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Abstract

By simply incorporating demonstrations into001
the context, in-context learning (ICL) enables002
large language models (LLMs) to yield awe-003
some performance on many tasks. In this paper,004
we focus on passage-level long-context ICL005
for generation tasks and find that LLMs can-006
not learn the intrinsic relationships between the007
demonstration passage and the generation out-008
put. We conduct experiments with different009
LLMs on two typical generation tasks includ-010
ing single-document QA and distractor gen-011
eration, demonstrating that even a completely012
meaningless demonstration passage with 1/4013
length achieves much better performance than014
the original full passage. Analysis via atten-015
tion score reveals that LLMs pay little atten-016
tion to passages compared to other components017
in prompt and little attention flows from the018
passage to other parts of the demonstration,019
which further confirms our finding. Addition-020
ally, experiments on context compression in-021
dicate that compression approaches proven ef-022
fective on other long-context tasks are not suit-023
able for passage-level ICL, since simply using024
shorter meaningless demonstration passages025
has achieved competitive performance.026

1 Introduction027

With recent advancements in demonstration selec-028

tion and prompt optimization, In-context Learning029

(ICL) has become an effective approach to enhanc-030

ing large language models (LLMs). Instead of up-031

dating millions of model parameters, simply incor-032

porating demonstrations into the context enables033

the model to learn more effectively, achieving bet-034

ter performance than in the zero-shot setting across035

various tasks. However, few studies on ICL focus036

on generation tasks, and existing research aimed037

at explaining the underlying mechanism of ICL038

primarily concentrates on tasks such as sentiment039

analysis or text classification (Wang et al., 2023;040

Min et al., 2022).041

Different from classification tasks, generation 042

tasks, for instance question answering (QA) tasks, 043

inherently require long contexts for both query and 044

demonstrations, making it challenging to fit the ICL 045

prompts into model’s context window. In recent 046

years, with advancements in computing hardware, 047

training data and model architecture, the context 048

window of current LLMs has been expanded to 8K, 049

32K and even 100K, allowing researchers to study 050

ICL from the perspective of generation tasks. 051

However, in this paper, we observe a significant 052

phenomenon in passage-level ICL for generation 053

tasks: LLMs cannot learn the intrinsic relation- 054

ships between the demonstration passage and the 055

corresponding generation target and thus passage- 056

level ICL does not necessarily need a regular well- 057

formed "Passage". Specifically, we use Mistral- 058

7B (Jiang et al., 2023a) and Llama2-13B (Touvron 059

et al., 2023; Chen et al., 2024) models to con- 060

duct experiments on two generation tasks: single- 061

document question answering and sentence-level 062

distractor generation. For each task, we conduct 063

experiments with randomly generated passages and 064

randomly sampled passages for demonstration. Ex- 065

perimental results show that LLMs are insensitive 066

to demonstration passages in ICL. Even completely 067

meaningless passage and generation contents in 068

demonstrations do not significantly impact perfor- 069

mance. In some cases, they even outperform set- 070

tings with real full passages. 071

Based on the finding of prior experiments, we 072

validate the hypothesis via attention analysis. First, 073

we compute the average attention scores of the 074

first generated token received from different com- 075

ponents of the prompt. Second, we measure the 076

attention scores transferred between the passage 077

and other components within each demonstration. 078

Through these experiments, we observe that the av- 079

erage attention scores LLMs receive from the pas- 080

sage are significantly lower than those from other 081

components, and the attention score exchanging 082
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within the demonstration is also minimal. These083

