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Abstract

By simply incorporating demonstrations into
the context, in-context learning (ICL) enables
large language models (LLMs) to yield awe-
some performance on many tasks. In this paper,
we focus on passage-level long-context ICL
for generation tasks and find that LLMs can-
not learn the intrinsic relationships between the
demonstration passage and the generation out-
put. We conduct experiments with different
LLMs on two typical generation tasks includ-
ing single-document QA and distractor gen-
eration, demonstrating that even a completely
meaningless demonstration passage with 1/4
length achieves much better performance than
the original full passage. Analysis via atten-
tion score reveals that LLMs pay little atten-
tion to passages compared to other components
in prompt and little attention flows from the
passage to other parts of the demonstration,
which further confirms our finding. Addition-
ally, experiments on context compression in-
dicate that compression approaches proven ef-
fective on other long-context tasks are not suit-
able for passage-level ICL, since simply using
shorter meaningless demonstration passages
has achieved competitive performance.

1 Introduction

With recent advancements in demonstration selec-
tion and prompt optimization, In-context Learning
(ICL) has become an effective approach to enhanc-
ing large language models (LLMs). Instead of up-
dating millions of model parameters, simply incor-
porating demonstrations into the context enables
the model to learn more effectively, achieving bet-
ter performance than in the zero-shot setting across
various tasks. However, few studies on ICL focus
on generation tasks, and existing research aimed
at explaining the underlying mechanism of ICL
primarily concentrates on tasks such as sentiment
analysis or text classification (Wang et al., 2023;
Min et al., 2022).

Different from classification tasks, generation
tasks, for instance question answering (QA) tasks,
inherently require long contexts for both query and
demonstrations, making it challenging to fit the ICL
prompts into model’s context window. In recent
years, with advancements in computing hardware,
training data and model architecture, the context
window of current LLMs has been expanded to 8K,
32K and even 100K, allowing researchers to study
ICL from the perspective of generation tasks.

However, in this paper, we observe a significant
phenomenon in passage-level ICL for generation
tasks: LLMs cannot learn the intrinsic relation-
ships between the demonstration passage and the
corresponding generation target and thus passage-
level ICL does not necessarily need a regular well-
formed "Passage"”. Specifically, we use Mistral-
7B (Jiang et al., 2023a) and Llama2-13B (Touvron
et al., 2023; Chen et al., 2024) models to con-
duct experiments on two generation tasks: single-
document question answering and sentence-level
distractor generation. For each task, we conduct
experiments with randomly generated passages and
randomly sampled passages for demonstration. Ex-
perimental results show that LLMs are insensitive
to demonstration passages in ICL. Even completely
meaningless passage and generation contents in
demonstrations do not significantly impact perfor-
mance. In some cases, they even outperform set-
tings with real full passages.

Based on the finding of prior experiments, we
validate the hypothesis via attention analysis. First,
we compute the average attention scores of the
first generated token received from different com-
ponents of the prompt. Second, we measure the
attention scores transferred between the passage
and other components within each demonstration.
Through these experiments, we observe that the av-
erage attention scores LLMs receive from the pas-
sage are significantly lower than those from other
components, and the attention score exchanging



within the demonstration is also minimal. These
results confirm that LLMs cannot capture the cause-
effect relationship between the demonstration pas-
sage and the generation output.

Further, based on the prior experiments, we ex-
plore context compression for ICL. Compressing
long contexts into compact texts while minimizing
performance degradation has become a crucial ap-
proach to handling long-context tasks for effective
ICL. Most compression methods deal with long
texts rather than on ICL, where the long context
contains information relevant to the query, and the
main point is to retain key information while fil-
tering out irrelevant content. However, in ICL,
the demonstrations themselves do not explicitly
contain information related to the query. To inves-
tigate the effectiveness of compression methods
for ICL, we perform compression experiments on
prior passage-level tasks, and the results indicate
that, under similar compression rates, the existing
compression methods do not outperform randomly
generated or sampled passages, both for QA and
DG tasks.

To sum up, we conduct random perturbation ex-
periments on two ICL tasks, and compute the av-
erage attention score and relative attention score
during inference. Our results confirms that passage-
level ICL does not necessarily need a regular "Pas-
sage". Further experiments of context compression
show that conventional compression approaches do
not provide superior performance to passage-level
ICL since simply using random shorter passages
has performed competitively. We hope this work
can inspire further research on the explanation for
inner mechanism of ICL and demonstration com-
pression in the passage-level ICL.

2 Single-document Question Answering

To examine whether LLMs really comprehend the
intrinsic relationships between the passage content
and its generation targets during ICL for passage-
level generation tasks, we conduct experiments on
TriviaQA (Joshi et al., 2017) from Longbench (Bai
et al., 2024), which is a single-document question
answering dataset designed for English reading
comprehension. We introduce various random per-
turbations to the demonstrations in the context of
ICL and measure the effect on model performance.

