
Published as a conference paper at ICLR 2022

PROOF ARTIFACT CO-TRAINING FOR THEOREM PROV-
ING WITH LANGUAGE MODELS

Jesse Michael Han
University of Pittsburgh
OpenAI

Jason Rute
IBM Research∗

Yuhuai Wu
Google Research
Stanford University†

Edward W. Ayers
Carnegie Mellon University‡

Stanislas Polu
OpenAI

ABSTRACT

Labeled data for imitation learning of theorem proving in large libraries of formal-
ized mathematics is scarce, as such libraries require years of concentrated effort
by human specialists to be built. This is particularly challenging when applying
large Transformer language models to tactic prediction, because the scaling of
performance with respect to model size is quickly disrupted in the data-scarce,
easily-overfitted regime. We propose PACT (Proof Artifact Co-Training), a general
methodology for extracting abundant self-supervised data from kernel-level proof
terms for joint training alongside the usual tactic prediction objective. We apply
this methodology to Lean, a proof assistant host to some of the most sophisticated
formalized mathematics to date. We instrument Lean with a neural theorem prover
driven by a Transformer language model and show that PACT improves theorem
proving success rate on a held-out suite of test theorems from 32% to 48%.

1 INTRODUCTION

Deep learning-driven automated theorem proving in large libraries of formalized mathematics (hence-
forth “neural theorem proving”) has been the focus of increased attention in recent years. Labeled
data for imitation learning of theorem proving is scarce—formalization is notoriously labor-intensive,
with an estimated cost of 2.5 man-years per megabyte of formalized mathematics (Wiedijk, 2000),
and complex projects require years of labor from human specialists. Within a fixed corpus of (possibly
unproven) theorem statements, it is possible to augment a seed dataset of human proofs with new
successful trajectories using reinforcement learning or expert iteration. However, for some large
models this can be quite computationally intensive, and without a way to expand the curriculum of
theorems, the agent will inevitably saturate and suffer from data starvation.

Data scarcity is a particularly thorny obstruction for applying large language models (LLMs) to
neural theorem proving. LLMs have achieved spectacular success in data-rich regimes such as plain
text (Brown et al., 2020), images (Dosovitskiy et al., 2021), and joint text-image modeling (Radford
et al., 2021), and the performance of decoder-only Transformers has been empirically shown to
obey scaling power laws in model and data size (Henighan et al., 2020). However, existing datasets
of human proof steps for neural theorem proving are extremely small and exist at scales at which
overfitting occurs extremely rapidly, disrupting the scaling of performance with respect to model
size (Kaplan et al., 2020).

We make two contributions towards addressing the problem of data scarcity in the context of formal
mathematics. First, we introduce PACT (Proof Artifact Co-Training), a general methodology for
extracting self-supervised auxiliary tasks for jointly training a language model alongside a tactic
prediction objective for interactive theorem proving. Second, we present LEANSTEP, a collection of

∗Work performed while Jason Rute was at CIBO Technologies.
†Work performed while Yuhuai Wu was at University of Toronto.
‡Work performed while Edward W. Ayers was at University of Cambridge.

1

Published as a conference paper at ICLR 2022

datasets and a machine learning environment for the Lean 3 theorem prover with support for PACT,
supervised learning of tactic prediction, theorem proving evaluation, and reinforcement learning.

We train large language models on these data and demonstrate that PACT significantly improves
theorem proving success rate on a held-out suite of test theorems, from 32% to 48%. We then embark
on a careful study of the effects of pre-training vs. co-training and show that PACT combined with
WebMath pre-training (Polu & Sutskever, 2020) achieves the best validation loss and theorem proving
success rate. Finally, on an out-of-distribution collection of thousands of theorems (some involving
novel definitions) added to Lean’s mathematical library after we extracted our train/test data, we
achieve a theorem proving success rate of 37%, suggesting strong generalization and usefulness at
the frontier of formalized mathematics.

2 BACKGROUND AND RELATED WORK

LEAN Lean is an interactive theorem prover and functional programming language (de Moura et al.,
2015). It has an extremely active community and is host to some of the most sophisticated formalized
mathematics in the world, including scheme theory (Buzzard et al., 2021), forcing (Han & van Doorn,
2020), perfectoid spaces (Buzzard et al., 2020), and condensed mathematics (Scholze, 2020). Lean’s
foundational logic is a dependent type theory called the calculus of inductive constructions (Pfenning
& Paulin-Mohring, 1989). This design means that terms, types and proofs are all represented with a
single datatype called an expression. A proof term is a Lean expression whose type is a proposition,
i.e. a theorem. This proof term serves as a checkable artifact for verifying the proposition. Lean uses a
small, trusted kernel to verify proof terms. The primary repository of formalized mathematics in Lean
is mathlib (mathlib, 2020). At the time of writing, 140 contributors have added almost 500,000
lines of code; mathlib contains over 46,000 formalized lemmas backed by over 21,000 definitions,
covering topics such as algebraic geometry, computability, measure theory, and category theory. The
range of topics and the monolithic, unified organization of mathlib make it an excellent foundation
for a neural theorem proving dataset.

MACHINE LEARNING IN INTERACTIVE THEOREM PROVING In a tactic-based interactive theorem
prover (ITP) such as Lean, a proof is a list of tactics, i.e. small proof-term-generating programs.
Tactics can be simple one-word commands, e.g. refl, or be composed of many nested parts, e.g.

simpa [le_antisymm_iff, norm_nonneg] using @norm_eq_zero α _ g

Here the brackets enclose a list of simplifier rules (which often are just lemmas from the library), and
@norm_eq_zero α _ g is a proof term applying the lemma norm_eq_zero to the local variables
α and g.

Other ML and neural theorem provers for tactic-based ITPs take one of two approaches to tactic
generation. TacticToe (Gauthier et al., 2021) for HOL4 and Tactician (Blaauwbroek et al., 2020)
for Coq use k-NN to select similar tactics in the training set and apply modifications to the result,
e.g. swapping the tactic variables with those found in the local context. HOList/DeepHOL (Bansal
et al., 2019b;a; Paliwal et al., 2020) for HOL Light; TacticZero (Wu et al., 2021a) for HOL4; and
CoqGym/ASTactic (Yang & Deng, 2019) and ProverBot9001 (Sanchez-Stern et al., 2020) for Coq
hard-code the DSL for every tactic command. The model chooses a tactic command, and then fills in
the tactic arguments using specialized argument selectors (such as a lemma selector, a local hypothesis
selector, and/or a variable selector). None of these selectors currently synthesize arbitrary terms. This
prevents the tactic synthesis from constructing tactics with proof terms, such as @norm_eq_zero α
_ g, or directly proving an existential, e.g. ∃ (x : R), x + 3 = 0, by supplying the witnessing

term -3.

Directly applying generative language modeling to tactic generation allows this setup to be consid-
erably simplified. Our tactic generator is able to synthesize tactics of any form found in mathlib
including, for example, the simpa example above as a one line proof to a test theorem, even though
the string @norm_eq_zero does not occur in our dataset. (See more examples in Appendix D.) We
leave as future work the possibility of re-integrating specialized components, e.g. lemma selection,
found in other works (possibly as, say, a source of additional prompts for the language model).

Language models have also been explored in the first-order ITP Mizar for conjecturing and proof
synthesis (Urban & Jakubuv, 2020). While their work shows the promise of such approaches,

2

Published as a conference paper at ICLR 2022

is not intended as a complete end-to-end theorem prover. For Metamath, which does not use
tactics, language modeling approaches have been quite successful. Holophrasm (Whalen, 2016),
MetaGen (Wang & Deng, 2020), and GPT-f (Polu & Sutskever, 2020) all use RNNs or Transformers
to generate proof steps. Indeed, our paper builds on the work of Metamath GPT-f (Polu & Sutskever,
2020) (MM GPT-f). Whereas MM GPT-f trained primarily on the Metamath proof step objective
(i.e. guessing the next lemma to be applied to a goal, which is similar to our NEXTLEMMA task
in Section 3.2), we co-train on a diverse suite of self-supervised tasks extracted from Lean proof
terms and demonstrate significant improvements in theorem proving performance when doing so.
This is our main result.

REASONING WITH TRANSFORMERS Besides theorem proving, a number of recent papers have
shown that language models, especially Transformers, are capable of something like mathematical
and logical reasoning in integration (Lample & Charton, 2020), differential equations (Charton et al.,
2021), Boolean satisfiability (Hahn et al., 2021), and inferring missing proof steps (Li et al., 2021).

A closely-related vein of work has shown that pre-training Transformers on data engineered to reflect
inductive biases conducive to mathematical reasoning is beneficial for downstream mathematical
reasoning tasks (Rabe et al., 2021; Wu et al., 2021b). Our work both builds on and departs from
these ideas in several ways. Unlike skip-tree training (Rabe et al., 2021), which focuses solely on
predicting masked subterms of theorem statements, PACT derives its self-supervised training data
from far more complex proofs. Unlike LIME (Wu et al., 2021b), which uses purely synthetic data and
is presented as a pre-training methodology, our self-supervised tasks are extracted from non-synthetic
human proofs. Moreover, we show that not only are Transformers capable of performing well on
auxiliary tasks gathered from low-level proof artifact data, but that we can directly leverage this
low-level data by jointly training a language model to greatly improve its performance at high-level
theorem proving.

MACHINE LEARNING WITH PROOF ARTIFACTS The idea of mining low-level proof artifacts was
previously explored by Kaliszyk and Urban in the context of automated lemma extraction (Kaliszyk
& Urban, 2015b; Kaliszyk et al., 2015). It has also been previously observed that training on fully
elaborated Coq terms (Nie et al., 2020) helps with a downstream theorem naming task. However,
similar to previous work on skip-tree training, their dataset focuses solely on theorem statements,
i.e. types, does not cover the far more complex proof terms, and does not evaluate the effect of such
training on theorem proving evaluations.

While there exist environments and datasets for other formal mathematics libraries (Kaliszyk et al.,
2017; Li et al., 2021; Huang et al., 2019; Kaliszyk & Urban, 2015a), LEANSTEP is the first and only
tactic proof dataset for the Lean theorem prover. This makes available a large set of formal mathe-
matical data to researchers covering a diverse and deep spectrum of pure mathematics. Moreover,
LEANSTEP is unique in that it contains both high-level human-written tactics as well as kernel-level
proof terms, which enables the extraction of self-supervised tasks for PACT (Section 3.2).

3 THE LEANSTEP DATASETS AND MACHINE LEARNING ENVIRONMENT

3.1 HUMAN TACTIC PROOF STEPS

Tactics in Lean are metaprograms (Ebner et al., 2017), which can construct Lean expressions, such as
proof terms. A tactic state which tracks the list of open goals and other metadata (like the partial
proof term constructed so far) is threaded through each tactic invocation. Lean has special support for
treating tactics as an extensible domain-specific language (DSL); this DSL is how Lean is typically
used as an interactive theorem prover. The DSL amounts to a linear chain of comma-separated
invocations. The Lean proof step task is to predict the next tactic given this goal state. We refer the
reader to Appendix A for examples and further explanation.

Our human tactic proof step dataset consists of source-target pairs of strings, one for each tactic
invocation in the Lean core library and in mathlib. The source string is the pretty-printed tactic
state. The target string is the tactic invocation as entered by a human author of the source code. This
data is gathered by hooking into the Lean parser and Lean’s compilation process. We refer to the task
of predicting the next human tactic proof step given a tactic state as the proofstep objective.

