
Increasing LLM Coding Capabilities through
Diverse Synthetic Coding Tasks

Amal Abed1∗ Ivan Lukic1∗ Jörg K.H. Franke1,2,3,4 Frank Hutter1,2,5

1University of Freiburg 2ELLIS Institute Tübingen
3Open-Sci Collective 4LAION 5Prior Labs

∗Equal contribution

Abstract

Large language models (LLMs) have shown impressive promise in code generation,
yet their progress remains limited by the shortage of large-scale datasets that are
both diverse and well-aligned with human reasoning. Most existing resources pair
problems with solutions, but omit the intermediate thought process that guides
coding. To close this gap, we present a scalable synthetic data generation pipeline
that produces nearly 800k instruction–reasoning–code–test quadruplets. Each
sample combines a task, a step-by-step reasoning trace, a working solution, and
executable tests, enabling models to learn not just the what but also the how of
problem solving. Our pipeline combines four key components: curated contest
problems, web-mined content filtered by relevance classifiers, data expansion
guided by reasoning patterns, and multi-stage execution-based validation. A genetic
mutation algorithm further increases task diversity while maintaining consistency
between reasoning traces and code implementations. Our key finding is that fine-
tuning LLMs on this dataset yields consistent improvements on coding benchmarks.
Beyond raw accuracy, reasoning-aware data can substitute for model scaling,
generalize across architectures, and outperform leading open-source alternatives
under identical sample budgets. Our work establishes reasoning-centered synthetic
data generation as an efficient approach for advancing coding capabilities in LLMs.
We publish our dataset and generation pipeline to facilitate further research. 1

1 Introduction

Large language models (LLMs) have shown strong progress in code generation Hui et al. [2024],
Jiang et al. [2025], yet their limitations become clear on tasks requiring systematic reasoning and
generalization. While benchmarks such as HumanEval [Chen et al., 2021] and MBPP [Austin et al.,
2021] highlight the potential of scaling, they also expose a persistent bottleneck: the lack of training
data that jointly captures diversity, reasoning, and functional correctness at scale. Without such
resources, models often succeed on familiar problem types but fail to adapt to new challenges or to
explain how solutions are derived.

Most available datasets provide instruction–code pairs or final solutions, but omit the intermediate
reasoning that connects problem understanding to executable code. This omission matters because
reasoning traces offer a training signal that can improve both reliability and interpretability. Human-
annotated resources with reasoning exist but are prohibitively expensive to scale, leaving a gap for

1
§ GitHub Repository Hugging Face Dataset

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: The 4th Deep Learning
for Code Workshop (DL4C).

https://github.com/ivlu2000/diverse-codegen-pipeline
https://huggingface.co/datasets/amal-abed/combined_dataset


building models that can both generate correct programs and reveal the logic behind them. Synthetic
datasets have begun to address this, yet many focus narrowly on correctness or rely on costly closed
models, limiting both scalability and openness.

To address this gap, we present a reproducible pipeline for constructing synthetic instruc-
tion–reasoning–code–test datasets designed to advance LLM coding capabilities. Starting from
curated seed problems, we expand coverage through corpus filtering, generate structured quadruplets
with mid-sized open models, and enforce quality via execution-grounded validation. To further
broaden problem coverage, we introduce a genetic instruction mutation algorithm that creates novel
task variants without sacrificing correctness.

The resulting dataset captures not only solutions but also the logical traces behind them, offering a
scalable resource for training and evaluation. Controlled comparisons against leading open-source
datasets show that our formulation consistently delivers stronger transfer performance under identical
budgets, underscoring the importance of reasoning-augmented and diversity-driven data generation.

2 Related Work

Recent efforts have focused on scaling dataset construction for code generation. Self-Code-Align
[Wei et al., 2024a] filters raw functions into structured coding concepts for controlled task creation,
while Magicoder [Wei et al., 2024b] and InverseCoder [Wu et al., 2024] leverage open-source code
to produce instruction–code pairs or invert the mapping to generate instructions from code. Other
approaches expand task complexity through evolution, as in WizardCoder [Luo et al., 2024] and
EpiCoder [Wang et al., 2025], or through biologically inspired mutation and crossover, as in Genetic
Instruct [Majumdar et al., 2025].

While these pipelines improve scale and diversity, they rarely capture intermediate reason-
ing or systematically enforce correctness. Our work extends this line by generating instruc-
tion–reasoning–code–test quadruplets, validated through execution and guided by classifier-based
filtering, yielding datasets that couple semantic diversity with functional reliability.

