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ABSTRACT

Large language models (LLMs) have proven invaluable for code generation,
particularly in interactive settings. However, existing code generation bench-
marks fail to capture the diverse feedback encountered in multi-turn interac-
tions, limiting our ability to evaluate LLMs in these contexts. To address this
gap, we present a set of novel benchmarks that explicitly model the quality
of feedback provided to code generation LLMs. Our contributions are three-
fold: First, we introduce CONVCODEWORLD, a novel and reproducible environ-
ment for benchmarking interactive code generation. CONVCODEWORLD simu-
lates 9 distinct interactive code generation scenarios while systematically com-
bining three types of feedback: (a) compilation feedback; (b) execution feed-
back with varying test coverage; (c) verbal feedback generated by GPT-4o with
different levels of expertise. Second, we introduce CONVCODEBENCH, a fast,
static version of benchmark that uses pre-generated feedback logs, eliminat-
ing the need for costly dynamic verbal feedback generation while maintaining
strong Spearman’s rank correlations (0.82 to 0.99) with CONVCODEWORLD.
Third, extensive evaluations of both closed-source and open-source LLMs in-
cluding R1-Distill on CONVCODEWORLD reveal key insights: (a) LLM perfor-
mance varies significantly based on the feedback provided; (b) Weaker LLMs,
with sufficient feedback, can outperform single-turn results of state-of-the-art
LLMs without feedback; (c) Training on a specific feedback combination can
limit an LLM’s ability to utilize unseen combinations; (d) LLMs solve problems
in fewer turns (high MRR) may not solve as many problems overall (high Re-
call), and vice versa. All implementations and benchmarks are publicly available
at https://huggingface.co/spaces/ConvCodeWorld/ConvCodeWorld.

1 INTRODUCTION

Human-AI pair programming has become a promising approach to boost software development pro-
ductivity, where large language models (LLMs) iteratively refine the code from developers’ feed-
back. However, most existing benchmarks focus on single-turn scenarios, where LLMs are expected
to generate executable code in one attempt Chen et al. (2021); Hendrycks et al. (2021); Austin et al.
(2021); Li et al. (2022); Zhuo et al. (2024).

To address these gaps, we introduce CONVCODEWORLD (§3; left panel in Figure 1), a novel envi-
ronment for benchmarking interactive multi-turn code generation across diverse feedback combina-
tions. CONVCODEWORLD features nine scenarios by combining three feedback types: (a) compila-
tion feedback, (b) execution feedback with partial and full test coverage, and (c) novice and expert
level verbal human feedback. We simulate human feedback using GPT-4o (OpenAI, 2024) to gener-
ate verbal responses, ensuring reproducibility and cost-efficiency at only 1.5% of the cost of human
annotation (Appendix C.2).

While replacing expensive human intervention with LLMs in CONVCODEWORLD reduces costs, it
can still be expensive due to computational overhead or API fees, and latency due to LLM response.

˚Work done while visiting at Snowflake AI Research. Correspond to seungwonh@snu.ac.kr
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Figure 1: (Left) CONVCODEWORLD is a dynamic, reproducible environment that simulates nine
distinct feedback scenarios by combining three types of feedback. (Right) CONVCODEBENCH is
a static version of the benchmark that uses pre-generated logs and strongly correlates with CON-
VCODEWORLD. Together, these frameworks provide a comprehensive, cost-effective approach for
evaluating LLMs in multi-turn, feedback-driven code generation, enabling scalable and consistent
benchmarking across diverse feedback combinations.

To address these issues, we introduce CONVCODEBENCH (§4; right panel in Figure 1), a static
benchmark using pre-generated feedback logs. CONVCODEBENCH eliminates the need for real-
time feedback generation while maintaining strong correlation with CONVCODEWORLD (Spear-
man’s rank 0.82-0.99; §5.3), offering a cost-effective and scalable solution for large-scale LLM
benchmarking.

Existing benchmarks like InterCode (Yang et al., 2023) and MINT (Wang et al., 2024) lack the
variety feedback combinations needed for comprehensive LLM performance assessment (§2). Ad-
ditionally, their reliance on LLM calls for verbal feedback increases costs. Our study stands out by
(a) offering a reproducible environment with 9 unique feedback combinations, and (b) providing a
cost-effective benchmark using pre-generated logs, avoiding costly LLM calls for verbal feedback
while maintaining strong correlation with live results.

Through extensive experiments using both CONVCODEWORLD and CONVCODEBENCH across
21 different open and closed-source models including R1-Distill (DeepSeek-AI et al. (2025); Ap-
pendix A), we have gathered several key insights: (§5.2):

• Feedback Combinations Diversifying Evaluation: LLM performance varies across feedback
settings, with feedback combinations affecting model rankings, highlighting the need for evalu-
ation across diverse scenarios.

• Weaker Models with Feedback Surpassing Single-Turn SOTA: Weaker LLMs, with suffi-
cient multi-turn feedback, can surpass state-of-the-art models in single-turn scenarios without
feedback. This emphasizes the importance of interactive multi-turn code generation.

• Generalization Challenges: Models trained on limited feedback struggle to generalize to un-
seen combinations, highlighting the difficulty of adapting LLMs to new scenarios.

• MRR and Recall Trade-off: LLMs that efficiently solve problems in fewer turns (high MRR)
may not solve as many problems in total (high Recall), highlighting a trade-off between effi-
ciency and problem coverage.
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2 RELATED WORK

Code generation benchmarks have traditionally focused on single-turn generation from natural lan-
guage problem descriptions (Chen et al., 2021; Austin et al., 2021; Li et al., 2022; Zhuo et al.,
2024). More recently, LLM performance has improved through interactions with external tools,
such as interpreters for compiling, executing test cases, and verbal feedback, resulting in more ac-
curate outputs (Shinn et al., 2023; Madaan et al., 2024; Chen et al., 2024; Olausson et al., 2024).
This shift has led to the development of multi-turn benchmarks like InterCode (Yang et al., 2023)
and MINT (Wang et al., 2024).

Table 1: Feedback combinations (Ω; §3.2) across
InterCode, MINT and CONVCODEWORLD, con-
structed by different feedback types (§3.1).

Ω InterCode MINT CONVCODEWORLD
xfc, ϕ, ϕy ✗ ✗ ✓
xfc, fe, ϕy ✗ ✓ ✓

xfc, f
˚
e , ϕy ✓ ✗ ✓

xfc, ϕ, fvy ✗ ✗ ✓
xfc, fe, fvy ✗ ✓ ✓

xfc, f
˚
e , fvy ✗ ✗ ✓

xfc, ϕ, f
˚
v y ✗ ✗ ✓

xfc, fe, f
˚
v y ✗ ✓ ✓

xfc, f
˚
e , f˚

v y ✗ ✗ ✓

However, existing multi-turn benchmarks re-
main limited in feedback diversity. InterCode
focuses on compilation and partial execution
feedback but lacks full test coverage and ver-
bal feedback. MINT generates verbal feedback
via GPT-4, reducing human-in-the-loop evalua-
tion costs, but its feedback scope is narrow and
requires costly LLM calls for each evaluation.

Our study presents (a) CONVCODEWORLD,
a reproducible environment with nine unique
feedback combinations (Table 1), and (b)
CONVCODEBENCH, a cost-effective bench-
mark that maintains high correlation with live
environment by using pre-generated logs, elim-
inating the need for costly LLM calls to provide verbal feedback. We further discuss the distinction
of CONVCODEWORLD in Appendix B.

3 CONVCODEWORLD: REPRODUCIBLE FEEDBACK ENVIRONMENTS

Table 2: By providing diverse feedback
types, with different coverage levels in
execution and natural language feedback,
ours encompasses a broader range of re-
alistic scenarios. △ indicates partial cov-
erage (§3.1) with specific limitations:
1Syntax errors only, 2Limited by test cov-
erage or feedback provider, and 3Potential
misguidance due to limited expertise.

Feedback Fault Guidance for
Localization Refinement

fc △1 ✗

fe △2 ✗

f˚
e ✓ ✗

fv △2 △3

f˚
v ✓ ✓

In real-world settings of interactive code generation, the
types and combinations of feedback can vary signifi-
cantly due to factors such as the availability of feed-
back from code execution (e.g., error messages, output)
and the expertise of the feedback provider. These varia-
tions, particularly the provider’s expertise, can strongly
influence the quality of the verbal feedback when it is
offered.

To effectively evaluate LLMs under these varying con-
ditions, we propose CONVCODEWORLD, a novel and
reproducible environment designed to simulate a wide
range of interactive code generation scenarios. Two
key features of CONVCODEWORLD are as follows: (a)
Encompassing Diverse Real-World Scenarios: CON-
VCODEWORLD covers nine distinct feedback combi-
nations that occur in practical settings; (b) Ensure the
Reproducibility of Evaluation: CONVCODEWORLD
provides a consistent and repeatable framework for as-
sessing the performance of LLMs.

3.1 FEEDBACK CATEGORIZATION

To accurately simulate real-world feedback in interactive code generation, we focus on two critical
components: (a) Fault Localization: Identifying the specific parts of the code where issues or errors
occur; (b) Guidance for Refinement: Offering suggestions or instructions on how to correct the
identified issues.

As means of obtaining such information, we consider three different types of feedback: compilation
feedback, execution feedback, and verbal feedback.
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Compilation Feedback (fc) Originated from the compiler, this feedback identifies syntax and
type-checking errors but cannot localize logical or runtime errors. As a result, Table 2 marks this with
△ for partial fault localization. Additionally, compilation errors do not offer refinement guidance.

Execution Feedback Derived from code execution, this feedback includes runtime errors and
test run results. Full or partial fault localization is provided, depending on test coverage (TC): (a)
Full TC (f˚

e ): Inspired by Test-Driven Development (TDD; Beck, 2022), complete test cases allow
precise fault localization, identifying where and under what conditions the code fails. This provides
details on the failure’s location and triggering inputs; (b) Partial TC (fe): In more realistic settings
with partial test coverage, fault localization is limited to tested code lines, potentially leaving faults
in untested sections undetected. This type of feedback simulates incomplete real-world test suites,
where only a subset of possible execution paths is covered. Refinement guidance is not provided in
either full or partial test coverage executions.

Verbal Feedback Verbal feedback in our benchmark is generated by LLMs simulating human
feedback, ranging from novice to expert levels. This feedback could emulate responses from hu-
mans, such as experts guiding LLMs to generate code, or novices without coding expertise. Both
fault localization and refinement guidance are provided verbally, but the extent and accuracy of this
feedback depend on the simulated provider: (a) Novice-Level (fv): At this level, the LLM sim-
ulates novice feedback, which tends to rely heavily on other feedback types (e.g., compilation or
execution feedback) and often restates observed errors without deeper understanding. Refinement
guidance may be incorrect or absent, due to the novice’s limited expertise simulated by the LLM’s
potential hallucinations. (b) Expert-Level (f˚

v ): Expert feedback reflects scenarios where expert
programmers use LLMs to automate simpler tasks, allowing them to concentrate on more complex
coding challenges. This feedback is simulated by the LLM to provide detailed fault localization and
code refinement guidance. It generates the feedback an expert programmer might give, focusing on
resolving issues with a deep understanding of programming concepts and the expected functionality.

3.1.1 VERBAL FEEDBACK GENERATION

We generate fv and f˚
v by GPT-4o with in-context learning (Dong et al., 2022). We chose GPT-4o

as we found it to be best at following instructions and minimizing risks such as ground truth code
leakage, as discussed in Appendix C.5.

• Generation of fv: Novice-level verbal feedback is constructed by verbalizing outputs from com-
pilation and/or execution feedback, possibly supplemented with language model predictions.

• Generation of f˚
v : Expert-level verbal feedback is produced by showing the agent’s code with

the correct reference code (Wang et al., 2024), enabling a comparison and subsequent detailed
feedback on required modifications. We perform extensive analysis to ensure no ground truth
code is leaked during f˚

v generation (see Appendix C.5 for analysis on this).

See Appendices C.6 for comparative analysis of verbal feedback using different LLMs, I for the
in-context examples, and J for a generated example of f˚

v . For the detailed prompting methods for
the fv and f˚

v construction, please refer to our codebase.1

Reproducibility and Cost-Efficiency Compared to Human Annotation Manual annotation of
verbal feedback is costly and lacks reproducibility. Instead, we use GPT-4o, as supported by prior
studies demonstrating the effectiveness of LLM-generated feedback in benchmarks (Wang et al.,
2024; Yao et al., 2024). This approach improves reproducibility by using a consistent feedback
provider and reduces annotation costs to about 1.5% (Appendix C.2) of those for human annotators.