3

Published as a conference paper at ICLR 2022

3.2 PROOF ARTIFACT CO-TRAINING

In this section, we describe the PACT task suite and how data for these tasks are extracted.

For every proof term τ , we record the type Γ of τ , its name nm, and a list ps of all premises (i.e.
named references to other lemmas in the library) which are used in τ . We then recurse through
τ , tracking a list bs of bound variables which we update whenever navigating into the body of a
λ-expression. At every sub-term τ ′ ⊆ τ we record τ ′, its type Γ′, the current state of bs, and the
following data:

1. A tactic state, where the goal is set to be Γ′ and the list of hypotheses in the local context is
set to be the list bs, i.e. those bound variables in scope at τ ′.

2. A partial proof term, i.e. τ with τ ′ masked out.
3. A premise selection bitmask, i.e. Boolean labels for every p in ps indicating whether p is

used in τ ′.
4. A local context bitmask, i.e. similar Boolean labels for every b in bs indicating whether b

is used in τ ′.
5. An optional next lemma: if the first step of τ ′ is to apply a premise p in ps, we record p.

Whenever we record a term, we record both pretty-printed and far more explicit fully elaborated
versions of it. The fully elaborated terms explicitly display enormous amounts of type information
which are usually silently inferred by Lean. From these data, we assemble the following language
modeling tasks:

1. Next lemma prediction. Given the tactic state, predict the next lemma to be applied.
2. Proof term prediction. Given the tactic state, predict the entire proof term τ ′.
3. Skip-proof. Given the partial proof term, predict the masked subterm τ ′.
4. Type prediction. Given the partial proof term, predict the type Γ′ of the masked subterm
τ ′.

5. Tactic state elaboration. Given the tactic state, predict the fully elaborated tactic state.
6. Proof term elaboration. Given τ , predict the fully elaborated version of τ .
7. Premise classification. Given the tactic state and a premise p ∈ ps, predict either <TRUE>

or <FALSE> according to the premise selection bitmask.
8. Local context classification. Given the tactic state (which consists of a list of local as-

sumptions bs and the goal Γ′), predict the sublist of bs which is true on the local context
bitmask.

9. Theorem naming. Given the type Γ of the top-level proof term τ , predict the name nm.

We remark that our next lemma prediction task is precisely the low-level PROOFSTEP objective
studied in (Polu & Sutskever, 2020), and our skip-proof task superficially resembles, but is much
more difficult than the skip-tree task studied in (Rabe et al., 2021), as proof terms tend to be far more
complex than the syntax trees of theorem statements.

3.3 THE LEANSTEP MACHINE LEARNING ENVIRONMENT

We instrument Lean for automatic theorem proving with a language model, including utilities for
(1) setting the runtime environment at a particular theorem (ensuring proofs are never circular), (2)
serializing the tactic state as environment observations for a theorem-proving agent, (3) exposing
Lean’s parser to re-parse strings emitted by a language model into tactic invocations, and (4) executing
and capturing the results of the re-parsed tactics, enabling the recording of trajectories for expert
iteration and reinforcement learning.

In addition to this general instrumentation, we implement a generic best-first search algorithm for
theorem proving; it forms the basis for our evaluations and is written entirely in Lean itself. The
algorithm is parametrized by an oracle (Ω : tactic_state → list (string × float))
that accepts a tactic state and returns a list of strings and heuristic scores. The search is controlled

4

Published as a conference paper at ICLR 2022

by a priority queue of search nodes, which consist of a tactic state (i.e. a partial proof) and search
metadata. In the outer loop of the algorithm—which continues until either the theorem is completely
proved (i.e. no goals are remaining on the current node), the priority queue is empty (i.e. the search
has failed), or a pre-set timeout or budget of iterations is exceeded—we pop a node off the queue,
serialize the associated tactic state and use it to query the oracle, producing a list of candidates
cs : list (string × float). We then loop over the candidates cs to produce a list of new
search nodes, by re-parsing each string into a tactic and adding a new node if the parsed tactic
advances the proof without raising errors. These new search nodes are then re-inserted into the
queue in order of decreasing priority and the search continues. We optionally constrain the search
by enforcing maximum width and depth limits wmax and dmax that guard insertion into the queue.
When considering nodes for insertion, any node whose depth exceeds dmax is ignored, and all
nodes are ignored if the queue size is strictly larger than wmax. Due to the flexibility in assigning
heuristic scores and in choosing the maximum width and depth hyperparameters, our algorithm is
quite general—for example, it reduces to (1) a greedy depth-first search when wmax = 0, and (2) a
naïve breadth-first search when heuristic scores are identical and wmax = dmax =∞.

4 EXPERIMENTS

TRAINING In all of our experiments, we use decoder-only Transformers similar to GPT-3 (Brown
et al., 2020). Unless mentioned otherwise, all of our models have 24 layers with dmodel = 1536 and
24 heads, accruing to 837M trainable parameters. They are also pre-trained on WebMath (Polu &
Sutskever, 2020) for 72B tokens. We use the standard BPE encoding (Brown et al., 2020), a batch
size of 512 and a learning rate of 0.00025 with a cosine schedule and a 100-step ramp-up.

We use an 80-5-15 train-validation-test split. We split all datapoints deterministically by theorem
name, by hashing each name to a float in (0, 1). This ensures, for example, that proof steps used to
prove a test theorem never appear in the training data and vice-versa.

When fine-tuning a model we load its saved parameters but re-initialize the optimizer. We start each
training for a fixed number of tokens (defining the cosine schedule) and record the number of tokens
consumed as we reach a minimal validation loss. We use the minimum validation loss snapshot to
evaluate each model on our held-out test set.

We partition our datasets into three groups:

1. tactic: the dataset described in Section 3.1.

2. mix1: the union of the PACT tasks next lemma prediction and proof term predic-
tion (Section 3.2), selected because of their close relation to tactic.

3. mix2: all other datasets described in Section 3.2.

This grouping is motivated by the impossibility to ablate each dataset separately given our compute
budget. They nonetheless enable us to study the effect of tasks that are very close to the tactic
objective in comparison to others. Our choice of next lemma prediction and proof term prediction
for mix1 is motivated by the observation that these tasks are closely related to the theorem proving
objective: a proof can be given entirely in terms of a sequence of lemmas to apply (as in Metamath),
or the proof can be finished in one step by supplying the entire proof term. Despite their logical
similarity to the PROOFSTEP objective, we nevertheless use different keywords in the prompt to the
model to disambiguate (NEXTLEMMA and PROOFTERM) from (PROOFSTEP) because the data is
noisy and represents a significant distribution shift: during pretty-printing, subtrees of proof terms
beyond a certain depth are dropped entirely, there is generally no guarantee that they can be re-parsed,
and the data is much more verbose than what humans typically supply in source code.

THEOREM PROVING EVALUATION We run theorem-proving evaluations on our held-out test
set, comprising 3071 theorems. Since the split was conducted by theorem name, the proofs of these
theorems never appear in the training data. For each theorem in the test set, we set the runtime
environment to the location where the theorem is proved in the source code, preventing the use of
theorems defined later in mathlib and ensuring that we never derive circular proofs. We compare
against existing proof automation In Lean by also evaluating the tactics refl, which attempts to
prove statements via definitional equality, and tidy, which conducts a greedy depth-first search

5

Published as a conference paper at ICLR 2022

tactic
tactic proof steps GOAL <TacticState> PROOFSTEP <Tactic>

mix1
next lemma prediction GOAL <TacticState> NEXTLEMMA apply (<NextLemma>)
proof term prediction GOAL <TacticState> PROOFTERM exact (<ProofTerm>)

mix2
skip proof RESULT <MaskedProofTerm> SKIPPROOF <ProofTerm>
type prediction RESULT <MaskedProofTerm> PREDICTTYPE <Type>
tactic state elaboration GOAL <TacticState> ELABGOAL <ElaboratedTacticState>
proof term elaboration PROOFTERM <ProofTerm> ELABPROOFTERM <ElaboratedProofTerm>
premise classification GOAL <TacticState> CLASSIFYPREMISE <Premise> <True|False>
local context classification GOAL <TacticState> CLASSIFYLOCALS <LocalsList>
theorem naming TYPE <Type> NAME <Name>

Figure 1: Auto-regressive objectives used for each task described in Section 3. Placeholders repre-
sented with brackets (such as <TacticState>) are substituted by the context-completion pairs
from each datasets in the prompts above. Each task is presented to the model with its respective key-
word (PROOFSTEP, NEXTLEMMA,...). We wrap the completions of mix1 tasks (with apply(...)
and exact(...) respectively) as a hint that they are related to the respective Lean tactics; this is
not directly possible for the other tasks.

using a fixed list of tactics at each step. We re-implement tidy as a special case of our best-first
search algorithm using an oracle which always emits the same list of tactics, and so henceforth
refer to it as tidy-bfs. In all of our experiments, we use a maximum width of wmax = 16, a
maximum depth of dmax = 128, a maximum budget of 512 iterations of the outer loop, a timeout of
5 seconds per tactic execution, and a global timeout of 600 seconds per theorem. Because sampling
completions from our models is much slower (≈ 1 second) than querying the constant tidy-bfs
oracle (instantaneous), the tidy-bfs search runs many more iterations than gptf before timeout.

We report the pass-rate (i.e. percentage of theorems proved) from the randomly-chosen held-out test
set, following (Whalen, 2016), (Bansal et al., 2019c), and others. We provide an alternative pass-rate
at the end of this section, using theorems added to mathlib after our dataset was collected. We
average over three evaluation runs when reporting the pass rate.

EFFECT OF CO-TRAINING VS PRE-TRAINING We first study the effects of pre-training versus
co-training with the mix1 and mix2 datasets. We pre-train using the methodology described above
(potentially pre-training first on WebMath, and then on a PACT dataset in sequence). For co-training,
we simply concatenate and shuffle the datasets together without applying any particular weight to a
given dataset.

The main results are presented in Figure 2. Pre-training exhibits an effective transfer from mix-1
and/or mix-2 but the best result is achieved by co-training with both these datasets. With this
setup, we are able to train for much longer (71B tokens vs 22B+18B for the best pre-training setup)
before overfitting on the PROOFSTEP task. We hypothesize that PACT regularizes overfitting to
the PROOFSTEP task while still imparting useful knowledge to the model due to large amounts of
mutual information, and that this is the main driver of increased performance.

ABLATING WEBMATH PRE-TRAINING Next, we ablate the effect of WebMath pre-training (instead
starting with a model pre-trained on the same English language mix as GPT-3). As expected, co-
trained models suffer from a performance drop without Webmath pretraining. but we were more
interested in measuring the effect on pre-trained models on mix-1 and mix-2, as they may not
benefit from WebMath as much due to the two successive pre-training steps.

We report the optimal validation losses in Figure 3. WebMath appears as substantially beneficial
even in the sequential pre-training setup. This indicates that PACT is not a replacement for WebMath
pre-training, but rather a complementary method for enhancing the performance of language models
for theorem proving.