results confirm that LLMs cannot capture the cause-084

effect relationship between the demonstration pas-085

sage and the generation output.086

Further, based on the prior experiments, we ex-087

plore context compression for ICL. Compressing088

long contexts into compact texts while minimizing089

performance degradation has become a crucial ap-090

proach to handling long-context tasks for effective091

ICL. Most compression methods deal with long092

texts rather than on ICL, where the long context093

contains information relevant to the query, and the094

main point is to retain key information while fil-095

tering out irrelevant content. However, in ICL,096

the demonstrations themselves do not explicitly097

contain information related to the query. To inves-098

tigate the effectiveness of compression methods099

for ICL, we perform compression experiments on100

prior passage-level tasks, and the results indicate101

that, under similar compression rates, the existing102

compression methods do not outperform randomly103

generated or sampled passages, both for QA and104

DG tasks.105

To sum up, we conduct random perturbation ex-106

periments on two ICL tasks, and compute the av-107

erage attention score and relative attention score108

during inference. Our results confirms that passage-109

level ICL does not necessarily need a regular "Pas-110

sage". Further experiments of context compression111

show that conventional compression approaches do112

not provide superior performance to passage-level113

ICL since simply using random shorter passages114

has performed competitively. We hope this work115

can inspire further research on the explanation for116

inner mechanism of ICL and demonstration com-117

pression in the passage-level ICL.118

2 Single-document Question Answering119

To examine whether LLMs really comprehend the120

intrinsic relationships between the passage content121

and its generation targets during ICL for passage-122

level generation tasks, we conduct experiments on123

TriviaQA (Joshi et al., 2017) from Longbench (Bai124

et al., 2024), which is a single-document question125

answering dataset designed for English reading126

comprehension. We introduce various random per-127

turbations to the demonstrations in the context of128

ICL and measure the effect on model performance.129

2.1 Experimental Setup 130

Task Description In the QA task for reading 131

comprehension of a single document, each test in- 132

stance consists of a passage and a question, where 133

the relevant information for the question can be 134

retrieved from the passage. LLMs are required to 135

generate the corresponding answer based on the 136

passage and the question. Evaluation metrics in- 137

clude F1 score, which is used in Longbench, and 138

exact match (EM). 139

LLMs We use Mistral-7B-Instruct-v0.2 (Jiang 140

et al., 2023a) as our primary LLM. It is an 141

instruction-tuned variant of Mistral-7B, which sup- 142

ports a maximum context length of 32K tokens, 143

making it particularly well suited for long-context 144

tasks. Furthermore, we conduct experiments on 145

the LongLoRA fine-tuned variant of the Llama2- 146

13B (Touvron et al., 2023) model: Llama2-13b- 147

longlora-32k-ft (Chen et al., 2024). The Lon- 148

gLoRA fine-tuning extends the context length of 149

Llama2-13B to 32K tokens. All experiments were 150

conducted on a single NVIDIA A100 GPU. 151

Prompt Our prompt design adheres to the basic 152

format of TriviaQA and Qu et al. (2024). Figure 153

1 shows the structure of our prompt and detailed 154

prompt example can be seen in Appendix A. While 155

preserving the original prompt structure of Trivi- 156

aQA, we incorporate task-specific instructions both 157

before the demonstrations and the query. 158

Passage Perturbation In our systematic pertur- 159

bation analysis, we mainly employ two methods to 160

perturb the passages in the demonstrations: sam- 161

pling and generation. For sampling-based perturba- 162

tion, we randomly sample and reorder tokens from 163

the original passage, ensuring that all the tokens 164

are derived from the original text. For generation- 165

based perturbation, we randomly generate a list of 166

numbers as new input_ids sequences, ensuring 167

that the perturbed results are completely indepen- 168

dent. Our goal is to validate the importance of 169

the original passage tokens in the context of ICL 170

through the comparison of these two methods. 171

Our experiments contain two types of settings in- 172

cluding 4-shot and full-shot. We apply perturbation 173

ratios of 1/8, 1/4, 1/2, 3/4 for all 4-shot settings to 174

the two demonstration passage perturbation meth- 175

ods, evaluating their effects on different LLMs. For 176

full-shot settings, we apply perturbation ratios of 177

1/8, 1/4, and 3/10 1 . Due to computational resource 178

1We use 3/10 because we cannot apply 1/2 due to limited
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Figure 1: Prompt we use for Single-document QA and Distractor Generation. The left column displays the overall
prompt template, with the detailed structures of the demonstration block and query block shown in the other two
columns. The middle column presents the blocks used for Single-document QA task, while the right column shows
the blocks used for the Distractor Generation task.

constraints, full-shot experiments with complete179

passages are infeasible. For comparison, we in-180

clude full-shot setting without any passage (that is,181

experiments where the passages in the demonstra-182

tions for ICL are entirely removed). For TriviaQA183

dataset, the full-shot setting means that we use all184

demonstrations in context for each input from the185

test data. Each input in the test data contains a dif-186

ferent number of demonstrations, ranging from a187

minimum of 2 to a maximum of 25, with an average188

of 13.75 and a median of 14.189

2.2 Results and Discussion190

Experimental results of 4-shot and full-shot set-191

tings are presented in Table 1 and 2 respectively.192

The results for both models indicate that LLMs are193

unable to learn the intrinsic relationships between194

the passages and their corresponding generation195

targets in the demonstrations of ICL, and they look196

like "lost in the passage".197

All ICL results show significant improvement198

compared to the zero-shot setting, indicating that199

ICL is effective. However, both models demon-200

strate strong insensitivity to passage perturbations201

in passage-level ICL, with all results of passage202

perturbation exceeding the full passage settings.203

On Mistral-7B, the F1 and EM scores show an av-204

erage improvement of 3.37 points and 4.75 points205

compared to the full passage setting respectively.206

On Llama2-13B-longlora-32k-ft, the F1 and EM207

scores achieve an average gain of 2.85 points and208

2.81 points respectively. The 4-shot setting with209

1/8 generated passage even reduce the average210

prompt length from 2780.90 to 909.64 (shorten-211

ing the length by 67%) while maintaining the per-212

formance, indicating that a significant portion of213

memory.