2.1 Experimental Setup

Task Description In the QA task for reading
comprehension of a single document, each test in-
stance consists of a passage and a question, where
the relevant information for the question can be
retrieved from the passage. LLMs are required to
generate the corresponding answer based on the
passage and the question. Evaluation metrics in-
clude F1 score, which is used in Longbench, and
exact match (EM).

LLMs We use Mistral-7B-Instruct-v0.2 (Jiang
et al,, 2023a) as our primary LLM. It is an
instruction-tuned variant of Mistral-7B, which sup-
ports a maximum context length of 32K tokens,
making it particularly well suited for long-context
tasks. Furthermore, we conduct experiments on
the LonglLoRA fine-tuned variant of the Llama2-
13B (Touvron et al., 2023) model: Llama2-13b-
longlora-32k-ft (Chen et al., 2024). The Lon-
gL.oRA fine-tuning extends the context length of
Llama2-13B to 32K tokens. All experiments were
conducted on a single NVIDIA A100 GPU.

Prompt Our prompt design adheres to the basic
format of TriviaQA and Qu et al. (2024). Figure
1 shows the structure of our prompt and detailed
prompt example can be seen in Appendix A. While
preserving the original prompt structure of Trivi-
aQA, we incorporate task-specific instructions both
before the demonstrations and the query.

Passage Perturbation In our systematic pertur-
bation analysis, we mainly employ two methods to
perturb the passages in the demonstrations: sam-
pling and generation. For sampling-based perturba-
tion, we randomly sample and reorder tokens from
the original passage, ensuring that all the tokens
are derived from the original text. For generation-
based perturbation, we randomly generate a list of
numbers as new input_ids sequences, ensuring
that the perturbed results are completely indepen-
dent. Our goal is to validate the importance of
the original passage tokens in the context of ICL
through the comparison of these two methods.
Our experiments contain two types of settings in-
cluding 4-shot and full-shot. We apply perturbation
ratios of 1/8, 1/4, 1/2, 3/4 for all 4-shot settings to
the two demonstration passage perturbation meth-
ods, evaluating their effects on different LLMs. For
full-shot settings, we apply perturbation ratios of
1/8, 1/4,and 3/10 ! . Due to computational resource

'We use 3/10 because we cannot apply 1/2 due to limited
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Figure 1: Prompt we use for Single-document QA and Distractor Generation. The left column displays the overall
prompt template, with the detailed structures of the demonstration block and query block shown in the other two
columns. The middle column presents the blocks used for Single-document QA task, while the right column shows

the blocks used for the Distractor Generation task.

constraints, full-shot experiments with complete
passages are infeasible. For comparison, we in-
clude full-shot setting without any passage (that is,
experiments where the passages in the demonstra-
tions for ICL are entirely removed). For TriviaQA
dataset, the full-shot setting means that we use all
demonstrations in context for each input from the
test data. Each input in the test data contains a dif-
ferent number of demonstrations, ranging from a
minimum of 2 to a maximum of 25, with an average
of 13.75 and a median of 14.

2.2 Results and Discussion

Experimental results of 4-shot and full-shot set-
tings are presented in Table 1 and 2 respectively.
The results for both models indicate that LLMs are
unable to learn the intrinsic relationships between
the passages and their corresponding generation
targets in the demonstrations of ICL, and they look
like "lost in the passage".

All ICL results show significant improvement
compared to the zero-shot setting, indicating that
ICL is effective. However, both models demon-
strate strong insensitivity to passage perturbations
in passage-level ICL, with all results of passage
perturbation exceeding the full passage settings.
On Mistral-7B, the F1 and EM scores show an av-
erage improvement of 3.37 points and 4.75 points
compared to the full passage setting respectively.
On Llama2-13B-longlora-32k-ft, the F1 and EM
scores achieve an average gain of 2.85 points and
2.81 points respectively. The 4-shot setting with
1/8 generated passage even reduce the average
prompt length from 2780.90 to 909.64 (shorten-
ing the length by 67%) while maintaining the per-
formance, indicating that a significant portion of

memory.

the context in passage-level ICL consumes com-
putational resources while not contributing to the
model’s performance. In contrast, as presented at
the bottom of Table 1, when we try to perturb the
question and answer in demonstrations, it leads
to a greater performance degradation than perturb-
ing the passage, indicating that unlike passages,
questions and answers in demonstrations are rather
important for passage-level ICL.

Figure 2 presents two examples of random pas-
sage we use in perturbation experiments. The pas-
sage on the left presents the random generated pas-
sage, which is completely unreadable and meaning-
less. The random generated words are more diverse,
and it even contains words in other languages. On
the contrary, the sampled passage on the right is
more reasonable than the left passage, whose words
are sampled from the original passage.

The comparison between generate and sample
perturbation methods reveals that the settings with
randomly generated, completely meaningless pas-
sages achieves comparable performance, some-
times even better, to that of sample settings. This
indicates that the token sequences sampled from
the original passages do not provide beneficial im-
provements to the model. Furthermore, except for
the 4-shot experiment with Mistral-7B, in experi-
ments involving passage content, the performance
surpasses that of no passage settings, even when
the generated tokens are entirely meaningless. This
demonstrates that, in most cases, the presence of
content in the passage position is more critical than
better content in the passage position.

