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ABSTRACT

The multi-plane encoding approach has been highlighted for its ability to serve
as static and dynamic neural radiance fields without sacrificing generality. This
approach constructs related features through projection onto learnable planes and
interpolating adjacent vertices. This mechanism allows the model to learn fine-
grained details rapidly and achieves outstanding performance. However, it has
limitations in representing the global context of the scene, such as object shapes
and dynamic motion over times when available training poses are sparse. In this
work, we propose refined tensorial radiance fields that harness coordinate-based
networks known for strong bias toward low-frequency signals. The coordinate-
based network is responsible for capturing global context, while the multi-plane
network focuses on capturing fine-grained details. We demonstrate that using
residual connections effectively preserves their inherent properties. Additionally,
the proposed curriculum training scheme accelerates the disentanglement of these
two features. We empirically show that the proposed method achieves comparable
results to multi-plane encoding with high denoising penalties in static NeRFs.
Meanwhile, it outperforms others for the task with dynamic NeRFs using sparse
inputs. In particular, we prove that excessively increasing denoising regularization
for multi-plane encoding effectively eliminates artifacts; however, it can lead to
artificial details that appear authentic but are not present in the data. On the other
hand, we note that the proposed method does not suffer from this issue.

1 INTRODUCTION

Neural Radiance Fields (NeRFs) have gained recognition for their ability to create realistic images
from various viewpoints using the volume rendering technique (Mildenhall et al., 2021). Early
studies have demonstrated that multi-layer perception (MLP) networks, combined with sinuosi-
dal encoding, can effectively synthesize 3-dimensional novel views (Tancik et al., 2020; Sitzmann
et al., 2020; Martin-Brualla et al., 2021; Barron et al., 2021; 2022). These studies have shown that
simple coordinate-based MLP networks exhibit strong low-frequency bias, and incorporating wide-
spectrum sinusoidal encoding allows for capturing both low and high-frequency signals. Subsequent
works illustrated the importance of appropriate sinusoidal encoding in conjunction with target sig-
nals to enhance performance (Martel et al., 2021; Lindell et al., 2022; Shekarforoush et al., 2022). To
expedite the learning process, approaches explicitly parameterizing spatial attributes through multi-
plane combinations have been introduced (Chen et al., 2022; Chan et al., 2022). In contrast to the
aforementioned approaches, these methods dramatically reduce training time and produce cleaner
and more realistic images, albeit at the cost of greater memory requirements.

For broader real-world applicability, extensive efforts have focused on reliably constructing radi-
ance fields in cases of sparse input data. After the emergence of dynamic scenes dealing with time
sparsity, addressing data sparsity has gained more attention in this field, as NeRF models commonly
face overfitting issues due to the lack of consistent data for 3 or 4-dimensional space (Pumarola
et al., 2021). One set of solutions tackled this by leveraging a pretrained image encoder to com-
pare rendered scenes against consistent 3D environments (Yu et al., 2021; Wang et al., 2021; Chen
et al., 2021; Jain et al., 2021). Another approach incorporated additional information, such as depth
or color constraints, to maintain 3-dimensional coherence (Deng et al., 2022; Yuan et al., 2022;
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(a) HexPlane (b) Ours

Figure 1: The qualitative results of the standup case in dynamic NeRFs using 25 training views
(about 17% of the original data). This is challenging due to the limited information available along
the time axis. Figure (a) is produced by HexPlane. (Cao & Johnson, 2023). Figure (b) is the rendered
image of the proposed method.

Roessle et al., 2022; Truong et al., 2023). Methods progressively adjusting the frequency spec-
trum of position encoding have also proven effective in counteracting overfitting without additional
information (Yang et al., 2023; Song et al., 2023).

However, a notable limitation of prior strategies dealing with sparse inputs is their less-than-ideal
visual output. While the recent work reported successful reconstruction of static NeRF using voxel-
grid parameterization in the sparse input regime with the assistance of denoising penalties like total
variation (Sun et al., 2023), they often lack in adequately representing global elements like object
morphology and dynamic motion, as evident in Figure 1a. Even if some renderings look crisp upon
close inspection, the overall quality of the rendered results deteriorates due to the absence of global
structures.

To alleviate this issue, we introduce a simple yet powerful approach to fundamentally improve the
performance of static and dynamic NeRFs from sparse inputs. In this framework, the coordinate-
based features are responsible for capturing global context, while the multiple-plane features are
responsible for capturing fine-grained details. Moreover, in contexts with occlusions or time-variant
dynamics, we employ a progressive weighting scheme that prevents the model from falling into
local minima. This prioritizes low-frequency coordinate-based features to capture the global context
first, allowing multiple-plane features to describe fine-grained target signals gradually. As a result,
images generated by the proposed method exhibit improved clarity in terms of global contexts and
fewer artifacts compared to baselines, as illustrated in Figure 1b. Our extensive experiments show
that the proposed method achieves comparable results of multi-plane encoding with high denoising
penalties in static NeRFs. Particularly, it outperforms baselines in dynamic NeRFs from the sparse
inputs.

2 RELATED WORK

Coordinate-based network and sinusoidal encoding In the initial studies of NeRFs, MLP net-
works with sinusoidal encoding were used to simultaneously describe low and high-frequency de-
tails (Mildenhall et al., 2021; Martin-Brualla et al., 2021; Barron et al., 2021; 2022). However, it was
found that a classical coordinate network without this encoding has a bias toward lower frequencies
(Rahaman et al., 2019; Yüce et al., 2022). The importance of positioning encoding and sinusoidal
activation led to the fundamental exploration of the relationship between rendering performance and
the frequency values of target signals (Tancik et al., 2020; Sitzmann et al., 2020; Fathony et al., 2021;
Ramasinghe et al., 2022). Lindell et al. (2022) uncovered that improper high-frequency embedding
results in artifacts negatively impacting the quality of reconstruction. They addressed this issue us-
ing multi-scale bandwidth networks, where each MLP layer has a distinct spectrum of frequency
embedding. Subsequent research utilized residual connections to faithfully maintain the designated
spectrum without overwhelming high-frequency components (Shekarforoush et al., 2022).

Explicit parameterization Recent developments in explicit representations, such as voxel-grid,
hash encoding, and multi-planes, have gained attention due to their fast training, rendering speed,
and superior performance compared to positioning encoding-based networks (Liu et al., 2020; Sun
et al., 2022; Müller et al., 2022; Chen et al., 2022; Cao & Johnson, 2023; Fridovich-Keil et al., 2023).
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Sun et al. (2022) introduced the direct voxel field, using minimal MLP layers to speed up training
and rendering. Instant-NGP, based on hash maps, provides multi-resolution spatial features and
versatility, extending beyond 3-dimensional spaces to high-resolution 2-dimensional images (Müller
et al., 2022). The multi-plane approach has been highlighted for its applicability in expanding to 4-
dimensional without compromising generality, decomposing targets into multiple planes, with each
plane responsible for a specific axis (Chen et al., 2022; Cao & Johnson, 2023; Fridovich-Keil et al.,
2023). In particular, while the aforementioned approaches were executed on special on-demand
GPU computations to boost efficiency, this method achieves comparable speed and performance
based on general auto-differential frameworks. As a result, the multiple-plane approach broadens its
scope to various tasks, including 3D object generation, video generation, 3D surface reconstruction,
and dynamic NeRF (Gupta et al., 2023; Yu et al., 2023; Wang et al., 2023; Cao & Johnson, 2023;
Fridovich-Keil et al., 2023).

NeRFs in the sparse inputs Early efforts incorporated pre-trained networks trained on large
datasets to compensate for the lack of training data (Jain et al., 2021; Yu et al., 2021; Wang et al.,
2021). Another alternative approach incorporated additional information, such as depth or color con-
straints, to ensure the preservation of 3D coherence (Deng et al., 2022; Yuan et al., 2022; Roessle
et al., 2022; Truong et al., 2023). Without the assistance of off-the-shelf models and additional, this
line of works devised new regularization to train NeRFs with fewer than ten views. Reg-NeRF in-
corporates patch-wise geometry and appearance regularization (Niemeyer et al., 2022). This paper
verified their regularization performs well on forward-facing examples like DTU and LLFF datasets.
They did not validate object-facing scenes because this assumption demands a high correlation be-
tween adjacent views. Recently, progressively manipulating the spectrum of positioning encoding
from low to high-frequency proves effectiveness in mitigating over-fitting without relying on ad-
ditional information (Yang et al., 2023; Song et al., 2023). Compared to explicit representations,
those still suffer from unsatisfactory visual quality, characterized by blurry boundaries. Recent stud-
ies using total variation regularization on expicit representations get rid of artifacts and construct
smoother surfaces (Cao & Johnson, 2023; Fridovich-Keil et al., 2023; Sun et al., 2023). However,
our findings indicate that this regularization can introduce artificial details that seem real but are not
in the data. This can also result in the model failing to converge in certain scenes. We present this
problem in the experimental results, both qualitatively and quantitatively.