the context in passage-level ICL consumes com- 214

putational resources while not contributing to the 215

model’s performance. In contrast, as presented at 216

the bottom of Table 1, when we try to perturb the 217

question and answer in demonstrations, it leads 218

to a greater performance degradation than perturb- 219

ing the passage, indicating that unlike passages, 220

questions and answers in demonstrations are rather 221

important for passage-level ICL. 222

Figure 2 presents two examples of random pas- 223

sage we use in perturbation experiments. The pas- 224

sage on the left presents the random generated pas- 225

sage, which is completely unreadable and meaning- 226

less. The random generated words are more diverse, 227

and it even contains words in other languages. On 228

the contrary, the sampled passage on the right is 229

more reasonable than the left passage, whose words 230

are sampled from the original passage. 231

The comparison between generate and sample 232

perturbation methods reveals that the settings with 233

randomly generated, completely meaningless pas- 234

sages achieves comparable performance, some- 235

times even better, to that of sample settings. This 236

indicates that the token sequences sampled from 237

the original passages do not provide beneficial im- 238

provements to the model. Furthermore, except for 239

the 4-shot experiment with Mistral-7B, in experi- 240

ments involving passage content, the performance 241

surpasses that of no passage settings, even when 242

the generated tokens are entirely meaningless. This 243

demonstrates that, in most cases, the presence of 244

content in the passage position is more critical than 245

better content in the passage position. 246

We also conduct a detailed ablation study on 247

demonstration selection and Q & A perturbation. 248

The results can be seen in Appendix B. 249
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Mistral-7B-Instruct-v0.2 Llama2-13B-longlora-32k-ft
Settings F1 Exact Match Avg prompt length F1 Exact Match Avg prompt length
zero-shot 47.95 27.0 580.83 74.43 66.5 590.83
4-shot + no passage 73.52 63.0 669.50 71.21 67.5 669.50
4-shot + full passage 68.52 56.0 2780.90 85.00 80.5 2780.90
4-shot + generate 1/8 passage 73.60 62.5 909.64 88.32 83.0 914.97
4-shot + sample 1/8 passage 71.11 59.5 925.39 86.59 82.0 926.02
4-shot + generate 1/4 passage 74.46 63.5 1147.31 88.99 84.5 1160.67
4-shot + sample 1/4 passage 70.24 59.5 1193.07 86.87 82.5 1193.48
4-shot + generate 1/2 passage 72.83 61.5 1627.15 88.15 83.5 1649.72
4-shot + sample 1/2 passage 72.15 60.5 1721.07 88.70 84.5 1722.80
4-shot + generate 3/4 passage 71.97 61.0 2108.30 87.30 82.5 2138.39
4-shot + sample 3/4 passage 68.76 58.0 2239.56 87.89 84.0 2240.77
4-shot + generate question 63.51 49.5 2776.65 80.70 77.0 2777.59
4-shot + generate answer 64.18 50.0 2785.83 7.29 7.0 2785.46

Table 1: 4-shot results on TriviaQA. The best result in each column is marked in bold.

Mistral-7B-Instruct-v0.2 Llama2-13B-longlora-32k-ft
Settings F1 Exact Match Avg prompt length F1 Exact Match Avg prompt length
full-shot + full passage - - 8299.95 - - 8299.95
full-shot + no passage 75.31 64.5 853.30 75.29 71.5 853.30
full-shot + generate 1/8 passage 78.98 67.5 1701.51 88.90 84.5 1719.44
full-shot + sample 1/8 passage 79.35 68.0 1761.71 87.44 82.0 1765.19
full-shot + generate 1/4 passage 78.87 67.5 2543.09 88.51 83.5 2584.77
full-shot + sample 1/4 passage 78.97 67.5 2701.92 87.06 82.0 2705.60
full-shot + generate 3/10 passage 77.64 65.0 2881.74 87.51 82.5 2931.16
full-shot + sample 3/10 passage 77.76 66.5 3075.57 88.92 84.5 3080.37

Table 2: Full shot results on the TriviaQA dataset. The best result in each column is marked in bold.

3 Sentence-level Distractor Generation250

Given that LLMs cannot learn the intrinsic rela-251

tionships between the demonstration passage and252

its corresponding demonstration target in single-253

document QA tasks such as TriviaQA, we further254

study whether similar trends can be observed in255

other passage-level ICL scenarios. To this end, we256

conduct experiments on RACE (Lai et al., 2017),257

a commonly used dataset sourced from the educa-258

tional domain and annotated by professional teach-259

ers on the distractor generation task, which is more260

complex than single-document QA.261

3.1 Experimental Setup262

Task Description In the distractor generation263

task, each instance consists of a document, a ques-264

tion, a correct answer to the question and several265

distractors designed to mislead the solver. In our266

experiments, we require LLMs to generate three267

distinct distractors. Our evaluation metrics include268

average BLEU and Pairwise BLEU. The former269

assesses the quality of the generated content, while270

the latter evaluates the diversity of the generated271

distractors, with lower values indicating better di-272

versity. Considering that RACE lacks pre-existing 273

input context, we randomly select three sets of ex- 274

amples from the training set and use the same ICL 275

demonstration examples for each test instance. We 276

report the average metrics over three sets of experi- 277

ments. 278

LLMs Since the overall prompt length is rela- 279

tively short, we additionally include Llama2-13B- 280

Chat alongside the two previously used models, 281

aiming to explore whether models with extended 282

context windows utilize contextual information 283

more effectively. 284

Prompt Our prompt format aligns with Qu et al. 285

(2024), whose structure can be seen in Figure 1, 286

and we conduct experiments under 1, 2, 4, and 287

8-shot settings. 288

Passage Perturbation The method for perturb- 289

ing documents remains consistent with the experi- 290

ments on TriviaQA. For each few-shot experiment, 291

we configure perturbation ratios of 1/2 and 1/4, 292

with each ratio incorporating both generation-based 293

and sampling-based perturbation methods. 294
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Figure 2: Example of random perturbation passage in demonstration. The passage on the left is random generated
passage, and passage on the right is random sampled passage.

