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Abstract

We consider the class of noisy multi-layered sigmoid recurrent neural networks
with w (unbounded) weights for classification of sequences of length T , where
independent noise distributed according to N (0, σ2) is added to the output of each
neuron in the network. Our main result shows that the sample complexity of PAC
learning this class can be bounded by O(w log(T/σ)). For the non-noisy version
of the same class (i.e., σ = 0), we prove a lower bound of Ω(wT ) for the sample
complexity. Our results indicate an exponential gap in the dependence of sample
complexity on T for noisy versus non-noisy networks. Moreover, given the mild
logarithmic dependence of the upper bound on 1/σ, this gap still holds even for
numerically negligible values of σ.1

1 Introduction

Recurrent Neural Networks (RNNs) are effective tools for processing sequential data. They are used
in numerous applications such as speech recognition (Graves et al., 2013), computer vision (Karpathy
and Fei-Fei, 2015), translation (Sutskever et al., 2014), modeling dynamical systems (Hardt et al.,
2018) and time series (Qin et al., 2017). Recurrent models allow us to design classes of predictors
that can be applied to (i.e., take input values from) sequences of arbitrary length. For processing a
sequence of T elements, a predictor f (e.g., a neural network) “consumes” the input elements one by
one, generating an output at each step. This output is then used in the next step (as another input to f
along with the next element in the input sequence). Defining recurrent models formally takes some
effort, and we relegate it to the next sections. In short, the function f is (recursively) applied T times
in order to generate the ultimate outcome.

Let us fix a base class Fw of all multi-layered feed-forward sigmoid neural networks with w weights.
We can create a recurrent version of this class, which we will denote by REC[Fw, T ], for classifying
sequences of length T . One can study the sample complexity of PAC learning REC[Fw, T ] with
respect to different loss functions. Koiran and Sontag (1998) studied the binary-valued version of this
class by applying a threshold function at the end, and proved a lower bound of Ω(wT ) for its VC
dimension.

There has also been efforts for proving upper bounds on the sample complexity of PAC learning
REC[F , T ] for various base classes F and different loss functions. Given the above lower bound, a
gold standard has been achieving a linear dependence on T in the upper bound. Koiran and Sontag
(1998) proved an upper bound of O(w4T 2) on the VC dimension of REC[Fw, T ] discussed above.
More recent papers have considered the more realistic setting of classification with continuous-valued

1For the full version of this paper see F. Pour and Ashtiani (2023).
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RNNs, e.g., by removing the threshold function and using a bounded Lipschitz surrogate loss. In this
setting, Zhang et al. (2018) proved an upper bound of Õ(T 4w∥W∥O(T )) on the sample complexity2

where ∥W∥ is the spectral norm of the network. Chen et al. (2020) improved over this result by
proving an upper bound of Õ(Tw∥W∥2 min{

√
w, ∥W∥O(T )}). These bounds get close to the gold

standard when the spectral norm of the network satisfies ∥W∥ ≤ 1.

The above upper bounds are proved by simply “unfolding” the recurrence, effectively substituting the
recurrent class REC[Fw, T ] with the (larger) class of T -fold compositions Fw ◦ Fw . . . ◦ Fw. These
unfolding techniques do not exploit the fact that the function f (that is applied recursively for T steps
to compute the output of the network) is fixed across all the T steps. Consequently, the resulting
sample complexity has (super-)linear dependence on T . Therefore, we would need a prohibitively
large sample size for training recurrent models for classifying very long sequences. Nevertheless, this
dependence is inevitable in light of the of lower bound of Koiran and Sontag (1998). Or is it?

In this paper, we consider a related class of noisy recurrent neural networks, REC[F̃σ
w, T ]. The

hypotheses in this class are similar to those in REC[Fw, T ], except that outputs of (sigmoid) activa-
tion functions are added with independent Gaussian random variables, N (0, σ2). Our main result
demonstrates that, remarkably, the noisy class can be learned with a number of samples that is only
logarithmic with respect to T .

Theorem 1 (Informal version of Theorem 15). The sample complexity of PAC learning the class
REC[F̃σ

w, T ] of noisy recurrent networks with respect to ramp loss is Õ(w log(T/σ)).

One challenge of proving the above theorem is that the analysis involves dealing with random
hypotheses. Therefore, unlike the usual arguments that bound the covering number of a set of
deterministic maps with respect to the ℓ2 distance, we study the covering number of a class of random
maps with respect to the total variation distance. We then invoke some of the recently developed tools
in Fathollah Pour and Ashtiani (2022) for bounding these covering numbers. Another challenge is
deviating from the usual “unfolding method” and exploiting the fact that in recurrent models a fixed
function/network is applied recursively.