Another work attempted to use tri-planes with sinusoidal encoding of coordinates to create smoother
surfaces (Wang et al., 2023), but their direction differs from our method since they mainly focus on
enriching available features, as well as they did not demonstrate the role of tri-planes and coordinate
features. In this paper, our new approach, refined tensorial radiance fields, proposes incorporating
two distinct features: coordinate-based and multiple-plane features. We emphasize that the disen-
tanglement of these two heterogeneous features is crucial for reliably constructing NeRFs in sparse
inputs. The proposed method performs well even with higher-dimensional targets like dynamic
NeRFs and extremely limited sparse inputs.

3 BACKGROUND

Before delving into the details of the proposed method, we briefly review the fundamentals of the
neural radiance fields and multi-plane approach. We describe TensoRF (Chen et al., 2022) for the
static NeRFs and HexPlane (Cao & Johnson, 2023) for the dynamic NeRFs. These methods are
considered representative works in multi-plane encoding and are serve as main baselines in this
paper.

3.1 NEURAL RADIANCE FIELDS

Mildenhall et al. (2021) proposed the original NeRF that uses volume rendering to compute pre-
dicted color values for novel view synthesis. In this framework, we consider a camera with ori-
gin o and a ray direction d. A ray r, composed of n points, is constructed as o + τk · d, where
τk ∈ {τ1, · · · , τn}. The neural radiance field, parameterized by Θ, predicts the color and density
values ckΘ, σk

Θ at each point. Using volume rendering, the predicted color value ĉ(r) are computed
as follows; ĉ(r; Θ) =

∑
n Tn(1− exp(−σk

Θ(τk+1 − τk)))c
k
Θ. Here, the accumulated transmittance
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(a) TensoRF (b) HexPlane

Figure 2: The schematic of baselines that use the multi-plane encoding. (a) TensoRF employs three
planes and lines (Chen et al., 2022). (b) HexPlane adopts a total of six multiple planes to include the
time axis (Cao & Johnson, 2023).

is computed by Tn = exp(−
∑

k<n σ
k
Θ(τk+1 − τk)). The network parameters Θ are trained by

minimizing the phometric loss, comparing ĉ(r) to the ground-truth color c.

However, raw coordinate features alone are insufficient for describing high-frequency details. To re-
solve this, the paper proposes sinusoidal encoding, which transform coordinates into wide-spectrum
frequency components. This encoding enables the description of both low and high-frequency sig-
nals, on the other hands, training can be time-consuming since it relies on implicit learning.

3.2 TENSORF: TENSORIAL RADIANCE FIELDS

The tensorial radiance fields provide an explicit parameterization using multiple-plane and fewer
MLP layers. Compared to other explicit parameterization (Liu et al., 2020; Sun et al., 2022; Müller
et al., 2022), multi-plane parameterization efficiently proves to be efficient for 3-dimensional NeRFs,
provided that the plane resolution is sufficiently high. For simplicity, we assume that multi-planes
share the same dimension in height, width, and depth denoted as H . This approach employs both
plane features denoted as M = {Mxy,Myz,Mzx} and vector features V = {Vz, Vx, Vy}. For
convenience, we denote two index variables, i ∈ {xy, yz, zs} for M and j ∈ {z, x, y} for V . The
plane and vector feature is denoted as Mi ∈ Rc×H×H , Vi ∈ Rc×1×H . Both plane and vector
features have a channel dimensions c to represent diverse information. To calculate the feature value
at a given point s := (sx, sy, sz), the point are projected to corresponding planes and lines, and
features on the nearest vertices are bilinear interpolated, as illustrated in Figure 2a. After obtaining
the feature values from M and V , denoted as fM = {fM

xy , f
M
yz , f

M
zx}, and fV = {fV

z , fV
x , fV

y }
and each feature f ·

i ∈ Rc , hence fM, fV ∈ R3c. We use element-wise multiplication on fM,
fV to get final feature f = fM ⊙ fV ∈ R3c. For a more detailed explanation of multi-plane
encoding, please refer to Appendix A. TensoRF has independent multi-plane features for density
and appearance. TensoRF predicts occupancy by channel-wise summation of final density features
across all planes. Conversely, appearance features are concatenated and then fed into MLP layers or
spherical harmonics function.

Multiple-plane encoding is mainly designed to emphasize local representation with the nearest ver-
tices. Therefore, TensoRF proposes gradually increasing the resolutions of the learnable planes and
vectors during training to address this locality. This intends the model to learn the global context at
the coarser resolution and then enhance finer details at the high resolution.

3.3 HEXPLANE

The following work, HexPlane, extends the multi-plane approach by incorporating the time axis,
enabling it to work effectively in dynamic NeRFs. To achieve this, HexPlane builds upon the line
features used in TensoRF, extending them into plane features by adding a time axis. This results
in six planes, three spatial planes denoted as M = {Mxy,Myz,Mzx}, Mi ∈ Rc×H×H and three
temporal planes V = {Vtz, Vtx, Vty}, Vi ∈ Rc×T×H as shown in Figure 2b. Likewise the previ-
ous subsection, we denote two index variables, i ∈ {xy, yz, zs} for M and j ∈ {tz, tx, ty} for
V . Compared to TensoRF, a key difference is that the sample s := (sx, sy, sz, t) includes the time
variable. In dynamic NeRFs, dealing with temporal sparsity is a crucial factor for improving per-
formance since the time axis contains relatively sparse information compared to spatial information.
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Figure 3: Conceptual illustration of the proposed method utilizing global contexts by coordinate
networks and fine-grained details by multi-plane encoding. This method effectively displays two
heterogeneous features. Notably, individual plane feature differs across channels, highlighting their
disentanglement from other channels. All graphical representations are generated based on whether
multi-plane features are masked or not, using our proposed method trained with 25 training views.

HexPlane addresses this challenge by employing denoising regularization, laplacian smoothing, that
constrains similarity among adjacent multi-plane features. For an arbitrary plane feature P , Lapla-
cian smoothing function Ll is defined as below, where h,w refer row and column indices:

Ll(P ) =
∑
c

∑
hw

(∥∥P c
h+1,w − P c

h,w

∥∥2
2
+

∥∥P c
h,w+1 − P c

h,w

∥∥2
2

)
. (1)

Specifically, HexPlane applies laplacian smoothing on both plane features but give higher priority to
temporal planes. This emphasize that time information is significant for capturing dynamic motion
accurately. Fundamental operations of HexPlane align with TensoRF, including the direct prediction
of density values by multi-plane features and the prediction of color values by concatenating multi-
plane features, which are then fed into MLP layers.

4 REFINED TENSORIAL RADIANCE FIELDS: HARNESSING
COORDINATE-BASED NETWORKS

We propose a novel method, referred to as “refined tensorial radiance field”, that leverages
coordinate-based networks. To mitigate the constraints of locality inherent in grid structures, our
method capitalizes on a combination of distinct coordinate feature encoding techniques and multi-
plane representations, as depicted in Figure 3. subsection 4.1 illustrates the proposed residual-based
architecture and the regularization strategy to facilitate the disentanglement of two heterogeneous
features. In subsection 4.2, we explain a curriculum weighting strategy for multi-plane features. It
ensures channel-wise disentanglement, providing a more diverse representation without the risk of
overfitting where all channels exhibit identical expressions.

4.1 ARCHITECTURE AND LOSS FUNCTION

We describe how our model works in the dynamic NeRF case. Applying this model to a 3-
dimensional static NeRF is feasible by simply excluding the t variable. A key aspect of our net-
work architecture is the utilization of coordinate-based networks along with explicit representation.
In high-level context, we replace sinusodial encoding with multi-plane encoding while employing
the architecture of the origianl NeRF. A coordinate s := (sx, sy, sz, t) is transformed via multi-
plane encoding from spatial and temporal plane features M, V with element-wise multiplication
f = fM ⊙ fV ∈ R3c. These features are then fed into MLPs parameterized by Θ along with
their respective coordinates s. As shown by Shekarforoush et al. (2022), residual networks yield
multi-fidelity results by preserving their pre-designated sinusoidal embeddings. In line with this, the
proposed method adopts skip connections between acquired features and the hidden layer to serve
the same purpose. Our empirical findings demonstrate that this operation promotes the disentangle-
ment of two features, aligning with our intended purpose.
We introduce a loss function that combines photometric loss and laplacian smoothing across multi-
plane features. First, we define the photometric loss Lp as mean square errors between rendered
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Figure 4: The schematic of the proposed method.

color ĉ(r) and ground truth pixel color c, Lp(Θ,M,V) =
∑

r∥ĉ(r; Θ,M,V) − c∥2. To tackle the
ill-conditioned training problem in NeRFs arising from sparse-input situations, we apply Laplacian
smoothing on both feature planes. Laplacian smoothing tends to excessively smooth signals, making
them conform to global tendency rather than accurately local finer details (Sadhanala et al., 2017).
Additionally, we regularize each plane feature using the L1 norm for the sparsity of multi-plane
features. We use, ∥M∥1 and ∥V∥1 as

∑i=3
i=1∥Mi∥1 and

∑i=3
i=1∥Vi∥1 respectively. The entire loss

function is as follows:

L(Θ,M,V) = Lp(Θ,M,V) + λ1

3∑
i=1

(
Ll(Mi) + λ2Ll(Vi)

)
+ λ3

(
∥M∥1 + ∥V∥1

)
(2)

The only difference in the case of static NeRF comes from the dimension of V . Laplacian loss
is not applied to V; the rest of the details are the same as in the 4D case. The hyperparameters
and implementation detail can be found in Appendix B. While increasing the value of λ1 allows
to removes floating artifacts by over-smoothing the multi-plane features, it creates undesirable de-
formation that looks authentic but not be present in the training data. Hence, we opt not to utilize
excessively high denoising weights. Instead, the coordinate network provides consistent training for
multi-plane encoding when capturing high-frequency details. We empirically validate this through
our experiments.

