate any other information.

Table 9: Sources of Medical Guidelines, Information, and Corpus Statistics

Source/Corpus Full Name Guidelines/#Doc. Words/#Snippets Audience/Domain Country Released
CCO Cancer Care Ontario 87 199K Doctor Canada Yes
CDC Center for Disease Control and Prevention 621 6.7M Doctor USA Yes
CMA Canadian Medical Association 431 1.7M Doctor Canada Yes
ICRC International Committee of the Red Cross 49 1.2M Doctor International Yes
NICE National Institute for Health and Care Excellence 1656 8.1M Doctor UK Yes
PubMed PubMed 1627 10.8M Doctor Mix Yes
SPOR Strategy for Patient-Oriented Research 217 1.1M Doctor Canada Yes
WHO World Health Organization 223 3.1M Both International Yes
WikiDoc WikiDoc 33058 34M Both International Yes
StatPearls StatPearls 9.3k 301.2k Both International Yes
Textbooks Textbooks 18 125.8k Both International Yes
Wikipedia Wikipedia 6.5M 29.9M Both International Yes
MedCorp MedCorp 30.4M 54.2M Both International Yes

Table 10: Human Annotated Sample Case.
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Question: A 67-year-old man with transitional cell carcinoma of the bladder comes to the physician
because of a 2-day history of ringing sensation in his ear. He received this first course of neoadjuvant
chemotherapy 1 week ago. Pure tone audiometry shows a sensorineural hearing loss of 45 dB. The
expected beneficial effect of the drug that caused this patient’s symptoms is most likely due to
which of the following actions? A: Inhibition of proteasome, B: Hyperstabilization of microtubules,
C:Generation of free radicals, D: Cross-linking of DNA
Phi-4: To determine the expected beneficial effect of the drug that caused the patient’s symptoms,
we need to identify the drug likely responsible for the sensorineural hearing loss and understand
its mechanism of action. 1. The patient has transitional cell carcinoma of the bladder and received
neoadjuvant chemotherapy. 2. A common chemotherapy drug used for bladder cancer is cisplatin.
3. Cisplatin is known to cause ototoxicity, which can manifest as sensorineural hearing loss. 4
Cisplatin will lead generation of free radicals and lead hearing loss hence the final answer should
be C.
Qwen-2.5-14B-Instruct Forms of chemotherapy used in transitional cell carcinoma of the bladder
often include platinum-based agents like cisplatin. Cisplatin is known for its ototoxicity, which can
lead to sensorineural hearing loss. -> Cisplatin’s mechanism of action involves the generation of
free radicals, which can damage cellular components including those in the auditory system. ->
Therefore, the generation of free radicals is the most likely action causing the patient’s symptoms.
-> The correct answer is C
TTT-RAG:
Small Batch Finetune:
Pretrain Data: MDMA: 3,4-Methylenedioxymethamphetamine (MDMA), commonly known as
ecstasy (E) or molly, is a psychoactive drug primarily used for recreational purposes. The desired
effects include altered sensations, increased energy, empathy, as well as pleasure. When taken by
mouth, effects begin in 30 to 45 minutes and last 3 to 6 hours...
Finetune Data: Scenario: Dr. Smith, a seasoned urologist, is preparing for a surgical procedure to
repair an anterior urethral stricture in a 45-year-old male patient. The patient is informed that a
surgical resident will be involved in the operation as part of their training. The patient expresses
concern about the potential impact of the resident’s involvement on the surgery’s...
Inference: 1. Transitional cell carcinoma of the bladder -> Neoadjuvant chemotherapy -> Agent
causing ototoxicity leading to sensorineural hearing loss -> Correct action of the drug is hyperstabi-
lization of microtubules 2. Transitional cell carcinoma of the bladder -> Neoadjuvant chemotherapy
-> Ototoxicity side-effect -> Sensorineural hearing loss -> Caused by generation of free radicals
3.Transitional cell carcinoma of the bladder -> Neoadjuvant chemotherapy -> mechanism is Cross
DNA Link -> Chemotherapeutic agent causing ototoxicity -> Sensorineural hearing loss observed
-> Ototoxic mechanism involves generation of free radicals -> Answer: E
Retrieve to Verify: 1. Cisplatin is a chemotherapy drug → causes ototoxicity (hearing loss) → due
to accumulation of reactive oxygen species (ROS) in the cochlea → ROS cause oxidative stress
and damage cochlear hair cells → Antioxidants neutralize ROS and reduce cochlear damage →
therefore, antioxidants can help prevent cisplatin-induced hearing loss 2. Chemotherapy Drug ->
Cross DNA Link -> Therapy
Final Answer: D
Doctor Comment:The clinical reasoning task requires distinguishing between a drug’s therapeutic
mechanism and its side-effect profile. While models like Phi-4 and Qwen-2.5-14B correctly
identified cisplatin as the causative agent, they misattributed the drug’s mechanism of action to
its ototoxic side effect (free radical generation). In contrast, TTT-RAG correctly disambiguates
the therapeutic mechanism (DNA cross-linking) from side effects, demonstrating a structured
reasoning pathway that mirrors human clinical logic.
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