6

Published as a conference paper at ICLR 2022

Tokens
Model elapsed mix1 mix2 tactic Pass-rate

Baselines
refl 1.1%
tidy-bfs 9.9%
WebMath > tactic 1B 1.02 32.2%

Pre-training
WebMath > mix1 11B 0.08
WebMath > mix2 16B 0.08
WebMath > mix1 + mix2 22B 0.11 0.08
WebMath > mix1 > tactic 1B 1.00 39.8%
WebMath > mix1 + mix2 > tactic 1B 0.97 44.0%

Co-training (PACT)
WebMath > mix1 + tactic 18B 0.08 0.94 40.0%
WebMath > mix2 + tactic 75B 0.09 0.93 46.0%
WebMath > mix1 + mix2 + tactic 71B 0.09 0.09 0.91 48.4%

Pre-training and co-training
WebMath > mix2 > mix1 + tactic 18B 0.08 0.93 46.9%

Figure 2: Comparison of pre-training and co-training on mix-1 and mix-2. > denotes a pre-training
step and + denotes a co-training. As an example, WebMath > mix2 > mix1 + tactic
signifies a model successively pre-trained on WebMath then mix2 and finally co-trained as a fine-
tuning step on mix1 and tactic. Columns mix1, mix2, tactic report the optimal validation
loss achieved on these respective datasets. We provide a detailed description of experiment runtime
and computing infrastructure in Appendix B.

Tokens Tokens
Model budget elapsed mix1 mix2 tactic Pass-rate†

Baselines
tactic 32B 1B 1.59 —

Pre-training
mix1 32B 20B 0.12
mix2 32B 25B 0.10
mix1 + mix2 32B 27B 0.13 0.10
mix1 > tactic 32B 1B 1.26 —
mix1 + mix2 > tactic 32B 1B 1.16 —

Co-training
mix1 + tactic 32B 27B 0.11 1.12 —
mix2 + tactic 96B 75B 0.10 1.02 40.4%
mix1 + mix2 + tactic 96B 71B 0.10 0.11 1.07 —

Pre-training and co-training
mix2 > mix1 + tactic 32B 26B 0.11 1.09 —

Figure 3: Validation losses achieved in the pre-training and co-training setups without WebMath
pre-training. See Figure 2 for a description of the columns and the models nomenclature used. †Due
to technical constraints, we are unable to provide pass-rates for some of the models.

ABLATING REGULARIZATION We rule out the possibility that the benefits from PACT come from
simply regularizing our models on the scarce tactic data alone. We checked that a WebMath >
tactic model trained with 15% residual dropout achieved a minimum validation loss of 1.01 and
33.6% pass rate, far below the 48.4% PACT pass rate.

7

Published as a conference paper at ICLR 2022

Tokens Tokens
Model budget elapsed mix1 mix2 tactic Pass-rate

121m 96B 82B 0.13 0.10 1.23 35.1%
163m 96B 80B 0.12 0.09 1.11 39.8%
837m 96B 71B 0.09 0.09 0.91 48.4%

Figure 4: Validation losses and pass-rates achieved for various model sizes using PACT. See Figure 2
for a description of the columns. The setup used is WebMath > mix1 + mix2 + tactic.

EFFECT OF MODEL SIZE Finally, we study how performance scales with respect to model size. We
use the best training setup reported in Figure 2, WebMath > mix1 + mix2 + tactic. The
837m model is our main model. The 163m and 121m models respectively have 12 and 6 layers,
with dmodel = 768. The learning rates are respectively adjusted to 0.0014 and 0.0016.

As demonstrated by Figure 4, performance is highly correlated with model size, with larger models
generally achieving better generalization even in the overfitted regime. We leave as future work a
careful study of how evaluation performance is affected when scaling to multi-billion parameter
models, as well as the feasibility of deploying them for interactive use by Lean users.

TIME-STRATIFIED EVALUATION In the 5 week period that separated our last dataset extraction
and the writing of this paper, mathlib grew by 30K lines of code, adding 2807 new theorems.
Evaluating our models on these new theorem statements gives a unique way to assess their capability
to assist humans in formalizing proofs and to test their generalization to completely unseen theorems
and definitions. This evaluation set also addresses one of the weaknesses of using a random split
of theorems from a formal mathematics library, namely that the split is non-chronological; e.g. test
theorems can appear as lemmas in proofs of train theorems.

We call this temporally held-out test set future-mathlib and evaluate our best model as well
as the refl and tidy-bfs baselines on it. In contrast to evaluation on our test split, the refl
baseline (simply attempting a proof by the refl tactic) closes 328 proofs (11.6%), demonstrating
an important skew towards trivial boilerplate lemmas generally defined to provide alternate inter-
faces to new definitions. The tidy-bfs baseline closed 611 proofs (21.8%), and our best model
wm-tt-m1-m2 closed 1043 proofs (37.1%), proving 94% of the refl lemmas. We attribute the
weaker performance to heavy distribution shift: by the nature of the dataset, the future-mathlib
theorems frequently involve new definitions and concepts which the model was never exposed to
during training. Nevertheless, the success rate remains high enough to suggest strong generalization
and usefulness at the frontier of formalized mathematics.

5 DISCUSSION

CHAINED TACTIC PREDICTIONS In Lean, multiple tactic commands can be chained together using
semicolons. Our data pipeline treats these tactic chains as a single sequence in our training data, and
they are occasionally predicted by the model. Such chained tactic applications are difficult for human
formalizers to synthesize on their own, as they require reasoning about the semantics of multiple
tactics in sequence and their effects on the tactic state, and the examples present in the training data
are usually optimized by hand from longer, less succinct proofs. We observed that PACT significantly
boosts the capability of our models to successfully predict longer chained tactic applications. This
occurs despite the fact that the tactic chaining idiom is specific to the tactic proofstep dataset and
does not appear in the PACT data whatsoever. We supply more detail in Appendix C.1.

THEOREM NAMING We also evaluate our best PACT model (wm-to-tt-m1-m2) on the theorem
naming task, using the theorem statements and human-supplied names from the future-mathlib
evaluation set. It achieved 20% acc@1, 27% acc@10, and 30% acc@16. An inspection of its outputs
reveals that even when its predictions diverge from the ground truth, they are often idiomatic and
semantically correct alternatives. We supply more detail in Appendix C.2.

8

Published as a conference paper at ICLR 2022

IMPACT ON LEAN COMMUNITY Lean’s mathlib (mathlib, 2020) is a rapidly growing open
source library of formal mathematics which has grown considerably in size each year for the past
four years.1 Our work has been welcomed by members of this community, with Lean power users
describing some of the new proofs found by GPT-f as “nontrivial” and “clever”. More than one-third
of the proofs found by our models are shorter and produce smaller proof terms (sometimes by several
orders of magnitude) than the ground truth. Manually inspecting a small, non-cherry picked sample
of these shorter proofs has led to 19 GPT-f co-authored commits to mathlib, some of which reduce
proof term sizes and theorem compilation times by an order of magnitude (see Appendix D).

POTENTIAL SOCIETAL IMPACT Strong automated reasoning systems have enormous potential
impact for mathematical research and scientific progress in other disciplines. The methods that we
discuss in this paper could accelerate the development of strong automated reasoning systems. We
have also observed that our language models absorb stylistic biases from their training data which
could be amplified via reinforcement learning. However, since we focus on mathematics codified in
proof assistants, we believe that there is little immediate negative societal impact from our work.

FUTURE DIRECTIONS There are many elaborations on the training data, training methodology, and
tree search wrapping lean-gptf which can be reasonably expected to improve its performance
at theorem proving. Our dataset can be synthetically augmented using similar methods as (Polu &
Sutskever, 2020). Our dataset could be cleaned further, and proofs minimized. Merely making the
decoded rewrites robust by only using the largest prefix of successful rewrites significantly boosts the
success rate of suggested rewrites. In a similar vein, predicted lemmas generated as arguments to
unsuccessful tactic applications could be cached and re-used as hints for an intermittently-queried
hammer. The increased success rate of chained tactic predictions mentioned above shows the
feasibility of having language models perform multiple reasoning steps in a single query, potentially
improving the efficiency of the proof search. From the experiments described in Section 4, it is clear
that the composition of the dataset used for co-training significantly affects performance on theorem
proving. Although we uniformly sampled across all co-training tasks, it would be interesting to
optimize a dynamic mixture schedule, perhaps annealing towards a desired task.

CONCLUSION There is a sense in which PACT is merely an application of the well known principle
that compute in the form of search should be exchanged for training signal whenever possible. In
Lean, typeclass inference relies on a backtracking Prolog-style search; the elaborator performs search
to disambiguate overloaded notation and infer types; Lean tactics have complex semantics precisely
because they can perform search to find subproofs automatically. The work done by these subroutines
is preserved in the proof artifacts, and PACT can be viewed as a way of extracting this information
offline for more training signal.

We have presented PACT as a way of addressing the data scarcity issue for learning theorem proving
from human tactic scripts in proof assistant libraries. Another well-studied solution for this is expert
iteration and reinforcement learning. In the setting of HOL Light, and under the assumption of a
hardcoded finite action space of tactics, Bansal et al. (2019a) in conjunction with supervised seed
data was able to achieve up to 70% proof success rate on the HOList theorem proving task. Similarly,
in a set-up much closer to ours, MM GPT-f demonstrated the feasibility of expert iteration when
using generative language models for theorem proving.

Within a fixed corpus of theorems (and hence proof terms), however, both PACT and RL are
fundamentally constrained by a lack of exploration—as the performance of the theorem proving
agent improves, it will eventually saturate and become starved for data, and its curriculum will need
to be expanded. Although self-supervised methods such as PACT represent a way to significantly
improve the data-efficiency of reinforcement learning loops over existing theorem prover libraries, the
development of continuously self-improving and infinitely scalable neural theorem provers remains
contingent on sufficiently powerful exploration and automated curriculum generation; we consider
these challenges to be of paramount importance.

1See https://leanprover-community.github.io/mathlib_stats.html for up-to-date
statistics on mathlib’s size and growth over time.

9

https://leanprover-community.github.io/mathlib_stats.html

Published as a conference paper at ICLR 2022

6 ACKNOWLEDGMENTS

We thank the members of the Lean community, in particular Kevin Buzzard, Simon Hudon, Johan
Commelin, Mario Carneiro, Bhavik Mehta, and Gabriel Ebner for their valuable feedback on our
work. We are indebted to Markus Rabe and Christian Szegedy for many hours of helpful discussion.
We also thank Daniel Selsam, Tom Hales, and Josef Urban for feedback on earlier drafts of this
paper.

7 REPRODUCIBILITY STATEMENT

The source code used to generate the Lean datasets and run the evaluation is open source and made
available in the following repositories:

Lean theorem proving environment :
https://github.com/jesse-michael-han/lean-tpe-public

Tactic step data pipeline :
https://github.com/jasonrute/lean_proof_recording

PACT data pipeline :
https://github.com/jesse-michael-han/lean-step-public

Our Transformer model was pre-trained on two proprietary datasets. The first is the same mix used
by GPT-3 (Brown et al., 2020) and the second is WebMath (Polu & Sutskever, 2020). More details
can be found in Appendix B.

While our weights and the API through which we query our models are not currently public, tech-
niques for training decoder-only transformers and efficiently performing inference with them are
well-known. Our released theorem proving code is agnostic to these implementation details and will
work with any language model exposed via an HTTP server. The provided code also supports query-
ing a locally hosted Transformer from the open-source library fairseq via the Fairseq CLI (Ott
et al., 2019).

We have released a simplified version of the proof search described in Section 3.3 as a tactic to
the Lean community in a public beta, opening the way for our models to directly accelerate the
development of formalized mathematics and for human experts to provide feedback and additional
training signal in a virtuous cycle. The tactic and code are available at https://github.com/
jesse-michael-han/lean-gptf, and users who sign up for the beta are granted access to
our Transformer model through an API.

REFERENCES

Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, and Christian Szegedy. Learning to reason in large
theories without imitation. CoRR, abs/1905.10501, 2019a. URL http://arxiv.org/abs/
1905.10501.

Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian Szegedy, and Stewart Wilcox. Holist: An
environment for machine learning of higher order logic theorem proving. In Kamalika Chaudhuri
and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pp. 454–463. PMLR, 2019b. URL http://proceedings.
mlr.press/v97/bansal19a.html.

Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian Szegedy, and Stewart Wilcox. Holist: An
environment for machine learning of higher-order theorem proving (extended version). CoRR,
abs/1904.03241, 2019c. URL http://arxiv.org/abs/1904.03241.

Lasse Blaauwbroek, Josef Urban, and Herman Geuvers. The tactician - A seamless, interactive
tactic learner and prover for coq. In Christoph Benzmüller and Bruce R. Miller (eds.), Intelligent
Computer Mathematics - 13th International Conference, CICM 2020, Bertinoro, Italy, July 26-
31, 2020, Proceedings, volume 12236 of Lecture Notes in Computer Science, pp. 271–277.

10

https://github.com/jesse-michael-han/lean-tpe-public
https://github.com/jasonrute/lean_proof_recording
https://github.com/jesse-michael-han/lean-step-public
https://github.com/jesse-michael-han/lean-gptf
https://github.com/jesse-michael-han/lean-gptf
http://arxiv.org/abs/1905.10501
http://arxiv.org/abs/1905.10501
http://proceedings.mlr.press/v97/bansal19a.html
http://proceedings.mlr.press/v97/bansal19a.html
http://arxiv.org/abs/1904.03241

Published as a conference paper at ICLR 2022

Springer, 2020. doi: 10.1007/978-3-030-53518-6_17. URL https://doi.org/10.1007/
978-3-030-53518-6_17.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Kevin Buzzard, Johan Commelin, and Patrick Massot. Formalising perfectoid spaces. In Jas-
min Blanchette and Catalin Hritcu (eds.), Proceedings of the 9th ACM SIGPLAN Interna-
tional Conference on Certified Programs and Proofs, CPP 2020, New Orleans, LA, USA,
January 20-21, 2020, pp. 299–312. ACM, 2020. doi: 10.1145/3372885.3373830. URL
https://doi.org/10.1145/3372885.3373830.

Kevin Buzzard, Chris Hughes, Kenny Lau, Amelia Livingston, Ramon Fernández Mir, and Scott
Morrison. Schemes in lean. Experimental Mathematics, 0(0):1–9, 2021. doi: 10.1080/10586458.
2021.1983489. URL https://doi.org/10.1080/10586458.2021.1983489.

François Charton, Amaury Hayat, and Guillaume Lample. Learning advanced mathematical
computations from examples. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https:
//openreview.net/forum?id=-gfhS00XfKj.

Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von
Raumer. The lean theorem prover (system description). In Amy P. Felty and Aart Middeldorp
(eds.), Automated Deduction - CADE-25 - 25th International Conference on Automated Deduction,
Berlin, Germany, August 1-7, 2015, Proceedings, volume 9195 of Lecture Notes in Computer
Science, pp. 378–388. Springer, 2015. doi: 10.1007/978-3-319-21401-6_26. URL https:
//doi.org/10.1007/978-3-319-21401-6_26.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=
YicbFdNTTy.

Gabriel Ebner, Sebastian Ullrich, Jared Roesch, Jeremy Avigad, and Leonardo de Moura. A metapro-
gramming framework for formal verification. Proc. ACM Program. Lang., 1(ICFP):34:1–34:29,
2017. doi: 10.1145/3110278. URL https://doi.org/10.1145/3110278.

M. Ganesalingam and W. T. Gowers. A fully automatic theorem prover with human-style output.
J. Autom. Reason., 58(2):253–291, 2017. doi: 10.1007/s10817-016-9377-1. URL https:
//doi.org/10.1007/s10817-016-9377-1.

Thibault Gauthier and Cezary Kaliszyk. Sharing HOL4 and HOL light proof knowledge. In Martin
Davis, Ansgar Fehnker, Annabelle McIver, and Andrei Voronkov (eds.), Logic for Programming,
Artificial Intelligence, and Reasoning - 20th International Conference, LPAR-20 2015, Suva, Fiji,
November 24-28, 2015, Proceedings, volume 9450 of Lecture Notes in Computer Science, pp.
372–386. Springer, 2015. doi: 10.1007/978-3-662-48899-7_26. URL https://doi.org/
10.1007/978-3-662-48899-7_26.

Thibault Gauthier, Cezary Kaliszyk, Josef Urban, Ramana Kumar, and Michael Norrish. Tactic-
toe: Learning to prove with tactics. J. Autom. Reason., 65(2):257–286, 2021. doi: 10.1007/
s10817-020-09580-x. URL https://doi.org/10.1007/s10817-020-09580-x.

11

https://doi.org/10.1007/978-3-030-53518-6_17
https://doi.org/10.1007/978-3-030-53518-6_17
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1145/3372885.3373830
https://doi.org/10.1080/10586458.2021.1983489
https://openreview.net/forum?id=-gfhS00XfKj
https://openreview.net/forum?id=-gfhS00XfKj
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://doi.org/10.1145/3110278
https://doi.org/10.1007/s10817-016-9377-1
https://doi.org/10.1007/s10817-016-9377-1
https://doi.org/10.1007/978-3-662-48899-7_26
https://doi.org/10.1007/978-3-662-48899-7_26
https://doi.org/10.1007/s10817-020-09580-x

Published as a conference paper at ICLR 2022

Christopher Hahn, Frederik Schmitt, Jens U. Kreber, Markus Norman Rabe, and Bernd Finkbeiner.
Teaching temporal logics to neural networks. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL
https://openreview.net/forum?id=dOcQK-f4byz.

Jesse Michael Han and Floris van Doorn. A formal proof of the independence of the continuum
hypothesis. In Jasmin Blanchette and Catalin Hritcu (eds.), Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2020, New Orleans, LA, USA,
January 20-21, 2020, pp. 353–366. ACM, 2020. doi: 10.1145/3372885.3373826. URL https:
//doi.org/10.1145/3372885.3373826.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
Jun, Tom B. Brown, Prafulla Dhariwal, Scott Gray, Chris Hallacy, Benjamin Mann, Alec Radford,
Aditya Ramesh, Nick Ryder, Daniel M. Ziegler, John Schulman, Dario Amodei, and Sam McCan-
dlish. Scaling laws for autoregressive generative modeling. CoRR, abs/2010.14701, 2020. URL
https://arxiv.org/abs/2010.14701.

Daniel Huang, Prafulla Dhariwal, Dawn Song, and Ilya Sutskever. Gamepad: A learning environment
for theorem proving. In 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.
net/forum?id=r1xwKoR9Y7.

Cezary Kaliszyk and Josef Urban. Mizar 40 for mizar 40. J. Autom. Reason., 55(3):245–
256, 2015a. doi: 10.1007/s10817-015-9330-8. URL https://doi.org/10.1007/
s10817-015-9330-8.

Cezary Kaliszyk and Josef Urban. Learning-assisted theorem proving with millions of lemmas. J.
Symb. Comput., 69:109–128, 2015b. doi: 10.1016/j.jsc.2014.09.032. URL https://doi.org/
10.1016/j.jsc.2014.09.032.

Cezary Kaliszyk, Josef Urban, and Jirí Vyskocil. Lemmatization for stronger reasoning in large
theories. In Carsten Lutz and Silvio Ranise (eds.), Frontiers of Combining Systems - 10th In-
ternational Symposium, FroCoS 2015, Wroclaw, Poland, September 21-24, 2015. Proceedings,
volume 9322 of Lecture Notes in Computer Science, pp. 341–356. Springer, 2015. doi: 10.1007/
978-3-319-24246-0_21. URL https://doi.org/10.1007/978-3-319-24246-0_
21.

Cezary Kaliszyk, François Chollet, and Christian Szegedy. Holstep: A machine learning dataset for
higher-order logic theorem proving. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017. URL https://openreview.net/forum?id=ryuxYmvel.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
CoRR, abs/2001.08361, 2020. URL https://arxiv.org/abs/2001.08361.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. In 8th
International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=
S1eZYeHFDS.

Wenda Li, Lei Yu, Yuhuai Wu, and Lawrence C. Paulson. Isarstep: a benchmark for high-level
mathematical reasoning. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=Pzj6fzU6wkj.

mathlib. The lean mathematical library. In Jasmin Blanchette and Catalin Hritcu (eds.), Proceedings
of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020,
New Orleans, LA, USA, January 20-21, 2020, pp. 367–381. ACM, 2020. doi: 10.1145/3372885.
3373824. URL https://doi.org/10.1145/3372885.3373824.

Pengyu Nie, Karl Palmskog, Junyi Jessy Li, and Milos Gligoric. Deep generation of coq lemma
names using elaborated terms. In Nicolas Peltier and Viorica Sofronie-Stokkermans (eds.), Au-
tomated Reasoning - 10th International Joint Conference, IJCAR 2020, Paris, France, July 1-4,

12

https://openreview.net/forum?id=dOcQK-f4byz
https://doi.org/10.1145/3372885.3373826
https://doi.org/10.1145/3372885.3373826
https://arxiv.org/abs/2010.14701
https://openreview.net/forum?id=r1xwKoR9Y7
https://openreview.net/forum?id=r1xwKoR9Y7
https://doi.org/10.1007/s10817-015-9330-8
https://doi.org/10.1007/s10817-015-9330-8
https://doi.org/10.1016/j.jsc.2014.09.032
https://doi.org/10.1016/j.jsc.2014.09.032
https://doi.org/10.1007/978-3-319-24246-0_21
https://doi.org/10.1007/978-3-319-24246-0_21
https://openreview.net/forum?id=ryuxYmvel
https://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=S1eZYeHFDS
https://openreview.net/forum?id=S1eZYeHFDS
https://openreview.net/forum?id=Pzj6fzU6wkj
https://doi.org/10.1145/3372885.3373824

Published as a conference paper at ICLR 2022

2020, Proceedings, Part II, volume 12167 of Lecture Notes in Computer Science, pp. 97–118.
Springer, 2020. doi: 10.1007/978-3-030-51054-1_6. URL https://doi.org/10.1007/
978-3-030-51054-1_6.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Waleed Ammar, Annie
Louis, and Nasrin Mostafazadeh (eds.), Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-
HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Demonstrations, pp. 48–53. Association for
Computational Linguistics, 2019. doi: 10.18653/v1/n19-4009. URL https://doi.org/10.
18653/v1/n19-4009.

Aditya Paliwal, Sarah M. Loos, Markus N. Rabe, Kshitij Bansal, and Christian Szegedy. Graph
representations for higher-order logic and theorem proving. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intel-
ligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 2967–2974. AAAI Press,
2020. URL https://aaai.org/ojs/index.php/AAAI/article/view/5689.

Frank Pfenning and Christine Paulin-Mohring. Inductively defined types in the calculus of construc-
tions. In Michael G. Main, Austin Melton, Michael W. Mislove, and David A. Schmidt (eds.),
Mathematical Foundations of Programming Semantics, 5th International Conference, Tulane
University, New Orleans, Louisiana, USA, March 29 - April 1, 1989, Proceedings, volume 442
of Lecture Notes in Computer Science, pp. 209–228. Springer, 1989. doi: 10.1007/BFb0040259.
URL https://doi.org/10.1007/BFb0040259.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
CoRR, abs/2009.03393, 2020. URL https://arxiv.org/abs/2009.03393.