4.2 CURRICULUM WEIGHTING STRATEGY FOR MULTI-PLANE ENCODING

The architecture in the proposed method performs well in scenes with mild occlusion and less dy-
namic motion. However, it encounters challenges in severe ill-conditioned situations, such as heavy
occlusion and rapid motion, as seen in the drums in the static NeRF and the standup in the
dynamic NeRF. To alleviate this issue, we propose a curriculum weighting strategy for multi-plane
encoding, aiming to manipulate the engagement of multi-plane features in accordance with train-
ing iterations. This approach trains the coordinate-based network first, followed by the subsequent
training of multi-plane features. In this subsection, we denote t as the training iteration. Technically,
we introduce a weighting factor denoted as α(t) to control the degree of engagement of multi-plane
features along the channel dimension of multi-planes. Here, f = {f1, f2, f3}, and fi ∈ Rc repre-
sents the output of multi-plane encoding, and the weighting factor γ(t) = {γ1(t), · · · , γc(t)} ∈ Rc

is defined as follows:

γj(t) =


0 if α(t) ≤ j
1−cos((α(t)−j)π)

2 if 0 < α(t)− j ≤ 1

1 otherwise,
(3)

where, j ∈ {1, · · · , c} is the index of channel dimension and α(t) = c · (t−ts)/(te−ts) ∈ [te, ts]
is proportional to the number of training iterations t in the scheduling interval [ts, te]. The final
features f ′

i are obtained by f ′
i = fi ⊙ γ(t). Hence, this weighting function is applied to each

channel of multi-plane features. After reaching the last time-step of curriculum training, all channels
of multi-plane features are fully engaged. It’s worth noting that this weighting function is similar to
those used in previous works such as (Park et al., 2021; Lin et al., 2021; Yang et al., 2023; Heo et al.,
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Table 1: Result of evaluation statistics on the static NeRF datasets. We conduct five trials for each
scene and report average scores. Average PSNR, SSIM, and LPIPS are calculated across all scenes.
We indicates best performance as bold and second best as underline

Models PSNR ↑ Avg.
PSNR ↑ Avg.

SSIM ↑ Avg.
LPIPS ↓

chair drums ficus hotdog lego materials mic ship

Simplified_NeRF 20.35 14.19 21.63 22.57 12.45 18.98 24.95 18.65 19.22 0.827 0.265
DietNeRF 21.32 14.16 13.08 11.64 16.12 12.20 24.70 19.34 16.57 0.746 0.333
HALO 24.77 18.67 21.42 10.22 22.41 21.00 24.94 21.67 20.64 0.844 0.200
FreeNeRF 26.08 19.99 18.43 28.91 24.12 21.74 24.89 23.01 23.40 0.877 0.121

DVGO 22.35 16.54 19.03 24.73 20.85 18.50 24.37 18.17 20.57 0.829 0.145
VGOS 22.10 18.57 19.08 24.74 20.90 18.42 24.18 18.16 20.77 0.838 0.143
iNGP 24.76 14.56 20.68 24.11 22.22 15.16 26.19 17.29 20.62 0.828 0.184
TensoRF 26.23 15.94 21.37 28.47 26.28 20.22 26.39 20.29 23.15 0.864 0.129
K-Planes 27.30 20.43 23.82 27.58 26.52 19.66 27.30 21.34 24.24 0.897 0.085
Ours 28.02 19.55 20.30 29.25 26.73 21.93 26.42 24.27 24.56 0.896 0.092

2023). However, the key difference is a channel-wise weighting function for multi-plane features.
This approach allows the decoding network to receive encodings from all channels of multi-plane
features, with later-order channels being updated more slowly than earlier-order channels. Through
our experiments, we found that this strategy effectively prevents all channels of multi-plane features
from converging to similar patterns, thereby mitigating overfitting issues.

5 EXPERIMENTS

In this section, we present our experiments designed to address three pivotal questions: 1) Do exist-
ing sinusoidal embedding techniques effectively render clear scenes when given sparse input data?
2) Does the introduction of denoising regularizations enable explicit parameterization methods to
consistently capture 3D coherence without artifacts with sparse input data? 3) Does the integration
of disparate features, such as multiple planes and coordinates, substantially improve the perfor-
mance of both static and dynamic NeRF?

To answer those questions, we conducted vast experiments over scenarios of two sparse input cases:
a few-shot static case and a 4-dimensional dynamic case. We also include ablation studies to sub-
stantiate the rationale behind the architectural choices in our proposed model. The design efficacy
of our model is validated in two key areas: the reliance on regularization mechanisms and feature
disentanglement.

We choose the datasets as in-ward-facing object poses, as they are more likely to be occluded by
the objects from various viewing locations compared to forward-facing poses. For performance
evaluation, we employ the PSNR metric to gauge the quality of image reconstruction. In addition,
SSIM and LPIPS scores are reported to assess the perceptual quality of the rendered images. Further
experimental details are described in Appendix C.

5.1 3-DIMENSIONAL STATIC RADIANCE FIELDS

We conducted 3-dimensional static NeRF experiments on the NeRF-synthetic dataset to evaluate
whether our model adequately captures both the global context of a scene and fine details without
introducing undesirable artifacts under sparse input conditions. Consistent with prior studies such as
(Jain et al., 2021; Yang et al., 2023), we trained all models with 8 views. We compare our proposed
models with sinusoidal encoding methods; Simplified NeRF, DietNeRF (Jain et al., 2021), HALO
(Song et al., 2023) and FreeNeRF (Yang et al., 2023) and for explicit spatial parameterization meth-
ods; DVGO (Sun et al., 2022), VGOS (Sun et al., 2023), iNGP (Müller et al., 2022), TensoRF (Chen
et al., 2022) and K-Planes (Fridovich-Keil et al., 2023). For all considered baselines, we applied
regularization techniques that are congruent with their inherent characteristics and configurations.

The quantitative rendering results are shown in Table 1 and Figure 5. First, we observed that the
proposed method outperforms the previous state-of-the-art method, FreeNeRF, in terms of both
PSNR and perceptual quality. Sinusoidal encoding-based networks fail to capture high-frequency
details and are prone to underfit in data with high-resolution structures, (ficus, lego). In con-
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Figure 5: Rendered images of lego, drums and ship cases in the static NeRF dataset by FreeN-
eRF, TensoRF, K-Planes and ours. The rendered images are {83, 129, 95}-th in the test-set respec-
tively.

trast, grid-based models show robust results in reconstructing high-frequency structures. However,
for data with a strong non-Lambertian effect (drums, ship), grid-based models tend to miss
the global shape and are prone to overfit in high-frequency. Our proposed multi-plane encoding
technique can exclusively capture fine-grained details while maintaining global shape learned by
coordinate features, leading to more robust novel view synthesis in sparse-input scenarios.

5.2 4-DIMENSIONAL DYNAMIC RADIANCE FIELDS

To demonstrate the robustness of the proposed model on more spare input cases, we conduct our
experiences on the dynamic scenarios. We conducted 4-dimensional dynamic NeRF experiences on
a D-NeRF data set. This data set comprises monocular cameras of about 50-100 frames duration and
different in-ward facing views for each timestep. To verify a harsh situation, we also experimented
with fewer frames {15, 20, 25} sparse in both views and time aspects. Each view was sampled
uniformly for each scene. To demonstrate the need for our refined tensorial radiance fields, we
compare our method with HexPlane (Cao & Johnson, 2023) and its variants.

The observations made in subsection 5.1 are even more evident in the dynamic NeRFs. The proposed
method outperforms every setting of HexPlane in all metrics in the D-NeRFs, as shown in Table 2.
HexPlane discretizes the continuous time axis into finite bins, making it less responsive to the time-
variant motion of objects when the available training poses are sparse. In contrast, the proposed
method can capture the time-variant motion of objects by harnessing the coordinate-based networks
first, with multi-plane encoding supplementing the remaining details. For instance, the variants
of HexPlane do not accurately depict the shape of the blue ball over time, whereas the proposed
method successfully does, including the reflection of light on the green ball. In the case of the
jumpingjack sequence, the proposed method exhibits fewer artifacts and maintains the boundary
of the scene better compared to HexPlane.