3 Methodology

We propose an end-to-end methodology for constructing large-scale, reasoning-augmented datasets
for code generation. The pipeline is designed to transform heterogeneous programming material into
standardized, validated, and diverse problem sets that directly support model training and evaluation.
The process begins with broad task collection and expansion, balancing curated contest-style problems
with large-scale mining of real-world programming sources. These raw tasks are then systematically
structured into instruction–reasoning–solution–test quadruplets, ensuring that each sample exposes
both problem statements and associated reasoning traces. A rigorous execution-based validation stage
enforces functional correctness, discarding faulty generations while preserving diversity through
multi-candidate refinement. To scale beyond limited seed material, we integrate a genetic-inspiration
framework that iteratively evolves tasks through crossover and mutation, yielding novel but coherent
programming challenges. Finally, a multi-stage deduplication process safeguards against redundancy,
while fine-tuning and benchmark evaluations quantify efficiency, generalization, and dataset impact.
By unifying curation, structuring, validation, expansion, and deduplication into a single cohesive
workflow, our methodology balances scale, reliability, and reasoning fidelity in dataset construction.

3.1 Dataset Curation and Expansion

Our pipeline begins with a seed collection of curated programming tasks in the [LeetCode] style—title,
description, constraints, and examples—which are particularly useful because they support automatic
test generation. However, the publicly available set of only ∼2.3k such problems is insufficient
for training large language models. To broaden coverage, we incorporated tasks from competitive
programming platforms such as [Codeforces] and [AtCoder], combining existing HuggingFace
datasets with custom scraping pipelines. These sources introduce greater diversity in problem
structure and difficulty, though they often lack reference implementations. Consequently, reasoning
traces, candidate code, and executable tests were systematically generated in later stages of our
pipeline.

2



To scale further and move beyond the limited design space of curated contest tasks, we employed a
classifier-guided mining approach inspired by Shao et al. [2024]. Specifically, we trained a FastText
[Bojanowski et al., 2017] classifier on the curated problems and applied it to the 3B-document
DCLM-Baseline corpus [Li et al., 2024], a high-quality subset of Common Crawl[CommonCrawl].
By enforcing a strict 90% relevance threshold, we extracted ∼4M candidate documents, striking a
balance between high recall of coding-related material and effective filtering of irrelevant or noisy
content. This step allowed us to capture a much broader distribution of real-world programming
challenges, ranging from algorithmic puzzles to applied coding snippets, thereby providing a richer
substrate for the subsequent reasoning-augmented generation stages.The resulting mix of curated and
mined material forms the substrate for structured transformation with LLMs.

3.2 Structuring into Instruction–Reasoning–Solution–Test Quadruplets

From the pool of curated and mined documents, we employed Qwen2.5-Coder-7B-Instruct [Hui
et al., 2024] (Apache 2.0 MIT License) to convert raw programming content into standardized
instruction–reasoning–solution–test quadruplets. This stage is critical: raw problems from contest
archives or web mining are often unstructured, ambiguous, or lack consistent interfaces. The
LLM first reformulates each problem into a clear, self-contained instruction, then generates step-
by-step reasoning traces that connect problem statements to code implementations, followed by
three candidate solution–test pairs. This standardized format ensures that downstream models
are exposed not only to final answers but also to the intermediate reasoning strategies that support
generalization.

We selected Qwen2.5-Coder-7B-Instruct for its balance of efficiency and capability. Its moderate
size makes it practical for large-scale generation while still providing strong reasoning and coding
abilities. In addition, it is widely available and well-documented, which supports reproducibility
and ease of integration into our pipeline. While larger variants such as Qwen2.5-Coder-32B [Hui
et al., 2024] can offer higher quality, their computational cost is prohibitive at scale. Importantly, our
pipeline remains model-agnostic: different LLMs can be substituted to trade efficiency for further
quality improvements without altering the overall process.

3.3 Execution-Based Validation and Refinement

Building on prior execution-validated dataset pipelines such as MAmmoTH2 Yue et al. [2024] and
Self-Code-Align Wei et al. [2024a], we incorporated a rigorous multi-candidate refinement stage to
ensure that generated samples were both reliable and functionally correct. For each candidate instruc-
tion, the LLM was tasked with producing a reasoning trace alongside three alternative solution–test
pairs. These solutions were executed inside isolated Python containers with strict limits on runtime,
memory, and external calls, thereby preventing unsafe or non-terminating code. This multi-candidate
approach substantially reduced the risk of discarding otherwise valid problems due to a single poor
generation.