3.2 FEEDBACK COMBINATIONS

In each of our turns, we simulate different real-world interactive code generation scenarios by com-
bining representative feedback combinations. We represent feedback settings by taking a Cartesian
product across compilation feedback settings, execution feedback settings, and verbal feedback set-
tings. In particular, we formalize a feedback combination Ω as a tuple of feedback expressed by

1 https://huggingface.co/spaces/ConvCodeWorld/ConvCodeWorld
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regular expression notation:

Ω “ xfc, rϕ|fe|f˚
e s, rϕ|fv|f˚

v sy. (1)

The choices of feedback settings is simply dictated by these observations: (a) Compilation feedback
fc is always present since it is cheap and universally available; (b) Execution feedback varies among
being unavailable (ϕ), available with partial test coverage (fe), or with full test coverage (f˚

e ); (c)
Verbal feedback can be also unavailable (ϕ), available with novice-level (fv), or with expert-level
(f˚

v ). By combining these options—1 for compilation feedback, 3 for execution feedback, and 3 for
verbal feedback—we obtain 9 distinct feedback combinations.

Each feedback combination Ω reflects a unique real-world scenario, allowing us to comprehensively
evaluate LLMs under diverse conditions as listed in Table 1.

Now it is easy to formalize the interactive code generation in CONVCODEWORLD: For each turn
t, the target code generation model M iteratively generates the next version of code CM

t`1 from the
problem description x, the generated code CM

t , and the corresponding tuple of feedback Ωt:

CM
t`1 “ Mpx; CM

t ; Ωtq. (2)

4 CONVCODEBENCH: A STATIC BENCHMARK FOR EFFICIENT EVALUATION

While CONVCODEWORLD provides a comprehensive live benchmark for evaluating LLMs in in-
teractive code generation scenarios, it requires access to an LLM for verbal feedback generation.
Although this approach is more efficient and reproducible than using human annotators, it still intro-
duces additional overhead, cost, and potential reproducibility issues, especially when using closed
API models like GPT-4o. To address these challenges, we propose CONVCODEBENCH, a static
benchmark designed to complement CONVCODEWORLD.

CONVCODEBENCH leverages feedback logs generated by a fixed reference model interacting with
GPT-4o. The benchmark presents pre-generated conversations—including the code produced by the
reference model and the corresponding feedback, such as verbal feedback by GPT-4o—and tasks the
target code model with refining the code. We revise Equation 2 to formalize CONVCODEBENCH as
follows. For each turn t, the target code generation model M is provided generated code C ĎM

t from
a reference model ĎM, and the corresponding tuple of feedback sΩt provided to outputs generated
by ĎM. Given the model and feedback corresponding to a reference model, the target model M
generates the next version of code CM

t`1:

CM
t`1 “ Mpx; C ĎM

t ; sΩtq. (3)

This approach offers several advantages:

• Elimination of Dependency on External LLMs or APIs for Verbal Feedback Generation:
By using static feedback logs, CONVCODEBENCH reduces costs and latency associated with
real-time LLM interactions.

• Parallel Processing of Inference Calls: The static nature of the benchmark allows for batched
evaluation requests across all turns, enabling faster turnaround times.

• Enhanced Reproducibility: Utilizing fixed logs ensures consistent evaluations, further increas-
ing reproducibility.

Table 3: Performance of three different LLMs
at turn 0 (i.e. the initial code generation with-
out feedback) and at turn 10 on CONVCODE-
WORLD where Ω “ xfc, ϕ, f

˚
v y.

Model Pass@1
Turn 0 Turn 10

CodeLlama-7B-Instruct 21.8 55.2
DeepSeek-Coder-6.7B-Instruct 35.2 83.1
GPT-4-0613 46.0 92.5

One key concern when using CONVCODEBENCH
is the bias introduced by pre-generated interaction
logs prompting the question: Can we ensure high
correlation between static and live benchmarks by
an appropriate choice of reference model?

We hypothesize that using logs from a weaker
model, where the generated code still requires re-
finement even after multiple turns, allows for better
differentiation among models based on their ability
to improve unsolved code.
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Based on this rationale, we used CodeLlama-7B-
Instruct as a reference model, as it is worse than many other models at both turns 0 and 10 (see
Table 3). We find that creating CONVCODEBENCH with this model yields a very strong correlations
with live settings. When comparing models on CONVCODEWORLD and CONVCODEBENCH, we
obtained Spearman’s rank correlations between 0.82 and 0.99. We find that using CodeLlama-7B-
Instruct as the base model outperforms both DeepSeek-Coder-6.7B-Instruct (a stronger code model)
and GPT-4 (one of the state-of-the-arts) as reference models (§5.3).

In summary, we find that CONVCODEBENCH is a great way of comparing code models within the
framework of CONVCODEWORLD despite relying on logs from a reference model because of strong
rank correlations across the two setups.

5 EXPERIMENTS

Using CONVCODEWORLD and CONVCODEBENCH, we conduct comprehensive experiments to
evaluate LLMs’ interactive code generation capabilities across diverse feedback combinations. This
section outlines our experimental setup (§5.1), results on CONVCODEWORLD (§5.2), and results on
CONVCODEBENCH (§5.3).

5.1 SETUP

To implement CONVCODEWORLD, we extended BigCodeBench-Full-Instruct (Zhuo et al., 2024), a
single-turn Python code generation benchmark, into an interactive framework using a custom prompt
pipeline built using DSPy (Khattab et al., 2024) (see Appendix E for the implementation details).
BigCodeBench was selected for three key reasons: (a) its highly challenging problem sets (as of the
writing of this paper, the highest performance on this data is 51.1% of Pass@1); (b) its large scale,
with 1,140 problems, offering higher generalizability than smaller benchmarks like HumanEval
(Chen et al., 2021; 164 problems) and MBPP-sanitized (Austin et al., 2021; 399-427 problems);
and (c) its comprehensive test coverage—an average of 5.6 cases per problem with 99% branch
coverage—enabling the evaluation of a wide spectrum of execution feedback scenarios, ranging
from partial to full test coverage.

Evaluation Metrics In the interactive scenario, where code is iteratively refined based on feed-
back, we focus on two aspects for evaluation: (a) the number of turns it takes to produce correct
code, with fewer turns being preferable, and (b) whether the model can eventually solve the problem
within a set number of turns n. In our experiments, we set n “ 10.

To capture these aspects, we use Pass@1 (Chen et al., 2021) as the core metric to assess code
correctness at each turn and adapt two complementary metrics from information retrieval: (a) Mean
Reciprocal Rank (MRR): 1

k where k is the turn at which the model produces correct code. If no
correct code is generated within n turns, the score is set to 0; (b) Recall: 1 if the model produces
correct code within n turns.

Baseline LLMs We extensively evaluated 3 closed-source and 18 open-source LLMs rang-
ing from 7B to 70B:2 (a) Closed-Source: We select three OpenAI LLMs—GPT-4-0613, GPT-
4-Turbo-2024-04-09, and GPT-4o-2024-05-13; (b) Open-Source: Llama-3.1-70B-Instruct (Dubey
et al., 2024), Llama-3.1-8B-Instruct, DeepSeek-Coder-V2-Lite-Instruct (Zhu et al. (2024); an MoE
model; total params: 16B; active params: 2.4B), DeepSeek-Coder-33B-Instruct (Guo et al., 2024),
DeepSeek-Coder-6.7B-Instruct, ReflectionCoder-DS-33B (Ren et al., 2024), ReflectionCoder-
DS-6.7B, Qwen1.5-72B-Chat (Bai et al., 2023), Qwen1.5-32B-Chat, CodeQwen1.5-7B-Chat,
StarCoder2-15B-Instruct-v0.1,3 CodeLlama-34B-Instruct (Roziere et al., 2023),4 CodeLlama-13B-
Instruct, and CodeLlama-7B-Instruct. In Appendix A, we further included the results of two recent
R1-Distill (DeepSeek-AI et al., 2025) models and their base models on CONVCODEWORLD.

2While we attempted smaller models like DeepSeek-Coder-1.3B-Instruct, it failed to follow interactive code
generation format, resulting degeneration.

3https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1
4We excluded CodeLlama-70B-Instruct due to its 4K token length limitation, which is too short for interac-

tive code generation.
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Table 4: MRR results on CONVCODEWORLD. ✗ indicates that no feedback of that type is provided
(ϕ). The leftmost results, with three ✗, represent Ω “ xϕ, ϕ, ϕy, corresponding to single-turn code
generation without any feedback. For each column, bold and underscore indicate 1st and 2nd place
performance within the same model group.

Compilation Feedback ✗ fc fc fc fc fc fc fc fc fc
Execution Feedback ✗ ✗ fe f˚

e ✗ fe f˚
e ✗ fe f˚

e

Verbal Feedback ✗ ✗ ✗ ✗ fv fv fv f˚
v f˚

v f˚
v

Closed-Source Models
GPT-4-0613 46.0 46.0 52.1 56.1 46.0 52.4 56.4 63.1 64.3 64.8
GPT-4-Turbo-2024-04-09 48.0 48.0 51.8 54.8 48.0 52.6 56.4 62.4 64.3 64.5
GPT-4o-2024-05-13 50.8 50.8 55.0 57.9 50.8 55.1 58.6 63.3 64.7 65.3

Open-Source Models (ě 30B)
Llama-3.1-70B-Instruct 45.4 45.4 49.9 53.4 45.4 50.8 55.2 60.7 62.6 63.3
DeepSeek-Coder-33B-Instruct 41.6 41.6 43.4 43.6 41.6 45.5 48.0 58.6 58.5 58.8
ReflectionCoder-DS-33B 41.6 41.6 42.9 42.9 41.6 45.6 48.1 57.7 58.2 58.9
Qwen1.5-72B-Chat 32.9 33.0 35.8 38.3 33.0 38.6 41.4 50.6 52.0 52.7
Qwen1.5-32B-Chat 32.0 32.0 35.3 36.7 32.0 36.6 39.7 47.4 42.6 40.8
CodeLlama-34B-Instruct 28.8 28.8 31.0 31.9 28.8 32.5 35.1 48.7 49.2 49.8

Open-Source Models (ă 30B)
Llama-3.1-8B-Instruct 31.4 31.5 34.0 34.6 31.5 36.1 39.1 49.4 49.8 51.3
DeepSeek-Coder-V2-Lite-Instruct 38.3 38.3 40.5 41.7 38.3 42.0 43.8 52.7 52.9 53.3
DeepSeek-Coder-6.7B-Instruct 35.2 35.2 36.2 36.1 35.2 38.8 40.5 53.3 53.2 53.9
ReflectionCoder-DS-6.7B 37.4 37.4 38.3 38.7 37.4 40.4 42.4 53.3 53.8 53.6
CodeQwen1.5-7B-Chat 39.3 39.4 39.7 40.1 39.3 42.0 43.7 53.7 53.5 54.8
StarCoder2-15B-Instruct-v0.1 37.1 37.1 37.9 38.3 37.1 39.4 40.5 52.7 52.8 52.1
CodeLlama-13B-Instruct 28.4 28.4 29.0 29.0 28.4 31.2 33.0 43.9 44.3 44.8
CodeLlama-7B-Instruct 21.8 21.8 22.3 22.3 21.8 23.5 25.2 35.0 33.4 33.9

5.2 RESULTS ON CONVCODEWORLD

Tables 4 and 5 present MRR and Recall scores, respectively, for both closed-source and open-source
LLMs across various feedback combinations. These results provide a comprehensive view of model
performance in CONVCODEWORLD.

Overview of Results While closed-source models generally outperformed most open-source mod-
els, Llama-3.1-70B-Instruct demonstrated competitive Recall performance, surpassing both GPT-4-
Turbo and GPT-4o in certain scenarios like xfc, rfe|f˚

e s, fvy and xfc, rϕ|fe|f˚
e s, f˚

v y.

