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Abstract—The demand for the development of forestry
robotics has been increasing. As with most robotics applications,
Machine Learning is the engine driving innovation in this field.
However, Machine Learning development for robotic perception
tasks is highly dependent on the availability of annotated
datasets. Contrasting with urban environments, public datasets
for forest applications are rare, hard to collect and currently
not enough to train models capable of operating autonomously.
This paper proposes a solution to mitigate the data shortage
problem: a system that uses procedural generation to create vir-
tual forests and collects synthetic data from these environments
using virtual sensors. More specifically, the system generates
RGB images and point clouds with pixel-wise and point-wise
annotations, respectively, as well as depth maps, substantially
reducing the time and effort invested in dataset construction.
The system proved capable of generating 1000 frames with
all the above-mentioned data types in 3 hours of autonomous
operation. The generated data is ready to be used in Machine
Learning model training. Finally, qualitative preliminary results
obtained by a semantic segmentation model trained on the
generated dataset, which has been made publicly available in
a community-wide repository, are presented.

I. INTRODUCTION

Forestry has a substantial importance in the economy of
many industrial countries [1] [2]. However, we are facing an
increasing lack of manpower due to low salaries (especially
taking into account the harshness of its operations), and
also the progressive abandonment of rural areas and of
practices such as pastoralism. One way of solving these
problems would be by introducing and developing (semi-
)autonomous vehicles and robots, which would potentially
reduce running costs and remove the many health hazards
involved in forestry, while still keeping the human “in the
loop”. The need to develop robots and systems capable of
autonomously performing tasks in field robotics applications
that rely on robotic perception has increased over the past few
years. Machine Learning (ML) is the technological backbone
that is powering this development, however, many challenges
arise when trying to combine an already proven technology
(ML) in contexts where annotated training data is hard to
get, due to the lack of experiments or the complexity of task
itself. Deep Learning (DL) techniques (which are a subset
of ML) are the go-to solution to perform the referred tasks.
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The lack of data is one of the most challenging problems
to overcome. When creating a ML model one needs to gather
data that represents that problem. Afterward, this data needs
to be annotated to train the model on what it represents.
The amount of data needed to achieve the desired level of
performance is directly coupled with the problem at hand.

According to F. Lateef and Y. Ruichek [3], researchers are
resorting to semi and weakly supervised methods making DL
models less reliant, as opposed to investing time collecting
datasets. For most applications, dataset construction is an
enormous task that can render many research teams power-
less due to time constraints.

For some applications, such as autonomous driving, there
are many labeled datasets and tools to boost the development
of ML algorithms. On the other hand, forest navigation and
perception is an underdeveloped field with few or no datasets
available to enable research and development. This is the
reason why many ML applications are not further developed
or even put into practice.

This paper presents a novel solution to attenuate this
problem for the specific application of forestry robotics: a
system capable of generating synthetic data from procedu-
rally generated worlds to train ML algorithms for forest ap-
plications. Thanks to the power of procedural generation and
virtual sensors, the generated data is automatically labeled
and requires virtually no effort to acquire. The preliminary
results presented in this paper show that this is an effective
technique with the potential to boost the development of ML
solutions for forest applications. The system generates Red
Green Blue (RGB) images with pixel-perfect segmentation
maps, depth maps and point clouds with point-wise labeling,
as presented in Fig. 1. The proposed system was developed
using the game engine Unity. Built for game development,
Unity provides many of the needed tools such as graphics
pipelines and support for implementing logic via scripting.

The main contribution of this work is to provide the ability
to generate data to train ML models for forest applications
without the need to spend time doing so. Additionally, re-
searchers can modify the generated environments by simply
tweaking the procedural generation algorithm parameters.
Therefore, researchers can devote their time to improving
ML models architecture while generating diverse datasets in
the background.

II. PROBLEM FORMULATION

The lack of data, raw or labeled, to develop and train
ML algorithms is a problem that keeps robotic perception
solutions from reaching better, or even reliable, results. This
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Fig. 1.  Different types of data generated by the system for a single
position of the virtual sensors. Labels apply to both point cloud and semantic
segmentation map.

problem is the sum of a series of factors that will be
discussed below.