The validation process selected the first solution that passed all corresponding test cases, ensuring
consistency between reasoning, implementation, and execution. Samples for which no candidate
passed were discarded, preventing propagation of faulty code. Beyond correctness, this stage acted as
a powerful filter against hallucinated reasoning traces or malformed test cases, refining the dataset
into a coherent, executable form.

With this validation in place, the resulting dataset provided a reliable foundation for subsequent
scaling and augmentation, which we address next with the Genetic-Instruct framework.

3.4 Evolutionary Expansion with Genetic-Instruct

To scale beyond the initial seed set, we adopted a Genetic-Instruct framework [Majumdar et al.,
2025], which iteratively evolves new tasks from existing ones (Figure 1). This design is inspired
by genetic algorithms: instead of generating problems entirely from scratch, the system reuses
validated instructions as a population and applies controlled transformations to increase diversity
while preserving internal consistency. Each cycle operates on a pool of high-quality instructions and
produces a new generation of candidate tasks that inherit structure and reasoning patterns from their
predecessors.

3



Figure 1: Process Flow for Genetic Instruct

At the core of each cycle, the Instructor-LLM generates not only a new instruction but also its
accompanying reasoning trace. Two complementary operators guide this process:

• Crossover: The LLM is given five seed tasks as few-shot examples and instructed to synthesize
exactly one new instruction by merging elements from at least two of them. The resulting hybrid
task inherits aspects such as constraints, objectives, or reasoning strategies from multiple parents.
Crucially, the Instructor-LLM also produces a coherent reasoning trace that integrates these
elements, ensuring the derived problem is both novel and logically solvable.

• Mutation: The LLM perturbs an individual task through prompt-driven transformations. Mutations
include tightening or adding constraints, increasing reasoning depth, or expanding the problem
scope. As with crossover, each mutated task is paired with a fresh reasoning trace that remains
consistent with the modified instruction.

The generated instruction–reasoning pairs then proceed through the rest of the pipeline. The Coder-
LLM produces three candidate solution–test pairs for each task, guided by the reasoning trace. These
are parsed into scripts and executed in secure Apptainer containers under strict resource limits,
ensuring isolation, safety, and reproducibility. The first candidate that passes all tests is selected as
the final implementation; if none succeed, the instruction is discarded.

Finally, the Judge-LLM enforces structural, semantic, and functional quality. In addition to verifying
formatting and clarity, it checks that the generated code indeed solves the instruction in alignment
with the reasoning trace. Only tasks that pass this judgment are retained. To sustain both quality and
diversity, the instruction pool is periodically refreshed: every 200k accepted tasks, the validated set is
mixed with the seed pool before entering the next cycle. This iterative feedback loop prevents collapse
into repetitive formulations and steadily expands the dataset into a broader space of programming
challenges while maintaining correctness and reasoning fidelity.

3.5 Deduplication, Diversity Preservation, and Decontamination

A critical challenge in large-scale dataset construction is avoiding redundancy, since repeated or
near-identical problems can bias training and inflate benchmark performance. To mitigate this, we
applied a multi-stage deduplication pipeline. First, all instructions were embedded using MiniLM-L6-
v2[all MiniLM-L6-v2], a lightweight but effective sentence-transformer model. We then performed
approximate nearest-neighbor search with FAISS [Douze et al., 2024] to efficiently identify candidate
duplicates across the hundreds of thousands of structured problems in our dataset. Pairs with cosine
similarity above 0.90 were flagged for further inspection. Because surface-level similarity does not
always imply true duplication (e.g., two sorting problems with different constraints), flagged pairs
were passed to a locally hosted Gemma-3-27B-IT [Team et al., 2025] model for verification. This

4



LLM-based verifier judged whether two instructions were functionally identical, even if phrased
differently or containing minor variations. Confirmed duplicates were merged using a union–find
clustering procedure, which groups all linked pairs into equivalence classes and retains only one
representative per class. This approach ensured that the final dataset preserved diversity in problem
formulation while eliminating redundancy both in surface phrasing and in underlying functionality.

In addition to deduplication, we also conducted a thorough data leakage check against common code
evaluation benchmarks, namely HumanEval and MBPP. To this end, we computed and compared
hashes of benchmark problems with those in our dataset. The comparison revealed zero overlap,
confirming that our dataset does not contain leaked benchmark problems and is suitable for reliable
downstream fine-tuning and evaluation.