We also conduct a detailed ablation study on
demonstration selection and Q & A perturbation.
The results can be seen in Appendix B.



Mistral-7B-Instruct-v0.2

Llama2-13B-longlora-32k-ft

Settings F1 Exact Match  Avg prompt length F1 Exact Match  Avg prompt length
zero-shot 47.95 27.0 580.83 7443 66.5 590.83
4-shot + no passage 73.52 63.0 669.50 71.21 67.5 669.50
4-shot + full passage 68.52 56.0 2780.90 85.00 80.5 2780.90
4-shot + generate 1/8 passage | 73.60 62.5 909.64 88.32 83.0 914.97
4-shot + sample 1/8 passage 71.11 59.5 925.39 86.59 82.0 926.02
4-shot + generate 1/4 passage | 74.46 63.5 1147.31 88.99 84.5 1160.67
4-shot + sample 1/4 passage 70.24 59.5 1193.07 86.87 82.5 1193.48
4-shot + generate 1/2 passage | 72.83 61.5 1627.15 88.15 83.5 1649.72
4-shot + sample 1/2 passage 72.15 60.5 1721.07 88.70 84.5 1722.80
4-shot + generate 3/4 passage | 71.97 61.0 2108.30 87.30 82.5 2138.39
4-shot + sample 3/4 passage 68.76 58.0 2239.56 87.89 84.0 2240.77
4-shot + generate question 63.51 49.5 2776.65 80.70 77.0 2771.59
4-shot + generate answer 64.18 50.0 2785.83 7.29 7.0 2785.46

Table 1: 4-shot results on TriviaQA. The best result in each column is marked in bold.

Mistral-7B-Instruct-v(.2

Llama2-13B-longlora-32k-ft

Settings F1 Exact Match Avg promptlength | F1  Exact Match Avg prompt length
full-shot + full passage - - 8299.95 - - 8299.95
full-shot + no passage 75.31 64.5 853.30 75.29 71.5 853.30
full-shot + generate 1/8 passage | 78.98 67.5 1701.51 88.90 84.5 1719.44
full-shot + sample 1/8 passage 79.35 68.0 1761.71 87.44 82.0 1765.19
full-shot + generate 1/4 passage | 78.87 67.5 2543.09 88.51 83.5 2584.77
full-shot + sample 1/4 passage 78.97 67.5 2701.92 87.06 82.0 2705.60
full-shot + generate 3/10 passage | 77.64 65.0 2881.74 87.51 82.5 2931.16
full-shot + sample 3/10 passage | 77.76 66.5 3075.57 88.92 84.5 3080.37

Table 2: Full shot results on the TriviaQA dataset. The best result in each column is marked in bold.

3 Sentence-level Distractor Generation

Given that LLMs cannot learn the intrinsic rela-
tionships between the demonstration passage and
its corresponding demonstration target in single-
document QA tasks such as TriviaQA, we further
study whether similar trends can be observed in
other passage-level ICL scenarios. To this end, we
conduct experiments on RACE (Lai et al., 2017),
a commonly used dataset sourced from the educa-
tional domain and annotated by professional teach-
ers on the distractor generation task, which is more
complex than single-document QA.

3.1 Experimental Setup

Task Description In the distractor generation
task, each instance consists of a document, a ques-
tion, a correct answer to the question and several
distractors designed to mislead the solver. In our
experiments, we require LLMs to generate three
distinct distractors. Our evaluation metrics include
average BLEU and Pairwise BLEU. The former
assesses the quality of the generated content, while
the latter evaluates the diversity of the generated
distractors, with lower values indicating better di-

versity. Considering that RACE lacks pre-existing
input context, we randomly select three sets of ex-
amples from the training set and use the same ICL
demonstration examples for each test instance. We
report the average metrics over three sets of experi-
ments.

LLMs Since the overall prompt length is rela-
tively short, we additionally include Llama2-13B-
Chat alongside the two previously used models,
aiming to explore whether models with extended
context windows utilize contextual information
more effectively.

Prompt Our prompt format aligns with Qu et al.
(2024), whose structure can be seen in Figure 1,
and we conduct experiments under 1, 2, 4, and
8-shot settings.

Passage Perturbation The method for perturb-
ing documents remains consistent with the experi-
ments on TriviaQA. For each few-shot experiment,
we configure perturbation ratios of 1/2 and 1/4,
with each ratio incorporating both generation-based
and sampling-based perturbation methods.
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Figure 2: Example of random perturbation passage in demonstration. The passage on the left is random generated
passage, and passage on the right is random sampled passage.

3.2 Results and Discussion

Detailed experimental results are presented in Ta-
ble 3. From the results, we can summarize the
following findings.

LLMs exhibit a similar trend in the distractor
generation task, demonstrating insensitivity to the
passages in ICL. Across different models and num-
bers of shots, settings with perturbed passages
achieve comparable and sometimes even better per-
formance than those with full passages, while re-
quiring a much smaller context window.