A. Deep Learning is Data-Hungry

As previously mentioned DL is the most used field of ML
to perform robotic perception tasks. DL models are data-
hungry [4]. Their neural network structure allows them to be
degrees of magnitude more independent than more traditional
Artificial Intelligence (AI) algorithms, but this comes at the
expense of needing additional training which is only possible
with good and relatively big datasets.

The amount of annotated data needed for each problem
is tightly coupled with the problem itself, meaning that
models programmed to detect and deal with many features
and objects will require much more data to cover all the
cases needed to build the internal model. In a forest, the
unstructured nature of the environment makes this a complex
problem that requires substantial amounts of data to be
tackled.

B. Acquiring Data

Collecting data implies operating sensible and power de-
pendent equipment. In a forest, this is a laborious and time-
consuming task, that, in turn, leads to a raw data shortage
problem. In [5] and [6] the authors collect data in the forest
and present the data collection setup, helping to understand
the effort involved.

When collecting data, one needs to make sure that all
the necessary cases are covered to generalize the model,
which might not happen. In later stages, this might force the
teams back to square one to solve overfitting or other poor
performance problems. It is hard to be aware of the coverage
of the already collected data, making this problem hard to
counter. Authors of the Neural Network (NN) for semantic
point segmentation in large point clouds named RandLaNet
[7], state that classes that were less represented in the
training dataset show poor performance. Making sure that the
data collected covers all classes equally can be challenging,
depending on the problem. In a forest environment, this

becomes close to impossible, simply because there are a
lot more objects of some kinds than others. For instance,
the canopy is going to be everywhere, whereas rocks will
only appear in some situations, leading to dataset imbalance
problems.

C. Data Annotation

ML algorithms require datasets with labels to be trained.
Annotation is the process of labeling data with a meaning-
ful description. This process needs to be conducted or at
least supervised by humans to ensure that the labels are
correct. Incorrect labels are a huge problem in DL and,
unfortunately, annotation is a very error-prone process due
to the monotonicity of the task. C. Northcutt, A. Athalye
and J. Mueller [8] analysed commonly-used computer vision,
natural language, and audio datasets an estimate an average
of 3.3% errors across them. NN trained on wrong labels, will
learn those errors, deeply impacting performance.

There are many ways to annotate data. For RGB images,
the most common is to draw a polygon mask or a more
simple bounding box around each object, assigning it the
correct label. This is a very heavy and tiring task to do for
thousands or millions of images. Semi-automated tools can
be used to speed up the process. Annotating images from
forest environments becomes more complex than annotating
images from urban scenarios, given that forests are unstruc-
tured environments with fine details.

Labeling point clouds is an even harder task. When
looking at a point cloud on a computer screen, one feels
the need to rotate and pan around the virtual environment to
perceive shapes and identify objects, making it the most time-
consuming task in the data processing pipeline. Point clouds
taken from a forest setting are even harder to label, again, due
to the unstructured nature of these environments. Mahony et
al. [9] classifies dataset annotation as a huge bottleneck in
the development of 3D DL.

D. In Practice - Semantic KITTI

Semantic KITTY [10] is a large dataset of Light Detection
And Ranging (LiDAR) point clouds, based on the KITTI[11]
Vision Odometry Benchmark, with added point wise anno-
tations. The annotation process is detailed and allows us to
extract some conclusions on the effort and techniques used.

First, multiple scans of the same area where superimposed
in other to label all the points consistently. Then, all se-
quences of point clouds were divided into 100m by 100m
tiles. For scans that were part of more than 1 tile, a small
boundary is shown, relative to the neighbour tiles, when
labeling. No bounding boxes or other annotations from the
original KITTI dataset were used, in order to ensure that the
point-wise labels are accurate.

The dataset consists of 23201 scans for training and 20351
for testing, totaling 4549 million points. The dataset took a
total of 1700 hours of labeling effort or roughly 71 whole
days.



III. RELATED WORK

The idea of creating a system capable of rendering and
collecting datasets from a virtual scene has been explored
for autonomous driving applications. Mostly, pre-built virtual
worlds were used, without resorting to procedural generation.
Nevertheless, the processing of capturing the data is similar.

Richter et al. [12] used the game GTA V as a source of
data. A system capable of propagating labels from frame to
frame was developed and allowed to generate a dataset with
25 thousand images and pixel-perfect semantic segmentation
in 49 hours. A dataset composed of 2/3 of game data and
1/3 of CamVid [13] data outperformed models trained on the
complete CamVid training set by 2.8 percentage points. This
is a substantial improvement considering that the synthetic
data was generated in a fraction of the time.

