
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

FedTAP: Federated Multi-Task Continual
Learning via Dynamic Task-Aware Proto-
types

Anonymous authors
Paper under double-blind review

Abstract

Real-world federated learning systems often involve clients performing dif-
ferent tasks under continually changing conditions, including dynamic par-
ticipation, where new tasks emerge while others fade away. However, this
dynamic environment presents complexity beyond the scope of conventional
approaches. Particularly, Federated Multi-Task Learning address different
tasks but assumes they are static, while Federated Continual Learning only
considers temporal data shifts within a single-task. To address this gap, we
introduce a Federated Multi-Task Continual Learning (FMTCL), a novel
scenario that simultaneously handles task heterogeneity, temporal data
shifts, and dynamic task composition. We propose FedTAP, Federated
Task-Aware Prototype, a prototype-based framework designed to solve the
challenges of FMTCL. It consists of: (i) Prototype-Guided Aggregation
(PGA), which aggregates client updates in a shared prototype space, (ii)
Task-Aware Prototype Learning (TPL), which trains a diverse and sparsely
utilized set of prototypes, and (iii) Adaptive Prototype Allocation (APA),
which manages the prototype pool to adapt a dynamic task participation.
FedTAP achieves state-of-the-art performance on multi-task benchmarks,
demonstrating strong effectiveness in FMTCL.

1 Introduction

Federated Learning (FL) (McMahan et al., 2017; Konečnỳ et al., 2015; Kairouz et al.,
2021) enables collaborative model training across decentralized clients without sharing raw
data, making it particularly suitable for privacy-sensitive domains such as healthcare and
industry (Bercea et al., 2021; Dayan et al., 2021; Warnat-Herresthal et al., 2021; Zhang et al.,
2022; Yang et al., 2019). By aggregating locally trained models across multiple clients, FL
enables each client to benefit from a global model knowledge derived from more diverse data
than its own data, resulting in a model that outperforms those trained in isolation (Zhao
et al., 2018; Li et al., 2020). However, in practice, this process faces three interconnected
challenges: task heterogeneity where clients perform different tasks, such as segmentation
or classification, temporal data shift where a client’s data distribution changes over time,
and dynamics as new tasks emerge and some leave. These challenges must be considered
together, given their intricate interplay, as dynamic composition determines the active set of
heterogeneous tasks at any given round, and temporal shifts concurrently modify the data
distributions of those tasks.

Unfortunately, existing approaches only address part of these challenges. Specifically, Fed-
erated Multi-Task Learning (FMTL) (Smith et al., 2017; Cai et al., 2023; Chen et al., 2024;
Yang et al., 2024; Lu et al., 2024) primarily tackles task heterogeneity by decomposing mod-
els into task-specific parameters. But FMTL methods assume that the set of participating
tasks remains unchanged across all rounds, making it difficult to handle scenarios where
the task set changes over time. On the other hand, to handle temporal data shift, Feder-
ated Continual Learning (FCL) (Guo et al., 2024; Qi et al., 2023; Tran et al., 2024; Dong
et al., 2022; Liang et al., 2024; Piao et al., 2024) has been studied to adapt global models
to sequentially changing data while retaining the previously learned knowledge, typically

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

through weight-level regularization to constrain parameter updates. Yet FCL assumes the
same task across clients, which does not hold in task heterogeneity setting. Moreover, since
FCL assumes a static task participation across rounds, it cannot handle dynamic task par-
ticipation. Thus, while FMTL and FCL each address one aspect of the three interconnected
challenges, neither can fully resolve them simultaneously.

Table 1: Comparison of coverage in federated learning
settings. FMTL addresses only task heterogeneity, while FCL
focuses solely on temporal data dynamics. FMTCL tackles all
three challenges: task heterogeneity, temporal data shift, and
dynamic task composition.

Challenges FMTL FCL FMTCL (Ours)

Task heterogeneity ✓ ✗ ✓
Temporal data shift ✗ ✓ ✓

Dynamic task composition ✗ ✗ ✓

To overcome all these
challenges, we propose
Federated Multi-Task
Continual Learning
(FMTCL): a novel fed-
erated learning scenario
that simultaneously
addresses task hetero-
geneity across clients,
temporal data shift
within each task, and
dynamic task composition. Table 1 summarizes the differences between existing FL
scenarios, FMTL and FCL, and our proposed scenario, FMTCL. This setting is especially
relevant in real-world applications like healthcare and manufacturing, where client roles
are specialized and their participation changes over time. In healthcare, hospitals comprise
specialized departments, each responsible for unique diagnostic tasks. For example, respi-
ratory hospitals specialized in infectious diseases join the federation during a pandemic,
and withdraw once the situation stabilizes, while mental health institutions join later
as psychological concerns rise. The global federation must thus adapt to changing task
composition while maintaining diagnostic performance. Similarly, in manufacturing, each
production line specializes in tasks such as semiconductor processing or packaging, requiring
management of dynamic composition as new lines are added and outdated ones removed.