3.6 Fine-Tuning Setup

To rigorously measure the impact of our dataset, we fine-tuned Phi-2, a 2.7B-parameter transformer
developed by Microsoft [Gunasekar et al., 2023] (MIT License). Phi-2 was selected because it strikes
a favorable balance between scale and capability: despite its relatively modest size compared to recent
large language models, it demonstrates strong reasoning and code generation ability. This makes it a
cost-effective and informative testbed, allowing us to isolate the contributions of our dataset without
confounding factors introduced by extremely large model architectures.

Fine-tuning was carried out using the QLoRA [Dettmers et al., 2023] framework, which enables
efficient adaptation of large models by applying low-rank updates to a subset of parameters while
keeping the majority of the model frozen. Specifically, we set the rank to r = 16, the scaling
factor to α = 16, and targeted the modules [q_proj, v_proj, k_proj, dense]. Training was
conducted for 10 epochs, providing sufficient exposure to the dataset for the model to adapt to the
reasoning-augmented patterns while remaining computationally feasible.

3.6.1 Evaluation

We assessed the fine-tuned models on two widely used benchmarks: HumanEval, which emphasizes
algorithmic reasoning and problem-solving, and MBPP, which contains shorter programming tasks
with more direct mappings from instructions to solutions. To ensure consistency and rigor in
evaluation, we adopted the EvalPlus framework [Liu et al., 2023], which extends the original
benchmark test suites with additional cases and more robust correctness checks. This offers a stronger
measure of generalization beyond the limited canonical test sets.

4 Results

4.1 HumanEval and MBPP Benchmarks

The base phi-2 2.7B achieved 45.7% (Base) and 40.9% (Extra) on HumanEval, and 62.7% /
51.6% on MBPP. LeetCode [greengerong, 2023] fine-tuning offered only marginal improvements,
underscoring the limitations of small, curated datasets. In contrast, our synthetic data consistently
boosted performance, with gains that scaled with dataset size. At 25k synthetic samples, pass rates
reached 56.1% / 51.8% on HumanEval and 65.6% / 55.3% on MBPP—representing nearly +10
absolute points over baseline on HumanEval.

Overall, these experiments confirm that synthetic, reasoning-augmented data offers a scalable and
effective path toward improving coding performance across diverse benchmarks.

4.2 Efficiency Gains

Synthetic, reasoning-augmented fine-tuning proved to be a more efficient alternative to scaling
model size. The fine-tuned phi-2 2.7B achieved competitive, and in some cases superior, per-
formance compared to substantially larger models such as CodeLlama-70B [Roziere et al., 2023],
Llama3-8B-instruct [Dubey et al., 2024], and DeepSeek-Coder-33B-base [Guo et al., 2024]
(Figure 2). This demonstrates that targeted synthetic data can significantly narrow the performance
gap between small and large models, offering a more compute-efficient path to progress.

5



Table 1: Pass rates (%) on HumanEval and MBPP for phi-2 2.7B

Model HumanEval MBPP
Base Test

(%)
Extra Tests

(%)
Base Test

(%)
Extra Tests

(%)

Base Model (Phi-2 2.7B) 45.7 40.9 62.7 51.6
Fine-tuned on LeetCode dataset 47.6 42.1 63.0 51.6
Fine-tuned on 5k synthetic samples 54.3 49.4 64.3 54.5
Fine-tuned on 10k synthetic samples 54.9 50.6 65.6 55.3
Fine-tuned on 25k synthetic samples 56.1 51.8 65.6 55.3

0 10 20 30 40 50 60 70
Base Test (%)

Phi-2-finetuned-25k

WizardCoder-15B-V1.0

CodeLlama-70B

CodeQwen1.5-7B

DeepSeek-Coder
33B-base

56.1%

56.7%

55.5%

51.8%

51.2%

Humaneval Benchmark Results

0 10 20 30 40 50 60 70
Base Test (%)

Phi-2-finetuned-25k

Phi-3
mini-4k-instruct

DeepSeek-Coder
1.3B-instruct

Llama3-8B-instruct

WizardCoder-15B-V1.0

65.6%

65.9%

65.3%

64.6%

64.3%

MBPP Benchmark Results

Figure 2: Pass rates on HumanEval and MBPP benchmarks for selected models.