Notably, this Recall gap between closed-source and open-source models narrows significantly under
specific feedback settings, particularly when expert-level verbal feedback f˚

v is provided. For in-
stance, in the xfc, ϕ, f

˚
v y setting, DeepSeek-Coder6.7B-Instruct (82.8) outperformed GPT-4o (82.3),

and DeepSeek-Coder33B-Instruct (85.4) outperformed GPT-4-Turbo (84.7).

Another key observation is that, among open-source models smaller than 30B, no clear winner
emerges across all feedback combinations. This emphasizes the importance of selecting models
based on the specific type of feedback available.

5.2.1 FEEDBACK COMBINATIONS: DIVERSIFIED EVALUATION

We observed significant performance variation within the same model across different feedback
combinations, emphasizing the necessity of CONVCODEWORLD for evaluating code generation
models under diverse feedback conditions.

Specifically, we summarize the effect of providing different feedback combinations:

Impact of Novice-Level Verbal Feedback on Execution Feedback Utilization Without novice-
level verbal feedback (fv), some models—DeepSeek-Coder-33B-Instruct, DeepSeek-Coder-6.7B-
Instruct, CodeQwen1.5-7B-Chat, StarCoder2-15B-Instruct-v0.1, CodeLlama-13B-Instruct, and
CodeLlama-7B-Instruct—showed minimal performance differences between partial (xfc, fe, ϕy)
and full (xfc, f˚

e , ϕy) test coverage in execution feedback. However, these models showed greater re-
liance on fv , especially in xfc, f

˚
e , fvy compared to xfc, fe, fvy, indicating that they need fv to fully

leverage f˚
e . In contrast, high-performing models—GPT-4, GPT-4-Turbo, GPT-4o, and Llama-3.1-

70B—demonstrated a larger performance boost from xfc, fe, ϕy to xfc, f
˚
e , ϕy compared to the boost

7
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Table 5: Recall results on CONVCODEWORLD. ✗ indicates that no feedback of that type is provided
(ϕ). The leftmost results, with three ✗, represent Ω “ xϕ, ϕ, ϕy, corresponding to single-turn code
generation without any feedback. For each column, bold and underscore indicate 1st and 2nd place
performance within the same model group.

Compilation Feedback ✗ fc fc fc fc fc fc fc fc fc
Execution Feedback ✗ ✗ fe f˚

e ✗ fe f˚
e ✗ fe f˚

e

Verbal Feedback ✗ ✗ ✗ ✗ fv fv fv f˚
v f˚

v f˚
v

Closed-Source Models
GPT-4-0613 46.0 46.0 60.3 70.5 46.0 61.9 72.5 89.7 91.1 92.5
GPT-4-Turbo-2024-04-09 48.0 48.0 56.7 63.8 48.0 58.6 68.1 84.7 87.5 88.5
GPT-4o-2024-05-13 50.8 50.8 60.5 67.6 50.8 60.8 69.6 82.3 84.9 86.2

Open-Source Models (ě 30B)
Llama-3.1-70B-Instruct 45.4 45.4 56.2 64.8 45.4 59.5 70.8 86.7 88.9 91.8
DeepSeek-Coder-33B-Instruct 41.6 41.6 45.5 46.1 41.6 50.4 56.6 85.4 84.6 85.6
ReflectionCoder-DS-33B 41.6 41.6 45.3 44.9 41.6 51.4 57.2 81.4 81.8 84.2
Qwen1.5-72B-Chat 32.9 33.2 39.9 47.5 33.2 47.5 57.9 84.4 86.1 87.2
Qwen1.5-32B-Chat 32.0 32.0 41.1 45.3 32.0 44.6 54.3 75.9 61.8 57.1
CodeLlama-34B-Instruct 28.8 28.8 33.7 35.8 28.8 37.5 44.6 80.0 82.0 82.3

Open-Source Models (ă 30B)
Llama-3.1-8B-Instruct 31.4 31.8 38.4 40.0 31.7 43.2 51.8 80.9 80.2 83.7
DeepSeek-Coder-V2-Lite-Instruct 38.3 38.3 43.4 46.1 38.3 47.0 51.4 76.3 75.8 76.9
DeepSeek-Coder-6.7B-Instruct 35.2 35.2 37.7 37.5 35.2 43.3 48.2 82.8 82.5 83.1
ReflectionCoder-DS-6.7B 37.4 37.4 39.6 40.7 37.4 44.7 50.4 79.1 79.6 78.9
CodeQwen1.5-7B-Chat 39.3 39.6 40.1 41.1 39.5 45.8 49.5 74.4 74.7 77.4
StarCoder2-15B-Instruct-v0.1 37.1 37.1 39.3 40.0 37.1 42.6 46.3 76.9 76.8 75.6
CodeLlama-13B-Instruct 28.4 28.4 29.7 30.0 28.4 35.1 41.1 69.0 70.7 71.6
CodeLlama-7B-Instruct 21.8 21.8 22.9 23.0 21.8 26.2 30.5 61.7 53.9 55.2

from xfc, fe, ϕy to xfc, fe, fvy. This suggests these models can infer refinement strategies directly
from raw execution feedback without heavily relying on fv .

Impact of Expert-Level Verbal Feedback on Execution Feedback Utilization Most models
demonstrated performance improvements with richer execution feedback, progressing through the
sequences xfc, ϕ, f

˚
v y, xfc, fe, f

˚
v y, and xfc, f

˚
e , f

˚
v y. However, exceptions arise: (a) DeepSeek-

Coder family and ReflectionCoder-DS-6.7B exhibited no performance difference with the inclusion
of execution feedback; (b) Llama-3.1-8B-Instruct, ReflectionCoder-DS-33B, and CodeQwen1.5-
7B-Chat showed no significant difference between xfc, ϕ, f

˚
v y and xfc, fe, f

˚
v y, but performance im-

proved when full test coverage (xfc, f˚
e , f

˚
v y) was ensured; (c) In some weaker models—Qwen1.5-

32B-Chat and StarCoder2-15B-Instruct-v0.1—increasing the test coverage from xfc, fe, f
˚
v y to

xfc, f
˚
e , f

˚
v y resulted in negative performance impacts. Additionally, the highest performance of

Qwen1.5-32B-Chat was observed with xfc, ϕ, f
˚
v y, while adding execution feedback (fe or f˚

e ) led
to decreased performance. We hypothesize that weaker models struggle to utilize complex feed-
back effectively, resulting in lower performance. We further discuss the possible reasons for these
exceptions in Appendix C.4.

5.2.2 MULTI-TURN FEEDBACK: WEAKER MODELS OUTPERFORMING SINGLE-TURN SOTA

Weaker LLMs with sufficient feedback outperformed the single-turn, no-feedback performance
(xϕ, ϕ, ϕy) of state-of-the-art models like GPT-4 and GPT-4-Turbo.

MRR When expert-level verbal feedback (f˚
v ) was incorporated, most weaker models, including

DeepSeek-Coder-6.7B-Instruct and Llama-3.1-8B-Instruct, surpassed the single-turn code genera-
tion performance of state-of-the-art single-turn models such as GPT-4, GPT-4-Turbo, and GPT-4o.
Additionally, with the inclusion of novice-level verbal feedback (fv) and either partial or full execu-
tion feedback (fe or f˚

e ), DeepSeek-Coder-33B-Instruct and ReflectionCoder-DS-33B matched or
exceeded the single-turn performance of GPT-4 and GPT-4-Turbo.

Recall Most open-source models exhibited significant improvements when novice-level ver-
bal feedback with execution feedback (xfc, rfe|f˚

e s, fvy) or expert-level verbal feedback
(xfc, rϕ|fe|f˚

e s, fvy) was provided. Remarkably, providing execution feedback with full test cov-
erage while omitting any verbal feedback (xfc, f˚

e , ϕy) enabled some models, such as DeepSeek-
Coder-V2-Lite-Instruct, DeepSeek-Coder-33B-Instruct, and Qwen1.5-72B-Chat, to achieve or even
exceed GPT-4’s single-turn performance.
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Figure 2: Correlation between MRR on CONVCODEBENCH (ref. CodeLlama-7B-Instruct) and
MRR on CONVCODEWORLD with different feedback combinations Ω.

5.2.3 GENERALIZATION: UNSEEN FEEDBACK COMBINATION

ReflectionCoder-DS family were initialized from DeepSeek-Coder-Instruct, and trained to refine
code on a specific scenario of xfc, f

˚
e , fvy. As a result, ReflectionCoder-DS-6.7B outperformed

DeepSeek-Coder-6.7B-Instruct on xfc, rfe|f˚
e s, fvy. However, with unseen feedback like expert-

level verbal feedback (f˚
v ), the performance gap narrows significantly, with minimal MRR difference

and DeepSeek-Coder-Instruct generally outperforming in Recall. This tendency is more pronounced
in ReflectionCoder-DS-33B; except for xfc, rfe|f˚

e s, fvy, ReflectionCoder-DS-33B consistently per-
formed at or below the level of DeepSeek-Coder-33B-Instruct across all feedback combinations in
both MRR and Recall. This indicates that training on a specific feedback combination can reduce
the performance on the other combinations.

5.2.4 TRADE-OFF: MULTI-TURN MRR AND RECALL

We observed that an LLM requiring fewer turns to solve a problem (high MRR) may not excel
at solving as many problems as possible (high Recall), and vice versa: (a) Closed-Source Mod-
els: GPT-4o achieved the highest MRR, while GPT-4 had the best Recall;5 (b) Open-Source
Models ě 30B: Llama-3.1-70B led in both MRR and Recall. DeepSeek-Coder-33B-Instruct and
ReflectionCoder-DS-33B followed in MRR. However, with f˚

e or f˚
v feedback, Qwen1.5-72B-

Chat generally outperformed them in Recall, despite having a lower MRR; (c) Open-Source
Models ă 30B: MRR and Recall tendencies were similar without verbal feedback. With ver-
bal feedback, CodeQwen1.5-7B-Chat excelled in MRR, while DeepSeek-Coder-V2-Lite-Instruct
(xfc, rfe|f˚

e s, fvy), and DeepSeek-Coder-6.7B-Instruct (xfc, rϕ|fe|f˚
e s, f˚

v y) led in Recall.

5This quantitatively confirms what some accounts observed on x.com
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Table 6: MRR and Recall results on CONVCODEBENCH using logs of CodeLlama-7B-Instruct in
CONVCODEWORLD. ✗ indicates that no feedback of that type is provided (ϕ). For each column,
bold and underscore indicate 1st and 2nd place performance within the same model group.

MRR Recall

Compilation Feedback fc fc fc fc fc fc fc fc fc fc
Execution Feedback fe f˚

e ✗ fe f˚
e fe f˚

e ✗ fe f˚
e

Verbal Feedback fv fv f˚
v f˚

v f˚
v fv fv f˚

v f˚
v f˚

v

Closed-Source Models
GPT-4-0613 53.0 55.8 63.1 62.7 63.4 59.5 65.7 85.9 82.3 83.1
GPT-4-Turbo-2024-04-09 55.7 58.3 65.4 64.0 65.3 61.8 68.2 86.8 81.4 84.2
GPT-4o-2024-05-13 57.4 59.9 66.4 65.7 66.8 62.1 68.1 86.2 81.9 84.7

Open-Source Models (ě 30B)
Llama-3.1-70B-Instruct 54.2 56.6 63.7 63.1 63.9 60.2 65.7 85.9 81.5 84.0
DeepSeek-Coder-33B-Instruct 48.2 50.6 60.1 58.8 59.8 51.9 58.0 83.2 78.2 79.7
ReflectionCoder-DS-33B 47.9 49.9 59.5 59.1 59.6 51.2 56.2 82.2 77.8 79.6
Qwen1.5-72B-Chat 42.6 45.7 54.7 54.1 55.2 47.8 55.7 80.3 76.8 78.7
Qwen1.5-32B-Chat 41.1 43.2 52.2 48.7 48.5 45.7 51.4 76.2 67.2 66.8
CodeLlama-34B-Instruct 36.1 37.6 50.2 49.2 49.7 40.2 43.9 78.3 72.4 73.8

Open-Source Models (ă 30B)
Llama-3.1-8B-Instruct 42.6 45.3 54.7 54.0 54.9 47.9 54.6 80.9 75.9 78.0
DeepSeek-Coder-V2-Lite-Instruct 46.3 48.4 58.2 56.0 57.1 51.1 55.6 82.0 74.7 77.9
DeepSeek-Coder-6.7B-Instruct 43.0 45.4 56.5 55.6 56.0 46.8 52.9 81.3 77.5 78.7
ReflectionCoder-DS-6.7B 43.4 45.4 55.7 55.1 55.2 46.7 51.6 79.3 74.8 75.9
CodeQwen1.5-7B-Chat 45.8 47.4 56.3 55.6 56.3 49.1 53.2 78.0 74.1 76.3
StarCoder2-15B-Instruct-v0.1 43.1 44.2 54.1 53.0 53.3 45.8 49.0 78.0 72.2 72.7
CodeLlama-13B-Instruct 34.8 36.9 47.2 46.9 47.2 37.8 43.2 73.1 68.9 68.9

5.3 RESULTS ON CONVCODEBENCH

While CONVCODEWORLD provides valuable insights into interactive code generation across var-
ious feedback combinations, CONVCODEBENCH offers a faster, cheaper, and more reproducible
alternative. As discussed in §4, we chose CodeLlama-7B-Instruct as the reference model, and ex-
cluded scenarios without verbal feedback, as they do not require LLM intervention. Additionally,
xfc, ϕ, fvy scenario was omitted as CodeLlama-7B-Instruct achieved a 100% compilation success
rate in the initial generation, eliminating the need for novice-level verbal feedback on compilation.