Yue et al. [14] also utilized the environment in the game
GTA V, but to create annotated point clouds with point-
wise annotation, again for autonomous driving application
purposes. However, the used method generated point clouds
with a low level of detail, since the developed system was
limited by the game object’s physics colliders. This problem
was tackled by Hurl et al. in the generation of the Precise
Synthetic Image and LiDAR (PreSIL) dataset [15], utilizing
the depth buffers from the GPU to generate point clouds.

SynthCity [16] is a dataset created from 3D models of
cities and other urban environments found online. The data
is composed of point clouds with point-wise annotation. The
entire virtual world was built by hand.

IV. PROCEDURAL GENERATION OF FORESTS

Procedural generation of the environment frees the user
from the task of creating the environment with hand-placed
objects, as done in [16]. The algorithms used to generate the
environment rely on random number generators to assemble
a different environment each time the system is used. These
are configurable algorithms that can be tuned to produce
different types of environments. This section will present
the different modules that compose the procedural generation
system, focusing on its interfaces: the parameters available to
the user and the produced output, a virtual forest. This forest
is seen through the sensors present a virtual entity that will
hereby be designated as robot.

A. Chunk Manager

The first task of generating and managing a procedural
world is to control what part of the forest is visible. In
practice, this means creating, hiding and destroying the
virtual world around the robot. To achieve this behavior the
world is divided into finite pieces called chunks. The chunk
manager is the sub-system that provides these features and
is controlled by the following variables:

« Robot position: The robot position in the world;

o Visible Radius: Distance, in meters, around the robot
for which chunks are visible;

o Delete Radius: Distance, in meters, around the robot
from which chunks are not visible and can be deleted.

As the robot moves through the environment new chunks
are created and the chunks left behind are disabled and
eventually deleted. There is the need to delete chunks be-
cause memory is a finite resource and there is no gain in
saving these chunks on permanent memory. As seen in Fig. 2,
chunks in between the visible radius distance and the delete
radius distance are disabled but not deleted since these are
locations that the robot will likely visit again.
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Fig. 2. Each square represents a chunk, with the respective chunk

coordinates. Green chunks inside the visible radius are active. Chunks in
between the visible and delete radius are disabled, becoming invisible, but
kept in memory. Chunks outside the delete radius are deleted from memory.

As aforementioned, each chunk is a part of the virtual
forest. This forest features terrain, trails and objects such as
trees, grass, rocks, etc. The next subsections will address the
individual components that make up a chunk.

B. Terrain Generation

From a more low-level computer graphics perspective, the
terrain object is no more than a set of vertices and triangles
evenly distributed along their axis, with an assigned height
value, constituting a mesh. For the current application, it
makes sense that chunks are square (along X and Z).

Assigning a random value to the height of each vertex in
the mesh creates unnatural-looking terrain. However, using
Perlin noise, terrains with smooth transitions between heights
are created. Thus, terrain generation is controlled by the
following parameters:

o Number of Octaves: The number of Perlin Noise layers
that will be combined. It is a positive integer;

e Scale: Controls the distance to the noise map. Can be
thought of as zooming in and out. Useful to create
rougher or smoother terrains. It is a positive real num-
ber;

o Lacunarity: Adjusts the frequency of each Perlin Noise
octave, controlling it’s level of detail. Can be any real
number greater than 1;

« Persistence: Controls the weight (amplitude) each Per-
lin Noise octave has on the final shape. If the value is
less than 1, each octave will contribute less, which is
desirable. Therefore, this parameter ranges between 0
and 1;



o Max height: The maximum height, in meters, that the
terrain can reach;

The tuning of these parameters allows the creation of
many different terrain morphologies, ranging from meshes
that resemble plains to mountains with smoother or rougher
terrain. Figure 3 presents some examples.
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Fig. 3. Effect of persistence and lacunarity on the generated terrain mesh.
These meshes have a 240 meter side size and the values for other parameters
remain constant: noise scale of 40, a maximum height of 50 meters and 5
octaves.