The implications extend beyond raw benchmark numbers. Scaling to tens of billions of parameters
requires specialized hardware, large-scale distributed training, and high inference costs, all of which
limit accessibility. In contrast, our approach shows that carefully curated, reasoning-focused data
allows models an order of magnitude smaller to deliver comparable gains. This not only reduces
training and deployment costs, but also broadens access to competitive code generation systems for
researchers and practitioners with modest resources.

In this context, efficiency means achieving strong performance without the prohibitive expenses of
brute-force scaling. Synthetic, reasoning-augmented fine-tuning therefore emerges as a practical and
sustainable alternative, advancing the capabilities of code generation models while keeping training
and inference requirements manageable.

5 Experiments

Our experiments test whether targeted, reasoning-augmented fine-tuning can improve code generation
without simply scaling model size. We evaluate along two complementary axes: (1) generalization,
by assessing whether improvements transfer across architectures such as CodeGemma-2B; and (2)
dataset quality, by contrasting homogeneous versus diverse subsets of our data and benchmarking
against other recent open-source resources. Together, these studies isolate the contributions of scale,
architecture, and dataset design.

To ensure fair comparisons, we standardized fine-tuning using QLoRA. A one-epoch configura-
tion search was conducted over eight variants, varying rank (r ∈ {16, 32}), scaling (α = 2r),
target modules ([q_proj, v_proj] or [q_proj, v_proj, k_proj]), and whether to retain the
final classification head (save_head ∈ {True, False}). The best-performing configuration on
downstream benchmarks was then applied consistently across all models and datasets.

Compute resources. All fine-tuning experiments were run on a single NVIDIA A100 GPU (80GB)
using QLoRA. Each configuration search run completed within ∼1–2 hours, while fine-tuning for
10 epochs with the selected hyperparameters required up to ∼12 hours for the largest dataset (25k
examples). We report results from single-GPU runs to ensure reproducibility and accessibility,
avoiding reliance on large-scale distributed infrastructure.

6



Table 2: Pass rates (%) on HumanEval and MBPP for CodeGemma-2B

Model HumanEval MBPP
Base Test

(%)
Extra Tests

(%)
Base Test

(%)
Extra Tests

(%)

Base Model (CodeGemma-2B) 23.2 17.7 55.6 45.8
Fine-tuned on LeetCode 31.1 25.0 57.7 48.4
Fine-tuned on 5k synthetic 33.5 27.4 60.6 50.0
Fine-tuned on 10k synthetic 36.6 31.1 62.4 52.6
Fine-tuned on 25k synthetic 37.8 32.3 62.4 51.6

HumanEval HumanEval+ MBPP MBPP+
0

10

20

30

40

50

60

70

Pa
ss

@
1 

(%
)

50.0
45.7

64.6

53.756.7
51.8

66.1

55.0

Homogeneous 5k Diverse 5k

Figure 3: Pass@1 scores on HumanEval and MBPP for homogeneous vs. diverse subsets. Diversity
yields stronger reasoning alignment.

5.1 Cross-Model Generalization

To evaluate whether these gains are architecture-specific, we applied the same training subsets to
CodeGemma-2B [Team et al., 2024](Gemma License), a model already specialized for coding. For
fair comparison, we re-fine-tuned phi-2 under identical conditions (same subsets, training setup,
and evaluation protocol) to those used for CodeGemma. As shown in Table 2, CodeGemma benefited
strongly from our dataset: fine-tuning on 25k samples yielded a +14.6 point increase on HumanEval
base tests (23.2% → 37.8%) and a +6.8 point gain on MBPP base tests (55.6% → 62.4%), with
comparable improvements on extra tests. Interestingly, the scaling behavior was consistent with that
of phi-2, suggesting that our dataset delivers distinct benefits even for models already optimized for
code.

Taken together, these findings highlight two important aspects: (1) reasoning-augmented synthetic
data enables efficient specialization of smaller models, reducing reliance on costly scaling, and (2)
the benefits generalize across architectures and pretraining regimes. Both points strengthen the case
for dataset-driven approaches as a practical alternative to simply increasing model size. Having
established that our data scales efficiently across models, we next ask whether the structure of the
dataset itself —in particular, its diversity versus homogeneity—affects downstream performance.

5.2 Diversity vs. Homogeneity

To disentangle the effects of scale and coverage, we compared matched 5k subsets under two
conditions: homogeneous and diverse. The homogeneous subsets were sampled from our dataset
before the deduplication step, resulting in highly similar, single-domain style problems. In contrast,
the diverse subsets were drawn from the final deduplicated dataset, covering a broad range of domains
and reasoning types.