CONVCODEBENCH as a Reliable Proxy We conducted a comparative analysis of CON-
VCODEBENCH and CONVCODEWORLD to validate CONVCODEBENCH as a proxy, comparing
the MRR (Figure 2) and Recall (Appendix H.1) results across target models and feedback combina-
tions Spearman’s rank correlations ranged from 0.82–0.99, indicating that CONVCODEBENCH is a
reliable, efficient, and cost-effective proxy for CONVCODEWORLD.

Additionally, Table 6 presents the results on CONVCODEBENCH, showing that MRR ranking trends
closely aligned with CONVCODEWORLD (Table 4), with minor deviations. While absolute recall
and MRR scores are slightly lower compared to CONVCODEWORLD, the rankings amongst mod-
els remained roughly consistent between CONVCODEBENCH and CONVCODEWORLD. Based on
approximately consistent rankings across CONVCODEWORLD and CONVCODEBENCH, we rec-
ommend code LLMs use CONVCODEBENCH as a solid alternative to compare against other
baselines.

6 CONCLUSION

This paper recognizes the need for benchmarks with diverse type of interactions in conversational
code generation. To address this gap, we introduced CONVCODEWORLD, a novel and reproducible
environment designed to assess LLM code generation abilities across nine varied feedback scenarios.
Additionally, for scenarios where API call costs are prohibitive, we offer CONVCODEBENCH, a
zero-call benchmark from pre-generated feedback logs, providing a highly correlated evaluation
of the conversational code generation capabilities of LLMs with CONVCODEWORLD. Our work
contributes to a more thorough evaluation of diverse multi-turn evaluation objectives, and highlights
a gap to invite for future models in the new design space.
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A DEEKSEEK-R1-DISTILL RESULTS ON CONVCODEWORLD

Table 7: MRR results on CONVCODEWORLD. ✗ indicates that no feedback of that type is provided
(ϕ). The leftmost results, with three ✗, represent Ω “ xϕ, ϕ, ϕy, corresponding to single-turn code
generation without any feedback. For each column, bold and underscore indicate 1st and 2nd place
performance within the same model group. Maximum token length is set to 8K throughout the
experiments, except for the R1-Distill models, which are set to 16K.

Compilation Feedback ✗ fc fc fc fc fc fc fc fc fc
Execution Feedback ✗ ✗ fe f˚

e ✗ fe f˚
e ✗ fe f˚

e

Verbal Feedback ✗ ✗ ✗ ✗ fv fv fv f˚
v f˚

v f˚
v

Closed-Source Models
GPT-4-0613 46.0 46.0 52.1 56.1 46.0 52.4 56.4 63.1 64.3 64.8
GPT-4-Turbo-2024-04-09 48.0 48.0 51.8 54.8 48.0 52.6 56.4 62.4 64.3 64.5
GPT-4o-2024-05-13 50.8 50.8 55.0 57.9 50.8 55.1 58.6 63.3 64.7 65.3

Open-Source Models (ě 30B)
DeepSeek-R1-Distill-Llama-70B (16K) 46.1 46.2 51.7 55.2 46.2 51.3 55.3 58.0 59.5 59.7
Llama-3.3-70B-Instruct 47.6 47.7 52.6 56.0 47.7 53.3 57.0 61.6 63.9 64.1
DeepSeek-R1-Distill-Qwen-32B (16K) 45.9 45.9 51.2 54.3 45.9 51.7 55.8 60.3 61.4 62.4
Qwen2.5-32B 45.8 45.8 47.9 49.5 45.8 49.8 53.4 61.6 62.7 63.8
Llama-3.1-70B-Instruct 45.4 45.4 49.9 53.4 45.4 50.8 55.2 60.7 62.6 63.3
DeepSeek-Coder-33B-Instruct 41.6 41.6 43.4 43.6 41.6 45.5 48.0 58.6 58.5 58.8
ReflectionCoder-DS-33B 41.6 41.6 42.9 42.9 41.6 45.6 48.1 57.7 58.2 58.91
Qwen1.5-72B-Chat 32.9 33.0 35.8 38.3 33.0 38.6 41.4 50.6 52.0 52.7
Qwen1.5-32B-Chat 32.0 32.0 35.3 36.7 32.0 36.6 39.7 47.4 42.6 40.8
CodeLlama-34B-Instruct 28.8 28.8 31.0 31.9 28.8 32.5 35.1 48.7 49.2 49.8

Open-Source Models (ă 30B)
Llama-3.1-8B-Instruct 31.4 31.5 34.0 34.6 31.5 36.1 39.1 49.4 49.8 51.3
DeepSeek-Coder-V2-Lite-Instruct 38.3 38.3 40.5 41.7 38.3 42.0 43.8 52.7 52.9 53.3
DeepSeek-Coder-6.7B-Instruct 35.2 35.2 36.2 36.1 35.2 38.8 40.5 53.3 53.2 53.9
ReflectionCoder-DS-6.7B 37.4 37.4 38.3 38.7 37.4 40.4 42.4 53.3 53.8 53.6
CodeQwen1.5-7B-Chat 39.3 39.4 39.7 40.1 39.3 42.0 43.7 53.7 53.5 54.8
StarCoder2-15B-Instruct-v0.1 37.1 37.1 37.9 38.3 37.1 39.4 40.5 52.7 52.8 52.1
CodeLlama-13B-Instruct 28.4 28.4 29.0 29.0 28.4 31.2 33.0 43.9 44.3 44.8
CodeLlama-7B-Instruct 21.8 21.8 22.3 22.3 21.8 23.5 25.2 35.0 33.4 33.9

Table 8: Recall results on CONVCODEWORLD. ✗ indicates that no feedback of that type is provided
(ϕ). The leftmost results, with three ✗, represent Ω “ xϕ, ϕ, ϕy, corresponding to single-turn code
generation without any feedback. For each column, bold and underscore indicate 1st and 2nd place
performance within the same model group. Maximum token length is set to 8K throughout the
experiments, except for the R1-Distill models, which are set to 16K.

Compilation Feedback ✗ fc fc fc fc fc fc fc fc fc
Execution Feedback ✗ ✗ fe f˚

e ✗ fe f˚
e ✗ fe f˚

e

Verbal Feedback ✗ ✗ ✗ ✗ fv fv fv f˚
v f˚

v f˚
v

Closed-Source Models
GPT-4-0613 46.0 46.0 60.3 70.5 46.0 61.9 72.5 89.7 91.1 92.5
GPT-4-Turbo-2024-04-09 48.0 48.0 56.7 63.8 48.0 58.6 68.1 84.7 87.5 88.5
GPT-4o-2024-05-13 50.8 50.8 60.5 67.6 50.8 60.8 69.6 82.3 84.9 86.2

Open-Source Models (ě 30B)
DeepSeek-R1-Distill-Llama-70B (16K) 46.1 46.2 61.7 72.7 46.2 60.2 73.8 82.0 86.8 86.1
Llama-3.3-70B-Instruct 47.6 47.7 59.0 67.7 47.7 61.5 72.2 84.6 87.6 88.9
DeepSeek-R1-Distill-Qwen-32B (16K) 45.9 45.9 59.5 68.1 45.9 61.2 74.0 85.0 88.1 89.0
Qwen2.5-32B 45.8 45.9 50.4 53.9 46.0 54.8 62.6 84.7 85.5 87.5
Llama-3.1-70B-Instruct 45.4 45.4 56.2 64.8 45.4 59.5 70.8 86.7 88.9 91.8
DeepSeek-Coder-33B-Instruct 41.6 41.6 45.5 46.1 41.6 50.4 56.6 85.4 84.6 85.6
ReflectionCoder-DS-33B 41.6 41.6 45.3 44.9 41.6 51.4 57.2 81.4 81.8 84.2
Qwen1.5-72B-Chat 32.9 33.2 39.9 47.5 33.2 47.5 57.9 84.4 86.1 87.2
Qwen1.5-32B-Chat 32.0 32.0 41.1 45.3 32.0 44.6 54.3 75.9 61.8 57.1
CodeLlama-34B-Instruct 28.8 28.8 33.7 35.8 28.8 37.5 44.6 80.0 82.0 82.3

Open-Source Models (ă 30B)
Llama-3.1-8B-Instruct 31.4 31.8 38.4 40.0 31.7 43.2 51.8 80.9 80.2 83.7
DeepSeek-Coder-V2-Lite-Instruct 38.3 38.3 43.4 46.1 38.3 47.0 51.4 76.3 75.8 76.9
DeepSeek-Coder-6.7B-Instruct 35.2 35.2 37.7 37.5 35.2 43.3 48.2 82.8 82.5 83.1
ReflectionCoder-DS-6.7B 37.4 37.4 39.6 40.7 37.4 44.7 50.4 79.1 79.6 78.9
CodeQwen1.5-7B-Chat 39.3 39.6 40.1 41.1 39.5 45.8 49.5 74.4 74.7 77.4
StarCoder2-15B-Instruct-v0.1 37.1 37.1 39.3 40.0 37.1 42.6 46.3 76.9 76.8 75.6
CodeLlama-13B-Instruct 28.4 28.4 29.7 30.0 28.4 35.1 41.1 69.0 70.7 71.6
CodeLlama-7B-Instruct 21.8 21.8 22.9 23.0 21.8 26.2 30.5 61.7 53.9 55.2
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Table 9: Hyperparameter tuning results of DeepSeek-R1-Distill-Qwen-32B on BigCodeBench-
Hard-Instruct.

Temperature Max Token Length Pass@1
Reported - - 43.9

0.0 8K 43.7
0.2 8K 44.6

Reproduced 0.2 16K 45.9
1.0 8K 44.6
1.0 16K 45.1

We present the CONVCODEWORLD results for the DeepSeek-R1-Distill (DeepSeek-AI et al., 2025)
models. These models, which are trained to handle more complex reasoning, required the following
hyperparameter adjustments for inference:

• Increased Token Length: The maximum token length was increased from 8K to 16K (see
Table 9) to support longer reasoning steps.

• Temperature Adjustment: The temperature was changed from 0.0 to 0.2. The 0.0 setting
resulted in degeneration, causing repetitive sentences in reasoning. We also experimented
with a temperature of 1.0, as o1 models only support this value,6 but 0.2 provided the best
performance.

Tables 7 and 8 extend the results presented in Tables 4 and 5, including two DeepSeek-R1-Distill
models (Llama-70B and Qwen-32B) and their base models (Llama-3.3-70B-Instruct and Qwen2.5-
32B). We summarize the key observations on the impact of R1-Distillation:

• Lack of Significant Improvement: R1-Distilled models do not demonstrate a significant
improvement over other models.

• Reduced Expert Feedback Utilization: R1-Distilled models face challenges in effectively
utilizing expert feedback over their base models.

• DeepSeek-R1-Distill-Llama-70B vs. Llama-3.3-70B-Instruct:
– MRR: R1-Distillation results in a decrease in MRR performance.
– Recall: R1-Distillation generally improves the utilization of execution and novice

feedback but hurts expert feedback.