C. Trail Generation

Robots equipped with perception algorithms will most
likely be working in areas with trails, making it important to
have a trail generation module for the virtual environment.
Real-world forest trails can have complex structures since
the trails tend to affect and even change the terrain itself.
For instance, on a slope, the trail will be carved leaving a
clear footprint on the landscape, which is quite characteristic
in forests. That said, the trails generated by this system are
planar with the terrain mesh, being an area where this system
can improve. This makes the problem much easier to solve,
at the expense of losing some realism. In the current version
of the system, trail generation can also be switched off if
there is the need to generate data from forests with steep
slopes.

The trail generation algorithm makes it possible to instan-
tiate grass and small rocks throughout the trail to enhance
realism. Grass spawns from the middle of the track and
can spread over a configurable distance. This implementation
makes it easy to create one of the most common effects seen
on forest trails: grass predominant in the middle of the trail
due to vehicles passing. The trail generation is controlled by
the following adjustable parameters:

o Width: Trail width in meters;

o Trail texture: Texture to apply to the trail mesh;

o New trail spawn probability: Probability that when a
chunk is being generated, a new trail will be started;

o Probability of the trail going forward: How likely
it is for a trail to end at the opposing chunk border,
instead of deviating to its left or right; It is useful to
either create straight and long trails, or trails with more
turns.

o Section shape: A curve used to shape the trail,
extruding it from the terrain mesh;

o Grass density: The maximum number of grass objects
that can be instantiated along the middle of the track;
0 corresponds to no grass instantiated;

o Grass spread: How far from the middle of the trail
can grass objects spawn;

¢ Rock density: The maximum number of rocks that can
be instantiated per track;

D. Object Placement

Having already generated the terrain mesh and the trails,
the next step is to populate the terrain with the remaining
objects. Object instantiation is done in a fixed order to ensure
the correct composition of the environment: First, rocks are
instantiated, then trees, stumps and shrubbery and, finally,
the lower vegetation such as grass and other herbaceous
plants. Following this order, it is possible to ensure that
the generated environment makes sense eliminating problems
such as different objects occupying the same space.

The objects that populate the environment were acquired
from the Unity Asset Store in three distinct asset packs.
All of them have models of trees, stumps, rocks, shrubbery,
herbaceous plants and other details. They also have textures
for soil and trails. These provide enough variability to create
diverse and distinct environments.

Some forests have rocks scattered about randomly. The
object placement subsystem supports rock instantiation with
a random pattern. For each chunk, there is a minimum and
a maximum number of individual rocks that can be spawned
anywhere within the chunk’s border. The exact number of
rocks instantiated in each chunk is randomly determined
within the defined range.

Next, trees and shrubbery objects are placed. In order to
generate a realistic looking forest, trees need to be able to
overlap their canopy whilst keeping theirs trunks isolated. An
algorithm suited algorithm for this task is the Fast Poisson
Disk Sampling (FPDS) [17]. The original implementation
is designed to handle the placement of objects (originally
called samples) with a fixed radius in n-dimensions. For
this application, the original algorithm was modified to be
able to place objects with different radii in Two-Dimensional
(2D), since the goal is to place them in the XZ plane. The
density of the vegetation is manipulated multiplying the radii
of occupation of each object by a factor. The resulting value
is then used by the placement algorithm.

One of the challenges object placement algorithms impose
is to find an efficient strategy to keep track of occupancy.
This can be done by keeping an occupancy grid or by having
a data structure that is capable of searching for neighbors
efficiently (in space). Since the objects to be placed in this
application have different radii, an occupancy grid would
have to be built with the cell size accounting for the smallest
object, which revealed inefficient. Thus, quad-trees were used
to keep track of the objects in the 2D space since they have
proven to be suited for neighbor search operations. A list



of positions where objects can still be placed around is also
used, as suggested in [17].

Finally, herbaceous plants are placed. Considering that
these plants are located everywhere, the whole chunk is
swept and the objects are instantiated based on a grid. They
can be placed in the middle of shrubbery, right next to tree
trunks or even with parts occluded by rocks, but not in trails.
For each grid location, a neighbor position is generated (with
a random direction and distances) to avoid the placing of
unnaturally looking undergrowth.

E. Lighting

Using Unity to develop this system comes with the ad-
vantage of having lighting and post-processing tools that are
readily available to deploy in the generated scenes.