7



Table 3: Evaluation results (%) across HellaSwag, WinoGrande, and MMLU for base, 5k-fine-tuned,
and 25k-fine-tuned models

Dataset / Metric Base Model 5K Fine-tuned 25K Fine-tuned
HellaSwag (Acc) 55.88 55.22 55.50
HellaSwag (Acc_Norm) 73.76 73.00 73.32
WinoGrande (Acc) 75.93 76.09 76.01
MMLU (Avg Acc) 54.37 53.94 54.14

Despite being identical in size, the diverse subsets consistently outperformed the homogeneous ones.
On HumanEval, diverse fine-tuning reached 56.7% compared to 50.0% for homogeneous, and 51.8%
versus 45.7% on HumanEval+. On MBPP, the effect was smaller but still present: 66.1% vs. 64.6%,
and 55.0% vs. 53.7% on MBPP+. These results highlight that redundancy and narrow domain focus
reduce the effective information content of training data, while exposure to a variety of problem
formulations improves downstream generalization.

Taken together, these findings show that at small and medium training budgets, diversity is more
valuable than raw sample count. Even relatively small but heterogeneous datasets can rival or
exceed larger, less varied ones, underscoring the importance of deduplication and domain coverage
in building effective resources for code generation. While these results highlight benefits within
code-focused benchmarks, it remains essential to confirm that domain-specific fine-tuning preserves
broader reasoning ability. We turn to this in the next section.

5.3 General Reasoning Benchmarks

A common concern with domain-specific fine-tuning is that it might reduce a model’s broader
reasoning ability. To verify this, we evaluated our models on three standard benchmarks outside
programming: HellaSwag (commonsense inference) [Zellers et al., 2019], WinoGrande (coreference
reasoning) [Sakaguchi et al., 2021], and MMLU (multi-task knowledge)[Hendrycks et al., 2020].
Across all three, accuracy remained essentially unchanged, with variations well within normal
fluctuation (see Table 3).

These results indicate that reasoning-aware code fine-tuning preserves general capabilities. In other
words, models can gain substantial improvements in code generation without sacrificing the versatility
needed for non-coding tasks, making this approach suitable for building specialized yet broadly
capable systems. Finally, to contextualize our approach against existing resources, we compare our
dataset directly with other recent open-source alternatives.

5.4 Comparison with Other Datasets

To put our dataset in context, we benchmarked it against two recent open-source resources: EpiCoder-
func-380k [Wang et al., 2025](MIT License) and Self-OSS-Instruct-SC2-Exec-Filter-50k [Wei et al.,
2024a]. For fairness, we fine-tuned on matched 5k subsets from each source under identical training
settings. Across both HumanEval and MBPP, models trained on our data consistently achieved higher
pass rates, even though all experiments used the same sample budget (Figure 4).

The comparisons also highlight where our approach makes the biggest difference. Improvements
were most pronounced on HumanEval, which contains more complex programming tasks that
often require multi-step reasoning. This suggests that our dataset’s emphasis on reasoning-oriented
problem formulations, genetic instruction variation, and rigorous validation is particularly valuable
for benchmarks that go beyond surface-level coding skills. While MBPP also showed gains, they
were smaller, consistent with its focus on simpler problems. Together, these results indicate that
careful dataset design can yield benefits beyond scale alone, especially when the downstream tasks
demand structured reasoning.

6 Conclusion

This work demonstrates that large-scale, reasoning-augmented synthetic datasets can play a deci-
sive role in advancing the coding capabilities of large language models. By combining FastText-

8



HumanEval HumanEval+ MBPP MBPP+
0

10

20

30

40

50

60

70

80
Pa

ss
@

1 
(%

)

56.7
51.8

66.1

55.0
50.0

45.7

66.7

56.6

47.6
43.3

64.0

54.0

Our Dataset (5k) Phi-2 EpiCoder-func-380k (5k) Self-OSS-Instruct (5k)

Figure 4: Comparison of pass@1 scores on HumanEval and MBPP for models fine-tuned on 5k
samples from our dataset versus EpiCoder-func-380k and Self-OSS-Instruct-SC2-Exec-Filter-50k.

based corpus filtering, Qwen2.5-Coder generation, multi-stage validation, and our Genetic Instruct
algorithm for systematic instruction variation, we produced nearly 800k high-quality instruc-
tion–reasoning–code–test quadruplets. Unlike existing resources, our dataset captures not just
solutions, but also the intermediate reasoning processes that enable models to generalize to harder
problems. The resulting data proved to be diverse, interpretable, and reliable—qualities that our
experiments identified as critical drivers of performance.