5.3 ABLATION STUDY

We assess the role of Total variation regularization or Laplacian smoothing within TensoRF, Hex-
Plane, and the proposed method. In this experiment, we incrementally increase the parameter λ1

from 0.0001 to 1.0, multiplying by a factor of 10. Table 3 demonstrate that our proposed method
outperforms all experiment scenarios in both static and dynamic NeRF, with the sole exception of
when λ1 = 0.001 in the static NeRF. A notable performance difference was observed in the dynamic
NeRF, which presents greater challenges due to time sparsity compared to the static NeRF. In detail,
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Table 2: Result of evaluation statistics on the D-NeRF datasets. HexPlane employs the weight
of denoising regularization as λ1 = 0.01 via grid-search. Average PSNR, SSIM, and LPIPS are
calculated across all scenes. We indicates best performance as bold for each cases

Training
views Models PSNR ↑ Avg.

PSNR ↑ Avg.
SSIM ↑ Avg.

LPIPS ↓
bouncingballs hellwarrior hook jumpingjacks lego mutant standup trex

15 views
HexPlane 26.56 15.91 21.03 20.35 23.64 23.40 21.48 23.05 21.93 0.921 0.092
K-Planes 24.10 15.88 19.59 20.97 23.55 22.21 20.63 25.08 21.50 0.922 0.086
Ours 28.09 16.48 20.90 21.51 23.54 23.38 21.87 24.88 22.30 0.925 0.087

20 views
HexPlane 28.45 16.85 22.30 20.87 23.73 25.02 23.73 24.45 23.18 0.929 0.082
K-Planes 25.43 17.25 21.07 21.40 23.12 25.01 21.01 25.84 22.58 0.931 0.070
Ours 31.15 17.99 22.67 22.58 23.49 25.86 23.55 26.04 23.93 0.935 0.072

25 views
HexPlane 30.49 17.61 23.10 22.85 24.29 25.81 23.74 25.30 24.15 0.935 0.074
K-Planes 28.29 9.18∗ 22.01 22.49 24.33 26.02 22.77 26.37 22.68 0.929 0.107
Ours 34.61 19.21 23.82 24.46 23.78 26.75 26.07 26.29 25.34 0.941 0.063

Full views
HexPlane 39.21 23.92 27.97 30.53 24.74 32.19 33.09 30.02 30.15 0.964 0.039
K-Planes 39.76 24.57 28.10 31.07 25.13 32.42 32.99 30.25 30.54 0.967 0.033
Ours 40.25 24.63 28.50 31.70 25.09 31.19 31.45 29.76 30.20 0.960 0.049

∗ indicates the model does not converge

Figure 6: Rendered images of the bouncingballs and jumpingjacks in the dynamic NeRF
dataset by HexPlane with λ1 = 0.01, K-Planes and ours. All models are trained using 25 views

in the static NeRF dataset, our method yielded an average PSNR score between 22.99 and 24.55.
In contrast, TensoRF with λ1 = 0.001 performs the best at 24.98, but it fails to converge when λ1

exceeds 0.01. This highlights that TensoRF is too sensitive and face challenges in training robustly
with different regularization values. For the dynamic NeRF, HexPlane’s scores ranged from 21.95
to 24.15, while ours spanned 24.67 to 25.74. This indicates our method is less dependent on de-
noising regularization, emphasizing the robust regularization capabilities of coordinate networks for
multi-plane encoding. Our observations indicate that the proposed method maintains near-optimal
performance across all scenarios once the λ1 surpasses 0.001. This stability alleviates concerns
about searching the regularization value for different scenes, significantly reducing hyperparameter
tuning efforts. The detailed experimental results are included in Appendix E.

Table 3: Average PSNR across all scenes
varying denoising regularization λ1. The hy-
phen indicates not converged

λ1
Static NeRF (8 views) D-NeRF (25 views)

TensoRF K-Planes ours HexPlane K-Planes ours

0.0001 24.10 24.31 23.68 22.83 24.32 24.67
0.001 24.98 24.28 24.47 23.86 24.01 25.38
0.01 - 24.28 24.55 24.15 24.02 25.74
0.1 - 23.64 24.23 23.46 23.55 25.84
1.0 - 22.05 22.99 21.95 22.62 25.42

Furthermore, excessive regularization can introduce
undesirable modification, including the introduction
of color disturbances as evidenced in the case of
ship with TensoRF, λ1 = 0.1. Unlike the above,
our method consistently achieves near-optimal per-
formance without excessive denoising regulariza-
tion, attributed to the coordinate-based networks
capturing global contexts. As depicted in Figure 5,
our method can restore fine geometries and repro-
duce accurate colors even under challenging condi-
tions.

6 CONCLUSION

In this paper, we introduce refined tensorial radiance fields that seamlessly incorporate coordinate
networks. The coordinate network enables the capture of global context, such as object shapes in the
static NeRF and dynamic motions in the dynamic NeRF dataset. This property allows multi-plane
encoding to focus on describing the finest details.

9
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ETHICS STATEMENT

Novel view synthesis is a task to understand the shape and appearance of objects and scenes from
sparse set of images or video. Our model, in particular, can reconstruct fine detailed 3D shape with
accurate appearance just from given fewer input both in static and dynamic scenes.

Like previous works, our model can obtain fine reconstruction results only if sufficiently distributed
views are given. Recovering high fidelity 3D shape and appearance of objects from fewer inputs
offers numerous practical applications. However, it also introduces potential drawbacks, such as the
leading to the creation of potentially misleading media or potentially facilitating design theft, by
duplicating physical objects.

REPRODUCIBILITY STATEMENT

Our code will be made publicly available upon publication. During the review process, we have
attached our codes as supplementary files. For convenience reproducibility, both training and evalu-
ation codes are included.
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A MULTIPLE-PLANE ENCODING AND CONCATENATING COORDINATES

Figure A.1: Blinear interpolation

In this subsection, we discuss the
use of multiple-plane encoding. In-
stead of directly predicting the den-
sity function using low-rank approxi-
mation of voxel grid, as done in pre-
vious methods (Chen et al., 2022;
Cao & Johnson, 2023), our focus is
on creating spatial features with mul-
tiple planes. For 3-dimensional data,
we denote the plane features as Mi ∈
Rc×H×H , and vector features Vi ∈
Rc×1×H . However, in the case of 4-
dimensional data, V changes to plane
features. Each plane and vector feature corresponds to an axis in 3-dimensional spaces, such as
M = {Mxy,Myz,Mxz} and V = {Vz, Vx, Vy}. In 4-dimensional spaces, the same notation applies
to M, but we introduce a time axis in V represented as V = {Vzt, Vxt, Vyt}. The dimensions of
M(·) and V(·) are H ×W and D, respectively. We assume that all planes and vectors have the same
dimension, i.e., H = W = D. We use h as the all grid dimension for plane and vector features for
simplicity.

To compute multiple-plane features, we use bilinear interpolation. In 3-dimensional data, when a
data point s ∈ R3 is queried, it first drops to the axis for the corresponding dimension, then looks
for the nearest vertices. For example, when obtaining plane features on Mx,y , s = (sx, sy, sz)
drops sz and then looks for corresponding adjacent vertices in M1. When (i, j) = ⌊(sx, sy)⌋,
the adjacent vertices are defined as {(i, j), (i + 1, j), (i, j + 1), (i + 1, j + 1)}, and their feature
values are denoted as {f(i,j), f(i+1,j), f(i,j+1), f(i+1,j+1)} at the four nearest grid points. Here,
i, j ∈ {0, 1, · · · , h − 1}. The component of multiple-plane encoding f(sx, sy) is computed by
bilinear interpolation as follows:

f(sx,sy) = (1− u)(1− v)fi,j + u(1− v)fi+1,j + (1− u)vfi,j+1 + uvfi+1,j+1 (A.1)

where, u = (sx−i)/(i+1−i) is the interpolation factor in the x-direction, and v = (sy−j)/(j+1−j) is
the interpolation factor in the y-direction. The remaining components (f(sy,sz), f(sz,sz)) are also
computed by simply alternating coordinates. For the vector feature, we use linear interpolation,
similar to bilinear interpolation but in 1 dimension. In 3-dimentional data, the features collected are
fM = {f(sx,sy), f(sy,sz), f(sz,sx)} and fV = {fsz , fsx , fsy}, In 4-dimensional data, we can also
use bilinear interpolation for V . In this case, the features are fM = {f(sx,sy), f(sy,sz), f(sz,sx)} and
fV = {f(sz,t), f(sx,t), f(sy,t)}. Then, we combine them by element-wise producting the two vectors
f = fM ⊙ fV to get multiple-plane encoding in R3c.

To reprensete low-frequencies signals apparently, we include the coordinate of a data point s =
{sx, sy, sz} ∈ R3 in 3-dimensional data. In 4-dimensinoal data, these coordinate features become
s = {sx, sy, sz, t} ∈ R4. The final result of encoding is the concatenation of two different features:
f = {f, s}. For 3-dimensional data, f is in R3+3c, and in case of 4-dimensional data, f is in R4+3c.

