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ABSTRACT

In-Context Learning (ICL) has emerged as an important new paradigm in natural
language processing and large language model (LLM) applications. However, the
theoretical understanding of the ICL mechanism remains limited. This paper aims
to investigate this issue by studying a particular ICL approach, called concept-
based ICL (CB-ICL). In particular, we propose theoretical analyses on applying
CB-ICL to ICL tasks, which explains why and when the CB-ICL performs well
for predicting query labels in prompts with only a few demonstrations. In addi-
tion, the proposed theory quantifies the knowledge that can be leveraged by the
LLMs to the prompt tasks, and leads to a similarity measure between the prompt
demonstrations and the query input, which provides important insights and guid-
ance for model pre-training and prompt engineering in ICL. Moreover, the impact
of the prompt demonstration size and the dimension of the LLM embeddings in
ICL are also explored based on the proposed theory. Finally, several real-data ex-
periments are conducted to validate the practical usefulness of CB-ICL and the
corresponding theory.

1 INTRODUCTION

With the great successes of large language models (LLMs), in-context learning (ICL) has emerged
as a new paradigm for natural language processing (NLP) (Brown et al., 2020; (Chowdhery et al.,
2023; |Achiam et al.| [2023), where LLMs addresses the requested queries in context prompts with
a few demonstrations. In contrast to conventional supervised learning, the ICL can perform well in
prediction and inference tasks with very few samples by leveraging the semantic knowledge learned
from the LLMs without training or fine-tuning the model parameters (Liu et al.,|2022} Lu et al.},[2022;
Wei et al., 2022; |Wu et al., |2023). This enables rapid task on-boarding (Sun et al.l 2022), lowers
computation and data costs compared with fine-tuning, and underpins current practice in instruction
following (Lin et al., 2024), tool use (Schick et al., 2023), and agent memory (Chhikara et al.,
2025). Therefore, a systematical understanding of ICL mechanism has appeared to be important in
engineering designs in many areas of LLMs and NLP.

Recent researches on understanding the ICL mechanism mainly focused on functional modules (Ols-
son et al., 2022; Bietti et al., 2023; |Wang et al., 2023a; |L1 et al., 20244a), theoretical interpretation
based on Bayesian and gradient descent Views (Xie et al., 2022} |Zhou et al.| 2023} Dai et al., |2023}
Mahankali et al., [2023), and learning and information theoretic perspectives (Garg et al., 2022;
Akytirek et al.,[2022; [Pan et al., 2023 |Yang et al.,|2024). In particular, most of such researches con-
centrated on analyzing specific mathematical models such as linear regression for given functional
classes, investigating the asymptotic learning behaviors of ICL, or characterizing different kinds of
convergent properties of transformers in gradient descent. However, there still lacks theoretical jus-
tification of why ICL can performs well with only very few demonstrations, and some important
questions for deeply understanding ICL mechanism remained open, such as theoretically charac-
terizing the knowledge leveraged by LLMs, and quantifying the impact of the prompt engineering
(Brown et al., 2020) in ICL.

In this paper, we develop a theoretical framework to analyze the performance of the Concept-Based
In-Context Learning (CB-ICL) approach to address the aforementioned issues. As illustrated in
Figure 1, in CB-ICL, a pre-trained LLM is employed to represent the semantic embeddings of the
prompt contexts, where the parameters of the LLM is fixed throughout the learning task without
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Figure 1: The targeting task and working pipeline of the CB-ICL approach.

fine-tuning. Then, the concept of the prompt contexts, represented by the vector a, is learned by
the a prompt concept extractor. Finally, the concept vector is applied to estimate the posterior dis-
tribution of the label given the query context for solving the prediction task. To characterize the
performance of CB-ICL, we establish upper bounds for the mean-squared excessive risk between
the estimated posterior distribution and the ground truth distribution. The proposed upper bounds
and the corresponding analyses lead to the theoretical insights and contributions summarized as

We model the semantic knowledge leveraged from the pre-trained LLM to the CB-ICL
as a projection of the prompt distribution onto the semantic knowledge subspace spanned
by the LLM embedding, and show that the CB-ICL achieves theoretically provably good
learning performance, if both the semantic concept of the prompt is captured by the pre-
trained LLM, and the correlation between the prompt query and the corresponding label is
strong (which is true in many practical scenarios). This explains why well-designed LLMs
can lead to good performances in many ICL applications.

In addition, a similarity measure between the prompt demonstrations and queries is defined
from the derived upper bound, which characterizes the impact of selecting related prompt
demonstrations in CB-ICL. Such a similarity measure suggests how to design theoretically
good demonstrations in prompt engineering.

Moreover, we demonstrate the impacts of the dimension of LLM embedding, number of
prompt demonstrations, and the cardinality of labels in ICL. In particular, it is shown that
the higher LLM embedding dimension, the more difficult to learn the prompt concept from
the semantic knowledge subspace of the LLM embedding, which suggests the importance
of constructing parsimony and informative LLM embeddings in ICL.

Furthermore, we quantify the learning performance degradation when the prompt demon-
strations are not sufficient to illustrate the prompt concept, or the LLM embedding cannot
fully capture the semantic knowledge of the prompt, which provides theoretical insights of
prompt engineering and pre-training.

Finally, real-data experiments are conducted on several LLMs and datasets to validate the
performance of CB-ICL. The results show that the performance of CB-ICL is comparable
to the existing ICL methods. Moreover, the aforementioned theoretical insights are also
verified, which leads to useful guidance for designing effective ICL approaches.
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2 RELATED WORKS

2.1 IN-CONTEXT LEARNING MECHANISM

Recent studies have proposed multiple explanations for ICL. One view interprets it as implicit meta-
learning or Bayesian inference, where the prompt defines a latent task and transformers adapt by
approximating Bayesian model averaging over tasks (Xie et al., 2022 Dai et al.| [2023; [Li et al.}
2023;|Zhou et al.,2023). Another line emphasizes algorithmic simulation, showing that transformers
can reproduce standard estimators and approximate gradient descent updates, with deeper layers
corresponding to iterative optimization (Garg et al.| [2022; |Akyiirek et al., 2022} [Von Oswald et al.,
2023} |Pan et al., 2023). A third perspective highlights the role of pre-training diversity: sufficiently
broad task coverage enables robust in-context generalization, while narrow pre-training yields biased
predictors (Raventos et al., 2023} [Yang et al., 2024). Although insightful, these works mostly rely
on simplified setups such as linear regression or asymptotic analysis. Extending theory to real-world
LLMs in high-dimensional semantic spaces remains a key open challenge.

2.2 PROMPT ENGINEERING AND DEMONSTRATION SELECTION

Another research direction studies how prompt design affects ICL. Performance is highly sensitive
to format, order, and content (Wang et al., 2023b; [Liu et al.| 2024). Retrieval-based approaches
select demonstrations similar to the query (Su et al.| 2022} |Qin et al., 2023} [Li & Qiul 2023)), but
risk redundancy, motivating strategies that balance relevance and diversity (Wang et al., [2023b).
More advanced methods fine-tune retrievers (Rubin et al., [ 2021; |Mavromatis et al.2023)), optimize
policies with reinforcement learning (Zhang et al. 2022)), or leverage chain-of-thought prompting
(Wet et al.L[2022)). Despite practical progress, most strategies are heuristic, lacking principled criteria
to explain why certain demonstrations are more effective. Developing such theory remains an active
research frontier.

3 CB-ICL MoDEL FORMULATION

In Context Prompt Assumptions The prompt contexts are consisted of a collection of n demon-
strations {(x;,y;)},—,, where x;’s are the input texts, and y;’s are the corresponding answers
such that y; € {1,...,M},Vi, and a query input text zg. Denote 2” = (z1,...,z,) and
y" = (y1,...,Yn), the goal of ICL is to predict the label yg of xg, given the prompt contexts
z™y", and ¢ (Yang et al} [2024). In addition, we assume that {(z;,v;)}.; and (zg,yq) are
generated and follow the probabilistic relationship:
n
P(rQ,yq, ynlz") = Pxq(2q) Py x (yqlrqQ) H Py x (yilzs),

i=1
for some ground truth distributions Py‘ x, and PXQ, i.e., the labels y™ and y¢ are conditionally
independently generated from z™ and x¢ by the same conditional distribution Py |x (y|x), respec-
tively. Note that we do not make assumptions on the joint distribution of the input texts z1, ..., Zn,
such as independent and identically distributed (i.i.d.), since such assumptions are often unrealistic
in practical applications.