3.2 Results and Discussion295

Detailed experimental results are presented in Ta-296

ble 3. From the results, we can summarize the297

following findings.298

LLMs exhibit a similar trend in the distractor299

generation task, demonstrating insensitivity to the300

passages in ICL. Across different models and num-301

bers of shots, settings with perturbed passages302

achieve comparable and sometimes even better per-303

formance than those with full passages, while re-304

quiring a much smaller context window.305

Completely removing the passages from the con-306

text has less impact on Avg BLEU scores (some-307

times achieving the best performance). However,308

in most settings, this removal leads to a significant309

increase in Pairwise BLEU. This suggests that re-310

taining some content in the passage position, even311

if it is entirely meaningless generated text, can en-312

hance the diversity of the content produced through313

generation by LLMs.314

LLM with context windows extended (Llama2-315

13B-longlora-32k-ft) enhances the general perfor-316

mance, while reducing output diversity and stabil-317

ity. The longlora model has a much higher Avg318

BLEU score, but it suffers from low diversity, with319

the highest Pairwise BLEU reaching 91.68, which320

means that the three distractors are almost the same.321

Moreover, the stability of longlora model is worse322

than other models, as shown by the drastic changes323

in both Avg BLEU and Pairwise BLEU.324

It is noteworthy that the relative orders of Q &325

A & P in the prompt for two tasks are different. As326

shown in Figure 1, the passage is at the beginning327

in TriviaQA’s prompt, while in the other, it is at328

the end. However, models show insensitivity to329

passages in both tasks, indicating that the finding330

of previous experiments is universal, and the insen-331

sitivity of the model to passage is not due to the332

relative of Q & A & P, but rather to the model itself.333

Detailed results of ablation study on distractor334

generation can be seen in Appendix C.335

4 Why Are LLMs Insensitive to Passage 336

in ICL? 337

In this section, from the aspect of attention dur- 338

ing inference, we provide a deeper confirmation to 339

our hypothesis extracted from the former experi- 340

ments H: In passage-level ICL, LLMs are in fact 341

unable to learn the intrinsic relationships between 342

demonstration passage and its generation target. 343

4.1 Attention Analysis on the First Generated 344

Token 345

We compute the average attention scores received 346

by the first generated token from different compo- 347

nents of the prompt across five hidden layers during 348

inference. This analysis, to some extent, reflects the 349

influence of the prompt’s components on the gen- 350

eration. Considering that returning the attention 351

matrix will consume more computing resources 352

than usual, we experiment with two settings for 353

each task. On Trivia QA, we use a 2-shot + full 354

passage prompt and a random half-shot + gener- 355

ate 1/4 passage. On RACE, we use 2-shot + full 356

passage prompt and 2-shot + random generate 3/4 357

passage prompt. The results on TriviaQA can be 358

seen in Figure 3, and the results on RACE is in 359

Appendix C for saving space. 360

In the first hidden layer, the attention scores 361

received from different parts of the demonstra- 362

tions remain approximately equal, indicating that 363

the model does not exhibit a significant prefer- 364

ence for any part during the early stage of infer- 365

ence. However, in other layers, the attention scores 366

for demonstration passages decrease significantly, 367

even falling behind those of other components in 368

the demonstrations. This is consistent across both 369

the full passage and randomly generated passage 370

settings, suggesting that LLMs in fact pay little 371

attention to the demonstration passage. The same 372

trends can be seen in the RACE results. Addi- 373

tionally, an interesting finding is that, apart from 374

the query components, task instruction contributes 375
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Llama2-13B-Chat Llama2-13B-longlora-32k-ft Mistral-7B-Instruct-v0.2
shot num Settings AB PB(↓) Avg length AB PB(↓) Avg length AB PB(↓) Avg length
zero-shot - 4.32 38.52 507.69 8.06 86.18 507.69 6.46 25.28 507.69
1-shot full 2.94 23.49 977.36 4.96 37.42 977.36 4.90 21.41 977.36

no passage 4.12 26.25 546.03 3.88 45.68 546.03 4.75 22.62 546.03
generate 1/2 4.02 23.57 682.65 4.69 37.19 682.30 4.93 25.46 676.94
generate 1/4 3.72 24.87 613.56 4.58 37.11 613.58 4.79 25.13 610.46
sample 1/2 3.05 23.87 764.85 4.08 30.40 764.85 4.83 23.15 763.47
sample 1/4 3.15 23.05 655.87 4.48 37.25 655.87 4.92 24.65 654.81

2-shot full 4.90 20.78 1376.03 6.69 51.13 1376.03 6.08 25.41 1376.03
no passage 4.46 27.73 583.03 6.39 80.48 583.03 4.47 29.23 583.03
generate 1/2 5.07 22.24 835.08 6.19 38.58 834.83 5.24 28.05 825.36
generate 1/4 5.17 24.98 706.92 6.32 45.67 707.43 5.12 28.15 702.14
sample 1/2 5.00 23.59 978.29 7.61 57.64 978.27 5.37 27.48 976.76
sample 1/4 4.94 25.54 782.93 7.10 59.9 782.94 4.99 28.92 781.46