The mere fact that learning REC[F̃σ
w, T ] requires less samples compared to its non-noisy counterpart

is not entirely unexpected. For classification of long sequences, however, the sample complexity
gap is quite drastic (i.e., exponential). We argue that a logarithmic dependency on T is actually
more realistic in practical situations: for finite precision machines, one can effectively break the
Ω(T ) barrier even for non-noisy networks. To see this, let us choose σ to be a numerically negligible
number (e.g., smaller than the numerical precision of our computing device). In this case, the class of
noisy and non-noisy networks become effectively the same when implemented on a device with finite
numerical precision. But then our upper bound shows a mild logarithmic dependence on 1/σ.

One caveat in the above argument is that the lower bound of Koiran and Sontag (1998) is proved
for the 0-1 loss and perhaps not directly comparable to the setting of the upper bound which uses a
Lipcshitz surrogate loss. We address this by showing a comparable lower bound in the same setting.

Theorem 2 (Informal version of Theorem 10). The sample complexity of PAC learning REC[Fw, T ]
with ramp loss is Ω (wT ).

In the next section we introduce our notations and define the PAC learning problem. We state the
lower bound in Section 3, and the upper bound in Section 5. Sections 6, 7, and 8 provide a high-level
proof of our upper bound.

Additional Related Work. Due to space constraints, we postpone the discussion of some additional
related work to Appendix 9.

2 Preliminaries

2.1 Notations

∥x∥1, ∥x∥2, and ∥x∥∞ denote the ℓ1, ℓ2, and ℓ∞ norms of a vector x ∈ Rd respectively. We denote
the cardinality of a set S by |S|. The set of natural numbers smaller or equal to m is represented by

2Ignoring the dependence of the sample complexity on the accuracy and confidence parameters.

2



[m]. A vector of all zeros is denoted by 00d = [0 . . . 0]
⊤ ∈ Rd. We use X ⊆ Rd as a domain set. We

will study classes of vector-valued functions; a hypothesis is a Borel function f : Rd → Rp, and a
hypothesis class F is a set of such hypotheses.

We find it useful to have an explicit notation—here an overline—for the random versions of the above
definitions: X is the set of all random variables defined over X that admit a generalized density
function3. x ∈ X is a random variable in this set. To simplify this notation, we sometimes just write
x ∈ Rd rather than x ∈ Rd.

y = f(x) is the random variable associated with pushforward of x under Borel map f : Rd → Rp.
We use f : Rd → Rp to indicate that the mapping itself is random. Random hypotheses can be
applied to both random and non-random inputs—e.g., f(x) and f(x)4. A class of random hypotheses
is denoted by F .

Definition 3 (Composition of Two Hypothesis Classes). We denote by h ◦ f the function h(f(x))
(assuming the range of f and the domain of h are compatible). The composition of two hypothesis
classes F and H is defined by H ◦F = {h ◦ f | h ∈ H, f ∈ F}. Composition of classes of random
hypotheses is defined similarly by H ◦ F = {h ◦ f | h ∈ H, f ∈ F}.

2.2 Feedforward neural networks

We will first define some classes associated with feedforward neural networks. Let ϕ(x) = 1
1+e−x − 1

2

be the centered sigmoid function. Φ : Rp → [−1/2, 1/2]
p is the element-wise sigmoid activation

function defined by Φ((x(1), . . . , x(p))) = (ϕ(x(1)), . . . , ϕ(x(p))).

Definition 4 (Single-Layer Sigmoid Neural Networks). The class of single-layer sigmoid neural
networks with d inputs and p outputs is defined by NET[d, p] = {fW : Rd → [−1/2, 1/2]p |
fW (x) = Φ(W⊤x),W ∈ Rd×p}.

Based on Definition 4, we can define the class of multi-layer (feedforward) neural networks (with w
weights) as a composition of several single-layer networks. Note that the number of hidden neurons
can be arbitrary as long as the total number of weights/parameters is w.

Definition 5 (Multi-Layer Sigmoid Neural Networks). A class of multi-layer sigmoid networks with
p0 inputs, pk outputs, and w weights that take inputs in [−1/2, 1/2]p0 is defined by

MNET[p0, pk, w] =
⋃

NET[pk−1, pk] ◦ . . . ◦ NET[p0, p1]

where union is taken over all choices of (p1, p2, . . . , pk−1) ∈ Nk−1 that satisfy
∑k

i=1 pi.pi−1 = w.
We say MNET[p0, pk, w] is well-defined if the union is not empty.

Well-definedness basically means that p0, pk, and w are compatible. For simplicity, in the above
definition we restricted the input domain to [−1/2, 1/2]d. This will help in defining the recurrent
versions of these networks (since the input and output domains become compatible). However, our
analysis can be easily extended to capture any bounded domain (e.g., [−B,B]d).