• DeepSeek-R1-Distill-Qwen-32B vs. Qwen2.5-32B:

– MRR: R1-Distillation improves the utilization of execution and novice feedback but
slightly hurts expert feedback.

– Recall: R1-Distillation improves feedback utilization across all types of feedback in
most feedback combinations.

B DISTINCTION OF CONVCODEWORLD

We elaborate distinctive implications from existing works such as InterCode Yang et al. (2023) and
MINT Wang et al. (2024):

• Comparative analyses of partial to full test coverage in execution feedback enables to eval-
uate both:

– Test generalization: A model’s ability to produce code that passes full tests even
when only partial tests are provided.

– Test utilization: A model’s capability to leverage given test results for code refine-
ment.

InterCode—-which uses full test only—-evaluates test utilization only, and MINT—-which
uses partial test only—-provides an entangled evaluation of test generalization and test

6https://community.openai.com/t/why-is-the-temperature-and-top-p-of-o1-
models-fixed-to-1-not-0/938922
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utilization. In contrast, CONVCODEWORLD, by providing both partial and full test, en-
ables isolated evaluation of each test generalization and test utilization as we illus-
trate below. For instance, in Table 5, DeepSeek-Coder-6.7B-Instruct shows modest test
generalization (xfc, ϕ, ϕy Ñ xfc, fe, ϕy: 35.2 Ñ 37.7), but shows limited test utilization
(xfc, fe, ϕy Ñ xfc, f

˚
e , ϕy: 37.7 Ñ 37.5). Meanwhile, Llama-3.1-8B-Instruct exhibits ca-

pabilities in both test generalization (xfc, ϕ, ϕy Ñ xfc, fe, ϕy: 31.8 Ñ 38.4) and test uti-
lization (xfc, fe, ϕy Ñ xfc, f

˚
e , ϕy: 38.4 Ñ 40.0).

• CONVCODEWORLD simulates an “engaged” user, offering verbalized explanations of test
results, as illustrated in Figure 17. In contrast, InterCode lacks verbal feedback, and MINT
provides only generic feedback for fv—-“Your answer is wrong.” To evaluate how ver-
balized explanations enhance models’ test utilization capabilities, an exemplar scenario in
CONVCODEWORLD is when both full execution feedback and novice feedback are avail-
able. In Table 5:

– Without the inclusion of novice feedback (xfc, f˚
e , ϕy): Llama-3.1-8B-Instruct’s test

utilization capabilities (40.0) are weaker compared to CodeQwen1.5-7B-Chat (41.1).
– With the inclusion of novice feedback (xfc, f˚

e , fvy): significantly improves Llama-
3.1-8B-Instruct’s performance, surpassing CodeQwen1.5-7B-Chat (51.8 vs. 49.5).

• Covering comprehensive combinations of feedback types, CONVCODEWORLD analyzes
previously underexplored cases, such as:

– Full execution feedback vs. partial execution and novice feedback
– Partial execution and expert feedback vs. full execution and expert feedback
– Full execution and novice feedback vs. expert feedback

• Cost-effective static benchmark (CONVCODEBENCH): CONVCODEBENCH correlates
strongly with online evaluation while reducing costs. Neither MINT nor InterCode pro-
vide such a static benchmark.

C VERBAL FEEDBACK

C.1 DISCUSSION ON EMPLOYING LLMS FOR VERBAL FEEDBACK GENERATION

A key challenge in creating CONVCODEWORLD is generating verbal feedback. Human annotation
is both impractical and inconsistent (§3.1.1), which led us to employ GPT-4o for this task. While
GPT-4o may not fully replicate the nuances of human feedback, it ensures reproducibility and af-
fordability, both critical for maintaining consistency across benchmark evaluations. As demonstrated
by direct comparisons between LLM-generated and human feedback in prior studies (Wang et al.,
2024), we find this method sufficiently effective for our benchmarking purposes.

C.2 COST-EFFICIENCY OF CONVCODEWORLD COMPARED TO HUMAN ANNOTATION

In the worst-case scenario, CodeLlama-7B-Instruct, which requested the most verbal feedback due
to its low performance, incurred a total cost of $215 (26.4M input tokens and 5.5M output tokens)
for 15,905 turns using GPT-4o-2024-05-13 pricing ($5/1M input tokens and $15/1M output tokens).
By comparison, assuming human annotation takes 96 seconds per turn (Wang et al., 2024) and the
average U.S. private non-farmer worker’s hourly wage is $35.04 according to US Bureau of Labor
Statistics (2024), the human annotation cost would be approximately $14,792.

C.3 HUMAN EVALUATION OF GENERATED VERBAL FEEDBACK

Table 10: Human evaluation of simulated expert-level user feedback by GPT-4o and real user feed-
back by ShareGPT.

Expert Feedback by Is Helpful Is Human-Expert-Like
ShareGPT 35% 30%
CONVCODEWORLD 55% 25%

We conducted human evaluation to validate the realism of simulated expert-level user feedback, not-
ing that in-context examples might lead to unrealistic responses. Specifically, two human evaluators
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rated randomly assigned feedback samples from either real user feedback from ShareGPT 7 logs or
expert feedback generated by CONVCODEWORLD using GPT-4o (see Figure 19 for the annotation
platform). As shown in Table 10, our generated feedback was found to be comparable to authentic
logs in terms of expert-human-likeness and was rated higher for helpfulness, consistent with MINT’s
findings.

C.4 POSSIBLE REASONS FOR THE OBSERVED “STRUGGLE TO UTILIZE FEEDBACK”

From Section 5.2.1, we further discuss two possible reasons for models when they struggle to utilize
complex feedback:

• Limited Model Size: Smaller models, such as ReflectionCoder-DS-6.7B, may lack the
capacity to process and integrate complex information effectively, which could limit per-
formance improvements even when execution feedback is included (35.2 Ñ 37.7). In con-
trast, their bigger versions like ReflectionCoder-DS-33B demonstrated performance gains
with execution feedback (41.6 Ñ 45.3). Mixed feedback types may distract small mod-
els further. When comparing Expert feedback only vs. Expert feedback + execution feed-
back. For Qwen1.5-Chat, the 72B model’s performance improved with execution feedback,
while the 32B model’s performance deteriorated, which suggests that smaller models might
become distracted when faced with multiple feedback signals simultaneously (Liu et al.,
2024). However, this distraction may be mitigated with well-designed training data, as even
smaller models like Llama-3.1-8B-Instruct show improvements when provided with more
execution feedback.

• Limited Generalization Training: ReflectionCoder models were trained on a specific
feedback combination, xfc, f

˚
e , fvy, limiting their adaptability to other feedback types

(Section 5.2.3). For example, with expert feedback, ReflectionCoder-DS-33B scores lower
(81.4) than its base model DeepSeekCoder-33B-Instruct (85.4).

C.5 ANALYSIS OF GROUND TRUTH CODE LEAKAGE IN GENERATED EXPERT-LEVEL
VERBAL FEEDBACK

Table 11: Pass@1 results of various LLMs with expert-level verbal feedback f˚
v generated by GPT-

4o compared to direct ground truth code feedback. The total number of turns n “ 1. For each
column, bold and underscore indicate 1st and 2nd place performance while keeping the code gener-
ation model fixed.

Feedback Code Generation
GPT-4-0613 GPT-4-Turbo-2024-04-09 GPT-4o-2024-05-13

w/o Feedback 46.0 48.0 50.8
+ Expert-Level Verbal Feedback 70.0 69.0 68.5
+ Ground Truth Code 97.9 88.2 79.7

Table 12: Ground truth code leakage ratio (%) by incorporating different models for expert-level
verbal feedback generation. The lower the better.

f˚
v Generation

Mentioning Including
ground truth code (Ó) Refined Code (Ó)

GPT-4-0613 51.1 0.0
GPT-4-Turbo-2024-04-09 31.4 0.0
GPT-4o-2024-05-13 2.5 0.1

The generation of expert-level verbal feedback f˚
v involves comparing the generated code with the

ground truth code to provide modification suggestions. This process could raise concerns about
potential code leakage. As shown in Table 11, providing the ground truth code significantly outper-
forms providing f˚

v , empirically confirming that f˚
v is unlikely to be a direct copy of the ground

truth code.

7https://huggingface.co/datasets/anon8231489123/ShareGPT Vicuna unfilter
ed/blob/main/ShareGPT V3 unfiltered cleaned split no imsorry.json
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To detect leakage, we use a canary sequence approach, commonly used to test for training data or
prompt leakage in LLMs (Team et al., 2024; OpenAI, 2023; Greshake et al., 2023; Perez & Ribeiro,
2022; Agarwal et al., 2024). Specifically, we consider leakage if the feedback simulator includes a
canary sequence within the feedback. This sequence contains the term ground truth code, which is
given in the prompt (see Figure 15). As shown in Table 12, leakage rates are estimated by how often
a model references the ground truth code in f˚

v . For example, a leakage might be detected if the
feedback contains phrases such as, “Unlike the ground truth code, the current code omits exception
handling of DivideByZero...” (see Figures 20 and 21 for comparisons of desirable vs. leaked cases).

Notably, GPT-4o shows the lowest leakage rate at 2.5%, indicating its ability to generate f˚
v with

minimal leakage. This suggests that when f˚
v generated by GPT-4o is provided, the observed per-

formance improvement is not driven by exposure to the correct code.

C.6 COMPARATIVE ANALYSIS OF VERBAL FEEDBACK ACROSS DIFFERENT LLMS

Table 13: Pass@1 results over different model combinations of expert-level verbal feedback f˚
v gen-

eration and code generation on CONVCODEWORLD where Ω “ xfc, ϕ, f
˚
v y and the total number of

turns n “ 1. Each row represents a model used to provide verbal feedback. Each column represents
a model that utilizes this feedback to refine code. For each column, bold and underscore indicate
1st and 2nd place performance while keeping the code generation model fixed.

f˚
v Generation

Code Generation
GPT-4-0613 GPT-4-Turbo-2024-04-09 GPT-4o-2024-05-13

w/o Feedback 46.0 48.0 50.8
GPT-4-0613 65.1 61.4 63.4
GPT-4-Turbo-2024-04-09 62.9 59.9 62.5
GPT-4o-2024-05-13 67.1 65.4 64.2

In our main experiments, we utilized GPT-4o for verbal feedback generation and investigated its
performance in comparison to other models. To see the effect of using other LLMs for verbal feed-
back generation, we conducted a single iteration of code generation using three closed-source LLMs
as both code generators and expert-level verbal feedback generators, examining the Pass@1 perfor-
mance. Table 13 evaluates different models as potential verbal feedback simulators. The effective-
ness of the feedback provided by each simulator is assessed by comparing the performance across
columns, showing consistent superior performance when employing GPT-4o for feedback genera-
tion.

D VERBAL FEEDBACK BY OPEN-SOURCE LLMS

Table 14: Pass@1 results over different model combinations of expert-level verbal feedback f˚
v

generation and code generation on CONVCODEWORLD where Ω “ xfc, ϕ, f
˚
v y and the total number

of turns n “ 1. For each column, bold and underscore indicate 1st and 2nd place performance while
keeping the code generation model fixed.

f˚
v Generation

Code Generation
GPT-4o-2024-05-13 Llama-3.1-70B-Instruct

w/o Feedback 50.8 45.4
GPT-4o-2024-05-13 64.2 65.1
Llama-3.1-70B-Instruct 65.8 62.1

Table 14 supports the feasibility of using Llama-3.1-70B-Instruct as a verbal feedback simulator,
replacing GPT-4o-2024-05-13.

E IMPLEMENTATION DETAILS

We utilize DSPy (Khattab et al., 2024)8 manage the interactive code generation flow for CON-
VCODEWORLD and CONVCODEBENCH. For both code and verbal feedback generation fol-
low DSPy’s default prompt format, incorporating ChaingOfThought (CoT) (Wei et al., 2022)

8https://github.com/stanfordnlp/dspy
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Table 15: Pass@1 results over different implementation for initial code generation without feedback.
CONVCODEWORLD chose Direct Generation by BigCodeBench implementation, which showed the
highest performance. For each column, bold and underscore indicate 1st and 2nd place performance
while keeping the code generation model fixed.