Semantic Embeddings Given a pair of input text and label (z, y), we denote the semantic embed-
ding generated by the pre-trained LLM as f(z, y; 8), where 6 represents the parameters of the LLM.
Since there is no parameter fine-tuning in ICL, the parameters of the LLM will be fixed throughout
the whole learning tasks, and the semantic embedding will simply be denoted as f(z, y). In addition,
before feeding into the prompt concept extractor, the LLM embedding is normalized and a bias term
is padded at the end of the embedding vector, i.e., if we denote f(x,y) = [1f1 (z,9),..., [k(z,9)],

then Zy fk(xay) = 07 ny]g(x7y) = 1a Vk < K_ 1’ and fK(xay) = W;vxvy'

Moreover, we express the ground truth distributions Py x in terms of a projection onto the space
spanned by the LLM embedding functions fj(z,y),fork =1,..., K, as
K

PY|X(y“E) = Zakfk(xvy) + R(x,y) = ng((E,y) + R(xa y)v V(E,y, (1)
k=1
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where « can be viewed as ground truth concept, and R(z, y) is a residual term that can be interpreted
as the knowledge not captured by the LLM, and is orthogonal to the LLM embeddings, i.e.,

ZPX ) fir(x,y)R(z,y) =0, Vk.

In the remaining parts, we Call the pre-trained LLM model complete if R(x,y) = 0,Vz,y, and
incomplete otherwise. Note that the complete pre-trained LLM model fully captures the semantic
knowledge of the prompt contexts.

Prompt Concept Extractor and Label Predictor Given the prompt contexts and the LLM em-
bedding, the prompt concept extractor is defined as

a(z",y") £ Ff (") fu(z™,y") )

I T
Z‘L)_£ZZf($Z,y)f (i y)s fn "y") fo“yl
=1 vy
and where “f” denotes the psuedo-inverse. Note that &(z™, y™) can be 1nterpreted as an estimation
of the ground truth concept a from the prompt contexts. In the following, we call the prompt
demonstrations sufficient if F,, (™) is invertible, and insufficient otherwise.

where

Moreover, we denote Py‘ x(-|zq) as an estimation of the ground truth distributions Py |x (-|z¢)
given the query input text x¢) defined as

Py x (ylag) = Zak "y fr(eg,y) = &' (2" y") Q. y)-

Then, the CB-ICL label predictor is given by arg max, Py‘ x(ylzg).

Mean-Squared Excessive Risk In particular, we apply the mean-squared risk to measure the dif-
ference between Py |x (-|xq) and Py |x (:|zq), defined as

L™ yag) £ (Py|x(y\f€cz) - Py|x(y\$Q))2-

The in-context learning capability of CB-ICL is measured by the excessive risk (conditioned on the
prompt input texts "), defined as

Epyn yn [€ (2", Y 2q) [X™ = 2"]. 3)

In the next section, we will draw the connection between the excessive risk and the error probability
of label prediction, which shows the usefulness of analyzing the excessive risk in ICL scenarios.

4 THEORETICAL ANALYSES OF CB-ICL

4.1 COMPLETE AND SUFFICIENT MODELS

In this subsection, we analyze the excessive risk of CB-ICL in the case R(x,y) = 0, and F,, (™) is
invertible. To delineate the theoretical results, we define the matrices of the LLM embeddings with
respect to the prompt input texts as:

flzq) = [f(zq.1)..... flzg, M) € R"*M F(zq) = f(zq)f (zq) € RF*F,

PG = [Fn)s o fla)] € RIXMM - Fy(a") = = (@) T(a") € REAK,
and the matrices
Q(z;) =diag { Py x (1]z;), ..., Py|x (M|z;)} — ¢id; ,

Q(z") = diag {Q(z1), ..., Q(z,)} 4)
where qﬁZT = [PY|X(1‘J:1)’ ‘e ,Py‘X<M‘.I‘i),}.
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Lemma 4.1. The matrix Q(z;) is positive semi-definite, for all i, and the largest eigenvalue of
0O(x;), denoted as M\ (Q(x;)), satisfies

Al(Q(a:z)) < 2Py (yrnaX‘mi) (1 — Py (yrnaX‘xi)) )

where Py (Ymax|7i) = max, Py (y|z;)). Moreover, the largest eigenvalue of Q(z™) satisfies

A(Q(z")) = max A(Q(i)).
Proof. See Appendix [B.1] O

Then, the following Theorem characterizes the excessive risk in the complete and sufficient case.

Theorem 4.2. When R(z,y) = 0, and F,, (™) is invertible, the excessive risk defined in (|3) can be
bounded as

Epy s [0, Y 20) X7 = 2] € T\ (Fg)F () M@G™), )

where A1 denotes the largest eigenvalue, and Q(x™) is as defined in (E])

Proof. See Appendix O

In particular, the following theoretical insights that can be obtained from Theorem .2}

* If the input text = and the label y of the prompt are strongly correlated, i.e., the ground truth
distribution satisfies Py |x (Ymax|?) ~ 1,Vz (e.g. mathematical reasoning tasks), where
Py | x (Ymax|z) is as defined in Lemma then from Lemma{. 1| it holds for A1 (Q(z;)) =~
0, and the excessive risk of CB-ICL for Iearning the ground truth distribution is vanishing.
Therefore, the CB-ICL can achieve striking performance in predicting the label of the query
input text with only a few prompt demonstrations, if the LLM embedding is complete, and
the input text and label are strongly correlated.

* In addition, it is shown in Appendixthat A (F(zq)F, (z")) > 1 with equality holds
when F(zg) = F,, (™). This provides a theoretical explanation that designing semanti-
cally correlated demonstrations in the prompt can enhance the ICL performance. Moreover,
the quantity A} (F(z)F;(z™)) can be employed as a measure for selecting semanti-
cally correlated demonstrations to improve the ICL performance in prompt engineering.
The real-data experiments in the Section [5|shows the applicability of this measure in real
problem.

» Finally, it can be observed from (4) that excessive risk is inversely proportional to the num-
ber n of demonstrations in the prompt, and proportional to the dimension K of the LLM
embedding. Therefore, although designing high dimensional LLM embeddings can cap-
ture more semantic knowledge of the prompt, i.e., making R(x,y) smaller (c.f. (Kaplan
et al.l2020)), in the meanwhile, it is also more difficulty to learn the prompt concept from
the high-dimensional embedding space reflected by the growing excessive risk with re-
spect to the dimension K. This tradeoff suggest the importance of learning parsimony and
informative semantic embeddings in ICL.

4.2 COMPLETE AND INSUFFICIENT MODELS

In this subsection, we investigate the situation when the LLM embedding is complete, but the prompt
demonstrations are not sufficient to illustrate the prompt concept, i.e., F,,(z™) is not a full-rank
matrix. We aim to characterize the impact of insufficient prompt demonstrations in CB-ICL, which
can be formalized in the following Theorem.

Theorem 4.3. When R(z,y) = 0, and F,(z™) is not invertible, the excessive risk (2) can be
bounded as
Epy o [0 (2", Y5 20) X" = 2" < X1 (F(ag)F (") M(Q(") + || /7 (g)Fr (+")e|

7

(%)
where F-(z") = I — F} (z")F,(z").
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Proof. See Appendix [B.3] O

Comparing to in Theorem there is a penalty term (*) caused by the insufficiency of the
prompt demonstrations to the upper bound of the excessive risk. To interpret this term, note that
from the definition of [2), (2", y™) is orthogonal to the null space of F,,(z™), and hence the CB-
ICL cannot learn the prompt concept aligned with the null space of F,,(z"). Since Fii(z") is a
projection operation, which projects the vector onto the null space of F,, (™), the penalty term ()
can be interpreted as the information of the query embedding f(x¢) aligned with the null space of
F,,(z™), which cannot be learned by CB-ICL due to the insufficiency of the prompt demonstrations.

Moreover, it is readily to show thatif F(xg) = F,,(2™), then the penalty term () is 0. This tells that
if the semantic information of the query text is well illustrated by the prompt demonstrations, the
columns of the query embedding matrix f(x¢) is orthogonal to the null space of F,,(z™), and there
is no information and performance loss caused by the insufficiency of the prompt demonstrations.
This again indicates the importance of designing illustrative prompt demonstrations.

4.3 INCOMPLETE AND INSUFFICIENT MODELS

In practice, the LLM embeddings often cannot capture the complete knowledge of the prompt con-
texts, i.e., R(z,y) # 0, which introduce the learning performance degradation caused by the in-
complete knowledge LLM embeddings. To quantify such performance degradation, we analyze the
expected excessive risk with respect to Py, , and define the vectors

R(zq) = [R(zq.1), ... R(zq, M)]" € RY R(z") = [R(z1),....R(za)]" € R™
Then, the excessive risk can be characterized as follows.