2.3 Recursive application of a function and recurrent models

In this section we define REC[F , T ] which is the recurrent version of class F for sequences of
length T . Let v = (a1, . . . , am) ∈ Xm for m ∈ N. We define First (v) = (a1, . . . , am−1) ∈ Xm−1

and Last (v) = am ∈ X as functions that return the first m − 1 and the last dimensions of the
vector v, respectively. Let u(0), u(1), . . . , u(T−1) be a sequence of inputs, where u(i) ∈ Rp, and let
f : Rs → Rq be a hypothesis/mapping. In the context of recurrent models, it is useful to define the
recurrent application of f on this sequence. Note that out of the q dimensions of the range of f , q − 1
of them are recurrent and therefore are fed back to the model. Basically, fR (U, t) will be the result
of applying f on the first t elements of U (with recurrent feedback).

3Both discrete (by using Dirac delta function) and absolutely continuous random variables admit a generalized
density function.

4Technically, we consider f(x) to be f(δx), where δx is a random variable with Dirac delta measure on x.
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Figure 1: An example of a recurrent model in REC[F , T ]. The first q− 1 dimensions of fR(U, t− 1)
is concatenated with u(t) to form the input at time t. The last dimension of fR(U, T − 1) is taken to
be the final output of the recurrent model.

Definition 6 (Recurrent Application of a Function). Let U =
[
u(0) . . . u(i) . . . u(T−1)

]
∈ Rp×T be a

sequence of inputs of length T , where u(i) ∈ Rp denotes the i-th column of U for 0 ≤ i ≤ T − 1.
Let f be a (random) function from Rs to Rq, where s = p + q − 1. Moreover, define fR (U, 0) =

f
([

00q−1 u(0)
]⊤)

. Then, for any 1 ≤ t ≤ T − 1, the recursive application of f is denoted by

fR : Rp×T × [T − 1] → Rq and is defined as fR (U, t) = f
([

First
(
fR (U, t− 1)

)
u(t)
]⊤)

.

Now we are ready to define the (recurrent) hypothesis class REC[F , T ]. Each hypothesis in this class
takes a sequence U of input vectors, and applies a function f ∈ F recurrently on the elements of this
sequence. The final output will be a real number. We give the formal definition in the following; also
see Figure 1 for a visualization.
Definition 7 (Recurrent Class). Let s, p, q ∈ N such that s = p+ q− 1. Let F be a class of functions
from Rs to Rq . The class of recurrent models with length T that use functions in F (which we denote
by recurring class) as their recurring block is defined by

REC[F , T ] = {h : Rp×T → R | h(U) = Last
(
fR (U, T − 1)

)
, f ∈ F}

For example, REC[MNET[p0, pk, w], T ] is the class of (real-valued) recurrent neural networks with
length T that use MNET[p0, pk, w] as their recurring block. We say that REC[MNET[p0, pk, w], T ]
is well-defined if MNET[p0, pk, w] is well-defined and also the input/output dimensions are compati-
ble (i.e., p0 ≥ pk).

2.4 PAC learning with ramp loss

In this section we formulate the PAC learning model for classification with respect to the ramp loss.
The use of ramp loss is natural for classification (see e.g., Boucheron et al. (2005); Bartlett et al.
(2006)) and the main features of the ramp loss that we are going to exploit are boundedness and
Lipschitzness. We start by introducing the ramp loss.
Definition 8 (Ramp Loss). Let f : X → R be a hypothesis and let D be a distribution over X × Y .
Let (x, y) ∈ X × Y , where Y = {−1, 1}. The ramp loss of f with respect to margin parameter
γ > 0 is defined as lγ(f, x, y) = rγ (−f(x).y), where rγ is the ramp function defined by

rγ(x) =


0 x < −γ,

1 + x
γ −γ ≤ x ≤ 0

1 x ≥ 0.

Definition 9 (Agnostic PAC Learning with Respect to Ramp Loss). We say that a hypothesis class F
of functions from X to R is agnostic PAC learnable with respect to ramp loss with margin parameter
γ > 0 if there exists a learner A and a function m : (0, 1)2 → N with the following property: For
every distribution D over X × {−1, 1} and every ϵ, δ ∈ (0, 1), if S is a set of m(ϵ, δ) i.i.d. samples
from D, then with probability at least 1− δ (over the randomness of S) we have

E(x,y)∼D [lγ (A(S), x, y)] ≤ inf
f∈F

E(x,y)∼D [lγ (A(S), x, y)] + ϵ.

4



The sample complexity of PAC learning F with respect to ramp loss is denoted by mF (ϵ, δ), which is
the minimum number of samples required for learning F (among all learners A). The definition of
agnostic PAC learning with respect to ramp loss works for any value of γ and when we are analyzing
the sample complexity we consider it to be a fixed constant.

3 A lower bound for sample complexity of learning recurrent neural networks

In this section, we consider the sample complexity of PAC learning sigmoid recurrent neural networks
with respect to ramp loss. Particularly, we state a lower bound on the sample complexity of the
class REC[MNET[p0, pk, w], T ] of all sigmoid recurrent neural networks with length T that use
multi-layer neural networks with w weights as their recurring block. The main message is that this
sample complexity grows at least linearly with T .