Markus Norman Rabe, Dennis Lee, Kshitij Bansal, and Christian Szegedy. Mathematical reasoning
via self-supervised skip-tree training. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://
openreview.net/forum?id=YmqAnY0CMEy.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In Marina Meila and
Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning,
ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning
Research, pp. 8748–8763. PMLR, 2021. URL http://proceedings.mlr.press/v139/
radford21a.html.

Alex Sanchez-Stern, Yousef Alhessi, Lawrence K. Saul, and Sorin Lerner. Generating correctness
proofs with neural networks. In Koushik Sen and Mayur Naik (eds.), Proceedings of the 4th
ACM SIGPLAN International Workshop on Machine Learning and Programming Languages,
MAPL@PLDI 2020, London, UK, June 15, 2020, pp. 1–10. ACM, 2020. doi: 10.1145/3394450.
3397466. URL https://doi.org/10.1145/3394450.3397466.

Peter Scholze. Liquid tensor experiment. https://xenaproject.wordpress.com/
2020/12/05/liquid-tensor-experiment/, 2020. Formalization available at https:
//github.com/leanprover-community/lean-liquid.

Josef Urban and Jan Jakubuv. First neural conjecturing datasets and experiments. In Christoph
Benzmüller and Bruce R. Miller (eds.), Intelligent Computer Mathematics - 13th International
Conference, CICM 2020, Bertinoro, Italy, July 26-31, 2020, Proceedings, volume 12236 of Lecture
Notes in Computer Science, pp. 315–323. Springer, 2020. doi: 10.1007/978-3-030-53518-6_24.
URL https://doi.org/10.1007/978-3-030-53518-6_24.

Mingzhe Wang and Jia Deng. Learning to prove theorems by learning to generate theo-
rems. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,

13

https://doi.org/10.1007/978-3-030-51054-1_6
https://doi.org/10.1007/978-3-030-51054-1_6
https://doi.org/10.18653/v1/n19-4009
https://doi.org/10.18653/v1/n19-4009
https://aaai.org/ojs/index.php/AAAI/article/view/5689
https://doi.org/10.1007/BFb0040259
https://arxiv.org/abs/2009.03393
https://openreview.net/forum?id=YmqAnY0CMEy
https://openreview.net/forum?id=YmqAnY0CMEy
http://proceedings.mlr.press/v139/radford21a.html
http://proceedings.mlr.press/v139/radford21a.html
https://doi.org/10.1145/3394450.3397466
https://xenaproject.wordpress.com/2020/12/05/liquid-tensor-experiment/
https://xenaproject.wordpress.com/2020/12/05/liquid-tensor-experiment/
https://github.com/leanprover-community/lean-liquid
https://github.com/leanprover-community/lean-liquid
https://doi.org/10.1007/978-3-030-53518-6_24

Published as a conference paper at ICLR 2022

2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
d2a27e83d429f0dcae6b937cf440aeb1-Abstract.html.

Qingxiang Wang, Cezary Kaliszyk, and Josef Urban. First experiments with neural translation of
informal to formal mathematics. In Florian Rabe, William M. Farmer, Grant O. Passmore, and
Abdou Youssef (eds.), Intelligent Computer Mathematics - 11th International Conference, CICM
2018, Hagenberg, Austria, August 13-17, 2018, Proceedings, volume 11006 of Lecture Notes in
Computer Science, pp. 255–270. Springer, 2018. doi: 10.1007/978-3-319-96812-4_22. URL
https://doi.org/10.1007/978-3-319-96812-4_22.

Qingxiang Wang, Chad E. Brown, Cezary Kaliszyk, and Josef Urban. Exploration of neural machine
translation in autoformalization of mathematics in mizar. In Jasmin Blanchette and Catalin Hritcu
(eds.), Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs
and Proofs, CPP 2020, New Orleans, LA, USA, January 20-21, 2020, pp. 85–98. ACM, 2020. doi:
10.1145/3372885.3373827. URL https://doi.org/10.1145/3372885.3373827.

Daniel Whalen. Holophrasm: a neural automated theorem prover for higher-order logic. CoRR,
abs/1608.02644, 2016. URL http://arxiv.org/abs/1608.02644.

Freek Wiedijk. The De Bruijn factor, 2000. URL http://www.cs.ru.nl/F.Wiedijk/
factor/factor.pdf.

Minchao Wu, Michael Norrish, Christian Walder, and Amir Dezfouli. Tacticzero: Learning to prove
theorems from scratch with deep reinforcement learning. In A. Beygelzimer, Y. Dauphin, P. Liang,
and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021a. URL
https://openreview.net/forum?id=edmYVRkYZv.

Yuhuai Wu, Markus N. Rabe, Wenda Li, Jimmy Ba, Roger B. Grosse, and Christian Szegedy. LIME:
learning inductive bias for primitives of mathematical reasoning. In Marina Meila and Tong Zhang
(eds.), Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pp. 11251–
11262. PMLR, 2021b. URL http://proceedings.mlr.press/v139/wu21c.html.

Kaiyu Yang and Jia Deng. Learning to prove theorems via interacting with proof assistants. In
Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research, pp. 6984–6994. PMLR, 2019. URL
http://proceedings.mlr.press/v97/yang19a.html.

A ADDITIONAL BACKGROUND

PROOF TERMS Lean’s fundamental logic is a dependent type theory called the calculus of inductive
constructions Pfenning & Paulin-Mohring (1989). This design means that terms (4, x+ y, f), types
(N, list Z, α→ β) and proofs are all represented with a single datatype called an expression. Given
an environment of available constants and definitions and a context Γ of variables, Lean can infer
a type α for each well-formed expression t. A proof term is a Lean expression whose type is a
proposition. This proof term serves as a checkable artifact for verifying the proposition. Lean uses a
small, trusted kernel to verify proof terms.

TACTICS Tactics in Lean are metaprograms Ebner et al. (2017), which can construct Lean expres-
sions, such as terms. A tactic state which tracks the list of open goals and other metadata is threaded
through each tactic invocation. Lean has special support for treating tactics as an extensible domain-
specific language (DSL); this DSL is how Lean is typically used as an interactive theorem prover. The
DSL amounts to a linear chain of comma-separated invocations. The process of interactive proving is
mediated through Lean’s language server, which will present the context and type for the current goal
in the proof to the user, dependent on where their cursor is in the source text. The tactic prediction
task is to predict the next tactic given this goal state. We extract supervised training data for this task
by extracting all human-supplied proof steps from Lean’s mathlib.

An object called the tactic state is threaded through each invocation of a tactic. Among other things,
the tactic state maintains a context of metavariables: placeholders in to which expressions will be

14

https://proceedings.neurips.cc/paper/2020/hash/d2a27e83d429f0dcae6b937cf440aeb1-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d2a27e83d429f0dcae6b937cf440aeb1-Abstract.html
https://doi.org/10.1007/978-3-319-96812-4_22
https://doi.org/10.1145/3372885.3373827
http://arxiv.org/abs/1608.02644
http://www.cs.ru.nl/F.Wiedijk/factor/factor.pdf
http://www.cs.ru.nl/F.Wiedijk/factor/factor.pdf
https://openreview.net/forum?id=edmYVRkYZv
http://proceedings.mlr.press/v139/wu21c.html
http://proceedings.mlr.press/v97/yang19a.html

Published as a conference paper at ICLR 2022

substituted later. At each point in the proof, one or more of these metavariables are selected as the
goal of the tactic state which is present As the proof progresses, there are multiple values to be found

EXAMPLE Consider this (modified) example of a tactic proof from the library.

theorem int.sub_ne_zero_of_ne : ∀ (a b : Z), a 6= b -> a - b 6= 0 :=
begin

intros a b h hab,
apply h,
apply int.eq_of_sub_eq_zero hab,

end

Each tactic line modifies the proof state, which we explicitly annotate below with comments between
each tactic.

theorem int.sub_ne_zero_of_ne : ∀ (a b : Z), a 6= b -> a - b 6= 0 :=
begin

-- ` ∀ (a b : Z), a 6= b → a - b 6= 0
intros a b h hab,
-- a b : Z,
-- h : a 6= b,
-- hab : a - b = 0
-- ` false
apply h,
-- a b : Z,
-- h : a 6= b,
-- hab : a - b = 0
-- ` a = b
apply int.eq_of_sub_eq_zero hab,
-- no goals

end

Our proofstep objective is to predict the tactic applied to a given tactic state.

Lean stores this proof internally as a proof term:

theorem int.sub_ne_zero_of_ne : ∀ (a b : Z), a 6= b → a - b 6= 0 :=
λ (a b : Z) (h : a 6= b), id (λ (hab : a - b = 0), h

(int.eq_of_sub_eq_zero hab))

Since this proof term is just stored internally as a tree, any branch of this term tree can be removed,
to create a hole _, for example:

λ (a b : Z) (h : a 6= b), id (λ (hab : a - b = 0), h _)

Lean will automatically provide a list of both the local context and the type of a term needed to fill
that hole as shown below. Notice this is the same as a tactic state we saw from the term proof above.

a b : Z,
h : a 6= b,
hab : a - b = 0
` a = b

Using this methodology of following proof term trees, we can mine low level proof data for every
node of a term proof to produce the PACT dataset described in Section 3.2.

B DATASETS

B.1 PRE-TRAINING DATASETS

We pre-train on WebMath as described in (Polu & Sutskever, 2020). All models, including the
WebMath pre-trained models, and the non-WebMath models used in ablations, were first pre-
trained on the mix used by GPT-3 (Brown et al., 2020) which includes a filtered CommonCrawl,

15

Published as a conference paper at ICLR 2022

WebText2, Book1, Book2 and Wikipedia. WebMath includes Python-only GitHub data, as
well as arXiv and Math StackExchange.

From these datasets, a potential risk for test-set contamination (presence of mathlib) exists for the
crawled datasets, namely CommonCrawl, WebText2, and (in case of a filtering bug) Python-only
GitHub. The other datasets (in particular arXiv and Math StackExchange) may contain short
references of mathlib code but in shape and forms that would not lead to effective contamination.

To assess the contamination risk related with the crawled datasets, we searched CommonCrawl,
WebText2, arXiv, Python-only GitHub, and Math StackExchange for test theorems. For
example, given the test theorem nat.div_eq_sub_div we searched for any occurrences of the
string div_eq_sub_div. Of over 3000 test theorem names, we found 595 which occurred in the
datasets. Many instances were innocuous, but some were in Lean files, and in some cases there was a
proof of a test theorem. There were also 160 additional test theorems with no underscore in their
name, which we did not check, but whose name is likely to be found in the datasets. (There is no need
to check for training theorems since they are already in the training data and it would not constitute
contamination.) We re-calculated the pass-rates of the results in Figure 2 omitting these 755 test
theorems. This decreases the reported pass-rates slightly, ranging from 0.6 to 1.1 percentage points.
The adjusted pass-rate of our best model WebMath > mix1 + mix2 + tactic is 47.4%, a
decrease of 1 percentage point. Our main results still hold even with the adjusted pass-rates.

Additionally we also look at the results for the 1,350 test theorems in our dataset that were added
to Lean and mathlib after April 18, 2020, which is after CommonCrawl and WebText2 were
gathered, and the 544 test theorems added after September 11, 2020, which is after WebMath was
gathered. Unlike future-mathlib, these theorems were part of the originally extracted data. The
pass-rates for the WebMath > mix1 + mix2 + tactic model on these restricted sets of test
theorems are 45.6% and 43.3%, respectively.