Theorem 4.4. When R(x,y) # 0, and F,,(x™) is not invertible, the excessive risk (2) averaged with
respect to Px, can be bounded as

EPXQPY”\X" V (Ina Y™ IQ) ‘Xn = In]

< T (PPl (™) M(QG™)

1
F AN EQEL ) - IR+ Y Prg(r) B a0.n) ©
QY
+aTF ()RR () — SR (@) [T (@ FL (" QP (e ()

where Fg = Epy [F(Xq)).

Proof. See Appendix O

Similar to the discussions in Section .1} the penalty term quantifies the amount of semantic
information aligned with the null space of F,,(z™) that cannot be learned in the CB-ICL approach
due to the insufficiency of the prompt demonstrations. Moreover, the penalty terms (€) quantify the
performance degradation of the excessive risk caused by the incompleteness of the LLM embedding.
In particular, the first term of (6) can be interpreted as the learning bias in the model (I, due to
the incompleteness of the LLM embedding, and the second term of (6) quantifies the amount of
semantic information of the query input text that is not captured by the LLM embeddings. Finally,
we present some remarks of CB-ICL to draw the connections and comparisons to existing intuitions
and techniques of ICL researches:

It is widely believed in ICL researches that during pre-training, LLM models acquire a
broad range of semantic prior knowledge from the training data, which later aids task-
specific learning representations (Chan et al.l 2022} [Shin et al.l 2022} [Yadlowsky et al.,
2023; |Yang et al., 2024). In particular, this empirical observation can be theoretically jus-
tified by the CB-ICL, which allows the generalizability to a broad class of ICL problems,
as long as the ground truth distribution of the prompt contexts is somehow aligned with the
semantic knowledge subspace spanned by the LLM embeddings.
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* The pre-training/warm-up techniques (Brunet et al.| |2023; |Shi et al.| 2023} [Li et al., 2024b)
in traditional ICL can also be beneficial in CB-ICL, which reduces the modeling error
R(z,y), and improve the learning performance. Moreover, the pre-training loss does not

need to be restricted to the MSE loss between Py‘ x and Py |x, as long as the global mini-
mum of the pre-training loss is achieved at Py‘ x = Pyx.

* Note that the prompt concept extractor can be interpreted as a wide-sense transformer with
the softmax activation function replaced by a quadratic function (c.f. linear attetion (Wang
et al., |2020; Shen et al., 2021; [Han et al.,|2024)). This essentially suggests the application
of more general kinds of transformer architectures in theoretical analyses and algorithm
designs in ICL and other machine learning fields.

4.4 THE LABEL PREDICTING ERROR PROBABILITY

To further justify the practically usefulness of the CB-ICL and the corresponding theoretical analy-
ses, in this subsection we establish the connection between the mean-squared excessive risk and the
label predicting error probability that is widely adopted in real applications. To this end, we define

fmax = arg max Pyx (ylzq), (8)

and denote P; as the jth largest probability among { Py x (y|zq) é‘il. In the following, we assume
Py > P, forall j > 2.

Theorem 4.5. Suppose that for some j > 1, the excessive risk

n n n n 1
Epynxn [(z", Y™ zg) | X" =2"] = §(P1 —Pj)Q—l—'y7

where 0 < v < %(Pl —Pj1)% - %(Pl — P})?, then the label predicting error probability is lower
bounded by
Epynin [Prix(Gmaxlze) | X" = o] 2 Py = ool ©)
yn|xn Y| X \Ymax |LQ = 1 2P1 — Pj — Pj+1 .
Proof. See Appendix [B.3] O

Theorem 4.5/ shows that designing Py‘ x (ylzg) with small excessive risk also leads to small label
predicting error probability from the label predictor Eq. (§)), which demonstrates the applicability of
the theoretical analyses of the CB-ICL in real scenarios.

5 EXPERIMENT

We conduct experiments on four representative benchmarks that collectively measure both general
knowledge and complex reasoning ability: MMLU (Hendrycks et al.l [2020), MMLU-Pro(Wang
et al., [2024)), GPQA and GPQA-Diamond (Rein et al., 2024). Together, these datasets provide a
comprehensive evaluation suite, balancing breadth (MMLU, MMLU-Pro) with depth in complex
reasoning (GPQA, GPQA-Diamond). Furthermore, we benchmark three representative families of
open-source LLMs at different parameter scales (8B, 14B, and 32B), including LLaMA3 family
(Dubey et al., 2024)), Qwen3 family (Yang et al.| |2025)) and Deepseek-R1 distilled (Guo et al., 2025
model family. This selection covers both general-purpose and reasoning-enhanced model families,
enabling a systematic comparison across scaling and architectural choices.

5.1 PERFORMANCE VALIDATIONS OF CB-ICL

The result in Table [T] provide consistent evidence for the effectiveness of CB-ICL: To begin with,
across all model families and datasets, CB-ICL either matches or surpasses vanilla ICL (Brown
et al |2020), denoting the effectiveness of proposed CB-ICL framework. Moreover, improvements
are larger on harder datasets. On MMLU (general factual recall), gains are marginal (less than 2%),
while on GPQA and GPQA-Diamond the improvements are substantial. Furthermore, scaling laws
persist under CB-ICL. For example, within Qwen3 family, performance consistently increases from
8B to 32B, expect Qwen3-8B on GPQA dataset. This shows that CB-ICL is compatible with scaling,
implying that this mechanism complements rather than replaces larger model capacity.
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Table 1: Performance comparisons on classification task are conducted in both the vanilla ICL
(Brown et al.,2020) and CB-ICL setting. We report the accuracy with 5 randomly selected demon-
strations from the same task.

Dataset 88 148 328 Average

LLaMA3 Qwen3 Deepseek-R1  Qwen3  Deepseek-R1  Qwen3
ICL (Brown et al.|[2020)  68.40%  76.89% 63.54% 81.05% 74.46% 83.61% 74.66%

MMLU CBAICL 71.07% T7177%  64.58%  81.38%  8032%  83.62% 76.46%
MMLU- ICL (Brown ctall2020) 35.36% 56.73%  41.10%  61.03%  57.80%  65.54% 52.93%
Pro CBICE 3326%  53.62%  4230%  6047%  59.04%  6589%  52.43%
opoan  ICL(BrownctallD020] 3450% 4444%  4532%  4790%  4632%  4949% A4466%
CB-ICL 4077% 61.60%  5082%  50.65%  48.45%  5482% 51.19%

GPQA- ICL (Brownctal]2020) 2829%  62.00%  49.10%  6431%  59.10%  68.40% 5520%
diamond CB-ICL 3356% 63.01%  4882%  64.88%  60.13%  66.34% 56.13%
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Figure 2: Comparison of similarity score A\;' (F(zg)F(z™)) between similar and dissimilar
demonstration sets on the “translate to Chinese” task. We report the result with 5 demonstrations.

5.2 PROMPT DEMONSTRATION DESIGNS

As discussed in Section the semantic similarity A\; " (F(zq)FT(2™)) works as a score function
of the quantity of prompt. To demonstrate this, we adopt a simple “translate to Chinese” dataset
split into two parts that differ only in the cue language (English to Chinese and Italian to Chinese).
We call a demonstration set similar to a query if they come from the same part, otherwise dissimilar.
As is illustrated in Figure. [2] when the demonstrations are chosen from the similar prompt, the
similarity score \; ' (F(zq)F1(2™)) tends to be larger.

To further validate the effectiveness of our proposed similarity measure, we compare CB-ICL under
two settings: (i) CB-ICL, where demonstrations are randomly selected from the same task, and (ii)
CB-ICL (golden), where demonstrations are selected based on the similarity measure. Specifically,
for each candidate demonstration x; in the demonstration pool, we compute its similarity score
M 1 (F(2q)FT(x;)) with the target query z¢, and then the top 5 demonstrations with the highest
scores are selected as the golden demonstrations. The results are shown in Table 2] We observe
two consistent trends: First, golden selection substantially improves accuracy across datasets. These
large margins highlight that the similarity measure successfully identifies high-value demonstrations
that guide the model more effectively. Second, the improvement generalizes across model families
and scales. Both LLaMA3, Qwen3 and DeepSeek-R1 benefit from golden selection, regardless of
parameter size, suggesting that the similarity measure provides complementary guidance beyond
model architecture and scaling.
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Table 2: Performance is compared between randomly selected and golden demonstrations. CB-ICL
uses 5 random demonstrations, while CB-ICL (golden) selects the top-5 demonstrations ranked by
proposed similarity metric.