Theorem 10 (Sample Complexity Lower Bound for Recurrent Neural Networks). For every T ≥ 3
and w ≥ 19 there exists a well-defined class Hw = REC[MNET[p0, pk, w], T ] and a universal
constant C > 0 such that for every ϵ, δ ∈ (0, 1/40) we have

mHw
(ϵ, δ) ≥ C.

(
wT + log(1/δ)

ϵ2

)
.

The proof of the above lower bound is based on a similar result due to Sontag et al. (1998). However,
the argument in Sontag et al. (1998) is for PAC learning with respect to 0-1 loss. To extend this result
for the ramp loss, we construct a binary-valued class Fw = {f : f(U) = sign(h(U)), h ∈ Hw}
where sign (x) = 1 if x ≥ 0 and sign (x) = −1 if x < 0. We prove that every function f ∈ Fw can
be related to another function h ∈ Hw such that the ramp loss of h is almost equal to the zero-one
loss of f . This is formalized in the following lemma, which is a key result in proving Theorem 10.
The proof of Theorem 10 and Lemma 11 can be found in Appendix ??.

Lemma 11. Let Hw = REC[MNET[p0, pk, w], T ] be a well-defined class and let Fw = {f :
[−1/2, 1/2]p×T → {−1, 1} | f(U) = sign (h(U)), h ∈ Hw}. Then, for every distribution D over
[−1/2, 1/2]p×T × {−1, 1}, η > 0, and every function f ∈ Fw there exists a function h ∈ Hw such
that E(U,y)∼D [lγ (h, U, y)] ≤ E(U,y)∼D

[
l0−1 (f, U, y)

]
+ η where l0−1(f, U, y) = 11 {f(U) ̸= y}.

4 Noisy recurrent neural networks

In this section, we will define classes of noisy recurrent neural networks. Let us first define the
singleton Gaussian noise class, which contains a single additive Gaussian noise function.

Definition 12 (The Gaussian Noise Class). The d-dimensional noise class with scale σ ≥ 0 is
denoted by Gσ,d = {gσ,d}. Here, gσ,d : Rd → Rd is a random function defined by gσ,d(x) = x+ z,
where z ∼ N (0, σ2Id). When it is clear from the context we drop d and write Gσ = {gσ}.

The following is the noisy version of multi-layer networks in Definition 5. Basically, Gaussian noise
is composed (Definition 3) before each layer.

Definition 13 (Noisy Multi-Layer Sigmoid Neural Networks). The class of all noisy multi-layer
sigmoid networks with w weights that take values in [−1/2, 1/2]p0 as input and output values in
[−1/2, 1/2]pk is defined by

MNETσ[p0, pk, w] =
⋃

NET[pk−1, pk] ◦ . . . ◦ Gσ ◦ NET[p1, p2] ◦ Gσ ◦ NET[p0, p1] ◦ Gσ,

where σ ≥ 0 is scale of the Gaussian noise and the union is taken over all choices of
(p1, p2, . . . , pk−1) ∈ Nk−1 that satisfy

∑k
i=1 pi.pi−1 = w.

Similar to the deterministic case, MNETσ[p0, pk, w] is said to be well-defined if the union is not
empty (i.e., p0, pk and w are compatible). We can use Definition 7 to create recurrent versions
of the above class. For example, REC[MNETσ[p0, pk, w], T ] is a class of recurrent (and random)
hypotheses for sequence of length T that use MNETσ[p0, pk, w] as their recurring block. Again,
similar to the deterministic case, we say REC[MNETσ[p0, pk, w], T ] is well-defined if p0, pk and w
are compatible and MNETσ[p0, pk, w] is well-defined.
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5 PAC learning noisy recurrent neural networks

In section 3, we established an Ω(T ) lower bound on the sample complexity of learning recurrent
networks (i.e., REC[MNET[p0, pk, w], T ]). In this section, we consider a related class (based on
noisy recurrent neural networks) and show that the dependence of sample complexity on T is only
O(log T ). In particular, Gσ ◦ REC[MNETσ[p0, pk, w], T ] can be regarded as a (noisy) sibling of
REC[MNET[p0, pk, w], T ]. Since it is more standard to define PAC learnability for deterministic
hypotheses, we define the deterministic version of the above class by derandomization5.
Definition 14 (Derandomization by Expectation). Let F be a class of (random) functions from Rp×T

to Rq . The derandomization of a function class F by expectation is defined as E(F) = {h : Rp×T →
Rq | h (u) = Ef

[
f (u)

]
, f ∈ F}.

We show that, contrary to Theorem 10, the sample complexity of PAC learning the (derandomized)
class of noisy recurrent neural networks, E(Gσ ◦ REC[MNETσ[p0, pk, w], T ]), grows at most loga-
rithmically with T while it still enjoys the same linear dependence on w. This is formalized in the
following theorem (see Appendix ?? for a proof).
Theorem 15 (Main Result). Let Qw = Gσ ◦ REC[MNETσ[p0, pk, w], T ] be any well-defined class
and assume T ∈ N, 0 < σ < 1, ϵ, δ ∈ (0, 1). Then the sample complexity of learning Hw = E(Qw)
is upper bounded by

mHw(ϵ, δ) = O

(
w log

(
wT
ϵσ log

(
wT
ϵσ

))
+ log (1/δ)

ϵ2

)
= Õ

(
w log

(
T
σ

)
+ log(1/δ)

ϵ2

)
,

where Õ hides logarithmic factors.