4-shot full 6.01 19.95 2052.36 5.93 37.35 2052.36 6.10 24.41 2052.36
no passage 4.75 28.49 666.69 8.58 91.68 666.69 4.49 31.54 666.69
generate 1/2 5.35 25.03 1106.37 6.50 42.00 1105.79 4.81 29.5 1089.84
generate 1/4 5.47 27.36 882.83 7.33 53.34 882.79 4.96 30.24 873.92
sample 1/2 5.32 25.46 1344.98 6.18 42.96 1344.99 5.46 26.65 1342.76
sample 1/4 5.29 25.87 1002.72 7.91 64.08 1002.97 5.38 28.23 1001.16

8-shot full - - 3759.03 - - 3759.03 - - 3759.03
no passage 4.85 29.15 797.03 8.12 89.98 797.03 4.74 33.01 797.03
generate 1/2 5.23 22.32 1740.42 5.98 38.89 1741.50 5.10 31.01 1704.15
generate 1/4 5.59 25.63 1261.58 6.69 47.34 1260.66 5.30 31.31 1244.09
sample 1/2 5.40 22.73 2246.78 6.42 42.25 2246.75 5.63 27.64 2246.18
sample 1/4 5.38 23.93 1506.84 7.16 53.22 1506.97 5.96 29.37 1505.06

Table 3: Experimental results of three models on RACE dataset with different settings. AB refers to Average BLEU,
PB refers to Pairwise BLEU, and Avg length refers to the average prompt length.

the most attention to the model. This observation376

partially explains why modifying instructions can377

lead to substantial performance changes in certain378

scenarios.379

4.2 Attention Analysis between Passage and380

Other Components of Demonstration381

In this section we directly compute the average at-382

tention scores between different parts of the demon-383

stration, such as the question, receive from or con-384

tribute to the passage, determined by their relative385

positions in the prompt. Since we only focus on386

the relative attention scores, we compute the scores387

on all hidden layers. The results for TriviaQA are388

presented in Figure 4, while the results for RACE389

can be found in Appendix D.390

As shown in Figure 4, the attention passed from391

the demonstration passage to its corresponding an-392

swer is lower than that of the question, indicating393

models’ relative insensitivity between the passage394

and the target. Apart from that, the scores drop af-395

ter the first layer, and remain at a low level below 6.396

This aligns with the observation from the previous397

section, which indicates that the model exhibits no398

preference for any part of demonstrations during399

the early stages of inference and pays almost no 400

attention to the passage after the first layer. Results 401

on RACE can also reveal this trend. 402

5 Passage Compression in ICL 403

In this section, we explore whether compression 404

algorithms can preserve the most important parts 405

of passages in ICL and achieve better experimental 406

results than random generation and sampling. 407

5.1 Experimental Setup 408

We perform two types of compression methods: 409

retrieval-based (Jiang et al., 2024) and perplexity- 410

based. 411

In retrieval-based compression, we use the ques- 412

tion from each ICL demonstration as the retrieval 413

key. After segmenting the passage into sentences, 414

we retrieve the top 5 sentences that are most sim- 415

ilar to the question. Additionally, we include a 416

comparison with retrieval re-ranking, where the 417

retrieved sentences are reordered based on the re- 418

trieval model’s score rather than retaining their orig- 419

inal order in the passage. 420

For perplexity-based compression, we employ 421

LLMlingua (Jiang et al., 2023b) and LongLLM- 422
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lingua (Jiang et al., 2024), two methods proven423

to exhibit good compression performance on mul-424

tiple long-document tasks and have been shown425

to effectively preserve key information. However,426

in passage-level ICL, the demonstration passages427

do not directly relate to the query. Our focus is428

on whether shorter, potentially better passages can429

help LLMs learn the intrinsic relationships between430

the passage and its corresponding generation target.431

5.2 Results and Analysis432

Table 4 shows the results of our compression ex-433

periments using Mistral-7B-Instruct-v0.2 on Trivi-434

aQA. The results indicate that the performance of435

all compression methods is inferior to that of ran-436

dom generation and sampling. The Lingua series437

methods outperform retrieval-based compression438

methods, but their performance is still 7 points439

Compress Method F1 EM Avg length
Our best 79.35 68.0 1761.71
llmlingua 71.36 59.5 2246.68
longlingua 71.33 58.5 3508.65
BM25 rerank 67.73 56.5 2670.90

+Random Half shot 68.07 58.0 1602.99
BM25 67.80 56.5 2670.90

+Random Half shot 68.03 58.0 1602.99
Rouge rerank 66.87 55.0 2332.38

+Random Half shot 67.42 56.5 1443.69
Rouge 68.03 57.0 2332.38

+Random Half shot 67.41 57.5 1443.69

Table 4: Results of TriviaQA compression experiments
on Mistral-7B-Instruct-v0.2. The our best refers to the
best result from all random perturbation settings. We
mark the results of best setting and prior best in bold.

lower than that of most random perturbation ex- 440

periments. Furthermore, whether re-ranking or 441

randomly selecting demonstrations has a minimal 442

impact on performance, indicating that in ICL of 443

single-document QA tasks, the presence of content 444

in the passage position is more critical than having 445

better content in the passage position. 446

Table 5 presents the results of compression ex- 447

periments using Llama2-13B-Chat on RACE. Com- 448

pared to the previous experiments on TriviaQA, the 449

performance of all compression methods is similar, 450

with small performance fluctuations. Notably, al- 451

though the performance of compression methods 452

in the 4-shot and 8-shot settings is slightly higher 453

than that of random perturbation experiments (im- 454
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Compress Method
shot num Settings AB PB(↓) Avg length
1-shot Our best 4.12 26.25 546.03