Extensive evaluations highlight the strength of this approach. Fine-tuning on our synthetic subsets
consistently surpassed strong baselines such as LeetCode, and even allowed smaller models to rival or
outperform substantially larger ones. These results underline that the key to progress is not raw dataset
size, but the integration of reasoning and diversity. Further, cross-model experiments confirmed that
the benefits generalize across architectures, while evaluations on general reasoning tasks showed no
degradation—demonstrating the robustness of our pipeline.

A current limitation of our work is that the pipeline supports only Python. Extending it to other
programming languages will require adapting the execution-based validation framework, which is
essential to ensure functional correctness in more diverse coding environments.

Taken together, our findings establish synthetic, diversity-driven data generation as a powerful and
scalable foundation for building more capable and efficient code-focused LLMs. Looking forward,
extending this pipeline to multilingual programming languages (e.g., Java, C++, JavaScript) and
deploying it at pretraining scale offers a clear pathway toward models that can reason, generalize,
and adapt across programming paradigms. In a landscape where real-world datasets are limited, our
results highlight that it is the breadth and structure of data—not raw scale—that unlocks the next
generation of robust, reasoning-capable models for code.

9



Acknowledgements

This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) under grant number 417962828. We acknowledge funding by the European Union (via ERC
Consolidator Grant DeepLearning 2.0, grant no. 101045765). Views and opinions expressed are,
however, those of the author(s) only and do not necessarily reflect those of the European Union or
the European Research Council. Neither the European Union nor the granting authority can be held
responsible for them.

We gratefully acknowledge the Gauss Centre for Supercomputing e.V. for funding this work by
providing computing time through the John von Neumann Institute for Computing (NIC) on the
supercomputer JUWELS Booster at Jülich Supercomputing Centre (JSC).

References
all MiniLM-L6-v2. all-minilm-l6-v2. https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2. Accessed: 2025-10-15.

AtCoder. Atcoder. https://atcoder.jp/. Accessed: 2025-10-15.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with
large language models, 2021. URL https://arxiv.org/abs/2108.07732. arXiv preprint
arXiv:2108.07732.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors with
subword information. Transactions of the association for computational linguistics, 5:135–146,
2017.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Codeforces. Codeforces. https://codeforces.com/. Accessed: 2025-10-15.

CommonCrawl. Commoncrawl. https://commoncrawl.org/. Accessed: 2025-10-15.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of
quantized llms. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors,
Advances in Neural Information Processing Systems, volume 36, pages 10088–10115. Curran As-
sociates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/1feb87871436031bdc0f2beaa62a049b-Paper-Conference.pdf.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. arXiv preprint
arXiv:2401.08281, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pages arXiv–2407, 2024.

greengerong. Leetcode dataset, 2023. URL https://huggingface.co/datasets/
greengerong/leetcode. Accessed: 2025-08-21.

Suriya Gunasekar, Xuezhi Chen, Tris Dube, Yichong Ge, Shrimai Ma, Yi Tay,
and Barret Zoph. Phi-2: A small language model with a big knowledge
of natural language. https://www.microsoft.com/en-us/research/blog/
phi-2-the-surprising-power-of-small-language-models/, 2023.

10

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://atcoder.jp/
https://arxiv.org/abs/2108.07732
https://codeforces.com/
https://commoncrawl.org/
https://proceedings.neurips.cc/paper_files/paper/2023/file/1feb87871436031bdc0f2beaa62a049b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1feb87871436031bdc0f2beaa62a049b-Paper-Conference.pdf
https://huggingface.co/datasets/greengerong/leetcode
https://huggingface.co/datasets/greengerong/leetcode
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/


Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–the
rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Xiaodong Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. ArXiv, abs/2009.03300,
2020. URL https://api.semanticscholar.org/CorpusID:221516475.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men, Fei Huang,
Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xuancheng Ren,
Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report, 2024.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation. ACM Trans. Softw. Eng. Methodol., July 2025. ISSN 1049-331X. doi:
10.1145/3747588. Just Accepted.

LeetCode. Leetcode. https://leetcode.com/. Accessed: 2025-10-15.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Yitzhak Gadre, Hritik
Bansal, Etash Guha, Sedrick Scott Keh, Kushal Arora, et al. Datacomp-lm: In search of the
next generation of training sets for language models. Advances in Neural Information Processing
Systems, 37:14200–14282, 2024.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and LINGMING ZHANG. Is your code generated
by chatGPT really correct? rigorous evaluation of large language models for code generation.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=1qvx610Cu7.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=UnUwSIgK5W.