Completely removing the passages from the con-
text has less impact on Avg BLEU scores (some-
times achieving the best performance). However,
in most settings, this removal leads to a significant
increase in Pairwise BLEU. This suggests that re-
taining some content in the passage position, even
if it is entirely meaningless generated text, can en-
hance the diversity of the content produced through
generation by LLMs.

LLM with context windows extended (Llama2-
13B-longlora-32k-ft) enhances the general perfor-
mance, while reducing output diversity and stabil-
ity. The longlora model has a much higher Avg
BLEU score, but it suffers from low diversity, with
the highest Pairwise BLEU reaching 91.68, which
means that the three distractors are almost the same.
Moreover, the stability of longlora model is worse
than other models, as shown by the drastic changes
in both Avg BLEU and Pairwise BLEU.

It is noteworthy that the relative orders of Q &
A & P in the prompt for two tasks are different. As
shown in Figure 1, the passage is at the beginning
in TriviaQA’s prompt, while in the other, it is at
the end. However, models show insensitivity to
passages in both tasks, indicating that the finding
of previous experiments is universal, and the insen-
sitivity of the model to passage is not due to the
relative of Q & A & P, but rather to the model itself.

Detailed results of ablation study on distractor
generation can be seen in Appendix C.

4 Why Are LLMs Insensitive to Passage
in ICL?

In this section, from the aspect of attention dur-
ing inference, we provide a deeper confirmation to
our hypothesis extracted from the former experi-
ments H: In passage-level ICL, LLMs are in fact
unable to learn the intrinsic relationships between
demonstration passage and its generation target.

4.1 Attention Analysis on the First Generated
Token

We compute the average attention scores received
by the first generated token from different compo-
nents of the prompt across five hidden layers during
inference. This analysis, to some extent, reflects the
influence of the prompt’s components on the gen-
eration. Considering that returning the attention
matrix will consume more computing resources
than usual, we experiment with two settings for
each task. On Trivia QA, we use a 2-shot + full
passage prompt and a random half-shot + gener-
ate 1/4 passage. On RACE, we use 2-shot + full
passage prompt and 2-shot + random generate 3/4
passage prompt. The results on TriviaQA can be
seen in Figure 3, and the results on RACE is in
Appendix C for saving space.

In the first hidden layer, the attention scores
received from different parts of the demonstra-
tions remain approximately equal, indicating that
the model does not exhibit a significant prefer-
ence for any part during the early stage of infer-
ence. However, in other layers, the attention scores
for demonstration passages decrease significantly,
even falling behind those of other components in
the demonstrations. This is consistent across both
the full passage and randomly generated passage
settings, suggesting that LLMs in fact pay little
attention to the demonstration passage. The same
trends can be seen in the RACE results. Addi-
tionally, an interesting finding is that, apart from
the query components, task instruction contributes




Llama2-13B-Chat

Llama2-13B-longlora-32k-ft Mistral-7B-Instruct-v(.2

shot num | Settings AB PB(]) Avglength | AB PB(]) Avglength AB PB(]) Avglength
zero-shot | - 432 3852 507.69 8.06 86.18 507.69 6.46 25.28 507.69
1-shot full 294 2349 97736 | 4.96 37.42 977.36 490 21.41 977.36
no passage | 4.12 26.25 546.03 3.88 45.68 546.03 475 22.62 546.03
generate 1/2 | 4.02 23.57 682.65 |4.69 37.19 682.30 493 2546 676.94
generate 1/4 | 3.72  24.87 61356 |4.58 37.11 613.58 479 25.13 610.46
sample 1/2 | 3.05 23.87 764.85 | 4.08 30.40 764.85 483 23.15 763.47
sample 1/4 | 3.15 23.05 655.87 | 4.48 37.25 655.87 4.92 24.65 654.81
2-shot full 490 20.78 1376.03 |6.69 51.13 1376.03 6.08 2541 1376.03
no passage |4.46 27.73 583.03 6.39 80.48 583.03 447 29.23 583.03
generate 1/2 | 5.07 22.24 835.08 6.19 38.58 834.83 5.24 28.05 825.36
generate 1/4 | 5,17 24.98 70692 | 6.32 45.67 707.43 5.12 28.15 702.14
sample 1/2 | 5.00 23.59 97829 |7.61 57.64 978.27 537 27.48 976.76
sample 1/4 | 494 25.54 782.93 7.10 59.9 782.94 499 2892 781.46
4-shot full 6.01 1995 205236 |5.93 37.35 2052.36 6.10 2441  2052.36
no passage |4.75 28.49 666.69 | 8.58 91.68 666.69 449 3154 666.69
generate 1/2 | 5.35 25.03  1106.37 | 6.50 42.00 1105.79 481 295 1089.84
generate 1/4 | 547 27.36 882.83 7.33 5334 882.79 496 3024 873.92
sample 1/2 | 5.32 2546 134498 |6.18 42.96 1344.99 546 26.65 134276
sample 1/4 |5.29 25.87 1002.72 |7.91 64.08 1002.97 538 2823  1001.16
8-shot full - - 3759.03 - - 3759.03 - - 3759.03
no passage | 4.85 29.15 797.03 8.12 89.98 797.03 474 33.01 797.03
generate 1/2 | 5.23 2232  1740.42 |5.98 38.89 1741.50 510 31.01 1704.15
generate 1/4 | 5.59 25.63  1261.58 | 6.69 47.34 1260.66 530 3131  1244.09
sample 1/2 | 540 22.73  2246.78 | 642 4225 2246.75 5.63 27.64 2246.18
sample 1/4 | 538 2393 1506.84 |7.16 53.22 1506.97 596 2937  1505.06