B IMPLEMENTATION DETAILS

B.1 HYPER-PARAMETERS ON THE STATIC NERF

The proposed model consists of multi-plane encoding and MLPs with skip connections. For multi-
plane encoding, we use 48 dimensional channels. The resolution of plane features is upsampled
up to 8,000,000 (2003) at the end of training. The weight for Laplacian smoothing(λ1), curriculum
learning schedule, and initial feature resolution differ in each scene as we proceed with hyperpa-
rameter tuning for the optimal result. We listed detailed figures of hyperparameters of multi-plane
encoding in Table B.1. For decoder MLP layers, we use standard fully connected layers with ReLU
activations, 256 channels each. Our encoder contains four fully connected ReLU layers. We include
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a skip connection after the second layers, which concatenates fused input features. The occupancy is
calculated directly from the obtained features and is calculated as the softplus of the first chan-
nel. Then there is following RGB decoder consists of two layers. From the features obtained by
RGB decoder, color values are obtained through sigmoid activation.

In our experiments, we trained over 30,000 iterations with batch size of 4,096. We use the Adam
optimizer(Kingma & Ba, 2015) with initial learning rate is set to 0.02 and 0.001 for multi-plane fea-
tures and for MLPs respectively, and followed learning rate scheduleling following TensorRF(Chen
et al., 2022).

Table B.1: The detailed configuration for the static NeRF experiments. The parameters of cur-
riculum {te, ts} are defined in Equation 3. These values are presented as a percentage of the total
iteration. The hyphen means that curriculum learning does not apply.

Configs scenes
chair drums ficus hotdog lego materials mic ship

λ1 0.001 0.005 0.005 0.009 0.009 0.001 0.009 0.005
curriculum learning - {5, 95} - - {10, 50} - {0, 50} -

Initial resolution 16 3 3 24 48 48 48 3

B.2 HYPER-PARAMETERS ON THE DYNAMIC NERF

The configuration for the dynamic NeRF case also follows the settings as in the static case. We utilize
48-channel plane features. The initial voxel resolution is set to 4,096 (163) and is subsequently
upsampled to 8,000,000 (2003). For more detailed descriptions, please refer to Table B.2. The
structure of the decoder part, initial learning rate, and optimizer configuration remain identical to
the static NeRF. Other configurations not specified here are taken directly from HexPlane’s method
as described in (Cao & Johnson, 2023).

Table B.2: The detailed configuration for the static NeRF experiments. The parameters of cur-
riculum {te, ts} are defined in Equation 3. These values are presented as a percentage of the total
iteration. The hyphen means that curriculum learning does not apply.

Configs scenes
boundingballs hellwarrior hook jumpingjacks lego mutant standup trex

λ1 0.001 0.005 0.001 0.001 0.05 0.001 0.05 0.05
curriculum learning - {5, 95} - - {5, 95} - {5, 95} {5, 95}

C EXPERIMENTAL SETTING

We conducted the training and evaluation of all models using an NVIDIA A6000 with 48 GB of
memory. For the experiments in Table 1, we utilized five different seeds: {0, 700, 19870929,
20220401, 20240507}. However, it’s important to note that without explicitly describing the re-
sults for all five trials, each experiment was executed once, and the seed 0 was then used as the
default. For explanations regarding the dataset and baselines, we provide the following description.

C.1 DATASETS

NeRF blender dataset The Blender Dataset (Mildenhall et al., 2021) is a set of synthetic,
bounded, 360°, in-ward facing multi-view images of static object. Blender Dataset includes eight
different scenes. Following the previous method(Yang et al., 2023; Jain et al., 2021), for training,
we used 8 views with IDs of 26, 86, 2, 55, 75, 93, 16, 73 and 8 counting from zeros. For eval-
uation, we uniformly sampled 25 images from the original test set. Unlike the evaluation settings
in the previous works (Yang et al., 2023; Jain et al., 2021), we evaluate all metrics by using full-
resolution images (800 × 800 pixels) for both training and testing. We downloaded Blender dataset
from https://www.matthewtancik.com/nerf
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D-NeRF dataset D-NeRF Dataset (Pumarola et al., 2021) is a set of synthetic, bounded, 360 de-
gree, monocular videos for dynamic objects. The D-NeRF dataset includes eight different scenes
of varying duration, from 50 frames to 200 frames. To train the baseline under severe sparsity set-
tings, we sub-sample the number of training views from the original D-NeRF dataset. For instance,
in the case of bouncingballs that originally contains 150 views in the training set, we select
a total of 25 views, evenly spaced apart, by starting from 0 and increasing by 6 at each step. For
other scenes and varying number of views, we apply the same sampling method. We downloaded
D-NeRF dataset from https://github.com/albertpumarola/D-NeRF

C.2 BASELINES

In this chapter, we briefly explain the method we compared as a baseline in our experiments. About
TensorRF and Hexplane we described in detail in section 3.

Diet-NeRF Diet-NeRF (Jain et al., 2021) is a sinusoidal encoding based model. The model in-
corporates auxiliary semantic consistency loss which leverages pre-trained CLIP, networks trained
on large data-sets to compensate for the lack of training data. Auxiliary semantic consistency loss
regularize semantic similarity between rendered view and given input images. We also compare the
simplified NeRF which is stated in Jain et al. (2021). For implementation we used the codebase in
https://github.com/ajayjain/DietNeRF

Free-NeRF Free-NeRF Yang et al. (2023) is a is a sinusoidal encoding based model. Yang et al.
(2023) employed progressive activation of positioning embedding within a single model. It initially
establishes global contextual shape and subsequentially describes fine-grained details. To reduce
floating artifacts, it penalize near-camera density values, following the prior knowledge of object
is located in a distance to the camera. For implementation we used the code from https://
github.com/Jiawei-Yang/FreeNeRF/tree/main

DVGO DVGO(Sun et al., 2022) is a model that uses a three-dimensional dense voxel feature grid.
It utilizes independent voxel features for density and color. Shallow MLP follows color encoding.
In the first stage, coarse geometry search learning, the initial shape is obtained, which provides the
shape prior to the scene and finds empty voxels. Subsequently, in the fine reconstruction stage, they
upsample the grid to a higher resolution and apply free-space skipping to optimize the occupied sec-
tion densely. We used the code from https://github.com/sunset1995/DirectVoxGO

Instant-NGP The Instant NGP(Müller et al., 2022) model expresses the voxel feature grid using
the Hash function. It allocates features corresponding to each Voxel to the hash table, reducing the
memory required while allowing collisions. Instant NGP utilizes the multi-resolution feature grid
and uses features of resolution that log-scale uniformly increase from 16 to 1024-4096. It maintains
a fast speed by inferring empty spaces through occlusion values such as TensorRF and DVGO and
avoiding space sampling. We used the code from https://github.com/kwea123/ngp_pl

VGOS VGOS(Sun et al., 2023) is the first example of applying the grid-based method to a Few-
shot case. The method induces smoothness by adding total variation regularization to the dense grid
feature, feature, depth, and color. In addition, progressive voxel sampling is introduced to prevent
floating artifacts under the assumption that there will be a lot in the middle of the occlusion. We
follows the code from https://github.com/SJoJoK/VGOS

K-Planes K-planes utilizes the Hadamard product of multi-resolution tri-planes to represent voxel
features. This approach extends from static three-dimensional scenes to dynamic four-dimensional
NeRFs like Hex-plane(Cao & Johnson, 2023). K-Planes incorporates TV Loss and employs vari-
ous regularization methods including distortion Loss(Barron et al., 2022) to reduce floating point
artifacts. Furthermore, it adopts the proposal network method suggested in MipNeRF 360(Bar-
ron et al., 2022) as a sampling approach. We follow the code from https://github.com/
sarafridov/K-Planes
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D THE RESULT STATISTICS OF 3-DIMENSIONAL STATIC NERF DATASET

From Table D.3 to Table D.5, we present the quantitative results for each scene of the synthetic NeRF
Dataset. All reported numbers are averages of 5 experiments and corresponding standard deviations.
Our model performed better in all metrics compared to all counterpart models. We also summarize
the results of the TensorRF model with intense additional laplacian smoothness loss. The λ1 = 0.1
value is the optimal value for obtaining the best value. This evidence is provided in Appendix E

TensoRF with strong Laplacian regularization shows comparable performance with the proposed
model. The two methods show complement advantages in the novel-view rendering results. To
compare, we present a novel-view renderings of ship (Figure 5) and Mic. TensorRF with λ1 = 0.1
optimizes focusing on reconstruct higher-frequency texture. Therefore, it shows instability in low-
frequency information such as a geometry (dec in ship), and show high-frequency artifacts on the
color side (water regions in ship). Proposed method, TensoRefine has more strength in robust op-
timization, especially in global information. More accurate 3D geometry and view-consistent color
reconstruction are possible. On the other hand, there are cases of underfitting in high resolution.
Without relying on high denoising regularization, the proposed method nearly achieves the best
performance, thanks to the coordinate-based networks responsible for capturing the global context.

Table D.3: The result of average PSNR in the static NeRF. We conduct five trials for each method
and use 8 views for training.