Implementation DeepSeek-Coder-6.7B-Instruct GPT-4o-2024-05-13
w/o Feedback (Ω “ xϕ, ϕ, ϕy)

Reported 35.5 51.1
Direct Generation (BigCodeBench impl.) 35.2 50.8
DSPy.Predict 33.6 1.8
DSPy.ChainOfThought 20.2 49.3

Compilation Feedback only (Ω “ xfc, ϕ, ϕy; n “ 1)
Direct Generation (BigCodeBench impl.) 35.2 50.8
DSPy.Predict 33.7 50.1
DSPy.ChainOfThought 32.8 50.5

reasoning by DSPy.ChainOfThought function. The exception is initial code generation,
where we adopt BigCodeBench’s (Zhuo et al., 2024) implementation,9 without CoT reason-
ing. As shown in Table 15, we attribute this choice to the observation that, for initial code
generation (without prior feedback), models tend to perform better without additional reason-
ing steps like CoT (DSPy.ChainOfThought) or prompting (both in DSPy.Predict and
DSPy.ChainOfThought).

Hyperparameters are set as follows: We used greedy decoding (temperature = 0) in all experiments,
following Chen et al. (2023). The total number of turns n “ 10, with a maximum token length of
8K for all code generation models. For models with a lower token limit, we use their respective
maximum length. For verbal feedback generation, we use GPT-4o-2024-05-13 with a token limit of
2K. Regarding the partial test coverage of execution feedback, we utilize the first three test cases,
which aligns with benchmarks like HumanEval (Chen et al., 2021) and CodeContests (Li et al.,
2022) providing up to three public test cases.

9https://github.com/bigcode-project/bigcodebench
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0 1 2 3 4 5 6 7 8 9 10
No. Turns

20

25

30

35

40

45

50

55

60

65

Pa
ss

@
1

(e) Ω “ xfc, fe, fvy
0 1 2 3 4 5 6 7 8 9 10

No. Turns

20

25

30

35

40

45

50

55

60

65

70

75

Pa
ss

@
1

(f) Ω “ xfc, fe̊ , fvy
0 1 2 3 4 5 6 7 8 9 10

No. Turns

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

Pa
ss

@
1

(g) Ω “ xfc, ϕ, fv̊ y
0 1 2 3 4 5 6 7 8 9 10

No. Turns

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

Pa
ss

@
1

(h) Ω “ xfc, fe, fv̊ y
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(i) Ω “ xfc, fe̊ , fv̊ y
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F CONVCODEWORLD

(a) ! “ xfc,ω,ωy (b) ! “ xfc, fe,ωy (c) ! “ xfc, fe̊ ,ωy (d) ! “ xfc,ω, fvy

(e) ! “ xfc, fe, fvy (f) ! “ xfc, fe̊ , fvy (g) ! “ xfc,ω, fv̊ y (h) ! “ xfc, fe, fv̊ y

(i) ! “ xfc, fe̊ , fv̊ y
Figure 3: Iterative Pass@1 results on CONVCODEWORLD with different feedback combinations !.
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(c) GPT-4o-2024-05-13
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(d) Llama-3.1-70B-
Instruct
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(e) Llama-3.1-8B-
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(f) DeepSeek-Coder-V2-
Lite-Instruct
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(g) DeepSeek-Coder-
33B-Instruct
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(h) DeepSeek-Coder-
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Figure 4: Iterative Pass@1 results of each LLM on CONVCODEWORLD with different feedback
combinations Ω (continued on Figure 5).
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(a) Qwen1.5-72B-Chat
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(b) Qwen1.5-32B-Chat
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(d) StarCoder2-15B-
Instruct-v0.1
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(e) CodeLlama-34B-
Instruct
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(f) CodeLlama-13B-
Instruct
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Figure 5: Iterative Pass@1 results of each LLM on CONVCODEWORLD with different feedback
combinations Ω (continued from Figure 4).
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G CONVCODEBENCH

G.1 MRR AND RECALL RESULTS

G.1.1 REFERENCE MODEL: DEEPSEEK-CODER-6.7B-INSTRUCT

Table 16: MRR and Recall results on CONVCODEBENCH using logs of DeepSeek-Coder-6.7B-
Instruct in CONVCODEWORLD. ✗ indicates that no feedback of that type is provided (ϕ). For each
column, bold and underscore indicate 1st and 2nd place performance within the same model group.

MRR Recall

Compilation Feedback fc fc fc fc fc fc fc fc fc fc
Execution Feedback fe f˚

e ✗ fe f˚
e fe f˚

e ✗ fe f˚
e

Verbal Feedback fn fn f˚
n f˚

n f˚
n fn fn f˚

n f˚
n f˚

n

Closed-Source Models
GPT-4-0613 56.2 59.1 66.9 67.4 68.2 61.8 68.9 89.9 90.6 91.0
GPT-4-Turbo-2024-04-09 57.4 60.1 67.6 68.3 69.0 61.7 68.3 89.0 89.9 90.0
GPT-4o-2024-05-13 58.8 61.3 69.0 69.3 70.2 63.1 68.9 89.8 90.1 90.5

Open-Source Models (ě 30B)
Llama-3.1-70B-Instruct 57.2 59.2 67.2 67.7 68.5 62.3 67.0 89.4 89.7 90.4
DeepSeek-Coder-33B-Instruct 52.4 54.0 63.4 64.4 65.3 56.2 60.7 86.8 87.8 88.6
ReflectionCoder-DS-33B 52.6 54.7 64.0 64.5 65.3 56.4 62.0 86.8 87.8 88.2
Qwen1.5-72B-Chat 49.1 52.0 61.4 61.9 62.7 54.6 61.8 87.6 88.2 88.8
Qwen1.5-32B-Chat 48.6 50.8 60.4 59.9 60.1 54.1 59.2 86.3 84.8 84.8
CodeLlama-34B-Instruct 47.2 48.8 60.6 61.1 61.6 51.7 56.4 87.4 88.2 88.2

Open-Source Models (ă 30B)
Llama-3.1-8B-Instruct 50.6 52.5 62.3 62.8 63.4 55.8 61.2 87.3 88.3 88.2
DeepSeek-Coder-V2-Lite-Instruct 52.4 54.4 63.1 63.8 64.7 56.4 61.7 86.2 87.1 87.7
ReflectionCoder-DS-6.7B 48.5 50.2 61.0 61.2 61.8 52.5 56.9 85.8 85.9 86.4
CodeQwen1.5-7B-Chat 51.5 53.6 62.8 63.5 64.0 55.2 60.8 86.1 86.8 87.4
StarCoder2-15B-Instruct-v0.1 49.7 51.7 62.3 62.2 62.8 52.9 58.1 86.6 85.9 86.6
CodeLlama-13B-Instruct 47.4 49.3 60.4 60.4 61.1 51.8 56.8 86.6 86.2 87.4
CodeLlama-7B-Instruct 44.2 45.7 57.9 57.9 58.3 48.9 53.2 86.3 86.1 85.4

G.1.2 REFERENCE MODEL: GPT-4-0613

Table 17: MRR and Recall results on CONVCODEBENCH using logs of GPT-4-0613 in CON-
VCODEWORLD. ✗ indicates that no feedback of that type is provided (ϕ). For each column, bold
and underscore indicate 1st and 2nd place performance within the same model group.

MRR Recall

Compilation Feedback fc fc fc fc fc fc fc fc fc fc
Execution Feedback fe f˚

e ✗ fe f˚
e fe f˚

e ✗ fe f˚
e

Verbal Feedback fv fv f˚
v f˚

v f˚
v fv fv f˚

v f˚
v f˚

v

Closed-Source Models
GPT-4-Turbo-2024-04-09 60.3 64.1 69.9 70.9 71.6 67.2 76.7 91.6 92.8 94.2
GPT-4o-2024-05-13 61.6 65.0 70.6 71.5 72.3 68.6 77.2 91.9 93.0 94.3

Open-Source Models (ě 30B)
Llama-3.1-70B-Instruct 60.9 64.2 69.9 70.9 71.5 68.8 77.7 92.2 93.5 94.6
DeepSeek-Coder-33B-Instruct 58.3 61.9 68.2 69.3 69.9 66.5 75.9 91.9 93.2 94.3
ReflectionCoder-DS-33B 58.9 62.4 68.8 70.0 70.3 66.5 75.9 91.8 93.3 94.5
Qwen1.5-72B-Chat 57.5 60.4 67.3 68.3 69.1 66.0 73.9 91.5 92.5 94.2
Qwen1.5-32B-Chat 56.6 60.6 66.8 67.6 67.7 65.4 75.7 91.4 92.7 92.9
CodeLlama-34B-Instruct 56.2 59.9 66.8 67.8 68.4 64.7 74.8 92.2 93.1 94.4

Open-Source Models (ă 30B)
Llama-3.1-8B-Instruct 56.9 60.6 67.4 68.3 68.9 65.4 74.8 91.8 92.8 94.3
DeepSeek-Coder-V2-Lite-Instruct 58.8 62.4 68.9 69.7 70.1 66.4 75.5 91.8 92.6 93.9
DeepSeek-Coder-6.7B-Instruct 57.5 61.1 67.4 68.7 69.2 65.7 75.5 91.2 93.1 94.4
ReflectionCoder-DS-6.7B 57.9 61.5 68.0 69.1 69.7 65.7 75.2 91.9 93.0 94.1
CodeQwen1.5-7B-Chat 59.0 62.4 68.5 69.6 70.2 67.1 76.1 91.8 92.9 94.4
StarCoder2-15B-Instruct-v0.1 58.3 61.8 68.0 68.9 69.7 66.0 75.3 91.2 92.5 94.0
CodeLlama-13B-Instruct 56.1 59.9 66.4 67.5 68.1 64.9 74.6 91.5 92.6 94.4
CodeLlama-7B-Instruct 54.8 58.4 65.5 66.4 67.0 63.7 73.4 91.9 92.5 93.6
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H RANK CORRELATIONS BETWEEN CONVCODEBENCH AND
CONVCODEWORLD

H.1 REFERENCE MODEL: CODELLAMA-7B-INSTRUCT-HF
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Figure 6: Correlation between Recall on CONVCODEBENCH (ref. CodeLlama-7B-Instruct) and Re-
call on CONVCODEWORLD with different feedback combinations Ω.
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H.1.1 REFERENCE MODEL: DEEPSEEK-CODER-6.7B-INSTRUCT
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Figure 7: Correlation between MRR on CONVCODEBENCH (ref. DeepSeek-Coder-6.7B-Instruct)
and MRR on CONVCODEWORLD with different feedback combinations Ω.
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Figure 8: Correlation between Recall on CONVCODEBENCH (ref. DeepSeek-Coder-6.7B-Instruct)
and Recall on CONVCODEWORLD with different feedback combinations Ω.
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H.1.2 REFERENCE MODEL: GPT-4-0613
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Figure 9: Correlation between MRR on CONVCODEBENCH (ref. GPT-4-0613) and MRR on CON-
VCODEWORLD with different feedback combinations Ω.
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Figure 10: Correlation between Recall on CONVCODEBENCH (ref. GPT-4-0613) and Recall on
CONVCODEWORLD with different feedback combinations Ω.
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I IN-CONTEXT LEARNING EXAMPLES

I.1 NOVICE-LEVEL VERBAL FEEDBACK

1 Example Input:
2 Sort a list of integers in ascending order. The function should take a

list of integers and return a sorted list. Ensure that the function
handles negative numbers and zeros correctly. Check if the function's
output is a sorted list.

ãÑ
ãÑ
ãÑ

3 ```python
4 >>> sorted_list = sort_func([3, -1, 0, 5, -10, 2])
5 >>> sorted_list
6 [-10, -1, 0, 2, 3, 5]
7 ```
8 You should write self-contained code starting with:
9 ```python

10 def sort_func(int_list):
11 ```
12

13 Ground Truth Code:
14 ```python
15 def sort_func(int_list):
16 return sorted(int_list)
17 ```
18

19 Previous Code:
20 ```python
21 def sort_func(int_list):
22 for i in range(len(int_list)):
23 for j in range(len(int_list) - 1):
24 if int_list[j] < int_list[j + 1]:
25 int_list[j], int_list[j + 1] = int_list[j + 1],

int_list[j]ãÑ
26 return int_list
27

28 test_list = [3, -1, 0, 5, -10, 2]
29 print(sort_func(test_list))
30 ```
31

32 Compilation Feedback:
33 Traceback (most recent call last):
34 File "tmp.py", line 6
35 return int_list
36 ˆ
37 IndentationError: unindent does not match any outer indentation level
38

39 Reasoning:
40 Let's think step by step in order to produce the novice-level

`user_feedback`.ãÑ
41

42 User Feedback:
43 I got this error:
44 ```
45 Traceback (most recent call last):
46 File "tmp.py", line 6
47 return int_list
48 ˆ
49 IndentationError: unindent does not match any outer indentation level
50 ```
51 I think there might be something wrong with the indentation of the

`return int_list` line. Also, I think there exists a simpler way to
sort a list in Python.