8B 14B 32B
Dataset Average
LLaMA3 Qwen3 Deepseek-R1  Qwen3  Deepseek-R1  Qwen3
MMLU CB-ICL 71.07%  77.77% 64.58% 81.38% 80.32% 83.62%  76.46%
CB-ICL (golden) 73.74%  80.86% 68.44% 82.64% 82.34% 84.42% 78.74%
MMLU- CB-ICL 3326%  53.62% 42.30% 60.47% 59.04% 65.89%  52.43%
Pro CB-ICL (golden) 36.58%  58.97% 44.24% 62.67 % 61.34% 67.29% 55.18%
GPQA CB-ICL 40.77%  61.60% 50.82% 50.65% 48.45% 54.82% 51.19%
CB-ICL (golden) 48.51%  65.77% 51.67% 55.83% 52.32% 58.73% 55.47 %
GPQA- CB-ICL 33.56%  63.01% 48.82% 64.88% 60.13% 66.34%  56.12%
diamond CB-ICL (golden) 42.28%  73.83% 52.47% 67.32% 62.91% 67.43% 61.04%
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(a) MMLU: Accuracy (1) vs residual risk R2 (). (b) GPQA: Accuracy (1) vs residual risk R2 ().

Figure 3: Performance of incomplete models across datasets. We report the results with 5 golden
demonstrations and disturbed last layer of model.

5.3 IMPACT OF INCOMPLETENESS OF LLMs IN ICL

To further validate the theoretical insights of CB-ICL, we conduct experiments on incomplete mod-
els, i.e., R(z,y) # 0 for some x and y. We disturb the last layer of LLMs. For each model and
dataset, we measure two metrics: (i) accuracy: calculated across the benchmark with 5 golden
demonstrations; (ii) the mean residual R* = douy Px (r)R*(z,y): quantifying the amount of

knowledge not captured by the LLM embeddings, with higher R? indicating stronger incomplete-
ness. Figure reports the relationship between accuracy and R? of different models. A clear nega-
tive correlation emerges: (i) R? decreases as accuracy increases, implying that their representations
better align with the task concepts. (i) Incomplete models suffer from high R? (e.g. LLaMA3-
8B achieves the largest R?), reflecting the incompleteness of the model; (iii) The observed trend is
consistent across different architectures, demonstrating that the proposed residual measure is model-
agnostic and captures a general phenomenon of incompleteness.

6 CONCLUSION

In this paper, we present theoretical analyses of CB-ICL, which reveals the fundamental mechanism
of why and how ICL can perform well in prompts with only a few demonstrations. Moreover, our
theory quantifies the knowledge leveraged by the pre-trained LLM embeddings, the similarity of
the prompt demonstrations and query input text, as well as the impact of the number of prompt
demonstrations and the dimensions of LLM embeddings, which provides useful guidance for model
pre-training and prompt engineering. Finally, the effectiveness of our theory is validated by several
real-data experiments.
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7 ETHICS STATEMENT

This work is a theoretical and empirical study of ICL in LLMs. Our analyses are purely mathe-
matical, and our experiments are conducted on publicly available benchmark datasets (e.g., MMLU,
GPQA). We do not involve human subjects, personal data, or sensitive attributes. The datasets used
are standard in the community and have been widely adopted in prior work. Our contributions
are methodological and theoretical in nature, and we do not foresee any direct risks of harm, pri-
vacy leakage, or fairness concerns arising from our results. We adhere to the ICLR Code of Ethics
throughout the research and submission process.

8 REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure the reproducibility of our work. All theoretical results are
stated with explicit assumptions and are accompanied by complete proofs, which are provided in
the main paper and the appendix. The experimental evaluations are conducted on publicly available
benchmark datasets (MMLU, MMLU-Pro, GPQA, GPQA-diamond). We also release the imple-
mentation of our proposed methods and all experiment scripts as anonymous supplementary ma-
terial to facilitate independent verification. Together, these efforts ensure that both the theoretical
analyses and the empirical results can be reproduced by the community.
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A THE USE OF LLM

In this work, we used large language models (LLMs) solely as general-purpose assistive tools.
Specifically, LLMs were employed in three ways:

* To assist with the polishing and clarification of mathematical proofs.
 To improve the readability and fluency of the manuscript writing.

* To serve as a coding assistant (e.g., code completion and debugging support).

LLMs were not involved in the research ideation, theoretical development, or experimental design.
All conceptual contributions and scientific insights are the work of the authors.

B PROOFS OF LEMMAS AND THEOREMS

B.1 PROOF OF LEMMA [4]]
In this section, we aim to prove Lemmad.1] We separate the proof into three steps. First, we analyze

the spectrum of Q(z;) for a fixed i. After that, we derive the upper bound of the largest eigenvalue
of Q(x;). Finally, we extend the result to Q(z™).

13
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Lemma B.1. Let
O(z;) = diag{Pyx (1|z;), ..., Py|x (M|z;)} — ¢:9; ,

where ¢; = [Py|x(1]z;),..., Py|x(M|xz;)]T. Then the eigenvalues of Q(x;) are either some
Py x (j|zi) or solutions to

Y|X (jls) _
ZA =0, (10)

Py x (j]xi)

with all such solutions satisfying A < max; Py x (j|z;).

Proof. The eigenvalues of Q(x;) are the roots of the equation
det(M — diag { Py|x—q, } + ¢i} ) =0, (11)

where diag { Py|x—,,} = diag{Py|x(1|z;),..., Py;x(Mlaz;)}. For X # Py x(jlz;), V], the
determinant can be factorized as

= det(\ — diag { Py |x—g, })(1 + ¢.T(A1 — diag { Py|x—s. }) "' ¢i)
H)\ Py x (jla:)) 1+Z>\ P e)

PY|X (jlwi)

Thus, eigenvalues are either some Py|x (j|x;) or solutions to Eq. . Furthermore, we have that
all the solutlons A to the Eq. (10) must satisfy that A\ < max; Py|x (j|z;), which makes all roots of
Eq. (11) no larger than max; Py|X(j|J}Z) O

Lemma B.2. For each i, the largest eigenvalue of Q(x;) satisfies

A1 (Q(xs)) < 2mj?lXPY|X(j|93i)(1 - mj?lXPY\X(j|$i))~

Proof. To prove this result, we distinguish between two cases: whether the maximum probability is
attained by more than one label, or by a unique label.

Case 1: The size of set arg max; Py | x (j|z;) is larger than 1 By continuity, we have
det(Py|x (jla:) - I — diag { Py|x—a, } + ¢:0} ) = Py x (j]a:) H(PY|X(j|f”i) — Py x (klz:)).
k#j

Since arg max, Py |x (y|z;) is not a single point set, max, Py |x (y|z;) is one solution to Eq. (L1).
Then, the largest eigenvalue of Q(x;) is max, Py |x(y|x;). In this case, since the size of set
arg max; Py |x (j|z;) is larger than 1, we have that max; Py x (j|o;) < 1/2, which gives that
max; Pyx (j|zi) < 2max; Py x (jlz:)(1 — max; Py x (jlz:))-

Case 2: The size of set arg max; Py|x(j|=;) equals to 1 Let jo = argmax; Py|x(j|=;) and
denote the largest root of the Eq. (10) by Ao. Further, let arbitrary ji € argmax; ;. Pyx(j|2:).
Note that

Y\X ViED) :
>1,YA > P ),
Z N— Pyix (Gla) VA > Py x (jols)

(J s
TR S DR

A= Py x (jolzi)~ PY|X (jlq)

and

y|X .7|xz)
=00
>\—>Py\x(11|$z)+ Z A= PY\X (jlzi)

14



Under review as a conference paper at ICLR 2026

We have Py |x(jilzi) < Ao < Py|x(jolz;). Following the analysis in Case 1, the value
Py |x (jo|x;) will not be the root of Eq. (I1). Hence, we have the largest eigenvalue of Q(x;)
must be \g.