Table 3: Experimental results of three models on RACE dataset with different settings. AB refers to Average BLEU,
PB refers to Pairwise BLEU, and Avg length refers to the average prompt length.

the most attention to the model. This observation
partially explains why modifying instructions can
lead to substantial performance changes in certain
scenarios.

4.2 Attention Analysis between Passage and
Other Components of Demonstration

In this section we directly compute the average at-
tention scores between different parts of the demon-
stration, such as the question, receive from or con-
tribute to the passage, determined by their relative
positions in the prompt. Since we only focus on
the relative attention scores, we compute the scores
on all hidden layers. The results for TriviaQA are
presented in Figure 4, while the results for RACE
can be found in Appendix D.

As shown in Figure 4, the attention passed from
the demonstration passage to its corresponding an-
swer is lower than that of the question, indicating
models’ relative insensitivity between the passage
and the target. Apart from that, the scores drop af-
ter the first layer, and remain at a low level below 6.
This aligns with the observation from the previous
section, which indicates that the model exhibits no
preference for any part of demonstrations during

the early stages of inference and pays almost no
attention to the passage after the first layer. Results
on RACE can also reveal this trend.

S Passage Compression in ICL

In this section, we explore whether compression
algorithms can preserve the most important parts
of passages in ICL and achieve better experimental
results than random generation and sampling.

5.1 Experimental Setup

We perform two types of compression methods:
retrieval-based (Jiang et al., 2024) and perplexity-
based.

In retrieval-based compression, we use the ques-
tion from each ICL demonstration as the retrieval
key. After segmenting the passage into sentences,
we retrieve the top 5 sentences that are most sim-
ilar to the question. Additionally, we include a
comparison with retrieval re-ranking, where the
retrieved sentences are reordered based on the re-
trieval model’s score rather than retaining their orig-
inal order in the passage.

For perplexity-based compression, we employ
LLMlingua (Jiang et al., 2023b) and LongLLM-
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prompts of two settings. Layer 1 refers to the first hidden
layer in the model.

lingua (Jiang et al., 2024), two methods proven
to exhibit good compression performance on mul-
tiple long-document tasks and have been shown
to effectively preserve key information. However,
in passage-level ICL, the demonstration passages
do not directly relate to the query. Our focus is
on whether shorter, potentially better passages can
help LLMs learn the intrinsic relationships between
the passage and its corresponding generation target.

5.2 Results and Analysis

Table 4 shows the results of our compression ex-
periments using Mistral-7B-Instruct-v0.2 on Trivi-
aQA. The results indicate that the performance of
all compression methods is inferior to that of ran-
dom generation and sampling. The Lingua series
methods outperform retrieval-based compression
methods, but their performance is still 7 points

Compress Method F1 EM  Avg length
Our best 79.35 68.0 1761.71
Ilmlingua 71.36  59.5 2246.68
longlingua 71.33 585 3508.65
BM25 rerank 67.73  56.5 2670.90
+Random Half shot | 68.07 58.0 1602.99
BM25 67.80 56.5 2670.90
+Random Half shot | 68.03 58.0 1602.99
Rouge rerank 66.87 55.0 2332.38
+Random Half shot | 67.42 56.5 1443.69
Rouge 68.03 57.0 2332.38
+Random Half shot | 67.41 57.5 1443.69

Table 4: Results of TriviaQA compression experiments
on Mistral-7B-Instruct-v0.2. The our best refers to the
best result from all random perturbation settings. We
mark the results of best setting and prior best in bold.

lower than that of most random perturbation ex-
periments. Furthermore, whether re-ranking or
randomly selecting demonstrations has a minimal
impact on performance, indicating that in ICL of
single-document QA tasks, the presence of content
in the passage position is more critical than having
better content in the passage position.