ãÑ
ãÑ

Figure 11: The in-context example of fv generation where Ω “ xfc, ϕ, fvy.
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1 Example Input:
2 Sort a list of integers in ascending order. The function should take a

list of integers and return a sorted list. Ensure that the function
handles negative numbers and zeros correctly. Check if the function's
output is a sorted list.

ãÑ
ãÑ
ãÑ

3 ```python
4 >>> sorted_list = sort_func([3, -1, 0, 5, -10, 2])
5 >>> sorted_list
6 [-10, -1, 0, 2, 3, 5]
7 ```
8 You should write self-contained code starting with:
9 ```python

10 def sort_func(int_list):
11 ```
12

13 Previous Code:
14 ```python
15 def sort_func(int_list):
16 for i in range(len(int_list)):
17 for j in range(len(int_list) - 1):
18 if int_list[j] < int_list[j + 1]:
19 int_list[j], int_list[j + 1] = int_list[j + 1],

int_list[j]ãÑ
20 return int_list
21

22 test_list = [3, -1, 0, 5, -10, 2]
23 print(sort_func(test_list))
24 ```
25

26 Compilation Feedback:
27 No syntax errors
28

29 Execution Feedback:
30 TEST_CASE_1
31 Traceback (most recent call last):
32 File "__test__.py", line 78, in test_case_1
33 AssertionError: sort_func([3, -1, 0, 5, -10, 2]) != [-10, -1, 0, 2, 3, 5]
34

35 Reasoning:
36 Let's think step by step in order to produce the novice-level

`user_feedback`.ãÑ
37

38 User Feedback:
39 I got this error:
40 ```
41 Traceback (most recent call last):
42 File "__test__.py", line 78, in test_case_1
43 AssertionError: sort_func([3, -1, 0, 5, -10, 2]) != [-10, -1, 0, 2, 3, 5]
44 ```
45 It seems like the function didn't sort the list correctly. The list is in

descending order instead of ascending order. Also, I think there
exists a simpler way to sort a list in Python.

ãÑ
ãÑ

Figure 12: The in-context example of fv generation where Ω “ xfc, fer˚s, fvy.
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I.2 EXPERT-LEVEL VERBAL FEEDBACK

1 Example Input:
2 Sort a list of integers in ascending order. The function should take a list of integers and

return a sorted list. Ensure that the function handles negative numbers and zeros
correctly. Check if the function's output is a sorted list.

ãÑ
ãÑ

3 ```python
4 >>> sorted_list = sort_func([3, -1, 0, 5, -10, 2])
5 >>> sorted_list
6 [-10, -1, 0, 2, 3, 5]
7 ```
8 You should write self-contained code starting with:
9 ```python

10 def sort_func(int_list):
11 ```
12
13 Ground Truth Code:
14 ```python
15 def sort_func(int_list):
16 return sorted(int_list)
17 ```
18
19 Previous Code:
20 ```python
21 def sort_func(int_list):
22 for i in range(len(int_list)):
23 for j in range(len(int_list) - 1):
24 if int_list[j] < int_list[j + 1]:
25 int_list[j], int_list[j + 1] = int_list[j + 1], int_list[j]
26 return int_list
27
28 test_list = [3, -1, 0, 5, -10, 2]
29 print(sort_func(test_list))
30 ```
31
32 Reasoning:
33 Let's think step by step in order to produce the user_feedback. We need to compare the

`previous_code` with the `ground_truth_code` and identify specific areas where the
`previous_code` deviates from the expected behavior. We should focus on the sorting
algorithm, handling of edge cases like negative numbers and zeros, and the overall
performance of the code.

ãÑ
ãÑ
ãÑ
ãÑ

34
35 User Feedback:
36 1. **Sorting Algorithm**: The `previous_code` implements a bubble sort algorithm, but it sorts

the list in descending order due to the condition `if int_list[j] < int_list[j + 1]`. The
correct approach should use `if int_list[j] > int_list[j + 1]` to sort in ascending order.

ãÑ
ãÑ

37
38 2. **Edge Case Handling**: While the `previous_code` attempts to handle all integers, it

incorrectly sorts the list in the reverse order. Ensure that the sorting condition
correctly compares elements to achieve ascending order.

ãÑ
ãÑ

39
40 3. **Code Simplicity and Readability**: The bubble sort implementation in the `previous_code`

is more complex and less readable compared to using the built-in `sorted()` function.
Simplifying the code to use `sorted()` will enhance readability and maintainability.

ãÑ
ãÑ

41
42 4. **Performance**: The bubble sort algorithm used in the `previous_code` has a time

complexity of O(nˆ2), which can be inefficient for large lists. The `sorted()` function,
on the other hand, uses Timsort, which has a time complexity of O(n log n) and is more
suitable for sorting large datasets.

ãÑ
ãÑ
ãÑ

43
44 5. **Test Case Verification**: The `previous_code` includes a print statement to verify the

function's output. While this is useful for debugging, consider using assertions or test
functions to automate the verification process in a more scalable way.

ãÑ
ãÑ

45
46 Overall, the `previous_code` functions incorrectly by sorting the list in descending order.

Using the correct comparison in the bubble sort condition or utilizing Python's built-in
sorting capabilities would improve the function's correctness and performance.

ãÑ
ãÑ

47

Figure 13: The in-context example of f˚
v generation where Ω “ xfc, ϕ, f

˚
v y.
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1 Example Input:
2 Sort a list of integers in ascending order. The function should take a list of integers and

return a sorted list. Ensure that the function handles negative numbers and zeros
correctly. Check if the function's output is a sorted list.

ãÑ
ãÑ

3 ```python
4 >>> sorted_list = sort_func([3, -1, 0, 5, -10, 2])
5 >>> sorted_list
6 [-10, -1, 0, 2, 3, 5]
7 ```
8 You should write self-contained code starting with:
9 ```python

10 def sort_func(int_list):
11 ```
12
13 Ground Truth Code:
14 ```python
15 def sort_func(int_list):
16 return sorted(int_list)
17 ```
18
19 Previous Code:
20 ```python
21 def sort_func(int_list):
22 for i in range(len(int_list)):
23 for j in range(len(int_list) - 1):
24 if int_list[j] < int_list[j + 1]:
25 int_list[j], int_list[j + 1] = int_list[j + 1], int_list[j]
26 return int_list
27
28 test_list = [3, -1, 0, 5, -10, 2]
29 print(sort_func(test_list))
30 ```
31
32 Execution Feedback:
33 TEST_CASE_1
34 Traceback (most recent call last):
35 File "__test__.py", line 78, in test_case_1
36 AssertionError: sort_func([3, -1, 0, 5, -10, 2]) != [-10, -1, 0, 2, 3, 5]
37
38 Reasoning:
39 Let's think step by step in order to produce the user_feedback. We need to compare the

`previous_code` with the `ground_truth_code` and identify specific areas where the
`previous_code` deviates from the expected behavior. We should focus on the sorting
algorithm, handling of edge cases like negative numbers and zeros, and the overall
performance of the code.

ãÑ
ãÑ
ãÑ
ãÑ

40
41 User Feedback:
42 1. **Sorting Algorithm**: The `previous_code` implements a bubble sort algorithm, but it sorts

the list in descending order due to the condition `if int_list[j] < int_list[j + 1]`. The
correct approach should use `if int_list[j] > int_list[j + 1]` to sort in ascending order.

ãÑ
ãÑ

43
44 2. **Edge Case Handling**: While the `previous_code` attempts to handle all integers, it

incorrectly sorts the list in the reverse order. Ensure that the sorting condition
correctly compares elements to achieve ascending order.

ãÑ
ãÑ

45
46 3. **Code Simplicity and Readability**: The bubble sort implementation in the `previous_code`

is more complex and less readable compared to using the built-in `sorted()` function.
Simplifying the code to use `sorted()` will enhance readability and maintainability.

ãÑ
ãÑ

47
48 4. **Performance**: The bubble sort algorithm used in the `previous_code` has a time

complexity of O(nˆ2), which can be inefficient for large lists. The `sorted()` function,
on the other hand, uses Timsort, which has a time complexity of O(n log n) and is more
suitable for sorting large datasets.

ãÑ
ãÑ
ãÑ

49
50 5. **Test Case Verification**: The `previous_code` includes a print statement to verify the

function's output. While this is useful for debugging, consider using assertions or test
functions to automate the verification process in a more scalable way.

ãÑ
ãÑ

51
52 Overall, the `previous_code` functions incorrectly by sorting the list in descending order.

Using the correct comparison in the bubble sort condition or utilizing Python's built-in
sorting capabilities would improve the function's correctness and performance.

ãÑ
ãÑ

53

Figure 14: The in-context example of f˚
v generation where Ω “ xfc, fer˚s, f˚

v y.
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1 You are given input, previous_code, execution_feedback to simulate user feedback that compares
the `previous_code` and the `ground_truth_code`.ãÑ

2 Your task is to provide the simulated `user_feedback` that highlights specific areas where the
`previous_code` deviates from the `ground_truth_code` and suggests improvements or
corrections.

ãÑ
ãÑ

3 - You SHOULD NOT leak `ground_truth_code` in the simulated user feedback.
4 - Do not generate updated code.
5 - Do not reveal that you can access the `ground_truth_code`. Only indirect information is

allowed.ãÑ

Figure 15: Prompt used for expert feedback generation in the feedback combination Ω “

xfc, rfe|f˚
e s, f˚

v y.

34



Published as a conference paper at ICLR 2025

J CASE STUDY

Input Code

1 import smtplib
2 from email.message import EmailMessage
3 import getpass
4 import socket
5
6 SERVER_ADDRESS = "localhost"
7 SERVER_PORT = 25
8 BUFFER_SIZE = 1024
9 SMTP_SERVER = "smtp.gmail.com"

10 SMTP_PORT = 587
11
12 def task_func(client_socket):
13 # Ensure the socket is connected
14 if not client_socket:
15 print("Client socket is not connected.")
16 return
17
18 # Receive the message from the client
19 try:
20 message = client_socket.recv(BUFFER_SIZE).decode()
21 except socket.error as e:
22 print(f"Failed to receive message from client: {e}")
23 return
24
25 # If the message is empty, do not send the email
26 if not message:
27 print("Received an empty message. Not sending email.")
28 return
29
30 # Ask for the sender's email, recipient's email, and sender's email password for authentication
31 sender_email = input("Enter sender's email: ")
32 recipient_email = input("Enter recipient's email: ")
33 password = getpass.getpass("Enter sender's email password: ")
34
35 # Create the email message
36 email_message = EmailMessage()
37 email_message.set_content(message)
38 email_message["Subject"] = "Message from client"
39 email_message["From"] = sender_email
40 email_message["To"] = recipient_email
41
42 # Connect to the SMTP server and send the email
43 try:
44 with smtplib.SMTP(SMTP_SERVER, SMTP_PORT) as smtp:
45 smtp.starttls()
46 smtp.login(sender_email, password)
47 smtp.send_message(email_message)
48 print("Email sent successfully.")
49 except Exception as e:
50 print(f"Failed to send email: {e}")

Execution Feedback with Partial Test Coverage (fe)

1 TEST_SMTP_SERVER_CONNECTION_ERROR
2 Traceback (most recent call last):
3 File "/notebooks/miniconda/envs/bigcodebench/lib/python3.9/unittest/mock.py", line 1336, in patched
4 return func(*newargs, **newkeywargs)
5 File "__test__.py", line 125, in test_smtp_server_connection_error
6 File "__test__.py", line 39, in task_func
7 File "/tmp/utils.py", line 251, in readline
8 raise IOError
9 OSError