We also looked for the following Metamath specific and HOL specific strings in CommonCrawl,
WebText2, and Python-only GitHub:

Metamath:
"(ph -> A = C)"
"(ph -> A R C)"
"(sqrt 8 2) e/ QQ"

HOL:
"apply (rule "
"apply (drule "

We found 0 occurrence of the Metamath-related strings but interestingly found a non-negligible
amount of HOL-related documents, which does not constitute a test-set contamination but potentially
benefits the downstream tasks studied in this paper.

While our results show a significant benefit to pre-training on WebMath, it is unclear exactly
how pre-training helps. Since Lean’s theorem names are made of coded mathematical phases,
e.g. affine.simplex.dist_circumcenter_eq_circumradius, it is not unreasonable
to suspect that important statistical connections are extracted from math sources. It is even possible
that simple instances of auto-formalization or ITP translation are happening. There is prior work
(Gauthier & Kaliszyk, 2015; Wang et al., 2018; 2020) suggesting that both of these are possible.
From the point of view of a lean-gptf end-user, any such extraction of prior, publicly available
data is useful and helpful. Nonetheless, our results are of a different nature than other AI for theorem
proving research which do not use data outside of a given theorem proving library. This should be
taken into account in any future comparisons and benchmarks.

B.2 DATASET SIZES

• tactic: ≈128K examples.

• mix1

– Next lemma prediction: ≈2.5M examples
– Proof term prediction: ≈2.9M examples

• mix2

16

Published as a conference paper at ICLR 2022

– Skip-proof: ≈1.7M examples
– Type-prediction: ≈1.7M examples
– Tactic state elaboration: ≈346K examples
– Proof term elaboration: ≈1.0M examples
– Premise classification: ≈9.3M examples
– Local context classification: ≈2.0M examples
– Theorem naming: ≈32K examples.

B.3 EXAMPLE DATAPOINTS

We present datapoints extracted from a toy example, namely the proof of the Peirce identity, viz.

lemma peirce_identity {P Q :Prop} : ((P → Q) → P) → P :=
begin

apply or.elim (em P),
intros h _,
exact h,
tauto!

end

From this, we can extract four tactic datapoints (i.e. human-generated tactic proof steps):

-- GOAL P Q : Prop ` ((P → Q) → P) → P PROOFSTEP apply or.elim (em P)
-- GOAL P Q : Prop ` P → ((P → Q) → P) → P P Q : Prop ` ¬P → ((P →

Q) → P) → P PROOFSTEP intros h _
-- GOAL P Q : Prop, h : P, α̌ : (P → Q) → P ` P P Q : Prop ` ¬P → ((P

→ Q) → P) → P PROOFSTEP exact h
-- GOAL P Q : Prop ` ¬P → ((P → Q) → P) → P PROOFSTEP tauto!

In contrast, we can extract dozens of raw PACT datapoints. Due to space constraints, we list a
representative sample of four such datapoints, from each of which we can derive the nine self-
supervised auxiliary PACT tasks studied in our present work. For example, proof term prediction is
precisely predicting the "proof_term" given the concatenation of "hyps", "`", and the "goal",
skip-proof is predicting the "proof_term" given "result", etc.

DATAPOINT:

{ "decl_nm":"peirce_identity",

"decl_tp":"∀ {P Q : Prop}, ((P → Q) → P) → P",
"hyps":[["P", "Prop"], ["Q", "Prop"], ["α̌", "¬P"], ["α̌_1", "(P → Q) →

P"], ["α̌_1", "¬(P → Q)"]],
"hyps_mask":[true, false, false, false, false],
"decl_premises":[["absurd", "∀ {a b : Prop}, a → ¬a → b"],
["absurd", "∀ {a b : Prop}, a → ¬a → b"],
["decidable.not_imp", "∀ {a b : Prop} [_inst_1 : decidable a], ¬(a →
b) ↔ a ∧ ¬b"],
["iff.mp", "∀ {a b : Prop}, (a ↔ b) → a → b"],
["and.dcases_on",
"∀ {a b : Prop} {C : a ∧ b → Prop} (n : a ∧ b), (∀ (left : a)
(right : b), C _) → C n"],
["decidable.not_or_of_imp", "∀ {a b : Prop} [_inst_1 : decidable a],
(a → b) → ¬a ∨ b"],
["or.dcases_on",
"∀ {a b : Prop} {C : a ∨ b → Prop} (n : a ∨ b), (∀ (h : a), C _) →
(∀ (h : b), C _) → C n"],
["em", "∀ (p : Prop), p ∨ ¬p"],
["or.elim", "∀ {a b c : Prop}, a ∨ b → (a → c) → (b → c) → c"]],
"decl_premises_mask":[false, false, true, false, false, false, false,
false, false],

"goal":"∀ {b : Prop} [_inst_1 : decidable P], ¬(P → b) ↔ P ∧ ¬b",
"proof_term":"decidable.not_imp",

17

Published as a conference paper at ICLR 2022

"result":"λ {P Q : Prop}, (em P).elim (λ (h : P) (α̌ : (P → Q) → P),
h) (λ (α̌ : ¬P) (α̌_1 : (P → Q) → P), (decidable.not_or_of_imp α̌
_1).dcases_on (λ (α̌_1 : ¬(P → Q)), ((PREDICT Q
(classical.prop_decidable P)).mp α̌_1).dcases_on (λ (α̌_1_left : P)
(α̌_1_right : ¬Q), absurd α̌_1_left α̌)) (λ (α̌_1 : P), absurd α̌_1 α̌))",

"next_lemma":["decidable.not_imp", "∀ {a b : Prop} [_inst_1 :
decidable a], ¬(a → b) ↔ a ∧ ¬b"],

"goal_is_prop":true,
"verbose_proof_term":"@decidable.not_imp P",
"verbose_goal":"∀ {b : Prop} [_inst_1 : decidable P], ¬(P → b) ↔ P ∧
¬b",

"verbose_result":"λ {P Q : Prop}, (em P).elim (λ (h : P) (α̌ : (P → Q)
→ P), h) (λ (α̌ : ¬P) (α̌_1 : (P → Q) → P),
(@decidable.not_or_of_imp (P → Q) P (classical.prop_decidable (P →
Q)) α̌_1).dcases_on (λ (α̌_1 : ¬(P → Q)), (@iff.mp (¬(P → Q)) (P ∧ ¬
Q) (PREDICT Q (classical.prop_decidable P)) α̌_1).dcases_on (λ
(α̌_1_left : P) (α̌_1_right : ¬Q), @absurd P P α̌_1_left α̌)) (λ (α̌_1 :
P), @absurd P P α̌_1 α̌))"}

DATAPOINT:

{ "decl_nm":"peirce_identity",

"decl_tp":"∀ {P Q : Prop}, ((P → Q) → P) → P",
"hyps":[["P", "Prop"], ["Q", "Prop"], ["α̌", "¬P"], ["α̌_1", "(P → Q) →

P"], ["α̌_1", "¬(P → Q)"]],
"hyps_mask":[false, true, false, false, false],
"decl_premises":[["absurd", "∀ {a b : Prop}, a → ¬a → b"],
["absurd", "∀ {a b : Prop}, a → ¬a → b"],
["decidable.not_imp", "∀ {a b : Prop} [_inst_1 : decidable a], ¬(a →
b) ↔ a ∧ ¬b"],
["iff.mp", "∀ {a b : Prop}, (a ↔ b) → a → b"],
["and.dcases_on",
"∀ {a b : Prop} {C : a ∧ b → Prop} (n : a ∧ b), (∀ (left : a)
(right : b), C _) → C n"],
["decidable.not_or_of_imp", "∀ {a b : Prop} [_inst_1 : decidable a],
(a → b) → ¬a ∨ b"],
["or.dcases_on",
"∀ {a b : Prop} {C : a ∨ b → Prop} (n : a ∨ b), (∀ (h : a), C _) →
(∀ (h : b), C _) → C n"],
["em", "∀ (p : Prop), p ∨ ¬p"],
["or.elim", "∀ {a b c : Prop}, a ∨ b → (a → c) → (b → c) → c"]],
"decl_premises_mask":[false, false, false, false, false, false, false,
false, false],

"goal":"Prop",
"proof_term":"Q",
"result":"λ {P Q : Prop}, (em P).elim (λ (h : P) (α̌ : (P → Q) → P),
h) (λ (α̌ : ¬P) (α̌_1 : (P → Q) → P), (decidable.not_or_of_imp α̌
_1).dcases_on (λ (α̌_1 : ¬(P → Q)), (decidable.not_imp.mp α̌
_1).dcases_on (λ (α̌_1_left : P) (α̌_1_right : ¬Q), absurd α̌_1_left α̌
)) (λ (α̌_1 : P), absurd α̌_1 α̌))",

"next_lemma":["Q", "Prop"],
"goal_is_prop":false,
"verbose_proof_term":"Q",
"verbose_goal":"Prop",
"verbose_result":"λ {P Q : Prop}, (em P).elim (λ (h : P) (α̌ : (P → Q)
→ P), h) (λ (α̌ : ¬P) (α̌_1 : (P → Q) → P),
(@decidable.not_or_of_imp (P → Q) P (classical.prop_decidable (P →
Q)) α̌_1).dcases_on (λ (α̌_1 : ¬(P → Q)), ((@decidable.not_imp P
PREDICT (classical.prop_decidable P)).mp α̌_1).dcases_on (λ (α̌_1_left
: P) (α̌_1_right : ¬Q), @absurd P P α̌_1_left α̌)) (λ (α̌_1 : P),
@absurd P P α̌_1 α̌))"}

DATAPOINT:

18

Published as a conference paper at ICLR 2022

{ "decl_nm":"peirce_identity",

"decl_tp":"∀ {P Q : Prop}, ((P → Q) → P) → P",
"hyps":[["P", "Prop"], ["Q", "Prop"], ["α̌", "¬P"], ["α̌_1", "(P → Q) →

P"], ["α̌_1", "¬(P → Q)"]],
"hyps_mask":[true, true, false, false, false],
"decl_premises":[["absurd", "∀ {a b : Prop}, a → ¬a → b"],
["absurd", "∀ {a b : Prop}, a → ¬a → b"],
["decidable.not_imp", "∀ {a b : Prop} [_inst_1 : decidable a], ¬(a →
b) ↔ a ∧ ¬b"],
["iff.mp", "∀ {a b : Prop}, (a ↔ b) → a → b"],
["and.dcases_on",
"∀ {a b : Prop} {C : a ∧ b → Prop} (n : a ∧ b), (∀ (left : a)
(right : b), C _) → C n"],
["decidable.not_or_of_imp", "∀ {a b : Prop} [_inst_1 : decidable a],
(a → b) → ¬a ∨ b"],
["or.dcases_on",
"∀ {a b : Prop} {C : a ∨ b → Prop} (n : a ∨ b), (∀ (h : a), C _) →
(∀ (h : b), C _) → C n"],
["em", "∀ (p : Prop), p ∨ ¬p"],
["or.elim", "∀ {a b c : Prop}, a ∨ b → (a → c) → (b → c) → c"]],
"decl_premises_mask":[false, false, true, false, false, false, false,
false, false],

"goal":"∀ [_inst_1 : decidable P], ¬(P → Q) ↔ P ∧ ¬Q",
"proof_term":"decidable.not_imp",
"result":"λ {P Q : Prop}, (em P).elim (λ (h : P) (α̌ : (P → Q) → P),
h) (λ (α̌ : ¬P) (α̌_1 : (P → Q) → P), (decidable.not_or_of_imp α̌
_1).dcases_on (λ (α̌_1 : ¬(P → Q)), ((PREDICT
(classical.prop_decidable P)).mp α̌_1).dcases_on (λ (α̌_1_left : P)
(α̌_1_right : ¬Q), absurd α̌_1_left α̌)) (λ (α̌_1 : P), absurd α̌_1 α̌))",