Sunlight is simulated with an infinite light object. This is
an infinite plane of light that emits in a defined direction
with a configurable intensity and color. With this feature,
it is possible to simulate different times of the day. Using
different skyboxes, light with different colors is reflected on
the scene (reacting to the skybox), as seen in Fig. 4. This
feature is valuable to generate diverse RGB datasets since
ML models are known to be sensitive to light conditions.

Fig. 4.
skyboxes.

Same scene rendered with two different light (sun) positions and

V. VIRTUAL SENSORS

Having generated the environment the next step is to
collect data from it. To achieve this, physical sensors were
modelled and deployed in the generated environment. This
section will give an overview of the implementation and
capabilities of each virtual sensor.

A. Classes

Most of the value in the proposed system comes from
autonomous data labelling. With this in mind, the following
classes were defined and are used in the generated semantic
segmentation for RGB images, as well as in the point
wise segmentation performed on point clouds: Background,
Terrain, Traversable, Trunks, Canopy, Shrubs, Herbaceous
plants and Rocks.

Some of these classes can be merged in a post-processing
step if it makes sense for the case at hand. In tasks such as
landscaping for wildfire prevention, it might make sense to
classify shrubs and herbaceous plants as the same class of
live flammable material ("fuel" for short).

B. LiDAR

LiDAR is a technology that uses light to create a 3D
representation of the environment, a point cloud. Light pulses
are emitted and their time of flight (from the sensor to the
objects and back) is used to calculate the distance between
the objects and the device. To create a virtual model of a
LiDAR scanner, first a laser pulse was simulated and then
replicated in many directions to make up common LiDAR
scanning patterns.

Simulating the described light pulses seems as simple
as using Unity’s physics API to issue a raycast operation.
However, the fact the environment is a forest imposes some
challenges. In a forest there is an abundance of leaves and
fine details that are not common in other scenarios, for
instance urban scenarios. While this problem is easily solved
for visual rendering purposes, projecting a detailed texture
on a rough mesh, raycasting uses the far less detailed mesh
colliders, as seen in Fig. 6.

Fig. 5. Using the top of a virtual tree model to compare (a) the visual
render, (b) the mesh collider with which the physics engine interacts, (c) the
result of a virtual LiDAR implementation that only accounts for the mesh
collider and (d) the result of a virtual LIDAR implementation that accounts
for the mesh collider as well as the texture transparency

To overcome this problem a solution was developed
merging the information from raycast operations with the
transparency information present on the textures. Points are
only registered when there is a collision with a mesh collider
and the texture at that point is not transparent, yielding the
results presented on Fig. 5.

Moreover, a model to simulate LiDAR noise was devel-
oped using data from studies on physical LiDAR devices
[18], [19] and [20]. The presented data was used to create
mathematical functions that model the noise of a specific
device to generate the error value. This error is then used as
the mean value of a Gaussian distribution with a configurable
sigma and the value returned by the Gaussian noise generator
is used as the error value. The normal distribution is used to
add some variability and avoid a patterned noise generation.

Finally, three scanning patterns were developed for the



virtual LiDAR. A traditional line scanning pattern (repeat-
ing), and two non-repeating patterns: circular Field of View
(FOV) and rectangular FOV, inspired on the commercially
available Livox Mid-40 and Livox Horizon.

Fig. 6. Scanning patterns developed for the virtual LIDAR projected onto a
plane with a tree to test for occlusion. Repetitive line pattern, non-repetitive
rectangular pattern and non-repetitive circular pattern, respectively in the
image. The red box represents the robot.

C. RGB Camera

Unity provides a readily available camera component that
renders the 3D scene onto a display or a texture. Rendering
the image to a texture allows it to be saved to a file,
effectively creating an RGB image. This camera can be
configured in terms of sensor size and FOV or focal length.

Semantic segmentation images are created using an idea
proposed by Unity Technologies [21]. This idea uses cam-
era replacement shaders (that make the camera ignore all
the material shaders and render the entire scene with that
shader), in combination with material property that allow
to programmatically set custom properties for each material
such as textures. Thus, a second camera was added to the
scene (with the same transform and physical properties of
the RGB camera) to generate semantic segmentation images.
This camera runs a replacement shader that renders each
object with a solid color, producing pixel perfect semantic
segmentation maps, as illustrated in Fig. 7.