Models PSNR ↑
chair drums ficus hotdog lego materials mic ship

Simplified_NeRF 20.354 ±0.648 14.188 ±2.596 21.629 ±0.171 22.565 ±1.055 12.453 ±3.103 18.976 ±2.306 24.950 ±0.202 18.648 ±0.446
DietNeRF 21.323 ±2.478 14.156 ±5.143 13.082 ±3.892 11.644 ±6.753 16.120 ±7.121 12.200 ±7.343 24.701 ±1.222 19.342 ±4.033
HALO 24.765 ±0.280 18.674 ±0.226 21.424 ±0.204 10.220 ±0.388 22.407 ±1.997 20.996 ±0.032 24.937 ±0.078 21.665 ±0.229
FreeNeRF 26.079 ±0.545 19.992 ±0.050 18.427 ±2.819 28.911 ±0.232 24.121 ±0.633 21.738 ±0.085 24.890 ±1.733 23.011 ±0.148

DVGO 22.347 ±0.253 16.538 ±0.081 19.032 ±0.071 24.725 ±0.241 20.845 ±0.129 18.497 ±0.077 24.373 ±0.252 18.170 ±0.148
VGOS 22.100 ±0.036 18.568 ±0.112 19.084 ±0.061 24.736 ±0.073 20.895 ±0.073 18.418 ±0.036 24.180 ±0.148 18.155 ±0.060
iNGP 24.762 ±0.169 14.561 ±0.082 20.678 ±0.415 24.105 ±0.308 22.222 ±0.076 15.159 ±0.075 26.186 ±0.159 17.288 ±0.135
TensoRF 26.234 ±0.062 15.940 ±0.369 21.373 ±0.152 28.465 ±0.387 26.279 ±0.279 20.221 ±0.109 26.392 ±0.320 20.294 ±0.359
TensorRF(λ1 = 0.001) 28.527 ±0.208 19.626 ±0.134 21.963 ±0.217 29.373 ±0.218 29.441 ±0.270 21.911 ±0.087 26.998 ±0.325 22.837 ±0.717
K-Planes 27.300 ±0.192 20.427 ±0.153 23.820 ±0.215 27.576 ±0.254 26.520 ±0.262 19.661 ±0.178 27.297 ±0.144 21.337 ±0.240

Ours 28.021 ±0.143 19.550 ±0.587 20.301 ±0.258 29.247 ±0.656 26.725 ±0.565 21.927 ±0.114 26.416 ±0.199 24.266 ±0.163

Table D.4: The result of average SSIM in the static NeRF. We conduct five trials for each method
and use 8 views for training.

Models SSIM ↑
chair drums ficus hotdog lego materials mic ship

Simplified_NeRF 0.852 ±0.003 0.773 ±0.017 0.871 ±0.002 0.891 ±0.004 0.738 ±0.031 0.827 ±0.019 0.931 ±0.001 0.736 ±0.005
DietNeRF 0.857 ±0.025 0.716 ±0.133 0.653 ±0.123 0.705 ±0.111 0.709 ±0.148 0.662 ±0.166 0.933 ±0.011 0.731 ±0.043
HALO 0.883 ±0.001 0.822 ±0.003 0.877 ±0.002 0.806 ±0.064 0.827 ±0.032 0.847 ±0.003 0.931 ±0.000 0.763 ±0.001
FreeNeRF 0.908 ±0.003 0.852 ±0.001 0.866 ±0.008 0.942 ±0.002 0.871 ±0.003 0.862 ±0.001 0.935 ±0.010 0.778 ±0.003

DVGO 0.860 ±0.003 0.761 ±0.002 0.857 ±0.001 0.904 ±0.002 0.820 ±0.001 0.804 ±0.002 0.933 ±0.001 0.689 ±0.003
VGOS 0.857 ±0.001 0.834 ±0.001 0.859 ±0.000 0.905 ±0.000 0.824 ±0.000 0.804 ±0.001 0.932 ±0.001 0.686 ±0.001
iNGP 0.899 ±0.002 0.730 ±0.002 0.886 ±0.004 0.904 ±0.001 0.841 ±0.001 0.748 ±0.002 0.946 ±0.001 0.672 ±0.002
TensoRF 0.919 ±0.001 0.753 ±0.007 0.882 ±0.002 0.938 ±0.002 0.909 ±0.003 0.843 ±0.003 0.947 ±0.002 0.719 ±0.006
TensorRF(λ1 = 0.001) 0.943 ±0.001 0.856 ±0.004 0.901 ±0.001 0.945 ±0.001 0.941 ±0.002 0.873 ±0.001 0.955 ±0.002 0.772 ±0.006
K-Planes 0.935 ±0.001 0.869 ±0.002 0.925 ±0.001 0.949 ±0.001 0.921 ±0.002 0.850 ±0.001 0.958 ±0.001 0.767 ±0.003

Ours 0.931 ±0.001 0.860 ±0.011 0.881 ±0.002 0.948 ±0.003 0.914 ±0.005 0.879 ±0.001 0.949 ±0.001 0.802 ±0.002
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Table D.5: The result of average LPIPS in the static NeRF. We conduct five trials for each method
and use 8 views for training.

Models LPIPS ↓
chair drums ficus hotdog lego materials mic ship

Simplified_NeRF 0.247 ±0.010 0.388 ±0.083 0.153 ±0.007 0.239 ±0.009 0.408 ±0.091 0.205 ±0.042 0.100 ±0.001 0.375 ±0.005
DietNeRF 0.177 ±0.051 0.382 ±0.253 0.447 ±0.201 0.539 ±0.225 0.339 ±0.254 0.426 ±0.282 0.079 ±0.021 0.278 ±0.069
HALO 0.134 ±0.003 0.234 ±0.012 0.109 ±0.012 0.417 ±0.113 0.149 ±0.066 0.167 ±0.012 0.098 ±0.004 0.290 ±0.007
FreeNeRF 0.101 ±0.005 0.142 ±0.003 0.138 ±0.068 0.069 ±0.001 0.092 ±0.003 0.107 ±0.002 0.094 ±0.029 0.228 ±0.003

DVGO 0.120 ±0.004 0.218 ±0.003 0.102 ±0.001 0.106 ±0.003 0.125 ±0.001 0.149 ±0.001 0.062 ±0.001 0.276 ±0.004
VGOS 0.124 ±0.001 0.201 ±0.002 0.100 ±0.001 0.104 ±0.001 0.123 ±0.000 0.148 ±0.001 0.063 ±0.001 0.278 ±0.001
iNGP 0.098 ±0.004 0.345 ±0.005 0.099 ±0.006 0.144 ±0.003 0.127 ±0.002 0.292 ±0.003 0.058 ±0.002 0.312 ±0.003
TensoRF 0.074 ±0.002 0.312 ±0.011 0.105 ±0.003 0.072 ±0.005 0.059 ±0.002 0.129 ±0.004 0.047 ±0.002 0.237 ±0.010
TensorRF(λ1 = 0.001) 0.047 ±0.001 0.132 ±0.009 0.066 ±0.001 0.050 ±0.001 0.037 ±0.002 0.069 ±0.001 0.037 ±0.001 0.186 ±0.007
K-Planes 0.052 ±0.002 0.107 ±0.005 0.061 ±0.002 0.054 ±0.001 0.051 ±0.002 0.116 ±0.003 0.036 ±0.001 0.199 ±0.005

Ours 0.078 ±0.001 0.139 ±0.022 0.082 ±0.003 0.064 ±0.005 0.057 ±0.005 0.067 ±0.002 0.059 ±0.001 0.191 ±0.004

E EXPERIMENTS ON VARYING DENOISING WEIGHTS λ1

We compare TensorRF for our model according to various degrees of denoising regularization.

Table E.6 shows the dependence of the TensorRF, and proposed model on denoising weight. Ac-
cording to the rendering results (figure), for TensoRF denoising does reduce floating artifacts, but, if
it is too strong, undesired high-frequency artifacts appear, as described in Appendix D. This requires
a searching process for regularization weight for the optimal value. On the other hand, our model
is not dominantly affected denoising weights but shows better performance in various λ1 values. In
addition, even when the intensity of denoising increases, undesigned artifacts do not appear. This is
possible because our model is a coordinate feature anchoring low-frequency information.

In the case of Dynamic, as sparsity increases, the result shows that denoising regularization alone is
not enough for robust reconstruction. TensoRF added with smoothing shows degraded performance
compared to the proposed model for all dynamic scenes. In addition, for TensoRF models, the
optimal λ1 value varies depending on the scene’s characteristics, which explains that dependence
on the smoothed loss becomes severe. In contrast, the proposed model consistently works well
regardless of the weighting.

The above results show that our feature-fusion strategy already has sufficient robustness on sparse
inputs. In addition, regularization shows synergy with our model design, as it assists in more realistic
rendering without producing undesired artifacts, and it does works for extremely sparse input cases.

Table E.6: The comparison of Ours and TensoRF in the static NeRF dataset. We conduct experi-
ments varying the value of λ1. All models are trained using 8 views. We use seed 0 for reproducibil-
ity. The hyphen means that the model is not converged.

Models PSNR ↑ Avg.
PSNR ↑ Avg.