In this case, we have the

=-1

P}%\x(j0|xi) Y\X J1|$z i y\x J|xz)

Ao — Pyix(Jolzi) Ao — Pyix(j1]=:) Ao — Py x (j]=:)

and

=—1

Z Y\X jle:) N P§2f|x(j0|$i) Dkt P}%\X(Mxi)
Ao = Pyx(dli) = Ao — Pyix(olzi) — Xo — Pyix(jil=:)

P)2’|X(j0|xi) (1 — Py x(jols))?
~ Xo — Pyix(jolzi) Ao — (1= Pyix(Jjolz:))

Hence, solving
P x Uolwi) (1 = Pyix (Jolz:))? -~
Ao — Pyix(jolzi) Ao — (1= Pyix(olzs) —

gives Ao < 2Py x (jo|z:)(1 — Py|x (jo|z:)), where the equality is achieved by Bernoulli distribu-
tion.

In conclusion of the two cases, both cases give that

M Q) < 2mx Py olos) (1 g P (ko))
This completes the proof. O

Lemma B.3. The largest eigenvalue of the block matrix Q(x™) satisfies

A(Q(z")) = max A (Q(z:)).

Proof. By the Rayleigh—Ritz characterization,

A (Q(z")) = mhax v TQ(z")w.

Write vT = [v],. .., v]], with v; that matches the size of Q(z;). Then

n

v1Q(z")v = Z (z3)v; < Z)\l (z:))||lvi]|? < max)\l(Q(xi)).

i=1

Let j € argmax; A1 (Q(x;)) and let u; be a unit eigenvector of Q(z;) for A1 (Q(z;)). Define v by
v; = u; and v; = 0 for ¢ # j. Then ||v|| = 1 and

vIQ(z")v = ujQ(x;)u; = M (Q(w;)) = max A1 (Q(x:)).
Therefore, A1 (Q(2™)) > max; A1(Q(z;)). Combining both inequalities yields
A(Q(z")) = max A1 (Q(x:))-

This completes the proof. O

By Lemmas and[B.3] we conclude the proof of Lemma
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B.2 PROOF OF THEOREM [4.2]

To prove the Theorem[4.2] we first develop the lemma for expectation value of estimated concept d.

Lemma B.4. For sufficient prompt demonstrations, i.e., ¥, (x™) is invertible, it holds that for all

z",

Epyo [z, Y7 X" = 2" = a,
Proof. From definition of & in Eq. @), we have that

Epyn xn [a(2", Y")|[ X" = 2]

=Epyn xn [F;l(x")fn(z", YmxX" = :c"]

=> I Pvix(yilz) (iZZf(Ii,y)fT(wuy)> <i2f(wy)>
Ca ] e ,

=1

ZZf(wi,y)fT(:vuy)> %ZZPY‘;«(mxnﬂxi,y)

LSS ) oa

=1 vy

Il
R — —
S|
[
<
=
8
S
~
£}
S
~
L

O

With the Lemma[B.4] we directly have the written form of excessive risk for a complete model (i.e.
R(z,y) = 0 for all z, y).

Corollary B.5. For sufficient prompt demonstrations and complete model, the excessive risk can be
written as

Epynpsn (02" Y5 20) |X™ = 2" = tr {F ' (2")F (2q)F, ' («")F(2") } — o' F(zq)a,

where F(z™) = Epyn xn [fn(x”,Y")fE(x", Y™|Xn" = x"]

Proof. From the definition of £ (z™,y™; z¢), we have that (note that F,,;* (z™) is symmetric)

Epyn xn [£ (2" Y 2q) | X7 = 2]

=Epyn xn Z (PY|X(ZU\1‘Q) - IDY\)((Z‘J\MQ))2 X" = xn]

L Y

=Epyn xn Z (QTf(Jf@y) _ QTf(:cQ, y)>2 X" = xn]

L Y

—Epye (6 - ) Flag) (a - ) [X" = 2"

= Epyuun |2 F(@Q)a X" = 2" ] = 2B, . [67F(z)alX" = 2" + a"F(zg)a
= Epy o [0 (B @) TR ()R, (07) (0™, V) T (0", V)X = 2] — a"F(ag)a

= tr {F ' (a")F(zq)F;, " (z")F(2")} — 2 F(zq)a.
O

Further, F(2™) can be written as
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where

Q(z") = diag{diag{ Py |x=x, }, - .,diag{ Py |x—r.}} + ZZ”Z sz ol

=1 j=1

with diag{ Py | x—., } = diag{ Py|x (1|z;), ..., Py|x(M|z;)}, and

T
v; = [0,,O,Py‘X(”(EZ),,Py‘X(ML’El),O,O] .

In the next step, we show the connection between v;, f(z™) and a.
Lemma B.6. It holds that

%tr F;l(x")F(xQ)Fgl(x")f(x”) Zviv;-r F ™) :gTF(xQ)g.

n

Proof. We have that
1 — n TL
ﬁtr F, ' (z")F(zq)F,* Zv vi | fH(x

B z(ifwm) (i)

5]

= tr F;l(x )F(JIQ ( ZPY‘X y|a: 3'7, ) ( ZPY\X y|$] xj’ ))

From model (1} we have that for a complete model, Py |x (y|z) = o f(z,y). Hence, we have that

T
tr{ F,, (2™ F(zg)F, (z) (iZPYX(ylzi (i, y )( ZPY\X (ylzj) f(zj,y ))

T
= tr dF, " F(aQ)F, ! (o) (;me,y)ﬂ(xi,y)a) (izfm,y)fT(xj,y)a)

= tr {F, (") F(2Q)F, (2" )F (e )a (Fy (2")a)" |
= QTF(xQ)Q.

This completes the proof. O

Hence, we have the excessive risk without .
Corollary B.7. Let

Q(x;) = diag{Py|x (1]z;), ..., Py|x(M|z;)} — ¢:i9; ,
where ¢; = [Py |x(1]z;), ..., Py\x(M|z;)]", and let
0(z") = diag {Q(z1),...,Q(zn)}

it holds that

1

By "1 50) X" = ] =t { R 0 R g P ()1 (0) Qa0 .

17
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Proof. Based on the Corollary [B-3]and Lemma|[B.6] we have the excessive risk being
Epymxn [( (l'n» Y" xQ) |Xn = xn]
=t {F, ' (+")F (20)F, " («")F(z")} — o F(20)a

— i { LF P R ) ") Q)0 | - aFlagla

Note that Q(z") = 3", j viv) + Q(z™), we have that
1

EPyn‘Xn [6 (g:TL,Yn;SCQ) |Xn == f,l}n] = tI‘ {,',LQ

Fn1<x“>F<xQ>Fn1(z“>f<x”>Q<z">fT<xn>} |
O

Based on this form, we further find the upper bound.

Lemma B.8. For sufficient prompt demonstrations and complete model, the excessive risk can be
bounded by

Epy e [0,V 20) X7 = 2] < DA (Flrg)Fy ' (a7)) Sk (@),

where Sk (Q) is the sum of top K eigenvalues.

Proof. Denote F;1/2(x") as Fl(a") = F;l/z(x")Fﬁl/Q(x"). Then, by Corollary the ex-
cessive risk can be written as

Epynn (0", Y 2q) X7 = 27]
1 — n — n — n n n n — n
=t { R R g ) ) QR e
Denote the i-th large eigenvalue for one matrix as A;(-). Note that both matrices

F,/? (:v")F(xQ)F;l/2 (z™) and F,'/? (™) f(2™)Q(z™) fT (:U”)F,_Ll/2 (™) are Hermitian. From
Von Neumann’s trace inequality (Mirsky} |1975)), we have the

tr R g By 2 P 20 ) Q) £ )

IN

y SO e b 1 —1/2(.m n n n —1/2/,..n 1
;)\i (Fn /2(2")F(2q)F, 2 (2 )) i (\/ﬁFn 202" (@) Q) £ (") F 2 )\/5)

1
n
Since that

(FeFe ) (;ﬁFgl/Q(x”)f(w”)f

= LR pam) T )R 2 )

i

the matrix ﬁF; 1 (z™)f(z™) is an orthogonal matrix. Then, the eigenvalues of matrix

LF;1/2(x”)f(a:")Q(:c")fT(x”)F,_Ll/2(x”)i equal to those of Q(z™), i.e.,

Vn Vn
iy (jﬁF;“%x”)f(x")Q(x")fT<x”>F;1/2<w">jﬁ) — X Q")

18
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Furthermore, we prove that Q(z") is semi-positive definite. For any vector v = [v],..., v ]|T, we
have that
2
n n
@M = vl Qa)v ZZ Pyx(jlz)of(j) = Y ZPY\X (jlzi)vi(4) | =0,
i=1 i=1 j=1 i=1 \j=1

where the inequality is achieved by Jensen’s inequality. Hence, all eigenvalues of Q(z™) are non-
negative, making that

tr{ L E 2 E () F 2 (a ")F;W(w”)f(:v")Q(w”)fT(w”)F;“Q(w”)}

< %Z)‘Z (F;l/g(.’L’n)F(l‘Q)F;l/Q(%n)) \; <\/1>Fn1/2($ )f(x”)Q(a:")fT(x")F;l/Q(a:")
1 - X
o (P2 (o) B, 2 @™) 3 M Q)

i=1

IN

= L (Rl P (07) 5@

O

Based on Lemma B.8] we prove the Theorem [4.2] by
Sk(Q(z")) < KA1 (Q(z")).