Table 5 presents the results of compression ex-
periments using Llama2-13B-Chat on RACE. Com-
pared to the previous experiments on TriviaQA, the
performance of all compression methods is similar,
with small performance fluctuations. Notably, al-
though the performance of compression methods
in the 4-shot and 8-shot settings is slightly higher
than that of random perturbation experiments (im-



Compress Method
shot num | Settings AB PB(]) Avglength
1-shot Our best 4.12 2625 546.03

Rouge rerank | 3.45 28.52 646.69
BM25 rerank | 3.10 25.24 651.36
Rouge 3.44 2724 646.69
BM25 3.14 24.67 651.36
llmlingua 297 26.80 676.03
longlingua 332 21.14 734.69
2-shot Our best 517 2498 706.92
Rouge rerank | 5.29 24.39 753.69
BM25 rerank | 5.24 24.08 768.69
Rouge 5.18 24.57 753.69
BM25 540 23.19 768.69
IImlingua 5.23 24.60 806.69
longlingua 5.28 24.75 884.03
4-shot Our best 547 27.36 882.83
Rouge rerank | 5.53 24.32 990.69
BM25 rerank | 5.76 23.63  1037.36
Rouge 5.62 24.49 990.69
BM25 5.67 2256 1037.36
IImlingua 5.92 2372  1204.03
longlingua 5.52 2555 1284.69
8-shot Our best 5.59 2563 1261.58
Rouge rerank | 6.19 24.31 1433.69
BM25 rerank | 6.43 24.86 1531.36
Rouge 6.19 23.89  1433.69
BM25 6.31 2452  1531.36
llmlingua 598 23.48 1898.03
longlingua 5.89 2349  2098.69

Table 5: Results of RACE compression experiments on
Llama2-13B-Chat.

proving by approximately 0.5 points), we consider
this marginal performance gain insufficient to con-
clude that compression algorithms allow LLMs to
learn the intrinsic relationships between passages
and generation targets.

6 Related Work

6.1 How do LLMs utilize the context?

Numerous previous studies have explored, from
various perspectives, how LLMs utilize context and
derive certain insights from ICL. From the perspec-
tive of context perturbation, Min et al. (2022) pro-
poses that ground truth demonstrations are not es-
sential. Instead, the label space, the distribution of
the input text, and the input format play a more im-
portant role in ICL. Furthermore, Liu et al. (2023)
finds that the position of key information within
the context significantly impacts performance, with
key information appearing in the middle position
leading to worse performance. Another perspective
explains the underlying mechanism of ICL, such
as implicit Gradient Descent during ICL (Dai et al.,

2023; von Oswald et al., 2023) and considering
label words as anchors in ICL (Wang et al., 2023).

6.2 Compression Methods for LL.Ms

In general, prior work on compression methods can
be divided into three categories: extractive method,
abstractive method, and soft prompt method.

The extractive method mainly selects some to-
kens from the original context, ensuring that the
compressed results are completely derived from the
original context. Representative works include se-
lective context (Li et al., 2023), LLMLingua (Jiang
et al., 2023b), Longl.LLMLingua (Jiang et al., 2024),
LLMLingua2 (Pan et al., 2024) and the ReCOMP
extractive compressor (Xu et al., 2023).

The abstractive method aims to generate contex-
tual summaries through language models, ensur-
ing the coherence and fluency of the compression
results. including ReCOMP abstractive compres-
sor (Xu et al., 2023), Nano-Capsulator (Chuang
et al., 2024), ComPact (Yoon et al., 2024), and
semantic compression (Fei et al., 2023).

The soft prompt method compresses the natural
language context into soft prompt, aiming to ag-
gregate the key information. Representative works
include query-guided compressor (Cao et al., 2024)
and Dodo (Qin et al., 2024).

7 Conclusion

In this paper, we find that LLMs are unable to learn
the intrinsic relationships between the passage and
its corresponding generation targets in the passage-
level ICL. Through experiments and ablation stud-
ies on single-document QA and distractor genera-
tion, we demonstrate that randomly perturbing the
passage in the demonstrations has minimal impact
on performance. Building on above experiments,
we analyze the attention scores of components of
the prompt during inference, as well as the relative
attention scores between the passage and other com-
ponents in demonstrations. The results consistently
indicate that LLMs are insensitive to passage dur-
ing inference. Finally, we introduce compression
methods and experimentally show that these meth-
ods, while performing well in other long-context
tasks, they do not provide significant advantages
in passage-level ICL. All these results shows that
Passage-level ICL does not necessarily need a reg-
ular "Passage"” during inference. We hope our find-
ing will inspire future work on explaining the inner
mechanisms of ICL.



Limitations

First, due to resource limitations, we only study
open-source LLLMs no larger than 13B and the
passage-level ICL performance on larger models,
especially powerful models that are extremely good
at processing very long context or perturbed con-
tent, remains under-explored. Second, we focus
on traditional ICL paradigm and use a common
prompt template only. The performance is not
validated under other paradigms such as chain-of-
thought (Wei et al., 2022) and different prompt
templates. Furthermore, although we have shown
that random perturbation can achieve competitive
results with shorter context length compared to rep-
resentative context compression approaches, how
to effectively compress the context for passage-
level ICL while keeping stable performance is still
unclear and requires future exploration. A promis-
ing future direction is combining perturbation and
compression since they are orthotropic.
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A Prompt Example

We design two different prompt formats for the
TriviaQA and RACE datasets, as shown in Table
6. The prompts for both tasks consist of the fol-
lowing components: instructions, demonstrations,
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task description, and the query-related information.
However, there are some differences in the prompts
for the two tasks. For TriviaQA, since the ques-
tions and answers are typically limited to a single
line, the different sections of the prompt are sepa-
rated by only the newline character \n’. In contrast,
the RACE dataset features multiple distractors for
the same question and several newline characters
within the single passage, which makes it difficult
to distinguish different parts with only a single "\n’.
As a result, we decide to choose the <>’ as a more
precise and efficient symbol to locate the corre-
sponding content. In addition, the instructions and
task descriptions are designed differently for the
two different tasks. This tailored design enables
both tasks to achieve strong performance.