Rouge rerank 3.45 28.52 646.69
BM25 rerank 3.10 25.24 651.36
Rouge 3.44 27.24 646.69
BM25 3.14 24.67 651.36
llmlingua 2.97 26.80 676.03
longlingua 3.32 21.14 734.69

2-shot Our best 5.17 24.98 706.92
Rouge rerank 5.29 24.39 753.69
BM25 rerank 5.24 24.08 768.69
Rouge 5.18 24.57 753.69
BM25 5.40 23.19 768.69
llmlingua 5.23 24.60 806.69
longlingua 5.28 24.75 884.03

4-shot Our best 5.47 27.36 882.83
Rouge rerank 5.53 24.32 990.69
BM25 rerank 5.76 23.63 1037.36
Rouge 5.62 24.49 990.69
BM25 5.67 22.56 1037.36
llmlingua 5.92 23.72 1204.03
longlingua 5.52 25.55 1284.69

8-shot Our best 5.59 25.63 1261.58
Rouge rerank 6.19 24.31 1433.69
BM25 rerank 6.43 24.86 1531.36
Rouge 6.19 23.89 1433.69
BM25 6.31 24.52 1531.36
llmlingua 5.98 23.48 1898.03
longlingua 5.89 23.49 2098.69

Table 5: Results of RACE compression experiments on
Llama2-13B-Chat.

proving by approximately 0.5 points), we consider455

this marginal performance gain insufficient to con-456

clude that compression algorithms allow LLMs to457

learn the intrinsic relationships between passages458

and generation targets.459

6 Related Work460

6.1 How do LLMs utilize the context?461

Numerous previous studies have explored, from462

various perspectives, how LLMs utilize context and463

derive certain insights from ICL. From the perspec-464

tive of context perturbation, Min et al. (2022) pro-465

poses that ground truth demonstrations are not es-466

sential. Instead, the label space, the distribution of467

the input text, and the input format play a more im-468

portant role in ICL. Furthermore, Liu et al. (2023)469

finds that the position of key information within470

the context significantly impacts performance, with471

key information appearing in the middle position472

leading to worse performance. Another perspective473

explains the underlying mechanism of ICL, such474

as implicit Gradient Descent during ICL (Dai et al.,475

2023; von Oswald et al., 2023) and considering 476

label words as anchors in ICL (Wang et al., 2023). 477

6.2 Compression Methods for LLMs 478

In general, prior work on compression methods can 479

be divided into three categories: extractive method, 480

abstractive method, and soft prompt method. 481

The extractive method mainly selects some to- 482

kens from the original context, ensuring that the 483

compressed results are completely derived from the 484

original context. Representative works include se- 485

lective context (Li et al., 2023), LLMLingua (Jiang 486

et al., 2023b), LongLLMLingua (Jiang et al., 2024), 487

LLMLingua2 (Pan et al., 2024) and the ReCOMP 488

extractive compressor (Xu et al., 2023). 489

The abstractive method aims to generate contex- 490

tual summaries through language models, ensur- 491

ing the coherence and fluency of the compression 492

results. including ReCOMP abstractive compres- 493

sor (Xu et al., 2023), Nano-Capsulator (Chuang 494

et al., 2024), ComPact (Yoon et al., 2024), and 495

semantic compression (Fei et al., 2023). 496

The soft prompt method compresses the natural 497

language context into soft prompt, aiming to ag- 498

gregate the key information. Representative works 499

include query-guided compressor (Cao et al., 2024) 500

and Dodo (Qin et al., 2024). 501

7 Conclusion 502

In this paper, we find that LLMs are unable to learn 503

the intrinsic relationships between the passage and 504

its corresponding generation targets in the passage- 505

level ICL. Through experiments and ablation stud- 506

ies on single-document QA and distractor genera- 507

tion, we demonstrate that randomly perturbing the 508

passage in the demonstrations has minimal impact 509

on performance. Building on above experiments, 510

we analyze the attention scores of components of 511

the prompt during inference, as well as the relative 512

attention scores between the passage and other com- 513

ponents in demonstrations. The results consistently 514

indicate that LLMs are insensitive to passage dur- 515

ing inference. Finally, we introduce compression 516

methods and experimentally show that these meth- 517

ods, while performing well in other long-context 518

tasks, they do not provide significant advantages 519

in passage-level ICL. All these results shows that 520

Passage-level ICL does not necessarily need a reg- 521

ular "Passage" during inference. We hope our find- 522

ing will inspire future work on explaining the inner 523

mechanisms of ICL. 524
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Limitations525

First, due to resource limitations, we only study526

open-source LLMs no larger than 13B and the527

passage-level ICL performance on larger models,528

especially powerful models that are extremely good529

at processing very long context or perturbed con-530

tent, remains under-explored. Second, we focus531

on traditional ICL paradigm and use a common532

prompt template only. The performance is not533

validated under other paradigms such as chain-of-534

thought (Wei et al., 2022) and different prompt535

templates. Furthermore, although we have shown536

that random perturbation can achieve competitive537

results with shorter context length compared to rep-538

resentative context compression approaches, how539

to effectively compress the context for passage-540

level ICL while keeping stable performance is still541

unclear and requires future exploration. A promis-542

ing future direction is combining perturbation and543

compression since they are orthotropic.544
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A Prompt Example684