One feature of the above theorem is the mild logarithmic dependence on 1/σ. Therefore, we can take
σ to be numerically negligible and still get a significantly smaller sample complexity compared to
the deterministic case for large T . Note that adding such small values of noise would not change the
empirical outcome of RNNs on finite precision computers.

The milder (logarithmic) dependency on T is achieved by a novel analysis that involves bounding
the covering number of noisy recurrent networks with respect to the total variation distance. Also,
instead of “unfolding” the network, we exploit the fact that the same function/hypothesis is being
used recurrently. We also want to emphasize that the above bound does not depend on the norms of
weights of the network. Achieving this is challenging, since a little bit of noise in a previous layer
can change the output of the next layer drastically. The next few sections are dedicated to give a
high-level proof of this theorem.

6 Covering numbers: the classical view

One of the main tools to derive sample complexity bounds for learning a class of functions is studying
their covering numbers. In this section we formalize this classic tool.
Definition 16 (Covering Number). Let (X , ρ) be a metric space. A set A ⊂ X is ϵ-covered by a set
C ⊆ A with respect to ρ, if for all a ∈ A there exists c ∈ C such that ρ(a, c) ≤ ϵ. We denote by
N(ϵ, A, ρ) the cardinality of the smallest set C that ϵ-covers A and we refer to is as the ϵ-covering
number of A with respect to metric ρ.

The notion of covering number is defined with respect to a metric ρ. We now give the definition of
extended metrics, which we will use to define uniform covering numbers. The extended metrics can
be seen as measures of distance between two hypotheses on a given input set.
Definition 17 (Extended Metrics). Let (X , ρ) be a metric space. Let u = (a1, . . . , am), v =
(b1, . . . , bm) ∈ Xm for m ∈ N. The ∞-extended and ℓ2-extended metrics over Xm are defined by

ρ∞,m(u, v) = sup1≤i≤m ρ(ai, bi) and ρℓ2,m(u, v) =
√

1
m

∑m
i=1(ρ(ai, bi))

2, respectively. We drop

m and use ρ∞ or ρℓ2 if it is clear from the context.
5One can also define PAC learnability for a class of random hypotheses and get a similar result without

taking the expectation. However, working with a deterministic class helps to contrast the result with that of
Theorem 10.
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A useful property about extended metrics is that the ∞-extended metric always upper bounds the
ℓ2-extended metric, i.e., ρℓ2(u, v) ≤ ρ∞(u, v) for all u, v ∈ X . Based on the above definition of
extended metrics, we define the uniform covering number of a hypothesis class with respect to ∥.∥2.
Definition 18 (Uniform Covering Number with Respect to ∥.∥2). Let F be a hypothesis class of
functions from X to Y . For a set of inputs S = {x1, x2, . . . , xm} ⊆ X , we define the restriction
of F to S as F|S = {(f(x1), f(x2), . . . , f(xm)) : f ∈ F} ⊆ Ym. The uniform ϵ-covering
numbers of hypothesis class F with respect to ∥.∥∞2 , ∥.∥ℓ22 are denoted by NU (ϵ,F ,m, ∥.∥∞2 ) and
NU (ϵ,F ,m, ∥.∥ℓ22 ) and are the maximum values of N(ϵ,F|S , ∥.∥∞,m

2 ) and N(ϵ,F|S , ∥.∥ℓ2,m2 ) over
all S ⊆ X with |S| = m, respectively.

The following theorem connects the notion of uniform covering number with PAC learning. It
converts a bound on the ∥.∥ℓ22 uniform covering number of a hypothesis class to a bound on the
sample complexity of PAC learning the class; see Appendix ?? for a more detailed discussion.
Theorem 19. Let F be a class of functions from X to R. Then there exists an algorithm A with the
following property: For every distribution D over X × {−1, 1} and every ϵ, δ ∈ (0, 1), if S is a set
of m i.i.d. samples from D, then with probability at least 1− δ (over the randomness of S),

E(x,y)∼D [lγ (A(S), x, y)]

≤ inf
f∈F

E(x,y)∼D [lγ (f, x, y)] + 16ϵ+
24√
m

√
lnNU (γϵ,F ,m, ∥.∥ℓ22 ) + 6

√
ln(2/δ)

2m
.

Moreover, the algorithm that returns the function with the minimum error on S satisfies the above
property (i.e., Algorithm A such that A(S) = argminf∈F

1
|S|
∑

(x,y)∈S lγ (f, x, y)).