"next_lemma":["decidable.not_imp", "∀ {a b : Prop} [_inst_1 :
decidable a], ¬(a → b) ↔ a ∧ ¬b"],

"goal_is_prop":true,
"verbose_proof_term":"@decidable.not_imp P Q",
"verbose_goal":"∀ [_inst_1 : decidable P], ¬(P → Q) ↔ P ∧ ¬Q",
"verbose_result":"λ {P Q : Prop}, (em P).elim (λ (h : P) (α̌ : (P → Q)
→ P), h) (λ (α̌ : ¬P) (α̌_1 : (P → Q) → P),
(@decidable.not_or_of_imp (P → Q) P (classical.prop_decidable (P →
Q)) α̌_1).dcases_on (λ (α̌_1 : ¬(P → Q)), (@iff.mp (¬(P → Q)) (P ∧ ¬
Q) (PREDICT (classical.prop_decidable P)) α̌_1).dcases_on (λ
(α̌_1_left : P) (α̌_1_right : ¬Q), @absurd P P α̌_1_left α̌)) (λ (α̌_1 :
P), @absurd P P α̌_1 α̌))"}

DATAPOINT:

{ "decl_nm":"peirce_identity",

"decl_tp":"∀ {P Q : Prop}, ((P → Q) → P) → P",
"hyps":[["P", "Prop"], ["Q", "Prop"], ["α̌", "¬P"], ["α̌_1", "(P → Q) →

P"], ["α̌_1", "¬(P → Q)"]],
"hyps_mask":[false, false, false, false, false],
"decl_premises":[["absurd", "∀ {a b : Prop}, a → ¬a → b"],
["absurd", "∀ {a b : Prop}, a → ¬a → b"],
["decidable.not_imp", "∀ {a b : Prop} [_inst_1 : decidable a], ¬(a →
b) ↔ a ∧ ¬b"],
["iff.mp", "∀ {a b : Prop}, (a ↔ b) → a → b"],
["and.dcases_on",
"∀ {a b : Prop} {C : a ∧ b → Prop} (n : a ∧ b), (∀ (left : a)
(right : b), C _) → C n"],
["decidable.not_or_of_imp", "∀ {a b : Prop} [_inst_1 : decidable a],
(a → b) → ¬a ∨ b"],
["or.dcases_on",
"∀ {a b : Prop} {C : a ∨ b → Prop} (n : a ∨ b), (∀ (h : a), C _) →
(∀ (h : b), C _) → C n"],
["em", "∀ (p : Prop), p ∨ ¬p"],

19

Published as a conference paper at ICLR 2022

["or.elim", "∀ {a b c : Prop}, a ∨ b → (a → c) → (b → c) → c"]],
"decl_premises_mask":[false, false, false, false, false, false, false,
false, false],

"goal":"Π (a : Prop), decidable a",
"proof_term":"classical.prop_decidable",
"result":"λ {P Q : Prop}, (em P).elim (λ (h : P) (α̌ : (P → Q) → P),
h) (λ (α̌ : ¬P) (α̌_1 : (P → Q) → P), (decidable.not_or_of_imp α̌
_1).dcases_on (λ (α̌_1 : ¬(P → Q)), (decidable.not_imp.mp α̌
_1).dcases_on (λ (α̌_1_left : P) (α̌_1_right : ¬Q), absurd α̌_1_left α̌
)) (λ (α̌_1 : P), absurd α̌_1 α̌))",

"next_lemma":["classical.prop_decidable", "Π (a : Prop), decidable a"],
"goal_is_prop":false,
"verbose_proof_term":"classical.prop_decidable",
"verbose_goal":"Π (a : Prop), decidable a",
"verbose_result":"λ {P Q : Prop}, (em P).elim (λ (h : P) (α̌ : (P → Q)
→ P), h) (λ (α̌ : ¬P) (α̌_1 : (P → Q) → P),
(@decidable.not_or_of_imp (P → Q) P (PREDICT (P → Q)) α̌
_1).dcases_on (λ (α̌_1 : ¬(P → Q)), ((@decidable.not_imp P Q
(PREDICT P)).mp α̌_1).dcases_on (λ (α̌_1_left : P) (α̌_1_right : ¬Q),
@absurd P P α̌_1_left α̌)) (λ (α̌_1 : P), @absurd P P α̌_1 α̌))"}

C EXPERIMENTS

C.1 CHAINED TACTIC PREDICTION

Individual Lean tactics are chained together with commas. However, the Lean interactive tactic DSL
also includes a number of other tactic combinators for creating composite tactics. A frequently used
combinator is the infix semicolon t; s which will perform the tactic t and then apply the tactic
s to each of the resulting subgoals produced by t. Our data pipeline for human tactic proof steps
treats these semicolon-chained tactics as a single string for the language modeling objective. Thus,
our models learn to occasionally emit multiple-step tactic predictions using semicolons. For example,
wm-to-tt-m1-m2 solved the following lemma in category theory with a single prediction chaining
four tactics in a row:

theorem category_theory.grothendieck.congr
{X Y : grothendieck F} {f g : X −→ Y} (h : f = g) :
f.fiber = eq_to_hom (by subst h) � g.fiber :=

begin
rcases X; rcases Y; subst h; simp

end

One way of measuring the sophistication of predicted tactics is to consider the number of successful
proofs on the evaluation set which have this composite form using semicolon-chaining. We display
this analysis in Table 1, which shows that training with PACT in addition to the human-made tactics
causes longer semicolon-chained tactics to be successfully predicted during theorem proving. This is
remarkable because the semicolon idiom is specific to the tactic DSL which does not occur in the
PACT data whatsoever, and yet the co-training causes longer and more frequent successful composite
tactic predictions.

Table 1: Counting the number of semicolon-chained tactics predicted by our models that appear
in successful proofs. Each column headed by a number n; indicates the number of times that a
suggestion appeared with n occurrences of ‘;’.

MODEL 1; 2; 3; 4; MEAN
wm-to-tt 215 49 2 0 1.199
wm-to-tt-m1 186 39 5 1 1.225
wm-to-tt-m1-m2 328 82 12 3 1.271

20

Published as a conference paper at ICLR 2022

Correct top-1 guesses

Theorem statement

∀ {α : Type u_1} {β : Type u_2} [_inst_1 : decidable_eq α]
[_inst_2 : decidable_eq β] (s : finset α) (t : finset β),
s.product t = s.bUnion
(λ (a : α), finset.image (λ (b : β), (a, b)) t)

Ground truth finset.product_eq_bUnion

Theorem statement
∀ {α : Type u_1} {β : Type u_2} [_inst_1 : topological_space α]
[_inst_2 : topological_space β] {f : α → β},
quotient_map f → function.surjective f

Ground truth quotient_map.surjective

Theorem statement
∀ {α : Type u_1} {β : Type u_2} (f : α → option β)
(x : option α), x.pbind (λ (a : α) (_x : a ∈ x), f a) = x.bind f

Ground truth option.pbind_eq_bind

Theorem statement

∀ {C : Type u1} [_inst_1 : category_theory.category C]
{G : C ⇒ C} [_inst_2 : category_theory.comonad G]
{A B : category_theory.comonad.coalgebra G} (h : A.A ∼= B.A)
(w : A.a � G.map h.hom = h.hom � B.a),
(category_theory.comonad.coalgebra.iso_mk h w).hom.f = h.hom

Ground truth category_theory.comonad.coalgebra.iso_mk_hom_f

Theorem statement

∀ {k : Type u_1} {E : Type u_2} [_inst_1 : is_R_or_C ,k]
[_inst_2 : inner_product_space k E]
[_inst_4 : normed_space R E] [_inst_5 : is_scalar_tower R k E]
(p x : E × E),
⇑(fderiv_inner_clm p) x =
has_inner.inner p.fst x.snd + has_inner.inner x.fst p.snd

Ground truth fderiv_inner_clm_apply

Figure 5: A sample of correct top-1 guesses by our best model wm-to-tt-m1-m2 on the theorem
naming task. We performed this experiment on the future-mathlib evaluation set, which
comprises entirely unseen theorems added to mathlib only after we last extracted training data.

C.2 THEOREM NAMING CASE STUDY

We included theorem naming as part of the PACT task suite. By mathlib convention, theorem
names are essentially snake-cased, natural language summaries of the type signature of a theorem,
and so the theorem naming task is analogous to a formal-to-informal translation task. We evaluate
the ability of our best model (in terms of theorem proving success rate) wm-to-tt-m1-m2 on
its ability to guess theorem names on the completely unseen future-mathlib set of theorems.
The distribution shift inherent in the future-mathlib dataset particularly impacts the theorem
naming task, because many of the ground-truth names will involve names for concepts that were only
defined in mathlib after we extracted our training data.

On the ≈2.8K future-mathlib theorems, we queried wm-to-tt-m1-m2 for up to N = 16
candidates. We order these candidates into a list xs by decreasing cumulative log-probability and
calculate the top-K accuracy by checking if any of the first K candidates of xs match the ground

21

Published as a conference paper at ICLR 2022

Incorrect guesses

Theorem statement
∀ {α : Type u_1} (t : ordnode α) (x : α),
t.dual.find_min′ x = ordnode.find_max′ x t

Guesses (top 8)
ordinal.find_min′_eq, ordinal.find_min′_eq_max′, ordinal.find_min′_def,
ordinal.find_min′_eq_max, ordinal.find_min′, ordinal.dual_find_min′,
ordinal.find_min′_gt, ordinal.find_min′_q

Ground truth ordnode.find_min′_dual

Theorem statement

∀ {α : Type u_1} {β : Type u_3} {γ : Type u_5} [_inst_1 :
measurable_space α] [_inst_3 : measurable_space β]
[_inst_5 : measurable_space γ] {µ : measure_theory.measure α}
{ν : measure_theory.measure β}
[_inst_8 : measure_theory.sigma_finite ν]
{f : α × β → γ},
ae_measurable f (µ.prod ν) → (∀m(x : α) ∂µ,
ae_measurable (λ (y : β), f (x, y)) ν)

Guesses (top 8)

measure_theory.ae_prod, measure_theory.ae_of_ae_prod,
measure_theory.ae_eq_prod_of_ae, measure_theory.ae_ae_of_ae_prod,
measure_theory.ae_measure_prod_mk_left,
measure_theory.ae_prod_of_ae_prod,
measure_theory.ae_measure_prod, measure_theory.ae_eq_refl

Ground truth ae_measurable.prod_mk_left

Theorem statement

∀ {α : Type u_1} {β : Type u_2} {γ : Type u_3}
{f : filter α} {h : set α → set β} {m : γ → β}
{l : filter γ}, filter.tendsto m l (f.lift′ h) ↔
∀ (s : set α), s ∈ f → (∀f (a : γ) in l, m a ∈ h s)

Guesses (top 8) filter.tendsto_lift′_iff, filter.tendsto_lift′_def

Ground truth filter.tendsto_lift′

Theorem statement
∀ {R : Type} [_inst_1 : comm_ring R]
{d : Z} (f : Z√d →+∗ R),

↑(⇑(zsqrtd.lift.symm) f) = ⇑f zsqrtd.sqrtd

Guesses (top 8)
zsqrtd.coe_lift_symm, zsqrtd.coe_lift.symm, zsqrtd.lift.coe_symm_apply,
zsqrtd.lift_symm_apply, zsqrtd.lift.coe_coe_symm,

zsqrtd.lift.coe_symm_coe,
zsqrtd.lift.symm_coe_zsqrtd, zsqrtd.lift_symm_to_zsqrtd

Ground truth zsqrtd.lift_symm_apply_coe

Figure 6: A sample of incorrect guesses by our best model wm-to-tt-m1-m2 on the theorem
naming task. We performed this experiment on the future-mathlib evaluation set, which
comprises entirely unseen theorems added to mathlib only after we last extracted training data.
Most of the top-8 guesses displayed in the above table are very similar to the ground truth, in some
cases being equivalent up to permutation of underscore-separated tokens. Note that for the first
example, the concept of ordnode was not in the training data whatsoever and all predictions are in
the syntactically similar ordinal namespace.