A straightforward approach to tackle FMTCL is to combine techniques from FMTL and
FCL. However, this naive integration is insufficient and leads to two critical limitations: (i)
Conflict between learning objectives: adaptation and stability. FMTL enables task-specific
adaptation, a model’s ability to learn from heterogeneous tasks, by utilizing a shared back-
bone and separate task-specific parameters, whereas FCL enforces stability, a model’s ability
to preserve knowledge over time, by constraining important parameters. When combined,
FMTL’s requirement to change the shared parameters to find a compromise for multiple
new tasks directly opposes FCL’s requirement to preserve those same shared parameters to
retain knowledge from old tasks. Even assigning a separate FCL model to each task not
only incurs substantial memory and communication overhead, but also breaks the core prin-
ciple of continual learning, as each model handles a single task in isolation without a shared
global model which is an essential characteristic of federated learning. (ii) Representational
capacity misallocation in dynamic tasks. Without an adaptive mechanism for dynamic task
composition, which neither FMTL nor FCL provides, task-specific parameters from non-
participating tasks remain in the global model. When a new, unrelated task arrives, a naive
system forces it to start learning from this residual knowledge, a specialized but often irrel-
evant starting point that causes negative transfer. This process hinders the learning of new,
task-specific features and ultimately degrades performance on current tasks.

To address these two challenges, we propose a novel method, FedTAP (Federated Task-
Aware Prototype), which consists of three components: Prototype-Guided Aggregation
(PGA), Task-Aware Prototype Learning (TPL), and Adaptive Prototype Allocation (APA).
To mitigate conflict between adaptation and stability, FedTAP shifts from direct parameter
updates in conventional FL to an indirect, representation-based approach. To this end,
(i) PGA enables task-specific adaptation by translating each client update into a unique
combination of shared prototypes, and preserves stability, as the shared prototype base
is not directly altered by any single update. Moreover, (ii) TPL supports this by learning
diverse prototypes and enforcing sparse attention, keeping each task’s combination compact.
To address representational capacity misallocation in dynamic tasks, (iii) APA dynamically
expands the prototype pool with new prototypes and prunes obsolete ones, ensuring the
model’s representational resources are efficiently allocated to current tasks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Our main contributions are summarized as follows:

• For the first time, we propose Federated Multi-Task Continual Learning (FMTCL),
a realistic federated learning scenario that reflects three key challenges, including
heterogeneous tasks, temporal data shift, and dynamic task composition.

• We propose Federated Task-Aware Prototype (FedTAP), a novel prototype-based
framework to address the challenges of FMTCL. It mitigates the conflict between
adaptation and stability through Prototype-Guided Aggregation (PGA), which cal-
culates client updates as sparse combinations of the shared prototype bases learned
through Task-Aware Prototype Learning (TPL).

• We further address capacity misallocation under dynamic task composition through
Adaptive Prototype Allocation (APA), which dynamically manages the prototype
pool to control the alignment of model capacity with evolving tasks.

• We conduct extensive experiments on multi-task benchmarks under diverse dynamic
scenarios. Experimental results demonstrate that FedTAP consistently outperforms
existing baselines in both generalization and task-specific performance, validating
its effectiveness in the proposed FMTCL.

2 Related Work

Federated Multi-Task Learning. Federated Multi-Task Learning (FMTL) enables
clients to collaboratively train models while each works on distinct tasks. Early work like
MOCHA (Smith et al., 2017) proposed learning separate models per client with shared
knowledge across them, but assumed similar tasks—referring to variations in class distribu-
tions rather than fundamentally different task types. FedBone (Chen et al., 2024) improved
performance by sharing encoders from different clients, although each client was still lim-
ited to one task. MAS (Zhuang et al., 2023) supported multi-task clients, but only allowed
collaboration between clients with exactly the same task sets. MaT-FL (Cai et al., 2023)
introduced a more practical scenario where each client performs a unique task and used dy-
namic grouping to reduce conflicts during model updates, making it one of the first model
that address task heterogeneity. More recently, FedHCA2 (Lu et al., 2024) proposed the
Hetero-Client FMTL setting, which supports clients with different numbers and types of
tasks by splitting the model into encoders and decoders and applying a cross-attention
mechanism to combine task-specific knowledge more effectively. While these methods help
address task diversity, they assume that the set of tasks remains fixed over time.