Fig. 7. RGB image and it’s corresponding semantic segmentation.

D. Depth Camera

The depth maps are created intercepting the depth buffer
generated by the GPU in the rendering pipeline. As the name
suggests this buffer stores the distance to the nearest object,
for each pixel that is to be rendered.

Depth maps generated from Red Green Blue Depth
(RGBD) cameras or stereo camera rigs encode distance in
meters. Unity’s depth buffers values range from 0 to 1 and
are non-linear since more precision is needed for objects that
are closer to the camera.

Information regarding the curve that maps depth buffer
values to meters was not found in the documentation, so a
virtual experimental setup was created in Unity to solve this

problem. By placing a plane fronto-parallel to the camera
and moving it away in small increments whilst measuring
the value on the depth buffer, it was possible to generate
data to create a curve with the MATLAB curve fitting tool.
This curve maps values on the depth buffer to meters. This
is a post-processing step, meaning that an application was
developed in MATLAB to convert the images that are cap-
tured in the rendering pipeline. The reason to do this outside
of the main system is that this would be costly in terms
of resources. That can be done with greater performance
in MATLAB, avoiding an additional overhead on the data
collection process. An example of the generated depth maps
can be seen in Fig. 8.

Fig. 8. Generated RGB image with the corresponding depth map.

The following expression, where d means distance and v
represents the value on the depth buffer, maps each value on
the depth buffer to a distance in meters:

d(v) = 183.7e~28:01v 1 33 87,7699 1)
The Root-mean-square Error (RMSE) for the curve is 0.18m.
VI. PERFORMANCE ASSESSMENT

An important criterion for evaluating the performance of
the proposed system is the time it takes to generate data for
different types of environments and sensor configurations.
As noted earlier, the system does not run in real-time. The
chunks take time to be generated and, most notably, the
virtual LiDAR also takes some time to scan the environment.
The time that different system modules take to perform their
tasks scales with the density of the vegetation and with the
resolution of the data collected by the sensors. Bigger chunks
and greater visible radius also impact performance.

Different environmental and virtual LiDAR settings have
an impact on the number of images the system can produce
in a given time interval. To evaluate these effects, two
experiments were conducted:

1) In the first experiment, the sensor settings were kept
equal during the three tests with the LiDAR scanning
50.000 points per frame. The density of the vegetation
in the environment was increased from low to medium
and finally high. Regarding the number of trees per
chunk, for each density, on average, the following
numbers were used: 31 trees for low density, 96 trees
for medium density, and 210 trees for high density.

2) In the second experiment, the environment settings
were kept equal during the three tests with a medium-
density configuration of the environment. The number
of points scanned by the LiDAR was increased from
25.000 to 50.000 and finally to 100.000. This number



of points is consistent with the different integration
times for the Livox Horizon: 100ms (10Hz), 200m
(5Hz), and 500ms (2Hz), respectively.

TABLE 1
TIME IT TAKES FOR THE SIMULATOR TO GENERATE 1000 FRAMES, FOR
DIFFERENT ENVIRONMENT CONFIGURATIONS.

Environment Density Low Medium High
Time to Generate 1000 Frames (min) 65 180 185
Average Time per Frame (sec) 39 10.8 11.1

TABLE I
TIME IT TAKES FOR THE SIMULATOR TO GENERATE 1000 FRAMES, FOR
DIFFERENT LIDAR CONFIGURATIONS.

Number of Points per Scan 25.000  50.000  100.000
Time to Generate 1000 Frames (min) 95 180 225
Average Time per Frame (sec) 5.7 10.8 13.5

The reason for the experiments to only cover tests where
the resolution of the LiDAR varies, is that the virtual LIDAR
is by far the bottleneck in terms of processing time. On
average, the virtual LiDAR takes 79% of each frame’s total
processing time. The chunk size was fixed at 50m and the
visible radius at 100m for all tests. Regarding the camera, the
RGB images, segmentation maps and depth maps had a fixed
resolution of 1280 x 720 pixels. Testing was performed on
a machine equipped with an Intel(R) Core(TM) i7-7700K
4.20GHz, 32GB of RAM and an NVIDIA GeForce GTX
1080 GPU.