SSIM ↑ Avg.
LPIPS ↓

chair drums ficus hotdog lego materials mic ship

TensoRF (λ1 = 0.0001) 27.15 16.85 21.84 29.35 28.03 21.41 26.99 21.17 24.10 0.880 0.103
TensoRF (λ1 = 0.001) 28.24 19.94 21.94 29.46 29.04 22.03 26.62 22.58 24.98 0.898 0.078
TensoRF (λ1 = 0.01) 27.97 20.04 - 29.22 28.93 21.98 - 23.24 - - -
TensoRF (λ1 = 0.1) - 19.80 - 28.12 27.11 21.37 - 21.93 - - -
TensoRF (λ1 = 1.0) - - - 25.97 24.55 19.36 - 22.24 - - -

K-Planes (λ1 = 0.0001) 27.16 20.50 23.82 27.75 26.29 19.87 27.46 21.68 24.31 0.897 0.083
K-Planes (λ1 = 0.001) 27.08 20.20 23.26 27.94 27.06 20.02 26.76 21.94 24.28 0.900 0.081
K-Planes (λ1 = 0.01) 27.10 20.27 22.62 27.64 26.48 20.59 27.08 22.46 24.28 0.899 0.082
K-Planes (λ1 = 1.0) 23.54 17.53 22.31 27.08 26.01 19.74 26.46 21.93 23.64 0.893 0.090
K-Planes (λ1 = 0.1) 25.98 19.60 20.72 26.11 24.15 19.09 24.56 20.73 22.05 0.876 0.112

Ours (λ1 = 0.0001) 27.79 17.67 19.30 28.62 24.81 21.49 26.16 23.57 23.68 0.884 0.111
Ours (λ1 = 0.001) 27.94 19.04 20.07 29.13 27.26 21.85 26.93 23.55 24.47 0.893 0.091
Ours (λ1 = 0.01) 27.61 19.21 20.17 29.51 27.31 21.55 26.74 24.27 24.55 0.895 0.098
Ours (λ1 = 0.1) 27.07 19.60 20.55 29.09 25.43 22.50 26.13 23.56 24.23 0.889 0.108
Ours (λ1 = 1.0) 25.12 17.99 19.89 27.64 22.74 21.98 25.55 23.05 22.99 0.876 0.136
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Figure E.2: Rendered images of drums, ship cases in the static NeRF dataset by TensoRF, K-
Planes and ours with varying λ1. To assess challenging scenarios, we select the 61st and 36th
images for the drums scene and the 156th images for the ship.

Table E.7: The comparison of Ours and HexPlane in the dynamic NeRF dataset. We conduct ex-
periments varying the value of λ1. All models are trained using 25 views. We use seed 0 for
reproducibility.

Models PSNR ↑ Avg.
PSNR ↑ Avg.

SSIM ↑ Avg.
LPIPS ↓

bouncingballs hellwarrior hook jumpingjacks lego mutant standup trex

HexPlane (λ1 = 0.0001) 28.80 16.32 21.44 21.98 23.81 24.67 21.30 24.34 22.83 0.926 0.082
HexPlane (λ1 = 0.001) 30.25 16.86 22.61 22.70 24.21 26.03 23.07 25.19 23.86 0.934 0.070
HexPlane (λ1 = 0.01) 30.49 17.61 23.10 22.86 24.29 25.81 23.74 25.30 24.15 0.935 0.074
HexPlane (λ1 = 0.1) 29.64 18.24 22.13 21.75 23.72 24.63 23.08 24.53 23.46 0.928 0.090
HexPlane (λ1 = 1.0) 26.60 17.79 21.05 19.73 23.53 22.75 19.88 24.30 21.95 0.917 0.117

K-Planes (λ1 = 0.0001) 29.39 16.72 22.69 23.98 24.03 26.42 24.47 26.88 24.32 0.937 0.074
K-Planes (λ1 = 0.001) 29.22 17.92 22.29 22.73 24.12 26.20 23.22 26.35 24.01 0.939 0.061
K-Planes (λ1 = 0.01) 29.38 18.29 22.33 22.78 23.82 26.18 23.02 26.33 24.02 0.938 0.062
K-Planes (λ1 = 0.1) 28.85 17.53 21.52 22.52 24.02 26.00 22.74 25.25 23.55 0.931 0.074
K-Planes (λ1 = 1.0) 25.29 17.90 20.99 21.63 23.61 25.06 21.73 24.73 22.62 0.928 0.087

Ours (λ1 = 0.0001) 32.80 18.34 23.39 23.18 23.79 26.33 23.77 25.77 24.67 0.936 0.071
Ours (λ1 = 0.001) 34.13 19.01 23.90 24.72 23.92 26.86 24.26 26.22 25.38 0.942 0.062
Ours (λ1 = 0.01) 33.71 19.69 23.83 24.77 24.20 26.89 25.96 26.86 25.74 0.943 0.064
Ours (λ1 = 0.1) 32.91 19.80 24.08 24.63 24.36 26.85 27.69 26.40 25.84 0.941 0.074
Ours (λ1 = 1.0) 32.21 19.52 24.33 24.36 23.51 26.23 27.18 26.05 25.42 0.937 0.088

F ABLATION STUDY ON ENCODING STRUCTURES

The encoder of our model applies the skip-connection of fused features. To justify design choice
of our model, we compare the results of various encoder structures in static and dynamic cases Ta-
ble E.6, Table F.9. All possible candidates regarding Encoder structures are listed and their graphical
representations are also included in Figure F.4.

• Type 1 : Skip connection lies on every layer

• Type 2 : No skip connection, and employs fully connected MLPs

• Type 3 : Skip connection, but only coordinate s is concatenated.
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Figure E.3: Rendered images of standup cases in the dynamic NeRF dataset by HexPlane and
ours with varying λ1. We evaluate {0, 10, 19}th views in the test dataset.

(a) Ours (b) Type 1

(c) Type 2 (d) Type 3

Figure F.4: The graphical representation for encoder structures used in Table F.8 and Table F.9.
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Table F.8: The comparison of encoding structures. We evaluate four types of encoding structures
including ours. All hyperparameters are consistent with those described in the original setting in-
cluded Appendix B. All models are trained using 8 views in the static NeRF dataset. We use seed 0
for reproducibility.

Models PSNR ↑ Avg.
PSNR ↑ Avg.

SSIM ↑ Avg.
LPIPS ↓

chair drums ficus hotdog lego materials mic ship

Ours 28.15 20.09 20.04 29.43 27.58 22.06 26.41 24.18 24.74 0.898 0.089
Type 1 23.83 17.85 19.14 18.45 20.54 12.97 14.61 22.78 18.77 0.844 0.179
Type 2 26.15 18.02 19.53 17.78 19.73 11.72 18.06 22.87 19.23 0.848 0.171
Type 3 25.16 19.40 19.33 17.94 20.88 11.85 14.62 23.35 19.07 0.843 0.175

(a) Ours (b) Type 1

(c) Type 2 (d) Type 3

Figure F.5: Rendered images are generated by alternating encoder structures. We selected the
drums, lego, and ship scenes to follow the settings used in previous experiments.

Table F.9: The comparison of encoding structures. We evaluate four types of encoding structures
including ours. All models are trained using 25 views in the dynamic NeRF dataset. All hyperpa-
rameters are consistent with those described in the original setting included Appendix B. We use
seed 0 for reproducibility.

Models PSNR ↑ Avg.
PSNR ↑ Avg.

SSIM ↑ Avg.
LPIPS ↓

bouncingballs hellwarrior hook jumpingjacks lego mutant standup trex

Ours 33.83 18.93 23.54 24.24 23.69 26.59 26.06 26.05 25.37 0.942 0.063
Type 1 33.99 18.01 24.01 24.26 23.91 26.95 24.55 26.56 25.28 0.941 0.064
Type 2 33.35 18.08 23.82 24.58 24.08 26.85 24.46 26.84 25.26 0.941 0.063
Type 3 32.74 18.64 24.24 24.83 23.99 27.08 25.17 26.81 25.44 0.942 0.062

In the case of the Dynamic case, smoothness induction in the temporal axis is essential, so the case
of Type 3, using only the coordinate feature for skip-connection, shows slightly better performance
than ours. Our model design works robustly, considering both static and dynamic cases, which
verifies the suitability of model design choices.
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(a) Rendered image by ours with only coordinate networks

(b) Rendered image by ours with curriculum weighting

(c) Rendered image with full engangement of multi-plane

Figure G.6: Rendering results using different feature combinations. We show rendering results
from three distinct combination of encoding features, (a) using only coordinates, (b) coordinates
with progressively activating multi-plane encoding, and (c) full features. t indicates the timesteps
normalized to 1, and we use standup scene.

G DISENTANGLEMENT OF COORDINATE NETWORKS AND MULTI-PLANE
ECODING

Our model learns by separating global shape and detail into coordinate and multi-plane features.
Further, we adopt a progressive learning strategy on the channel axis among plane features to induce
features to learn coarse-to-fine details. The proposed model shows robust reconstruction perfor-
mance even when the input is highly sparse, as the proposed model successfully disentangle features
into two aspects: (1) between heterogeneous features and (2) among channels in feature planes.

First, we analyze the disentanglement between heterogeneous features. We conducted the ablation
analysis of the proposed method on the dynamic NeRFs with 25 training views. To qualitatively
identify the role that coordinate-based networks in the proposed method, we separately evaluated
the model using only the coordinate-based networks, with all multi-plane encodings set to zero. As
shown in Figure G.6-(a), the coordinate-based networks are capturing the global context of the scene,
including object shapes and large motions as we intended. It is worth noting that the coordinate-
based networks can be effectively trained when used in conjunction with multi-plane encoding.