Federated Continual Learning. Federated Continual Learning (FCL) requires a global
model to adapt continually as client data and class distributions change over time.
Regularization-based methods (Yoon et al., 2021; Luo et al., 2023), leverage parameter im-
portance metrics like fisher information to constrain updates on weights critical to previously
learned classes, thereby mitigating catastrophic forgetting. Replay-based approaches (Qi
et al., 2023; Babakniya et al., 2023) use local generators to recreate past data distributions.
In knowledge-distillation methods (Ma et al., 2022) a fixed teacher model provides soft labels
or feature hints to the student model, guiding it to retain knowledge of previously learned
classes. More recently, LANDER (Tran et al., 2024) has demonstrated that anchoring syn-
thetic sample generation on pretrained label embeddings. FedTA (Yu et al., 2025) tackles
spatial-temporal heterogeneity in FCL by introducing trainable tail anchors and prototype
selection to alleviate catastrophic forgetting. Although these advances mitigate catastrophic
forgetting and distribution shift, most FCL methods still assume a static class set and face
challenges when new classes (tasks) continuously arrive.

3 Method

In this section, we introduce FedTAP, a prototype-based framework for Federated Multi-
Task Continual Learning (FMTCL). In Section 3.1, we formally define the FMTCL setting,
including the participation types of tasks. Section 3.2 presents the overall federated learning
procedure of FedTAP. Section 3.3, Section 3.4, and Section 3.5 describe the three components

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Figure 1: Overview of FedTAP. (a) Each client performs local training with its own
encoder and decoder, and sends updates to the global model. (b) Through PGA, the global
model aggregates both encoder-side and decoder-side updates from clients using the proto-
types updated by TPL and APA. (c) TPL adjusts the prototypes using two complementary
losses. (d) APA dynamically manages the prototype pool through addition and pruning.

of FedTAP: Prototype-Guided Aggregation (PGA), Task-Aware-Prototype Learning (TPL)
and Adaptive Prototype Allocation (APA), respectively.

3.1 Problem Setup: Federated Multi-Task Continual Learning

Federated Multi-Task Continual Learning (FMTCL) is a novel federated learning sce-
nario where clients perform different tasks, with local data distributions shift over rounds
per clients, and task participation changes dynamically. Given the overall client set
C = {c1, c2, . . . , cN}, each client ci ∈ C is assigned to a unique task Ti and holds a dataset
Dr

i that changes over rounds R = {1, 2, . . . , r, . . .} due to temporal shift in data. In each
round r, only a subset of clients C(r) ⊆ C actively participates. The task pool at round r
is then defined as T (r) = {Ti | ci ∈ C(r)}. As the participating clients differ across rounds,
the task pool changes accordingly. These changes result in four types of tasks over time:
(i) active tasks, whose clients continue to participate, (ii) inactive tasks, whose clients are
temporarily absent but may return, (iii) new tasks, introduced by newly joined clients, and
(iv) left tasks, whose clients have been absent for a long time and unlikely to return.

We follow the standard federated learning protocol, where each client model trains locally
and sends its updated parameters to the global model. The global model aggregates updates
from participating clients and returns the aggregated result to each client. This process is

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

repeated over multiple communication rounds, progressively training the global model in a
way that ultimately improves the performance of client models on their respective tasks.

3.2 Local Training and Global Aggregation

Each client independently performs local training using its assigned task and data. The i-th

client has an encoder Enc(i), initialized from a common global model across clients, and a

task-specific decoder Dec(i), both trained on local data Di. While the encoder architectures
are shared across clients, the parameters are maintained and updated locally, resulting in
independent encoders across clients. As illustrated in Figure 1(a), which describes the local

training and global aggregation process at round r, each client begins with W
′(i,r−1)
enc and

W
′(i,r−1)
dec and updates them to W

(i,r)
enc and W

(i,r)
dec through local training. Then local updates

are computed as their difference, as follows:

∆W (i,r)
enc = W (i,r)

enc −W ′(i,r−1)
enc , ∆W

(i,r)
dec = W

(i,r)
dec −W

′(i,r−1)
dec . (1)