The presented system is able to generate 1000 synthetic
frames of a forest with a medium density, each one composed
of an RGB image with semantic segmentation, a depth map
and a point cloud with point-wise annotations for 50.000
points, in 3 hours. Tables I and II summarize the performance
of the proposed simulator using the considered hardware. It
is capable of generating in 3 hours 1000 synthetic images of
a medium density forest, each consisting of an RGB image
with semantic segmentation, a depth map, and a point cloud
with point-wise annotations for 50,000 points. Using this
system to generate a dataset with an equivalent amount of
points as Semantic KITTI would take roughly 170 hours.
This time was calculated using the results from Table II,
knowing that Semantic KITTI has 43.552 scans, each one
with 104.449 points on average. Compared to the 1700 hours
it took for them to annotate the dataset manually this is 10x
faster. It should also be noted that:

o The system would not only generate the point clouds,
but also the other mentioned types of data;

o The generated data has perfect labels. When humans
annotate data they inevitably introduce errors and inac-
curacies that harm the performance of the models;

o The referred 170 hours already account for data collec-
tion and annotation;

o Apart from the initial parameter configuration the sys-
tem runs completely unattended.

VII. PRELIMINARY RESULTS

A preliminary evaluation of the usefulness of synthetic
data to train ML algorithms in the context of forest per-
ception was performed. The chosen application domain was
semantic segmentation based on RGB images. This section
presents some preliminary qualitative results that will be
discussed below.

A readily available ML framework for semantic segmenta-
tion was used to perform the evaluation [22]. This framework
provides different DL models, based on Convolutional Neu-
ral Networks (CNNs). After some initial tests, the model
PSPNet [23] was chosen. The main reason for this choice
was the fact that the framework provided a pre-trained
version of this model on the Cityscapes dataset [24]. This
dataset was collected in an urban scenario, not in a forest.
However, using transfer learning from a similar domain
offers a number of advantages, such as shorter training time,
better neural network performance, and the absence of a large
amount of data to be trained from scratch.

The dataset generated for this evaluation was composed of
3154 frames. The herbaceous plants and shrubbery classes
were merged into the "fuel" class since these are similar
classes in terms of appearance. The dataset was made pub-
licly available on a community-wide repository [25].

The model was trained solely on synthetic data and then
inference was performed on real-world RGB images. Figure
9 presents some of the obtained results. From a qualitative
perspective and considering the used data, some conclusions
can be drawn:

background . soil trail
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Fig. 9. Qualitative results produced by the trained model.
o The model learned to differentiate fuel from the canopy

in some situations but requires more training to be
considered reliable. This limitation was expected since



visually, the canopy and the objects from the fuel
class are similar. Since the model, most likely, learned
to associate canopy to trunks, identifying trees whose
trunks are hidden is a difficult task.

The training data had all the trails generated with the
same texture, similar to the areas segmented as trails in
(b) and (e). This leads to problems when segmenting
trails with a different appearance, such as in (a) and (f).
This problem can be attenuated by generating data with
different looking trails;

Similarly, areas on the RGB images that resemble the
textures used to generate the training data can be miss
classified. This happened on the right side on (c), where
the terrain was identified as belonging to the trunk class.
It also happened in (d), where the trail was segmented as
fuel because it has small plants all over. The model was
built based on images where these plants only appeared
in the middle of the trails;

On (e) some trunks are classified as fuel. This represents
a problem for a forest clearing robot. On (f) the same
happens on the bottom right of the image. This happens
because tree trunks are wrapped with vegetation. The
model did predict those labels accurately. Nevertheless,
ML algorithms should be trained to identify these
situations and predict where the trunks are, even among
the vegetation.

VIII. CONCLUSIONS

As previously shown, the developed system can potentially
contribute to improve the performance of ML based robotic
perception algorithms on the forest domain. By tuning the
parameters of procedurally generated virtual forests, one
can generate specific scenarios that target situations where
models are underperforming, thus helping to improve their
accuracy.

The presented preliminary evaluation suggests that the
generated synthetic data has the potential to improve the
quality of trained ML models. However, this work does not
aim to replace real data with synthetic data to address the
problem of annotated dataset shortage for the forest domain,
but to provide an attenuating solution to the problem. Further
testing is needed to draw more definitive conclusions, namely
assessing the performance impact of combining synthetic and
real data during training.
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