We design two different prompt formats for the685

TriviaQA and RACE datasets, as shown in Table686

6. The prompts for both tasks consist of the fol-687

lowing components: instructions, demonstrations,688

task description, and the query-related information. 689

However, there are some differences in the prompts 690

for the two tasks. For TriviaQA, since the ques- 691

tions and answers are typically limited to a single 692

line, the different sections of the prompt are sepa- 693

rated by only the newline character ’\n’. In contrast, 694

the RACE dataset features multiple distractors for 695

the same question and several newline characters 696

within the single passage, which makes it difficult 697

to distinguish different parts with only a single ’\n’. 698

As a result, we decide to choose the ’<>’ as a more 699

precise and efficient symbol to locate the corre- 700

sponding content. In addition, the instructions and 701

task descriptions are designed differently for the 702

two different tasks. This tailored design enables 703

both tasks to achieve strong performance. 704

When we look closely at the prompts for the two 705

tasks, we can see that the instruction in TriviaQA 706

primarily guides the model to focus on answering 707

QA-type tasks. In contrast, the instruction for the 708

RACE dataset requires the model to generate dis- 709

tractors that align with the relationship between the 710

question and answer. At the same time, both tasks 711

require the model to produce answers in a specified 712

format. 713

B Ablation Study on single-document QA 714

Task 715

We conduct ablation studies on Mistral-7B. We 716

introduce random demonstration selection, where 717

we randomly select half of the context demonstra- 718

tions, and random generation of question and an- 719

swer in demonstrations. Experimental results are 720

presented in Table 7. The results show that ran- 721

domly selecting half of the ICL examples causes 722

a slight decline in performance, which perhaps re- 723

sults from the reduction of QA pairs. However, per- 724

turbing the question-answer pairs exhibits a more 725

substantial impact on model performance. This 726

effect becomes particularly pronounced when both 727

components are altered simultaneously, resulting in 728

significantly decreased F1 and EM scores. And this 729

further confirms the discovery that instead of learn- 730

ing the intrinsic relationships from demonstrations, 731

LLMs tend to mimic the generation target and then 732

generate output based on query (Min et al., 2022) 733

C Ablation Study on DG Task 734

We also conduct ablation study on perturbations 735

of the question, answer, and distractor within the 736

context of ICL demonstrations. In previous ex- 737
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TriviaQA RACE
You are a helpful AI educational assistant that help students
in educational field. You are required to generate answer to
the question with the given passage. Next I will propose you
several examples.
Passage: D_Passage
Question: D_Question
Answer: D_Answer
Now according to the following document, question, gener-
ate answer for the question. There are some requirements
for you: 1. The returned result can be an incomplete sub-
sentence because the grammar structure of the question may
be incomplete, but if the return result is incomplete, the com-
bined question-result sentence must have complete grammar
structure. 2. Do not generate any irrelvant words.
Passage: Q_Passage
Question: Q_Question
Answer: Q_Answer

You are a helpful AI educational assistant that help teach-
ers in educational field. You are required to generate three
distractors with the given document, question and answer.
Distractors are incorrect answers to the question according to
the input document, which are opposite to the answers. The
three distractors should be returned in three lines and each
line should begin with "<result>" and end with "</result>".
Next I will propose you several examples.
<question> D_Question </question>
<answer> D_Answer </answer>
<document> D_Passage </document>
<result> D_Distractor </result>
Now according to the following document, question and an-
swer, generate three distractors. There are some requirements
for you: 1. The returned result can be an incomplete sub-
sentence because the grammar structure of the question may
be incomplete, but if the return result is incomplete, the com-
bined question-result sentence must have complete grammar
structure. 2. The three generated results should be returned
in three lines. Each line should begin with ’<result>’ and end
with ’</result>’ The three distractors can be: <result>
<question> Q_Question </question>
<answer> Q_Answer </answer>
<document> Q_Passage </document>

Table 6: Prompt for TriviaQA and RACE dataset. D refers to components in demonstrations. Q refers to components
in query.

Settings F1 Exact Match Avg prompt length
Half-shot + generate 1/2 passage 72.23 62.0 2351.52
Half-shot + generate 1/4 passage 71.99 60.5 1528.64
Half-shot + generate 1/8 passage 74.97 63.5 1123.49
Half-shot + generate 1/8 passage + random question 69.48 56.5 1124.42
Half-shot + generate 1/8 passage + random answer 69.57 55.0 1137.71
Half-shot + generate 1/8 passage + random question & answer 66.68 52.0 1132.24