When we look closely at the prompts for the two
tasks, we can see that the instruction in TriviaQA
primarily guides the model to focus on answering
QA-type tasks. In contrast, the instruction for the
RACE dataset requires the model to generate dis-
tractors that align with the relationship between the
question and answer. At the same time, both tasks
require the model to produce answers in a specified
format.

B Ablation Study on single-document QA
Task

We conduct ablation studies on Mistral-7B. We
introduce random demonstration selection, where
we randomly select half of the context demonstra-
tions, and random generation of question and an-
swer in demonstrations. Experimental results are
presented in Table 7. The results show that ran-
domly selecting half of the ICL examples causes
a slight decline in performance, which perhaps re-
sults from the reduction of QA pairs. However, per-
turbing the question-answer pairs exhibits a more
substantial impact on model performance. This
effect becomes particularly pronounced when both
components are altered simultaneously, resulting in
significantly decreased F1 and EM scores. And this
further confirms the discovery that instead of learn-
ing the intrinsic relationships from demonstrations,
LLMs tend to mimic the generation target and then
generate output based on query (Min et al., 2022)

C Ablation Study on DG Task

We also conduct ablation study on perturbations
of the question, answer, and distractor within the
context of ICL demonstrations. In previous ex-
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TriviaQA

RACE

You are a helpful AI educational assistant that help students
in educational field. You are required to generate answer to
the question with the given passage. Next I will propose you
several examples.

Passage: D_Passage

Question: D_Question

Answer: D_Answer

Now according to the following document, question, gener-
ate answer for the question. There are some requirements
for you: 1. The returned result can be an incomplete sub-
sentence because the grammar structure of the question may
be incomplete, but if the return result is incomplete, the com-
bined question-result sentence must have complete grammar
structure. 2. Do not generate any irrelvant words.

Passage: Q_Passage

Question: Q_Question

Answer: Q_Answer

You are a helpful Al educational assistant that help teach-
ers in educational field. You are required to generate three
distractors with the given document, question and answer.
Distractors are incorrect answers to the question according to
the input document, which are opposite to the answers. The
three distractors should be returned in three lines and each
line should begin with "<result>" and end with "</result>".
Next I will propose you several examples.

<question> D_Question </question>

<answer> D_Answer </answer>

<document> D_Passage </document>

<result> D_Distractor </result>

Now according to the following document, question and an-
swer, generate three distractors. There are some requirements
for you: 1. The returned result can be an incomplete sub-
sentence because the grammar structure of the question may
be incomplete, but if the return result is incomplete, the com-
bined question-result sentence must have complete grammar
structure. 2. The three generated results should be returned
in three lines. Each line should begin with *<result>’ and end
with ’</result>" The three distractors can be: <result>
<question> )_Question </question>

<answer> (Q_Answer </answer>

<document> )_Passage </document>

Table 6: Prompt for TriviaQA and RACE dataset. D refers to components in demonstrations. () refers to components

in query.
Settings F1 Exact Match  Avg prompt length
Half-shot + generate 1/2 passage 72.23 62.0 2351.52
Half-shot + generate 1/4 passage 71.99 60.5 1528.64
Half-shot + generate 1/8 passage 74.97 63.5 1123.49
Half-shot + generate 1/8 passage + random question 69.48 56.5 1124.42
Half-shot + generate 1/8 passage + random answer 69.57 55.0 1137.71
Half-shot + generate 1/8 passage + random question & answer | 66.68 52.0 1132.24

Table 7: Results of TriviaQA ablation study about question & answer perturbation on Mistral-7B-Instruct-v0.2

periments, each demonstration contains only one
question and answer. In the ablation experiments,
we incorporate multiple questions, answers, and
distractors from the given dataset into the demon-
stration in a list format, while keeping the query
and other components unchanged. Compared to
the perturbation of q& a & d in section 2.2, a more
regular perturbation will present a credible result .
By introducing perturbations to the format of ques-
tions, answers, and distractors in demonstrations,
we can more clearly observe that perturbing parts
more closely related to the generation target has a
greater impact on the model than perturbing pas-
sages. The experimental results are presented in
Table 8.

It is observed that this modification leads to a sig-
nificant performance degradation. Avg BLEU of al-
most each setting drops below 3.00, while the Pair-
wise BLEU remains the same trend. Through case
studies, we find that the model’s outputs mimic
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the list format in the demonstrations. The mere
introduction of a list format for questions, answers,
and distractors results in such a substantial change,
whereas completely random generation of passages
even improves overall performance in some set-
tings. This reveals the model’s insensitivity to the
content of the passages.