B.3 PROOF OF THEOREM [4.3]

Similar to Lemma[B.4] we have the expectation of a under insufficient demonstrations.

Lemma B.9. For insufficient prompt demonstrations, i.e., F,,(x™) is not invertible, it holds that for
all ",

EPY"\X" [G(z", Y")| X" =2"] = FL(Q:")F”(xn)a.

Proof. From definition of & in Eq. (2)), we have that
EPYMX" [&(z™, V") X" = "]
= EPY"/‘XW, [Fl(xn)fn($n7 Yn)an _ xn}

— ZHPY\X(yi|$i)FIL(x") <711 - f(:vl-,yl-)>

- FW)% SN Prix(ylea) f(zi)

=1 y

ZZf 9Cz,y mza )

zly

(") Fp (")

n

:FL

O

Corollary B.10. For insufficient prompt demonstrations and complete model, the excessive risk can
be written as

Epya o [0, Y5 20) | X7 = 2]
= tr {F}(a")F (20)F},(a")F(2") } — 20" F(aq)F},(¢")F, (2" + 0" Flzq)a

where F(z") = Epyp yn [fu(@™, Y™) fl (", V™) | X" = 2.

19
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Proof. From the definition of £ (z™, y™; z¢), we have that (note that F,,;* (z™) is symmetric)
Epyn\x" [2 (mn’ Y™ xQ) |Xn = wn]

= EPY"\Xn Z (Py|X(y|$Q) — PYIX(y|£CQ))2 |Xn _ xn‘|

L Y

= Eppen |30 (67 Fwg.) — 0" Faoun)) X = ]

L Yy

= Epynxn »<Q - Q)T F(zq) (& —a) X" = m"}

= Epyo o |8 F(2)aX" = 2" | = 2Bp,. . [ F2g)alX" = 2| + o F(ag)a

= tr {F,(+")F(2)F},(@")F(2")} — 20" F(2q)F}, (") F, (e + o F ()

Write F(z™) as

Fla") =

n2

—f@)Q") [T («"),

where

Q") = diag{diag{Py|x=s}.--.,diag{Py|x=s, }} + Z Z Uz‘UjT - Z v}

with dlag{Py‘X:wl} = d|ag{Pylx(1|$l), ey Py|X(M‘JZl)}, and

T
V; = [O,,O,Py‘x(”ﬂjz), ,Py‘X(M|Z‘l)7O,O] .
Lemma B.11. For an insufficient demonstrations and complete model, it holds that

nl2tr{F:fl(x )F(2q)F (z (Zvl ) }

= (Fl(a")F.(z")a) F(1q)F},(z")F,(z")a.

Proof. We have that

%tr {FL(CL‘”)F(J?Q)FT (Z ) ) }

T
=tr FIL(xH)F(IQ FT ( ZPY|X y‘xl xuy ( ZPY\X y“rj x]ay))

From model we have that for a complete model, Py |x (y|z) = a™ f(z,y). Hence, we have that

T
tr  Fl,(«")F (20)F}, (« ( ZPY\X (ylw:) f 96173/) ( ZPY\X () f s,y ))

T
= tr{ Fl (z")F(zq)F} (2 ( Zf (i, y) f (2, y)a ) ( foja T,y )0‘)

— tr {F}, (2" )F () F}, (2" Fu (") (Fa(e")a) " }

— (F}.(z")Fp(2")a) " Fzg)F}(z")F,(a")a.

20
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This completes the proof. O

Hence, we have the excessive risk in a simplified form.
Corollary B.12. Let

Q(z;) = diag{Py|x (1|z;), ..., Py|x (M|z;)} — ¢i¢; ,
where ¢1 = [Py|X(1|£L’1), ceey Py|X(M|l‘Z‘)}T, and let

0(z") = diag{Q(z1),...,0(z,)},
it holds that
]Epyn‘xn [é (.Tn, Yn; ZZ?Q) |Xn = J;n]

= o { L FL P Q @) | + 7 P e
where Fi-(z") = I — Fi (z™)F,,(z").

Proof. Based on the Corollary [B.5]and Lemma[B.6| we have the excessive risk being
Epynixn [E(z", Y™ 2q) [ X™ = 2]

=tr {FIL(I”)F(xQ)FIL(x")F( "} — 20 F(zg) F! (z Ja+ a"F(zg)a.
=t o (@) Fy () ) =Sk | 11
+ (FL(x")Fn(z")g)T F(zq)F! (z")F,(z")a — 2aTF(2q)F! (z )a+ a"F(zg)a.

Note that Q(z") = >, viv) +Q(z") and F(zq) = f(xq)f" (2q), we have that
Epyn o [0(2", Y 20) [ X = 2]

- {nl Fl(x >F<wQ>FL<w">f<x”>Q<x">fT(z">} + £ (@) F (2Ma”
O

Lemma B.13. For sufficient prompt demonstrations and complete model, the excessive risk can is
bounded by

By [0 Y5 20) X7 = 2] < Ay (F(rg)F) () S (@) +| £ () Fk (+")a

where S (Q(x™)) is the sum of top K eigenvalues.

Proof. Denote Ff (2")/2 as Ff (2™) = Fi (2™)/2F1 (2™)/2. Then, by Corollary [B.12} the ex-
cessive risk can be written as

EPY”\X" [é (In, Yn; J;Q) ‘X” _ l,n]
= tr {nl2FL(m”)1/2(1~n)F($Q)FL(xn)1/2FL(l,n)1/2f(xn)Q(xn)fT(xn)FL(xn)UQ}

+ |17 @)y @l
From Von Neumann’s trace inequality (Mirsky, [1975), denote the i-th large eigen-
value for one matrix as \;(-), since both matrices F](2")'/2F(xq)F] (2")/? and
Fl (2™)Y2(2") f(z™)Q(z™) fT (™) F1 (2™)'/? are Hermitian, we have that

tr { L") 2R () P ™) 2 ()2 ) Qe £ )2
K

< %Z& (Fh.(a") /2 (ag)F (27)/2) Ay <\}EFIL(3:")1/2f(x”)Q(x")fT(x")FL(x")l/Q !

n
i=1

21
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Since that

(1FT (:En)l/Qf(CCn)) <1FT (mn)l/Qf(xn)>T
n \/ﬁ n

= R 25 ) R )

n vn

= F},(«")!/*Fp(2")F], (") "2

is a projection matrix, the eigenvalues of matrix ﬁFL (x”)1/2f(x”)Q(x")fT(x")FL(m")1/2ﬁ
equals to that of Q(z"), i.e.,

ot 1/2 " " T " t " 1/2i — ). ™)) .
iy (fm M2 (M) Q) £ (") (") ) A Q")

As is proved in Lemma all eigenvalues of Q(z™) are non-nagetive, makeing that

tr { L") R () P ™) 2 ()2 ) Qe T )2

IN

1 K ny1 n " n n " 1
,ZAZ- (FL(:E VY2 (20)F (2 )1/2))\ <FT( M2 £(mM)Q(e) £T (¢ F (2 )1/2%

n i=1 f !
K
< x (FL ") R ()R () V7) 3 A (@)

i=1

= L (Rl L") Sx(@e").

Based on Lemma [B:13] we simply prove the Theorem 3] by
Sk(Q(a")) < KA (Q(z")).

B.4 PROOF OF THEOREM [4.4]

Similar to Lemma|[B.9] we have the expectation of « under insufficient demonstrations with incom-
plete model.