7 Total variation covers for random hypotheses

One idea to prove a generalization bound for noisy neural networks is to bound their covering numbers.
However, noisy neural networks are random functions, and therefore their behaviours on a sample set
cannot be directly compared. Instead, one can compare the output distributions of a random function
on two sample sets. We therefore use the recently developed tools from Fathollah Pour and Ashtiani
(2022) to define and study covering numbers for random hypotheses. These covering numbers are
defined based on metrics between distributions. Specifically, our analysis is based on the notion of
uniform covering number with respect to total variation distance.
Definition 20 (Total Variation Distance). Let µ and ν denote two probability measures over X and
let Ω be the Borel sigma-algebra over X . The TV distance between µ and ν is defined by

dTV (µ, ν) = sup
B∈Ω

|µ(B)− ν(B)|.

Furthermore, if µ and ν have densities f and g then

dTV (µ, ν) = sup
B∈Ω

∣∣∣ ∫
B

(f(x)− g(x))dx
∣∣∣ = 1

2

∫
X
|f(x)− g(x)| dx =

1

2
∥f − g∥1.

For two random variables x and y with probability measures µ and ν we sometimes abuse the
notation and write dTV (x, y) instead of dTV (µ, ν). For example, we write dTV (f1(x), f2(x)) in
order to refer to the Total Variation (TV) distance between pushforwards of x under mappings f1 and
f2. We also write d∞,m

TV

((
f1(x1), . . . , f1(xm)

)
,
(
f2(x1), . . . , f2(xm)

))
to refer to the extended TV

distance between mappings of the set S = {x1, . . . , xm} by f1 and f2. We use the extended total
variation distance to define the uniform covering number for classes of random hypotheses.

Definition 21 (Uniform Covering Number for Classes of Random Hypotheses). Let F be a class
of random hypotheses from X to Y . For a set of random variables S = {x1, x2, . . . , xm} ⊆ X , the
restriction of F to S is defined as F |S = {(f(x1), f(x2), . . . , f(xm)) : f ∈ F} ⊆ Ym

. Let Γ ⊆ X .
The uniform ϵ-covering numbers of F with respect to Γ and d∞TV is defined by

NU (ϵ,F ,m, d∞TV ,Γ) = sup
S⊆Γ,|S|=m

N(ϵ,F |S , d
∞,m
TV ).
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Some hypothesis classes that we analyze (e.g., single-layer noisy neural networks) may have “global”
total variation covers that do not depend on m. This will be addressed with the following notation:
NU (ϵ,F ,∞, ρ∞,Γ) = limm→∞ NU (ϵ,F ,m, ρ∞,Γ). The set Γ in Definition 21 is used to define
the input domain for which we want to find the covering number of a class of random hypotheses.
For instance, some of the covers that we see are derived with respect to inputs with bounded domain
or some need the input to be first smoothed by Gaussian noise. In this paper, we will be working with
the following choices of Γ

– Γ = Xd and Γ = XB,d: the set of all random variables defined over Rd and [−B,B]d,
respectively, that admit a generalized density function. For example, we use X0.5,d to
address the set of random variables in [−1/2, 1/2]d.

– Γ = ∆p×T = {U | U =
[
δu(0) . . . δu(T−1)

]⊤
, u(i) ∈ Rp} and Γ = ∆B,p×T =

{U | U =
[
δu(0) . . . δu(T−1)

]⊤
, u(i) ∈ [−B,B]p}, where δu(i) is the random variable

associated with Dirac delta measure on u(i). Note that ∆B,p×T ⊂ ∆p×T .

– Γ = Gσ,d ◦ XB,d = {gσ,d(x) | x ∈ XB,d}: all members of XB,d after being “smoothed” by
adding (convolving the density with) Gaussian noise.

We mentioned in Section 6 that a bound on the ∥.∥ℓ22 uniform covering number can be connected
to a bound on sample complexity of PAC learning. We now show that a bound on d∞TV covering
number of a class of random hypotheses can be turned into a bound on the ∥.∥ℓ22 covering number of
its derandomized version and, thus, PAC learning it.

Theorem 22 (∥.∥ℓ22 Cover of E(F) From d∞TV Cover of F (Fathollah Pour and Ashtiani, 2022)). Let
F be a class of functions from Rp×T to [−B,B]q . Then for every ϵ > 0 and m ∈ N we have

NU (2Bϵ
√
q, E(F),m, ∥.∥ℓ22 ) ≤ NU (ϵ,F ,m, d∞TV ,∆p×T ) ≤ NU (ϵ,F ,∞, d∞TV ,∆p×T ).

8 Bounding the covering number of recurrent models

In Section 6, we mentioned that finding a bound on covering number of a hypothesis class is a standard
approach to bound its sample complexity. In the previous section, we introduced a new notion of
covering number with respect to total variation distance that was developed by Fathollah Pour and
Ashtiani (2022). We showed how this notion can be related to PAC learning for classes of random
hypotheses. In the following, we give an overview of the techniques used to find a bound on the d∞TV
covering number of the class of noisy recurrent models. We also discuss why this bound results in a
sample complexity that has a milder logarithmic dependency on T , compared to bounds proved by
“unfolding” the recurrence and replacing the recurrent model with the T -fold composition.