Somshubra Majumdar, Vahid Noroozi, Mehrzad Samadi, Sean Narenthiran, Aleksander Ficek,
Wasi Uddin Ahmad, Jocelyn Huang, Jagadeesh Balam, and Boris Ginsburg. Genetic instruct:
Scaling up synthetic generation of coding instructions for large language models. In Georg
Rehm and Yunyao Li, editors, Proceedings of the 63rd Annual Meeting of the Association for
Computational Linguistics (Volume 6: Industry Track), pages 208–221, Vienna, Austria, July 2025.
Association for Computational Linguistics. ISBN 979-8-89176-288-6. doi: 10.18653/v1/2025.
acl-industry.16. URL https://aclanthology.org/2025.acl-industry.16/.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: an adver-
sarial winograd schema challenge at scale. Commun. ACM, 64(9):99–106, August 2021. ISSN
0001-0782. doi: 10.1145/3474381. URL https://doi.org/10.1145/3474381.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

CodeGemma Team, Heri Zhao, Jeffrey Hui, Joshua Howland, Nam Nguyen, Siqi Zuo, Andrea Hu,
Christopher A Choquette-Choo, Jingyue Shen, Joe Kelley, et al. Codegemma: Open code models
based on gemma. arXiv preprint arXiv:2406.11409, 2024.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025.

11

https://api.semanticscholar.org/CorpusID:221516475
https://leetcode.com/
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=UnUwSIgK5W
https://aclanthology.org/2025.acl-industry.16/
https://doi.org/10.1145/3474381


Yaoxiang Wang, Haoling Li, Xin Zhang, Jie Wu, Xiao Liu, Wenxiang Hu, Zhongxin Guo, Yangyu
Huang, Ying Xin, Yujiu Yang, Jinsong Su, Qi Chen, and Scarlett Li. Epicoder: Encompassing
diversity and complexity in code generation. In Forty-second International Conference on Machine
Learning, 2025. URL https://openreview.net/forum?id=RAxe7nF4Oz.

Yuxiang Wei, Federico Cassano, Jiawei Liu, Yifeng Ding, Naman Jain, Zachary Mueller, Harm
de Vries, Leandro Von Werra, Arjun Guha, and LINGMING ZHANG. Selfcodealign: Self-
alignment for code generation. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024a. URL https://openreview.net/forum?id=xXRnUU7xTL.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empowering
code generation with OSS-instruct. In Proceedings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine Learning Research, pages 52632–52657. PMLR,
21–27 Jul 2024b. URL https://proceedings.mlr.press/v235/wei24h.html.

Yutong Wu, Di Huang, Wenxuan Shi, Wei Wang, Lingzhe Gao, Shihao Liu, Ziyuan Nan, Kaizhao
Yuan, Rui Zhang, Xishan Zhang, Zidong Du, Qi Guo, Yewen Pu, Dawei Yin, Xing Hu, and Yunji
Chen. Inversecoder: Unleashing the power of instruction-tuned code llms with inverse-instruct,
2024. URL https://arxiv.org/abs/2407.05700.

Xiang Yue, Tianyu Zheng, Ge Zhang, and Wenhu Chen. Mammoth2: Scaling instructions from the
web. Advances in Neural Information Processing Systems, 37:90629–90660, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Annual Meeting of the Association for Computational Linguistics,
2019. URL https://api.semanticscholar.org/CorpusID:159041722.

12

https://openreview.net/forum?id=RAxe7nF4Oz
https://openreview.net/forum?id=xXRnUU7xTL
https://proceedings.mlr.press/v235/wei24h.html
https://arxiv.org/abs/2407.05700
https://api.semanticscholar.org/CorpusID:159041722

	Introduction
	Related Work
	Methodology
	Dataset Curation and Expansion
	Structuring into Instruction–Reasoning–Solution–Test Quadruplets
	Execution-Based Validation and Refinement
	Evolutionary Expansion with Genetic-Instruct
	Deduplication, Diversity Preservation, and Decontamination
	Fine-Tuning Setup
	Evaluation


	Results
	HumanEval and MBPP Benchmarks
	Efficiency Gains

	Experiments
	Cross-Model Generalization
	Diversity vs. Homogeneity
	General Reasoning Benchmarks
	Comparison with Other Datasets

	Conclusion