Lemma B.14. For insufficient prompt demonstrations, i.e., F,, (™) is not invertible, and incomplete
model, i.e. R(x,y) # 0, it holds that for all x™,

~ n n n n n n 1 n n n
Epyu o [@(z™, Y™ X" = "] = Fl,(")Fp(z™)a + ﬁFL(x )f(z")R(z"™).
Proof. From definition of & in Eq. , we have that

Epyn\xn [Q(xna Yn)|Xn = xn]
= IEPyn‘Xn I:FIL(J""L)fn('Tn?YnHXn = "En}

- F;L(xn)% SN Prix(ylea) f(i)

=1 vy
LSS M)+ S S S Fan ) Rlaiy)
i=1 y =1y

= B} (") P (2" + %Fl(ar”)f(x”)R(m")-

22
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Corollary B.15. For insufficient prompt demonstrations and incomplete model, the excessive risk
can be written as

Epy o [0(2", Y75 20) [ X7 = 7]
— tr {F,(a")F () F, (e F(2")} — 20" F () F},(z")F,,(a")a + o F(aq)
— 2RI £ (@) (") (rg)a — 2R () T (r0)Fi (a" e

+ 2R () £ (wQ)Fh (2" SR + 3 R ),
By [Fala”, Y P ("

2" Y1) X" = g,

where F(z™) =

Proof. From the definition of £ (

y"; q), we have that (note that F ;! (z™) is symmetric)
Epyuxn [€(2", Y 1) | X™ = 2]

=Epynxn [Z (@Tf(vay) - QTf(an y) + R(zq, y))2 | X" = x”]
EPynxn [(Q —a) F(zq) (@ —a)|X" = xn}

+2Epy 0 n lz (@—a)" f(zq,y)R(zq,y)|X"

_..n
, =X
Y

+ZR2(:17Q,y)
F(2q)F}(z")F(z")} — 20" F(2q)F},(¢")F, (2" )a + " F(zq)

= 2R T @ FL (R (rg)a — 2R () T (r)

")
+ 2R (a0) T (rQ)FL(e") fe"R (") + 3 R¥(aq ).

Y

= tr {F} (z"

Lemma B.16. For an insufficient demonstrations and an incomplete model, it holds that

T;tr{FL(x JF(2q)F! (z (ZUZ ) }

L@ F (™))" Feg)F) (@) F,(a")a

2R @) [T @] (P Q) F (2 (o)
+ R (@) T (@ (0 () F (27 ("R ("),

a
Proof. We have that

Etr F| (z")F(2q)F} (=

2w

T
= tr{ Fl (2")F(20)F} (z ( Zpy|x yla:) f i,y )( ZPY\X yle) fzs.y ))

23
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From model we have that for an incomplete model, Py |x (y|z) = a™ f(x,y) + R(x,y). Hence,
we have that

tr{FL(ajn)F(mQ FT ( ZPY\X y|xz xzaQ) ( ZPY\X y|$] 33], )) }

{FT "V (zq)F] (x ( Zf (i, 9)( :vz,y)a+R(:cz—7y)))
(12

(z
7y
1‘7

f'rﬁy)(fT(xja )Oé—‘rR(l‘“y))) }
— o L") F(ag)FL")F ")a (P (a")a)”

+ 2 F] @ F(g)F (P (e ("R ()
= (FL(@")Fu(2")a)" F(zq)F} (@) F, (2"

n

+ 2RI £ (@ (R () P (e P ()

+ R T ()P () () f R,

This completes the proof. O

Hence, we have the excessive risk in a simplified form.

Corollary B.17. Let
Q(z;) = diag{Py|x (1|z;), ..., Py|x (M|z;)} — ¢:9; ,
where ¢; = [Py |x (1]a;), ..., Py|x (M|z;)]", and let
Q(z") = diag{Q(x1), ..., Q(wn)},
it holds that

IEPY"|Xn [5 (xn,yn;xQ) ‘Xn = xn]

—tr{ LRl R (o) B ) (e Q)
2

+ |77 Q)P (e~ R(rg) — T (wQ)Fh (™) ("R

b

where F-(z") = I — F} (z")F,(z").
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Proof. Based on the Corollary [B-3]and Lemma|[B.6] we have the excessive risk being
EPYMxn [‘€ (", Y™ xQ) |X™ = xn]
— b1 {F},(a")F(20)F}, (o) F(2")} — 20" F () F} (s")Fu(a™)a + o Flag)a.

= {nﬂFJ(x”)F(w)FJ(x”)f(x”) (Qu”) - ZT) fT(x”)}

+ (FLG"FMa) " Plag)F) (") F (") — 20" F () F (4" Fa(e")a + a"Flag)a
R £ @ (R () F (2 Fa (")

R ST (@ () () (a7) ("R (")

~ 2R (@) £ (@), (a7 () — 2R (1) T (rg)Fit (a" )

R (20) " (rQ)FL (") fRE) + 3 R (rquy).

Note that Q(z") = Do viva + Q(2™) and F(zq) = f(2q)fT (zg), we have that
EPY"|X" M (xn, Y xQ) ‘Xn = xn]

— tr{ SFL P P e/ QG" 1)

2

+ 7T Q)P (e ~ R(rg) — T (ag)Fh (™) (@R

Following Lemma[B.13] we have that
Epynxn [€(2" Y 2) | X™ = 2]

< i (F(ro)F) (a™) Sk (Q(a"))
F* (@)t (e~ R(zg) — - (rq)F) (") f (xR (")

A1 (F(zg)F(2") A (Q(z™))

s|x_t

4T Q)P (e~ R(rq) — ~ f(zg)FL (") fa"RG") |

where Sk (Q(z™)) is the sum of top K eigenvalues.

Taking expectation over Px,,, we have the result as
Epy, Py 02" Y 20) [X™ = 2]
K
< — 1 (FoF)(2") M(Q(z"))

+ 2 (FQFL(™) - IR+ Y P () 200, 1)

2
+ TP (") TFQFE (e")a — —RT (") T (@)} (o) F Qg (+")a,

where Fo = Ep,  [F(zq)]. This is because 3-,  Px (2q)f" (zq)R(zq) = 0.

25



Under review as a conference paper at ICLR 2026

B.5 PROOF OF THEOREM [4.3]

To prove the Theorem we aim to find the minium value of Ep, . .. [Py |x (fmax|2qQ)| X" = "],
which is equivalent to solve the following problem:

_ min ZPY"|X“ (yn|33n)PY\X(?3max\l‘Q)
Py x (|lzq) Y

s.t. ZPyﬂXW, ("™ (=™, y"20) <7,
y’!l
> Praxn(y'la") =1,

> (PyrixWlegiy™) — Pyix (ylzq))? = £z, y"; 2q)
Y

Umax = arg max PYIX(y|xQ§ y")
Yy

Lemma B.18. Given demonstrations x",y", and query ¢, if the mean-squared risk £(x",y"; xq)
satisfies {(z",y"; zq) < 3 (P1 — Pj+1)2, for some j > 1, then

PY\X(gmax|xQ) > Pj~ (12)

Proof. We prove the contrapositive. Fix an index s > j 4+ 1. We show that if the predicted label
equals s (or more weakly, if P; > P), then necessarily

L2,y 2q) > %(Pl—Ps)Q 2 %(Pl_Pj“)Q’

which contradicts the hypothesis. Since this holds for every s > j+1, no such s can be the predicted
label, and hence the predicted label must lie in {1, ..., j}. Because for any < j we have P, > P;,

the conclusion follows. Thus fix s > j + 1 and suppose Ps > P;. Consider the optimization

M
mjnZ(Pt—Pt)Q S.t. ]55—]5120,
L

where P ranges over R (the feasible set for probability vectors only increases the minimal cost,
so this relaxation provides a valid lower bound). To obtain a lower bound it suffices to restrict
attention to coordinates 1 and s and leave all other coordinates equal to their true values P;. With
this restriction the problem reduces to

min (u— P)%+ (v — Ps)? st v—u>0.

u,veER
The minimal value of this two-variable problem under the constraint v — u > 0 is attained when
v = u (pushing toward equality is best), hence we set u = v = 7 and minimize

(n—P1)* + (n = P>

P+ P
2 9

P, + P, 2 /P +P, 2 P —P\2 2
(2 _P1> +<2 —PS> =2(=5=) =i -r).