Table 7: Results of TriviaQA ablation study about question & answer perturbation on Mistral-7B-Instruct-v0.2

periments, each demonstration contains only one738

question and answer. In the ablation experiments,739

we incorporate multiple questions, answers, and740

distractors from the given dataset into the demon-741

stration in a list format, while keeping the query742

and other components unchanged. Compared to743

the perturbation of q& a & d in section 2.2, a more744

regular perturbation will present a credible result .745

By introducing perturbations to the format of ques-746

tions, answers, and distractors in demonstrations,747

we can more clearly observe that perturbing parts748

more closely related to the generation target has a749

greater impact on the model than perturbing pas-750

sages. The experimental results are presented in751

Table 8.752

It is observed that this modification leads to a sig-753

nificant performance degradation. Avg BLEU of al-754

most each setting drops below 3.00, while the Pair-755

wise BLEU remains the same trend. Through case756

studies, we find that the model’s outputs mimic757

the list format in the demonstrations. The mere 758

introduction of a list format for questions, answers, 759

and distractors results in such a substantial change, 760

whereas completely random generation of passages 761

even improves overall performance in some set- 762

tings. This reveals the model’s insensitivity to the 763

content of the passages. 764

D Attention Results on Distractor 765

Generation 766

To investigate the underlying reasons for this phe- 767

nomenon, we visualized the attention scores of the 768

LLM and performed a comparative analysis. The 769

results are shown in Figure 6 and Figure 5. 770

Figure 6 illustrates the impact of two different 771

settings on attention scores: the position of dif- 772

ferent model layer and different components of 773

prompts. As mentioned in the previous section, the 774

attention score distribution of an input sequence un- 775

dergoes relatively significant changes as it passes 776
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list q&a&d
shot num Settings AB PB(↓) Avg length
1-shot prior best 4.12 26.25 546.03

full 2.27 24.17 1018.69
no passage 2.27 28.08 587.36
generate 1/2 2.41 26.43 723.66
generate 1/4 2.31 27.39 654.98
sample 1/2 2.26 26.20 806.16
sample 1/4 2.26 26.98 697.20

2-shot prior best 5.17 24.98 706.92
full 2.44 20.50 1489.03
no passage 2.69 26.28 696.03
generate 1/2 2.76 24.55 948.59
generate 1/4 2.75 24.83 820.36
sample 1/2 2.61 23.90 1091.31
sample 1/4 2.76 25.29 895.92

4-shot prior best 5.47 27.36 882.83
full 2.72 23.60 2288.03
no passage 2.76 26.77 902.36
generate 1/2 2.81 28.40 1340.86
generate 1/4 2.72 28.26 1118.43
sample 1/2 2.66 27.55 1580.63
sample 1/4 2.81 28.03 1238.44

8-shot prior best 5.59 25.63 1261.58
full - - -
no passage 2.62 27.64 1317.36
generate 1/2 2.14 35.20 2260.99
generate 1/4 2.97 26.84 1782.64
sample 1/2 2.76 24.72 2767.14
sample 1/4 3.16 27.12 2027.31

Table 8: Ablation study results of Llama2-13B-Chat on
RACE dataset. The prior best refers to the best result
from all random perturbation settings under the same
shot.

through deeper layers of the model. Initially, the777

distribution is relatively uniform, but in the mid-778

dle layers, attention shifts primarily to three parts:779

the output section within the demonstration, the780

instruction, and the query. In the attention distri-781

bution of the last layer, a trend similar to that of782

the middle layers can be observed. However, the783

model shows increased attention to the demonstra-784

tion compared to the middle layer, probably due to785

its increased information on overall information in786

the final layer. Meanwhile, the concentrated atten-787

tion on the instruction and query sections remains788

consistent with previous findings. Additionally, the789

attention distributions in different layers are highly790

similar between the full Original Passage and the791

3/4 Generated Passage.792

Figure 5 reveals a similar trend to the previous793

finding. The experimental setup is similar to that of794

TriviaQA, However, since the question and the cor-795

responding answer appear before the passage in the796

demonstration, while the distractors are positioned797

after the passage. Since the decoder-only architec- 798

ture only access tokens preceding the current token, 799

the relative attention scores are categorized into 800

three types: Question2Passage, Answer2Passage, 801

and Passage2Distractors. The trend of relative at- 802

tention scores across layers under both settings 803

is similar to that observed in the QA task. The 804

P2D score is significantly lower than the Q2P and 805

A2P scores, indicating that the connection between 806

the passage and the corresponding target is much 807

weaker than other parts’ connection with the pas- 808

sage. When the number of the layers is less than 809

six, the overall attention scores are low, correspond- 810

ing to a flat attention distribution at the beginning. 811

In deeper layers, the relative attention score and the 812

attention distribution become more directional and 813

focused. Although the trends of the three relative 814

attention scores are generally similar under two 815

settings, the overall relative attention scores for the 816

random generated passage in deeper hidden layers 817

are significantly lower than those for the full pas- 818

sage. This may be because the randomly generated 819

passage has a weaker semantic connection to the 820

corresponding question, answer, and distractors.
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Figure 5: Relative attention scores on RACE with
prompts of two settings. Layer 1 refers to the first hid-
den layer in the model.

821

E License 822

Artifacts License
RACE CMU
TriviaQA Apache-2.0
sacreBLEU Apache-2.0
nltk Apache-2.0
Mistral-7B-Instruct-v0.2 Apache-2.0
Llama2-13B-longlora-32k-ft Apache-2.0
Llama2-13B-Chat Meta
gensim LGPL-2.1

Table 9: Licenses of scientific artifacts we use.
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Figure 6: Attention scores of components in prompt on RACE. The horizontal axis index from left to right is Passage,
Question, Answer, Distractor, Instruction, Passage of Query, Question of Query, Answer of Query, respectively.
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