One advantage of analyzing the uniform covering number with respect to TV distance is that it
comes with a useful composition tool. The following theorem basically states that when two classes
of hypotheses have bounded TV covers, their composition class has a bounded cover too. Note
that such a result does not hold for the usual definition of covering number (e.g., Definition 18);
see Fathollah Pour and Ashtiani (2022) for details.
Theorem 23 (TV Cover for Composition of Random Classes, Lemma 18 of Fathollah Pour and
Ashtiani (2022)). Let F be a class of random hypotheses from Rd to Rp and H be a class of random
hypotheses from Rp to Rq. For any ϵ1, ϵ2 > 0 and m ∈ N, denote N1 = NU

(
ϵ1,F ,m, d∞TV ,Xd

)
.

Then we have,

NU

(
ϵ1 + ϵ2,H ◦ F ,m, d∞TV ,Xd

)
≤ NU

(
ϵ2,H,mN1, d

∞
TV ,Xp

)
.N1.

An approach to bound the TV uniform covering number of a recurrent model REC[F , T ] is to
consider it as the T -fold composition F ◦ F . . . ◦ F . One can then use a similar analysis to that
of Fathollah Pour and Ashtiani (2022) to bound the covering number of the T -fold composition.
Unfortunately, this approach fails to capture the fact that a fixed function f ∈ F is applied recursively,
and therefore results in a sample complexity bound that grows at least linearly with T .

Instead, we take another approach to bound the covering number of recurrent models. Intuitively, we
notice that any function in the T -fold composite class F ◦ . . . ◦ F = {f1 ◦ . . . ◦ fT | f1, . . . , fT ∈
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F} is determined by T functions from F . On the other hand, any function in REC[F , T ] ={
h | h(U) = Last

(
f
R
(U, T − 1)

)}
is only defined by one function in F and the capacity of this

class must not be as large as the capacity of F ◦ . . . ◦ F . Interestingly, data processing inequality
for total variation distance (Lemma ??) suggests that if two functions f and f̂ are “globally” close
to each other with respect to TV distance (i.e., dTV (f(x), f̂(x)) ≤ ϵ for every x in the domain),

then dTV (f(f(x)), f̂(f̂(x))) ≤ 2ϵ (i.e., f ◦ f and f̂ ◦ f̂ are also close to each other). By applying
the data processing inequality recursively, we can see that for the T -fold composition we have
dTV (f ◦ . . . ◦ f(x), f̂ ◦ . . . ◦ f̂(x)) ≤ ϵT . The above approach results in the following theorem
which bounds the ϵ-covering number of a noisy recurrent model with respect to TV distance by the
(ϵ/T )-covering number of its recurring class. Intuitively, this theorem helps us to bound the covering
number of noisy recurrent models using the bounds obtained for their non-recurrent versions. Here,
Gaussian noise is added to both the input of the model (i.e., Fσ = F ◦ Gσ) and the output of the
model (by composing with Gσ).

Theorem 24 (TV Covering Number of Gσ ◦ REC[Fσ, T ] From Gσ ◦ Fσ). Let s, p, q ∈ N such that
s = p+ q − 1. Let F be a class of functions from XB,s to XB,q and denote by Fσ = F ◦ Gσ,s the
class of its composition with noise. Then we have

NU

(
ϵ,Gσ ◦ REC[Fσ, T ],∞, d∞TV ,∆B,p×T

)
≤ NU

(
ϵ/T,Gσ,q ◦ Fσ,∞, d∞TV ,XB,s

)
.

For using this theorem, one needs to have a finer ϵ/T -cover for the recurring class. As we will see in
the next section, this will translate into a mild logarithmic sample complexity dependence on T .

8.1 Covering noisy recurrent networks

An example of Fσ is the class MNETσ[p0, pk, w] of well-defined noisy multi-layer net-
works (Definition 13). Theorem 24 suggests that a bound on the covering number of Gσ ◦
REC[MNETσ[p0, pk, w], T ] can be found from a bound for Gσ ◦ MNETσ[p0, pk, w]. We use the
following theorem as a bound for the class of single-layer noisy sigmoid networks together with
theorem 23 to bound the covering number of Gσ ◦MNETσ[p0, pk, w] (see Appendix ??, Theorem ??).

Theorem 25 (A TV Cover for Single-Layer Noisy Neural Networks, Theorem 25 of Fathollah Pour
and Ashtiani (2022)). For every p, d ∈ N, ϵ > 0, σ < 5d/ϵ we have

logNU (ϵ,Gσ,p ◦ NET[d, p],∞, d∞TV ,Gσ,d ◦ X0.5,d) ≤ p(d+ 1) log

30
d5/2

√
ln
(
5d−ϵσ

ϵσ

)
ϵ3/2σ2

ln

(
5d

ϵσ

) .