22

Published as a conference paper at ICLR 2022

lo
gi

c

al
ge

br
a

or
de

r

da
ta

ca
te

go
ry

_t
he

or
y

co
nt

ro
l

gr
ou

p_
th

eo
ry

co
m

bi
na

to
ric

s

to
po

lo
gy

lin
ea

r_
al

ge
br

a

se
t_

th
eo

ry

an
al

ys
is

ge
om

et
ry

dy
na

m
ics

co
m

pu
ta

bi
lit

y

nu
m

be
r_

th
eo

ry

m
ea

su
re

_t
he

or
y

fie
ld

_t
he

or
y

rin
g_

th
eo

ry

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s R

at
e

Test Set Evaluation Breakdown By Modules
wm-to-tt-m1-m2 (PACT full)
wm-to-tt-m1 (PACT mix1 only)
wm-to-tt (tactic step only)
tidy (baseline)

Figure 7: A breakdown of theorem proving success rate on the test set for wm-to-tt-m1-m2,
wm-to-tt-m1, wm-to-tt, and the tidy baseline across top-level modules in Lean’s mathlib.
We see that wm-to-tt-m1-m2 mostly dominates wm-to-tt-m1 and the models trained using
PACT dominate the model wm-to-tt trained on human tactic proof steps.

truth exactly. The model wm-to-tt-m1-m2 was able to achieve 20.1% top-1 accuracy, 21.1%
top-3 accuracy, 26.7% top-10 accuracy, and 30.0% top-16 accuracy. We display a sample of correct
top-1 guesses (Figure 5) and a sample of failed guesses in (Figure 6). We note that the failed guesses,
while containing no syntactic matches, are both semantically reasonable and syntactically very similar
to the ground truth.

C.3 TEST SET EVALUATION BREAKDOWN BY MODULE

Lean’s mathlib is organized into top-level modules, which roughly organize theorems into mathe-
matical subject area. In Figure 7, we break down the evaluation results on our test set between
our PACT-trained models wm-to-tt-m1-m2 and wm-to-tt-m1 and our baselines wm-to-tt
and tidy. We see that full PACT mostly dominates over co-training on just the mix1 tasks over all
subject areas, and that wm-to-tt-m1 dominates the model wm-to-tt trained on human tactic
proof steps only.

C.4 BASELINE DESCRIPTION

The tidy backend is determined by a constant oracle

Ω : tactic_state → list (string × float)

which always returns the same list of tactics, namely:

meta def tidy_default_tactics : list (string × float) :=
list.map (flip prod.mk 0.0) [

"refl"
, "exact dec_trivial"
, "assumption"
, "tactic.intros1"
, "tactic.auto_cases"
, "apply_auto_param"
, "dsimp at ∗"
, "simp at ∗"
, "ext1"

23

Published as a conference paper at ICLR 2022

, "fsplit"
, "injections_and_clear"
, "solve_by_elim"
, "norm_cast"

]

Unlike the gptf backend, which generates a list of candidates in parallel independently, tidy enjoys
the advantage that the list of tactics it emits is carefully chosen and ordered in order to optimize
the proof search—this is based on the “waterfall” technique of the human-style automated theorem
prover described in (Ganesalingam & Gowers, 2017).

C.5 COMPUTATIONAL RESOURCE ESTIMATES

For each evaluation loop over the test set, we distributed the theorems over a pool of 32 CPU
workers whose inference requests were load-balanced over 4 V100 GPUs. Each evaluation required
≈10 hours with ≈30% GPU utilization. We observed that our evaluation was bottlenecked by
inference and in practice, we hosted up to three evaluation loops at once on a VM with 80 logical
cores without achieving full CPU utilization. In addition to the wall-clock timeout of 600s, we also
limited the proof search to a logical timeout of 512 iterations, where one iteration corresponds to a
single expansion of a node of the BFS search tree. In practice, so much time was spent either blocked
on inference or performing the tactic executions in the inner loop of each iteration that we rarely
exceeded the logical timeout, usually exceeding the wall-clock timeout instead.

Fine-tuning on our largest dataset mix1 + mix2 + tactic required 26 hours using 64 A100
GPUs exhibiting high FP16 usage, totalling an estimated ≈1.5K A100(FP16)-hours. This gives
an estimated cost of 17.33 A100(FP16)-hours per billion elapsed tokens during training. We note
that when calculating the number of elapsed tokens for training, we overestimate the actual number
of tokens effectively trained on by summing full context windows (in this case, 2048 tokens).

D EXAMPLE PROOFS

Lean’s mathlib is one of the most active open-source software projects in the world. More than
one-third of the proofs found by our models are shorter and produce smaller proof terms than the
ground truth, leading to dozens of GPT-f co-authored commits to mathlib. We examine some of
the proofs found by our models in more detail.

D.1 LIE_ALGEBRA.MORPHISM.MAP_BOT_IFF

This proof produces a proof term which is 4X smaller than the original:

lemma map_bot_iff : I.map f = ⊥ ↔ I ≤ f.ker :=
by { rw ← le_bot_iff, apply lie_ideal.map_le_iff_le_comap }

The original, human-written proof is much longer, viz.

lemma map_bot_iff : I.map f = ⊥ ↔ I ≤ f.ker :=
begin

rw le_ker_iff, unfold lie_ideal.map, split; intros h,
{ rwa [eq_bot_iff, lie_submodule.lie_span_le, set.image_subset_iff,
lie_submodule.bot_coe] at h,},

{ suffices : f ′′ I = ↑(⊥ : lie_ideal R L′), { rw [this,
lie_submodule.lie_span_eq], },
ext x, rw [lie_submodule.bot_coe, set.mem_singleton_iff,
set.mem_image],
split,
{ rintros 〈y, hy, hx〉, rw ← hx, exact h y hy, },
{ intros hx, use 0, simp [hx], }, },

end

24

Published as a conference paper at ICLR 2022

D.2 PRIMREC.OF_EQUIV

This proof produces a proof term which is 12X smaller than the original:

theorem of_equiv {β} {e : β ' α} :
by haveI := primcodable.of_equiv α e; exact
primrec e :=

by letI : primcodable β := primcodable.of_equiv α e; exact encode_iff.1
primrec.encode

The author of the original proof and maintainer of that package commented:

encode_iff.1 primrec.encode is clever, it’s a way to translate primrec
across an equivalence when the encode function is defined as encode x =
encode (e x) where e is the isomorphism.

As far as they knew, this trick was never used before in the computability package.

D.3 REAL.TAN_EQ_SIN_DIV_COS

This proof demonstrates our model’s library knowledge and ability at premise selection.

lemma real.tan_eq_sin_div_cos (x : R) : tan x = sin x / cos x :=
begin

rw ← of_real_inj,
simp only [complex.tan_eq_sin_div_cos, of_real_sin, of_real_cos,
of_real_div, of_real_tan]

end

Our model was able to predict this entire list of simp lemmas in one shot. Note that the lemma
complex.tan_eq_sin_div_cos in this list is the complex number version of the result, i.e. ∀
(x : C), tan x = sin x / cos x. The previous human-written version of the proof did
not use the more general version of the lemma on complex numbers, demonstrating our model’s
ability to find more general cases of lemmas. We contrast this with the human-written ground truth,
which is more complex and performs a case analysis using the complex cosine:

lemma tan_eq_sin_div_cos : tan x = sin x / cos x :=
if h : complex.cos x = 0 then by simp [sin, cos, tan, ∗, complex.tan,

div_eq_mul_inv] at ∗

else
by rw [sin, cos, tan, complex.tan, ← of_real_inj, div_eq_mul_inv,
mul_re];

simp [norm_sq, (div_div_eq_div_mul _ _ _).symm, div_self h]; refl

D.4 SYM2.IS_DIAG_IFF_PROJ_EQ

The proof of this lemma is longer than the ground truth and was not contributed to mathlib, but we
describe it here because the proof is original and includes a nontrivial instantiation of an existential
quantifier.

theorem sym2.is_diag_iff_proj_eq (z : α × α) :
is_diag JzK ↔ z.1 = z.2 :=

begin
intros,
simp only [is_diag, prod.ext_iff, quot.exists_rep, iff_true,
not_true, eq_self_iff_true],
simp [diag], split,
{ rintros 〈y, hy〉, cases hy; refl },
intro h, cases z, existsi z_snd,
cases h, refl,

end

Before existsi z_snd, the goal state is

25

Published as a conference paper at ICLR 2022

z_fst z_snd: α
h: (z_fst, z_snd).fst = (z_fst, z_snd).snd
` ∃ (y : α), (y, y) ≈ (z_fst, z_snd)

This goal state never appeared in mathlib.

D.5 NORM_LE_ZERO_IFF

The following proof is remarkable because it uses fewer tactic steps and takes a different route to the
proof than the ground truth, uses a complex idiom simpa [...] using @..., and was predicted
in one shot.

lemma norm_le_zero_iff {α : Type u_1} [_inst_1 : normed_group α]
{g : α} : ||g|| ≤ 0 ↔ g = 0 :=

by { simpa [le_antisymm_iff, norm_nonneg] using @norm_eq_zero α _ g }
-- ground truth:
-- by { rw[←dist_zero_right],
-- exact dist_le_zero }

The lemmas supplied between the square brackets are used to simplify the main goal. The lemma
supplied after the keyword using can further simplify the lemmas supplied between the square
brackets. The @ modifier makes all arguments explicit. The string @norm_eq_zero never appeared
in our training data but the prediction includes the correct number of correctly typed arguments, and
even replaces the second argument with a placeholder _, correctly guessing that it can be inferred
by the elaborator. Finally, this again showcases the strength of our models as premise selectors:
all three lemmas le_antisymm_iff, norm_nonneg, and norm_eq_zero were not used in the
human-supplied proof but are necessary for this proof.

Moving forward, we hope that our neural theorem provers will continue to find ways to improve
mathlib and assist in creating new proofs. More generally, we hope neural theorem proving will
one day be become a routine part of the formalization workflow.

26

	Introduction
	Background and related work
	The LeanStep datasets and machine learning environment
	Human tactic proof steps
	Proof artifact co-training
	The LeanStep machine learning environment

	Experiments
	Discussion
	Acknowledgments
	Reproducibility statement
	Additional Background
	Datasets
	Pre-training datasets
	Dataset sizes
	Example datapoints

	Experiments
	Chained tactic prediction
	Theorem naming case study
	Test set evaluation breakdown by module
	Baseline description
	Computational resource estimates

	Example proofs
	lie_algebra.morphism.map_bot_iff
	primrec.of_equiv
	real.tan_eq_sin_div_cos
	sym2.is_diag_iff_proj_eq
	norm_le_zero_iff