As previous studies have reported that high-frequency features in sinusoidal encoding tend to dom-
inate, we anticipated that multi-plane encoding might overwhelm the coordinate-based networks
(Lindell et al., 2022). However, the proposed architecture successfully disentangles and maintains
these two heterogeneous features effectively throughout the training process. This demonstrates the
synergy between the coordinate-based networks and multi-plane encoding in the proposed method.

Second, we analyze about channel-wise disentanglement among plane-features. To compare, we
visualize multi-plane features of HexPlane and the proposed method, trained on full-view, and 25-
views for standup scenes (Figure G.7). In standup, z − x plane should encode the front shape
of the person, and the z − t plane should encode the upward movement.
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(a) HexPlane(λ1 = 0.001) trained on full views (b) Ours trained on full views

(c) HexPlane(λ1 = 0.001) trained on 25 views (d) Ours trained on 25 views

Figure G.7: Visualization of plane encoding features. We visualize 5 representative features from
the plane encodings of Hexplane and Ours trained on standup scene.

For full-views, in HexPlane plane features (Figure G.7-(a)), global shape information and high-
resolution detail are not distinguished and some channels even learn similar information which
makes features less expressive. In contrast, the proposed method (Figure G.7-(b)) separates coarse-
to-fine information along the channel axis, which effectively increases the expressiveness as each
channel encodes information in different areas, In addition, our temporal features show a consis-
tent upward tendency with distinct resolution features, while the hexplane learns similar resolution
features with some wrong motions.

This trend is more clearly observable in fewer shots. In Figure G.7-(c), some spatial components
result in overfitting or underfitting artifacts, and rightward information is hardly shown on the time
axis. In contrast, our model (Figure G.7-(d)) maintains the coarse-to-fine manner. In particular, the
trend remains the same with the time axis, confirming how much our progressive learning strategy
has in a sparse setting.

From these observations, we verify that our two disentanglement strategies (inter-distinct features
and inter-channel) are a way to learn global-to-detail features. This experiment allows it to analyze
why the proposed model is more expressive and has robustness in sparse input.
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H COMPARISON OF THE NUMBER OF PARAMETERS AND ANALYSIS OF
TRAINING/RENDERING TIMES

Table H.10: We compare iNGP, TensoRF, K-Planes, and Ours on the static NeRF dataset by lim-
iting the training steps to 15 million and 8 views used for training. The rendering time is assessed
using 200 frames from the test dataset. Additionally, we conduct experiments to simplify the model
parameters. The numbers in brackets represent the channel count in the multi-plane features. Ten-
soRF(20) failed to train the scenes {chair, ficus, mic} due to training process instability, which we
denote with a hyphen. In the K-Planes model, which features multi-resolutional multi-plane char-
acteristics, we note that the total number of channel dimensions is the product of the number of
resolutions and the channel dimension at each resolution.

Model
Name

# Params
[M]

Avg.
PSNR

Avg. Training
Time [min]

Avg. Rendering
Time [min]

iNGP (T=19) 11.7M 19.26 7.60 0.82
iNGP (T=18) 6.4M 19.99 6.40 0.91
K-Planes (3*16) 17M 23.95 17.61 6.83
K-Planes (2*16) 4.4M 23.16 13.72 6.51
TensoRF (64) 17.3M 25.23 7.72 7.82
TensoRF (20) 6.1M - - -
Ours (48) 6.0M 24.36 31.16 46.02
Ours (24) 3.0M 23.74 24.06 40.76

Table H.11: We compare TensoRF, K-Planes, and Ours on the dynamic NeRF dataset by limiting
the training steps to 15 million and 25 views used for training. The rendering time is assessed
using 20 frames from the test dataset. Additionally, we conduct experiments to simplify the model
parameters. The numbers in brackets represent the channel count in the multi-plane features. In
the K-Planes model, which features multi-resolutional multi-plane characteristics, we note that the
total number of channel dimensions is the product of the number of resolutions and the channel
dimension at each resolution.

Model
Name

# Params
[M]

Avg.
PSNR

Avg. Training
Time [min]

Avg. Rendering
Time [min]

K-Planes (3*32) 18.6M 23.85 18.93 0.83
K-Planes (3*4) 1.9M 23.41 13.29 0.78
HexPlane (72) 9.7M 24.00 6.78 0.60
HexPlane (6) 0.8M 22.08 6.38 0.68
Ours (48) 3.4M 25.17 12.22 2.14
Ours (12) 1.0M 25.10 8.77 1.73

When there is insufficient training data, it is common practice to leverage the model’s capacity and
employ early stopping to achieve more robust and efficient learning. To investigate this trend, we
conducted a comparison between TensoRF, K-Planes, and our method, limiting the training steps to
15 million and simplifying the model parameters. As shown in the Table H.10, the proposed method
achieves comparable performance to TensoRF with a significantly smaller number of parameters.
While TensoRF achieves optimal performance with 64 channels in multi-plane features, it shows
instability in training and rendering times. Reducing its channels to 20 leads to convergence issues
in specific scenes such as {chair, ficus, mic}, suggesting its limitations with sparse inputs.

In constrast, K-Planes is more stable than TensoRF, but it falls short in performance and requires
more parameters, resulting in longer training and rendering times. On the other hand, the proposed
method, despite not being the fastest in rendering compared to TensoRF and K-Planes, stands out for
its stability in both training and rendering times, ensuring consistent performance. This stability is
maintained even with fewer channels in the multi-plane features, making it more suitable for sparse
inputs where robust training and stable performance are crucial. Moreover, we can further cut down
rendering time by adopting the technique used in iNGP (Müller et al., 2022). This technique mini-
mize redundant sampling by leveraging information from previous frames for predicting subsequent
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Figure I.8: The qualitative results of baselines and the proposed method on the Tanks and Temples
dataset. We specifically show {47, 11, 12}-th images of Barn, Family and Caterpillar from
the test dataset. We use {7, 10, 15} percentiles of the training views for the Caterpillar Barn
and Family scenes, respectively.

ones. This aspects underlines that in scenarios with sparse inputs, stability in training is more crucial
than rendering speed.

Overall, our experiment underscores the strength of our method in maintaining stable training and
rendering times, ensuring performance preservation, particularly in situations with sparse inputs
where keeping a consistent performance across various hyper-parameters is important.

I EXPERIMENT ON REAL-WORLD DATASET : TANKS AND TEMPLES

The proposed method was evaluated on the real-world Tanks and Temples dataset (Knapitsch et al.,
2017), where it was compared with the baseline TensoRF models, including a variation with a spe-
cific setting (λ1 = 0.001). We focus on how each method handles the preservation of global context
in scenes. As shown in Figure I.8, the proposed method consistently represent better rendered im-
ages than the baselines due to preserving the global context. This is a critical aspect when dealing
with sprase input situations where maintaining the overall structure and shape of objects is essential.
Despite TensoRF tends to focus on local details leading to partial but incomplete reconstructions
seen in the case of family, our method excels in capturing the overall scene composition. This
ability ensures that the larger structure and form of objects in the scene are accurately reconstructed,
even at the cost of some finer details. Therefore, we demonstrate that the proficiency of our method
becomes more apparent under conditions of sparse input data, and makes it particularly suitable for
real-world applications where input data might be limited or incomplete.

Quantitatively, the proposed method shows its strength, especially in SSIM scores. While PSNR is a
valuable metric for image quality, it can be biased in the context due to the lack of mask information
and the inclusion of full-resolution white backgrounds. On the other hand, SSIM focuses on the
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(a) PSNR (b) SSIM

Figure I.9: The line plots of PSNR and SSIM on the Tanks and Temples dataset varying the number
of training views.

perceived quality of structural information in the images. As shown in Figure I.9b, the proposed
method consistently achieves higher SSIM scores across all scenes, indicating its superior capability
in preserving the structural integrity and overall composition of scenes.

To sum up, the proposed method distinguishes itself from the baselines through its robust ability to
preserve the global context of scenes, handle sparse input data effectively, and render images that
are both structurally sound and visually realistic. These inherent properties highlight its potential
for broader application in real-world scenarios, where input data is often sparse and incomplete.

25


	Introduction
	Related work
	Background
	Neural radiance fields
	TensoRF: tensorial radiance fields
	HexPlane

	Refined tensorial radiance fields: harnessing coordinate-based networks
	Architecture and loss function
	Curriculum weighting strategy for multi-plane encoding

	Experiments
	3-dimensional static radiance fields
	4-dimensional dynamic radiance fields
	Ablation study

	Conclusion
	Multiple-plane encoding and concatenating coordinates
	Implementation details
	Hyper-parameters on the static NeRF
	Hyper-parameters on the dynamic NeRF

	Experimental setting
	Datasets
	Baselines

	The result statistics of 3-dimensional static NeRF dataset
	Experiments on varying denoising weights 1
	Ablation study on encoding structures
	Disentanglement of coordinate networks and multi-plane ecoding
	Comparison of the Number of Parameters and Analysis of Training/Rendering Times
	Experiment on real-world dataset : Tanks and Temples