Interestingly, the above bound (on the logarithm of the covering number) is logarithmic with respect
to 1/ϵ. We will extend this result to multi-layer noisy networks, and then apply Theorem 24 to
obtain the following bound on the covering number noisy recurrent neural networks. Crucially, the
dependency (of the logarithm of the covering number) on T is only logarithmic.

Theorem 26 (A TV Covering Number Bound for Noisy Sigmoid Recurrent Networks). Let T ∈ N.
For every ϵ, σ ∈ (0, 1) and every well-defined class REC[MNETσ[p0, pk, w], T ] we have

logNU

(
ϵ,Gσ ◦ REC[MNETσ[p0, pk, w], T ],∞, d∞TV ,∆0.5,p×T

)
= O

(
w log

(
wT

ϵσ
log

(
wT

ϵσ

)))
= Õ

(
w log

(
T

ϵσ

))
.

Finally, we turn the above bound into a ∥.∥ℓ22 covering number bound for the derandomized function
E
(
Gσ ◦ REC[MNETσ[p0, pk, w], T ]

)
by an application of Theorem 22. We then upper bound the

sample complexity by the logarithm of covering number (see Theorem 19) and conclude Theorem 15.
Limitations and future work. Our results are derived for sigmoid (basically bounded, monotone,
and Lipschitz) activation functions. It is open whether such results can be proved for unbounded
activation functions such as RELU. Our results are theoretical and we leave empirical evaluations on
the performance of noisy networks to future work.
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9 More on related work

There is plethora of work on generalization in neural networks. There are a family of approaches
that aim to bound the VC-dimension of neural networks. (Baum and Haussler, 1988; Maass, 1994;
Goldberg and Jerrum, 1995; Vidyasagar, 1997; Sontag et al., 1998; Koiran and Sontag, 1998;
Bartlett et al., 1998; Bartlett and Maass, 2003; Bartlett et al., 2019). These approaches result in
generalization bounds that are dependent on the number of parameters. Another family of approaches
are aimed at obtaining generalization bounds that are dependent on the norms of the weights and
Lipschitz continuity properties of the network (Bartlett, 1996; Anthony et al., 1999; Zhang, 2002;
Neyshabur et al., 2015; Bartlett et al., 2017; Neyshabur et al., 2018; Golowich et al., 2018; Arora
et al., 2018; Nagarajan and Kolter, 2018; Long and Sedghi, 2020). It has been observed that these
generalization bounds are usually vacuous in practice. One speculation is that the implicit bias of
gradient descent (Gunasekar et al., 2017; Arora et al., 2019; Ji et al., 2020; Chizat and Bach, 2020; Ji
and Telgarsky, 2021) can lead to benign overfitting (Belkin et al., 2018, 2019; Bartlett et al., 2020,
2021). It has also been conjectured that uniform convergence theory may not be able to fully capture
the performance of neural networks in practice (Nagarajan and Kolter, 2019; Zhang et al., 2021).
It has been shown that there are data-dependent approaches that can achieve non-vacuouys bounds
(Dziugaite and Roy, 2017; Zhou et al., 2019; Negrea et al., 2019). There are also other approaches
that are independent of data (Arora et al., 2018); see Fathollah Pour and Ashtiani (2022) for more
details.

Adding different types of noise such as dropout noise (Srivastava et al., 2014), DropConnect (Wan
et al., 2013), and Denoising AutoEncoders (Vincent et al., 2008) are shown to be helpful in training
neural networks. Wang et al. (2019) and Gao and Zhou (2016) theoretically analyze the generalization
under dropout noise. More recently, Fathollah Pour and Ashtiani (2022) developed a framework
to study the generalization of classes of noisy hypotheses and show that adding noise to the output
of neurons in a network can be helpful in generalization. Jim et al. (1996) show that additive and
multiplicative noise can help speed up the convergence of RNNs on local minima surfaces. Recently,
Lim et al. (2021) showed that noisy RNNs are more stable and robust to input perturbations by
formalizing the regularization effects of noise.

Another line of work focuses on the generalization of neural network that are trained with Stochastic
Gradient Descent (SGD) or its noisy variant Stochastic Gradient Langevin Descent (SGLD) (Russo
and Zou, 2016; Xu and Raginsky, 2017; Russo and Zou, 2019; Steinke and Zakynthinou, 2020;
Raginsky et al., 2017; Haghifam et al., 2020; Neu et al., 2021). Zhao et al. (2020) analyze the memory
properties of recurrent networks and how well they can remember the input sequence. Tu et al. (2020)
study the generalization of RNN by analyzing the Fisher-Rao norm of weights, which they obtain
from the gradients of the network. They offer generalization bounds that can potentially become
polynomial in T . Allen-Zhu and Li (2019) analyze the change in output through the dynamics of
training RNNs and prove generalization bounds for recurrent networks that are again polynomial in
T .
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