10
11
12 TEST_SUCCESSFUL_EMAIL_SEND
13 Traceback (most recent call last):
14 File "/notebooks/miniconda/envs/bigcodebench/lib/python3.9/unittest/mock.py", line 1336, in patched
15 return func(*newargs, **newkeywargs)
16 File "__test__.py", line 81, in test_successful_email_send
17 File "__test__.py", line 39, in task_func
18 File "/tmp/utils.py", line 251, in readline
19 raise IOError
20 OSError

Figure 16: Case study of GPT-4 on CONVCODEWORLD (Ω “ xfc, fe, fvy; t “ 7): Input Code and
fe.
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Novice-Level Verbal Feedback (fv)

1 I got this error:
2 ```
3 Traceback (most recent call last):
4 File "/notebooks/miniconda/envs/bigcodebench/lib/python3.9/unittest/mock.py", line 1336, in patched
5 return func(*newargs, **newkeywargs)
6 File "__test__.py", line 125, in test_smtp_server_connection_error
7 File "__test__.py", line 39, in task_func
8 File "/tmp/utils.py", line 251, in readline
9 raise IOError

10 OSError
11
12 Traceback (most recent call last):
13 File "/notebooks/miniconda/envs/bigcodebench/lib/python3.9/unittest/mock.py", line 1336, in patched
14 return func(*newargs, **newkeywargs)
15 File "__test__.py", line 81, in test_successful_email_send
16 File "__test__.py", line 39, in task_func
17 File "/tmp/utils.py", line 251, in readline
18 raise IOError
19 OSError
20 ```
21 It seems like there is an issue with the socket connection or the way the code is handling the socket. The

`OSError` exceptions are being raised during the execution of the `task_func` function.ãÑ

Refined Code by Feedback

1 import smtplib
2 from email.message import EmailMessage
3 import getpass
4 import socket
5
6 SERVER_ADDRESS = "localhost"
7 SERVER_PORT = 25
8 BUFFER_SIZE = 1024
9 SMTP_SERVER = "smtp.gmail.com"

10 SMTP_PORT = 587
11
12 def task_func(client_socket):
13 # Ensure the socket is connected
14 if not client_socket:
15 print("Client socket is not connected.")
16 return
17
18 # Receive the message from the client
19 try:
20 message = client_socket.recv(BUFFER_SIZE).decode()
21 except socket.error as e:
22 print(f"Failed to receive message from client: {e}")
23 return
24
25 # If the message is empty, do not send the email
26 if not message:
27 print("Received an empty message. Not sending email.")
28 return
29
30 # Ask for the sender's email, recipient's email, and sender's email password for authentication
31 sender_email = input("Enter sender's email: ")
32 recipient_email = input("Enter recipient's email: ")
33 password = getpass.getpass("Enter sender's email password: ")
34
35 # Create the email message
36 email_message = EmailMessage()
37 email_message.set_content(message)
38 email_message["Subject"] = "Message from client"
39 email_message["From"] = sender_email
40 email_message["To"] = recipient_email
41
42 # Connect to the SMTP server and send the email
43 try:
44 with smtplib.SMTP(SMTP_SERVER, SMTP_PORT) as smtp:
45 smtp.starttls()
46 smtp.login(sender_email, password)
47 smtp.send_message(email_message)
48 print("Email sent successfully.")
49 except Exception as e:
50 print(f"Failed to send email: {e}")

Figure 17: Case study of GPT-4-0613 on CONVCODEWORLD (Ω “ xfc, fe, fvy; turn 7): fv and
Refined Code.
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Input Code

1 import matplotlib.pyplot as plt
2 import numpy as np
3 def task_func(n, seed=0):
4 np.random.seed(seed)
5 points = [(x, y) for x, y in np.random.rand(n, 2)]
6
7 fig, ax = plt.subplots()
8 ax.scatter([x for x, y in points], [y for x, y in points])
9 ax.set_title("Scatter plot of random points")

10 ax.set_xlabel("X")
11 ax.set_ylabel("Y")
12
13 return fig, points

Expert-Level Verbal Feedback (f˚
v )

1 1. **Random Points Generation**: The `previous_code` generates random points using a list
comprehension with `np.random.rand(n, 2)`, which is a valid approach. However, it can be
simplified by directly using `np.random.rand(n)` for both x and y coordinates separately.
This makes the code more readable and aligns with common practices.

ãÑ
ãÑ
ãÑ

2
3 2. **Plotting Process**: The `previous_code` correctly plots the scatter plot using

`ax.scatter()`. However, it extracts x and y coordinates from the `points` list using list
comprehensions. This step can be avoided by directly using the arrays generated for x and
y coordinates, which simplifies the code.

ãÑ
ãÑ
ãÑ

4
5 3. **Return Values**: The `previous_code` correctly returns the figure and the list of points.

However, the generation of points can be streamlined by using `zip(x, y)` directly on the
generated x and y arrays, which is more efficient and concise.

ãÑ
ãÑ

6
7 4. **Code Simplicity and Readability**: The `previous_code` is functional but can be

simplified for better readability. Using direct array operations for x and y coordinates
and avoiding unnecessary list comprehensions will make the code cleaner and easier to
understand.

ãÑ
ãÑ
ãÑ

8
9 5. **Reproducibility**: Both the `previous_code` and the expected implementation correctly set

the random seed for reproducibility, which is good practice.ãÑ
10
11 Overall, while the `previous_code` is functional, it can be improved for simplicity and

readability by directly using the generated x and y arrays for plotting and point
generation. This will make the code more concise and maintainable.

ãÑ
ãÑ

Refined Code by Feedback

1 import matplotlib.pyplot as plt
2 import numpy as np
3 def task_func(n, seed=0):
4 np.random.seed(seed)
5 x, y = np.random.rand(2, n)
6 points = list(zip(x, y))
7
8 fig, ax = plt.subplots()
9 ax.scatter(x, y)

10 ax.set_title("Scatter plot of random points")
11 ax.set_xlabel("X")
12 ax.set_ylabel("Y")
13
14 return fig, points

Figure 18: Case study of DeepSeek-Coder-6.7B-Instruct on CONVCODEWORLD (Ω “ xfc, ϕ, f
˚
v y;

turn 1).
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Move backward  Move forward

Expert Feedback Analysis Home Statistics Help Finished 20/20 Current_id 17  go Currently logged in as youngwon.lee@snowflake.com

[Expert Feedback]
That's great except I have a few modifications. The setup is as follows: next to each showtime there is a button which may or may not have
the text "Sold out", the goal here is to check if any of those buttons \*do not\* have that text, and then click it. What you've done is look to
see whether there are \*any\* buttons that say sold out, so you kind of have it the wrong way round. Can you try again please, with the
addition that the button should be clicked if it is what we're looking for (i.e. not a "Sold out" button), as well as playing the sound. Don't give
me the surrounding text about substituting paths, I know what I'm doing.

[Problem]
Can you write me a script that visits the following url (https://www.barbican.org.uk/whats-on/2022/event/royal-shakespeare-company-my-neighbour-totoro), clicks the button that says "Check dates & book", and then in the dialog box that appears checks to see if any of the buttons that say "Sold out", have some other text such as "Book seats". If all of the buttons say "Sold out" then repeat this process, however if one of the button says "Book seats" or some other text value, it should click that button and then play a noise to alert me. In Python please.

[Previous Code]
import time
import os
from selenium.webdriver import Firefox
from selenium.webdriver.firefox.service import Service
from selenium.webdriver.common.by import By

geckodriver_path = '/path/to/geckodriver'
service = Service(geckodriver_path)
service.start()

options = FirefoxOptions()
options.add_argument('-headless')  # run browser in headless mode

driver = Firefox(service=service, options=options)

def play_sound():
    os.system('afplay /path/to/sound.mp3')

while True:
    driver.get("https://www.barbican.org.uk/whats-on/2022/event/royal-shakespeare-company-my-neighbour-totoro")
    check_dates_button = driver.find_element(By.XPATH, '//a[text()="Check dates & book"]')
    check_dates_button.click()
    time.sleep(5)  # give time for the dialog box to appear

    sold_out_buttons = driver.find_elements(By.XPATH, '//button[text()="Sold out"]')
    if not sold_out_buttons:
        play_sound()
        break
    else:
        print("All buttons say sold out. Retrying.")
        time.sleep(60)

driver.quit()

Is this feedback helpful for refining the given code?

 Yes

 No

Does this feedback resemble what would be expected from expert human programmers?

 Yes

 No

Copyright © 2022 Blablablab

Fork on GitHub |  Cite Us

Figure 19: Annotation platform (Pei et al., 2022) for collecting human evaluation of expert verbal
feedback.
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1 1. **Configuration File Reading**: The `previous_code` correctly reads
the configuration file using `configparser`. However, ensure that the
configuration file path is valid and exists before attempting to read
it. This is not explicitly checked in the `previous_code`.

ãÑ
ãÑ
ãÑ

2

3 2. **Directory Existence Check**: The `previous_code` uses
`os.path.exists(project_dir)` to check if the project directory
exists. While this works, it is more appropriate to use
`os.path.isdir(project_dir)` to specifically check for directory
existence, as it is more semantically correct.

ãÑ
ãÑ
ãÑ
ãÑ

4

5 3. **ZIP Archive Creation**: The `previous_code` attempts to create the
ZIP archive using `shutil.make_archive(project_dir, 'zip',
archive_dir)`. This is incorrect because `shutil.make_archive`
expects the base name of the archive and the root directory to
archive. The correct usage should be
`shutil.make_archive(base_name=os.path.splitext(zip_file_path)[0],
format='zip', root_dir=project_dir)`.

ãÑ
ãÑ
ãÑ
ãÑ
ãÑ
ãÑ

6

7 4. **Exception Handling**: The `previous_code` raises a generic
`Exception` if the ZIP archive creation fails. While this is
acceptable, it is better to provide a more specific error message
indicating the failure reason. Additionally, ensure that the ZIP file
is actually created by checking its existence after the
`shutil.make_archive` call.

ãÑ
ãÑ
ãÑ
ãÑ
ãÑ

8

9 5. **Return Value**: The `previous_code` correctly returns `True` if the
ZIP archive is successfully created. However, it should also ensure
that the ZIP file exists before returning `True`.

ãÑ
ãÑ

10

11 6. **Code Simplicity and Readability**: The `previous_code` includes a
detailed docstring, which is good practice. However, the actual
implementation can be simplified and made more readable by following
the correct usage of `shutil.make_archive` and ensuring proper
exception handling.

ãÑ
ãÑ
ãÑ
ãÑ

12

13 Overall, the `previous_code` has the right structure but needs
corrections in the directory existence check, ZIP archive creation,
and exception handling to function correctly.

ãÑ
ãÑ

Figure 20: An example case that the feedback guides toward the ground truth without explicitly
referencing it.
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1 1. **Class Name**: The class name in the `previous_code` is
`EmailHandler`, but it should be `EmailRequestHandler` to match the
`ground_truth_code`.

ãÑ
ãÑ

2

3 2. **Content-Type Check**: Instead of directly checking the
`Content-Type` header, use `cgi.parse_header` to parse the header and
then check if `ctype != 'application/json'`.

ãÑ
ãÑ

4

5 3. **Error Handling for Content-Type**: When the `Content-Type` is not
`application/json`, simply send a 400 response and end headers
without writing a message to the response body.

ãÑ
ãÑ

6

7 4. **Reading Content-Length**: Use `length =
int(self.headers.get('content-length'))` instead of `content_length =
int(self.headers.get('Content-Length', 0))`.

ãÑ
ãÑ

8

9 5. **JSON Decoding**: When catching `json.JSONDecodeError`, send a 400
response and end headers without writing a message to the response
body.

ãÑ
ãÑ

10

11 6. **Missing Fields Check**: When required fields are missing, send a 400
response and end headers without writing a message to the response
body.

ãÑ
ãÑ

12

13 7. **SMTP Authentication Error Handling**: When catching
`smtplib.SMTPAuthenticationError`, send a 535 response and end
headers without writing a message to the response body.

ãÑ
ãÑ

14

15 8. **General Exception Handling**: Remove the general exception handler
that sends a 500 response, as it is not present in the
`ground_truth_code`.

ãÑ
ãÑ

16

17 By making these changes, the `previous_code` will align more closely with
the `ground_truth_code`.ãÑ

Figure 21: An example case that the feedback directly references ground truth, leading to “leakage”.
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