D Attention Results on Distractor
Generation

To investigate the underlying reasons for this phe-
nomenon, we visualized the attention scores of the
LLM and performed a comparative analysis. The
results are shown in Figure 6 and Figure 5.

Figure 6 illustrates the impact of two different
settings on attention scores: the position of dif-
ferent model layer and different components of
prompts. As mentioned in the previous section, the
attention score distribution of an input sequence un-
dergoes relatively significant changes as it passes



list q&a&d
shot num | Settings AB PB(]) Avglength
1-shot prior best 412 26.25 546.03
full 227 2417 1018.69
no passage | 2.27 28.08 587.36
generate 1/2 | 2.41 26.43 723.66
generate 1/4 | 2.31 27.39 654.98
sample 1/2 | 2.26 26.20 806.16
sample 1/4 | 2.26 26.98 697.20
2-shot prior best 517 2498 706.92
full 244 2050  1489.03
no passage | 2.69 26.28 696.03
generate 1/2 | 2.76 24.55 948.59
generate 1/4 | 2.75 24.83 820.36
sample 1/2 | 2.61 2390 1091.31
sample 1/4 | 2.76 25.29 895.92
4-shot prior best 547 27.36 882.83
full 272 23.60  2288.03
no passage | 2.76 26.77 902.36
generate 1/2 | 2.81 28.40  1340.86
generate 1/4 | 2.72 28.26  1118.43
sample 1/2 | 2.66 27.55  1580.63
sample 1/4 | 2.81 28.03  1238.44
8-shot prior best 5.59 25.63 1261.58
full - - -
no passage |2.62 27.64  1317.36
generate 1/2 | 2.14 3520  2260.99
generate 1/4 | 2.97 26.84  1782.64
sample 1/2 | 2.76 24.72  2767.14
sample 1/4 | 3.16 27.12  2027.31

Table 8: Ablation study results of Llama2-13B-Chat on
RACE dataset. The prior best refers to the best result
from all random perturbation settings under the same
shot.

through deeper layers of the model. Initially, the
distribution is relatively uniform, but in the mid-
dle layers, attention shifts primarily to three parts:
the output section within the demonstration, the
instruction, and the query. In the attention distri-
bution of the last layer, a trend similar to that of
the middle layers can be observed. However, the
model shows increased attention to the demonstra-
tion compared to the middle layer, probably due to
its increased information on overall information in
the final layer. Meanwhile, the concentrated atten-
tion on the instruction and query sections remains
consistent with previous findings. Additionally, the
attention distributions in different layers are highly
similar between the full Original Passage and the
3/4 Generated Passage.

Figure 5 reveals a similar trend to the previous
finding. The experimental setup is similar to that of
TriviaQA, However, since the question and the cor-
responding answer appear before the passage in the
demonstration, while the distractors are positioned
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after the passage. Since the decoder-only architec-
ture only access tokens preceding the current token,
the relative attention scores are categorized into
three types: Question2Passage, Answer2Passage,
and Passage2Distractors. The trend of relative at-
tention scores across layers under both settings
is similar to that observed in the QA task. The
P2D score is significantly lower than the Q2P and
A2P scores, indicating that the connection between
the passage and the corresponding target is much
weaker than other parts’ connection with the pas-
sage. When the number of the layers is less than
six, the overall attention scores are low, correspond-
ing to a flat attention distribution at the beginning.
In deeper layers, the relative attention score and the
attention distribution become more directional and
focused. Although the trends of the three relative
attention scores are generally similar under two
settings, the overall relative attention scores for the
random generated passage in deeper hidden layers
are significantly lower than those for the full pas-
sage. This may be because the randomly generated
passage has a weaker semantic connection to the
corresponding question, answer, and distractors.

Relative Attention Scores on RACE

—+— 2-shot full passage Q2P
—e— 2-shot full passage A2P
2-shot full passage P2D
2-shot 3/4 generated passage Q2P
2-shot 3/4 generated passage A2P
2-shot 3/4 generated passage P2D

40

Attention Scores

15 20 25

Layer in Model

30 40

Figure 5: Relative attention scores on RACE with
prompts of two settings. Layer 1 refers to the first hid-
den layer in the model.

E License
Artifacts License
RACE CMU
TriviaQA Apache-2.0
sacreBLEU Apache-2.0
nltk Apache-2.0
Mistral-7B-Instruct-v0.2 Apache-2.0
Llama2-13B-longlora-32k-ft ~ Apache-2.0
Llama2-13B-Chat Meta
gensim LGPL-2.1

Table 9: Licenses of scientific artifacts we use.
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Figure 6: Attention scores of components in prompt on RACE. The horizontal axis index from left to right is Passage,
Question, Answer, Distractor, Instruction, Passage of Query, Question of Query, Answer of Query, respectively.
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