This quadratic in 7 is minimized at n = giving the minimum value

Therefore any P with ]53 > 151 must satisfy
M
ST(h - P)? > L(P-PR)
=1

Because Py < Pjq forall s > j + 1, we have $(P; — Ps)? > 1(P; — Pj41)?. Hence if

((l’n,yn,(ﬁ@) < %(Pl — Pj+1)2,

no index s > 7 + 1 can satisfy P, > Py, i.e. the maximizer §max must belong to {1,...,j}. This
implies
PY\X(Qmax | xQ) 2 Pj~
]
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Lemma [B.T8]provides the theoretical guarantee of the CB-ICL label predictor with respect to differ-
ent threshold values of the mean-squared risk. Notice that Py| x (§imax|7q) < max, Py |x (y|lrq) =

P, and the equality is achieved when £(z", y";2q) < % (P — P5)?. Therefore, the CB-ICL label
predictor is reduced to the Maximum a Posteriori (MAP) decision when the mean-squared risk is
small. Moreover, the following Theorem establishes the connection between the excessive risk and
the label predicting error probability based on Lemma[B.T8§]

From Lemma we know that when $(P; — P;)? < {(z",y";2q) < 3(P1 — Pj41)? the
minimum value Py | x (Jmax|7q) can take is P;. Hence, the original problem can turn into a com-
bination problem that ¢ only takes value in {0, (P — P»)?,..., (P — P)?}, with the fol-
lowing Py | x (§max|zq) being Pi, P, ..., Pyr. Denote £; as the discrete variable taking value in
{0, 3(P1— P,)?,..., 2(P1 — Pa)?} with corresponding P; being the discrete variable taking value
in {Py, Ps,...,Py}. The original problem becomes that assign each y™ to one j € {1,..., M}
suchthaty . > . Pyn|xn(y"[2")1,(yn)=;Pj achieves minimum (with o denoting the assign func-
tion). Denote the weight assigned to jthindex as w; = 3 . Pyn|xn(y"[2")1,(yn)=;, and we have
the original problem being

M
minz w; P; (P1)
j=1

M
S.t. Z wjéj <,
Jj=1

’LU] = Z Pynlxn (yn|xn)1g(yn):.]
To solve this problem, we consider an approximation to this problem as

min ) w; P (P2)

>0,

j=1

Lemma B.19. Denote the solution to problem as {wj1 jvil and solution to problem |((P2) as
2 M 1 M )2

{w; Ly Then, 3757wy Py > 3707 wi P

Proof. Let

81 = {w S RM :do: [M]n — [M] such that w; = ZPYﬂ‘Xu (ynlx")]-{a(y"):j}}
yn

be the feasible set of problem [(PT)] and

M M
Sy = {’UJER% : ij =1, ijfj S’y}
Jj=1 Jj=1

be the feasible set of problem [(PZ)] We first show S; C Ss.

Take any w € S;. By definition there exists an assignment ¢ such that

wj = Pyajxn(y 2" om=y (G =1,.... M)
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Clearly w; > 0 for all j and

M M
dYowi = Propxn (87" o(ym)—y = D Propxn (0" 2") = 1.
j=1 j=1 y" y"
Moreover
M M
Z wjgj = Z Z PY” ‘Xn (ynlmn)l{o'(y"):]}’gj = EPyn\X" [g(xn7 Y”; .I'Q)] S '7’
j=1 j=1 yn

where the last inequality is exactly the feasibility condition in (P1). Hence w € Sy, proving S; C Sa.

Now let f(w) = Zﬁl w; P; be the objective. Since S; C S,, the minimum of f over the smaller
set S; cannot be smaller than the minimum over the larger set Ss. Formally,

min f(w) > min f(w).

Noting that the left-hand side equals > j w;’le and the right-hand side equals ) j w;’QP-, the
claimed inequality follows. O

By Lemma|[B.19] we transfer solving of problem [(PT)|to problem [(P2)]

Lemma B.20. The solution to problem|(P2), denoted as {w;’f’2 gvil has at most two nonzero com-
ponents. Furthermore, if there exists two nonzero components, the two components are adjacency
to each other.

Proof. Using Lagrange, we have the dual problem as

n}li)nijPj—Ht ij—l +A Zwﬂj—y
J J J

The Karush-Kuhn-Tucker (KKT) condition (Bertsekas| [1997) gives that

=0, w; >0
Pj+M+>\€j{>O w'?_o
, Wi —

Therefore for all j, we have that Pj + 1+ M; > 0. In other words, the support of the optimal
distribution P is contained in the set of indices that minimize the affine functional

P— P+ ).

Consequently, the optimal solution must assign positive probability only to those outcomes lying on
the lower envelope of the family of affine functions parameterized by .

Define the discrete slopes

P, — P,
spi= L M- 1.
by — i
Compute explicitly using ¢; = 3 (P; — P,)%
2
St = — .
2P — P, — Py

Because P; is nonincreasing and ¢ — (2P, — P, — P;y1) is nondecreasing, we have s1 < sg <
-+ < spr—1 (strict inequality unless ties occur in the P;’s; ties can be handled by tie-breaking but
do not affect the argument).

Now suppose there exist positive w; > 0 and wy > 0 with k¥ > 7 4+ 2 (not adjacent). Since
P, + M, is affine in the pair (P, ¢;) and the intersection equality above holds for ¢ = ¢ and ¢t = k,
by intermediate value there must exist an index r with i < r < k such that P, + A, is strictly
smaller than the common value (because the sequence of slopes s, is strictly increasing, the line
through (¢;, P;) and (¢, Py ) lies strictly above at some intermediate lattice point). But then r would
yield a strictly smaller P, + A/, contradicting the KKT condition that all positive-weight indices
minimize P; + A\/;. Therefore no two positive indices can be non-adjacent; positive indices must be
adjacent. [
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Lemma B.21. If mass is placed only at {; and {; 1 with weights 1 — o and « and the mean loss
equals U; 4y (with 0 < v < lj41 — {;), then

a=—"1_.
b1 =4
Proof. Immediate from (1 — a)l; + alji1 = £; + . O

By Lemma [B.20] any extreme minimizer has at most two adjacent nonzero elements. Therefore the
minimizer can be taken with support {¢;,¢;11}. Let the mass at ;11 be «; by Lemma we
have o = 7v/(¢;11 — £;). Consequently

E[Py|x (Jmax | 2@)] = (1 — a)Pj + aPji1 = P; — a(P; — Pj41).
For each j,

Uis1 =L =3 [(P1 = Pj11)” = (PL = P})?] = (P - Pj+1)(P1 - 7pj+§”1)7

hence
Py — Py 2
£j+1—€j o 2P1—Pj—Pj+1 '
Therefore, PP, )
Jj+1
(P = Pjt1) =7~ oot VB PE P
Thus

2y
2P1 - Pj - Pj+1

E[PY|X(gmax ‘ I'Q)] Z Pj -

completing the proof.

C PROOFS OF PROPERTIES

C.1 LOWER BOUND OF X\ (F(zg)F,,*(z"))
Theorem C.1. Let
fla,y) eRY, fla) = [f(2,1),.... flz,M)] € RN,
and define
Plo) = o). Bule™ = Liamien T = LY i)™
=1 y=1

Assume F,, (™) is positive definite. If the last coordinate satisfies fx (x,y) = 1/v/ M for every x,y,
then
M(F(zg)F, (z") > 1,

where A1 (-) denotes the largest eigenvalue.
Proof. Recall the characterization of the largest generalized eigenvalue for symmetric matrices:

1/ n wTF(z
M(FQ) Pl ) = s S

Let e € RX be the unit vector with 1 in the K-th coordinate and zeros elsewhere. Using
fr(x,y) = 1/v/M for every x,y, we compute

e F(zg)e ZfoQy :Z%zl,
y=1
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and o o v
exFn(a"ex = EZZ(JCK(%,Z/)) = EZZM =L
i=1y=1 i=1y=1

Hence the Rayleigh quotient at e equals 1:

exF(zglex
ﬁ —_ ]..

e Frn(z™)ex
Since the supremum over all nonzero w is at least the value at e, we obtain

M(F(zq)F, H(z™)) > 1,

as required. O
Proposition C.2 (When equality holds). With the notation and assumptions of Theorem we
have

M(F(zg)F, ' (2") =1
if and only if

F(zq) 2 Fn(z"),
i.e. B, (™) —F(zq) is positive semidefinite. In particular, a simple sufficient condition for equality
is

Fn(z") = F(zq),
which occurs for example when n = 1 and x1 = xq, or more generally when every sample equals
zq (i.e. 1 = - =T, = 2xQ)

Proof. By the Rayleigh characterization,

wT TrQo)w
M(F(zq)F, " (2")) = sup M~

Equality A; = 1 holds iff for every nonzero w,

wTF(zg)w

m S L i.e. UJTF(I'Q)U) S U}TFn(fEn)w.

The last inequality for all w is exactly the PSD ordering F(zg) < F,(z"). Hence equality is
equivalent to F(zq) < F2")n.

If F,,(2™) = F(zq) then trivially F(zg) = F,(2™) and thus A; = 1. The condition F,,(2") =
F(zq) holds when f(x;,y) = f(zq,y) for every i,y, i.e. when x; = x¢ for all ¢; in particular it
holds when n = 1 and 1 = x¢. This proves the stated sufficient condition. O
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