These updates ∆W
(i,r)
enc and ∆W

(i,r)
dec are transmitted to the global model. Therefore, the i-th

client performs two separate parameter updates: one for the encoder, which contributes to
task-agnostic representation learning, and another for the decoder, which captures the task-
specific one. The global model aggregates the received updates from all participating clients

to compute global updates ∆W
′(i,r)
enc and ∆W

′(i,r)
dec . (see Sec. 3.3 for details.) These updates

are then transmitted to each client, which applies them to its personalized parameters as:

W ′(i,r)
enc ←W (i,r)

enc +∆W ′(i,r)
enc , W

′(i,r)
dec ←W

(i,r)
dec +∆W

′(i,r)
dec . (2)

These updated parameters W
′(i,r)
enc and W

′(i,r)
dec are then used to initialize the client’s model

for the next round r + 1.

3.3 Prototype-Guided Aggregation

In this section, we describe Prototype-Guided Aggregation (PGA) (see Figure 1(b)), the
core mechanism that reduces interference among heterogeneous tasks by aligning client
updates with a prototype space. Instead of directly aggregating the raw client updates,
we use a shared set of M prototypes P = {p1, p2, . . . , pm, . . . , pM} that are derived from
task-specific decoder updates but used across both encoder and decoder updates during
aggregation. Encoder updates are inherently task-agnostic, and simple averaging would
ignore task-specific signals and cause instability. To address this, encoder updates are also
aligned with task-aware prototypes derived from decoder updates. The mapping of both
encoder and decoder updates into the prototype space is performed through two trainable
projection matrices, Wp,enc and Wp,dec, which are updated jointly with the prototypes. This
alignment prevents encoder and decoder updates from drifting apart and enables global
aggregation to combine encoder-based shared representations with decoder-guided task-
specific signals. The details of prototype construction and learning are described in the
following section.

Encoder-side Aggregation in Global Model. Each client’s encoder update ∆W
(i)
enc is

first projected into the prototype space using Wp,enc and then ℓ2-normalized:

z(i)enc = Normalize
(
Wp,enc ·∆W (i)

enc

)
. (3)

We compute attention weights by applying a Softmax function to the cosine similarities

between z
(i)
enc and each prototype Pm (refer to Eq. 4):

α
z(i)
enc

m = Softmax
(
s
z(i)
enc

m

)
, where s

z(i)
enc

m = cos(z(i)enc, Pm). (4)

Using α
z(i)
enc

m , an intermediate prototype-guided representation (r
(i)
enc) is computed as follows:

r(i)enc =

M∑
m=1

α
z(i)
enc

m · Pm. (5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

We allow all prototypes to contribute without applying sparsity, so that the encoder update
reflects a broad combination of prototype directions. This encourages the encoder to learn
generalizable patterns that are useful across tasks. We then average all client intermedi-
ate prototype-guided representations and project the result back to the original parameter
dimensions using the transposed projection matrix as:

∆W ′(i)
enc = W⊤

p,enc · r̃enc, where r̃enc =
1

N

N∑
i=1

r(i)enc. (6)

Decoder-side Aggregation in Global Model. Similar to the encoder-side process, the

decoder update ∆W
(i)
dec is projected into the prototype space using Wp,dec and normalized:

z
(i)
dec = Normalize

(
Wp,dec ·∆W

(i)
dec

)
. (7)

Unlike the encoder, we apply a dynamic sparsity mechanism to select a relevant subset of

prototypes for each task. This selection is guided by an initial attention distribution, α
z
(i)
dec

m ,

computed via Softmax over the cosine similarities between z
(i)
dec and each prototype Pm. The

subset Si is then formed by accumulating the prototypes with the highest attention weights
until their cumulative weight surpasses a predefined threshold τk:

Si = {m1, . . . ,mki
} s.t.

ki∑
j=1

α
z
(i)
dec

mj ≥ τk and

ki−1∑
j=1

α
z
(i)
dec

mj < τk, (8)

where {mj} are sorted by their weights in α
(i)
dec. The final sparse attention weights, α̃

z
(i)
dec

m , are
computed by applying Softmax to the cosine similarities of only the prototypes in the subset
Si. The final decoder update is the average of the original update and the prototype-guided
representation (rdec) which is projected back to the original parameter space using W⊤

p,dec:

∆W
′(i)
dec =

1

2

(
∆W

(i)
dec +W⊤

p,dec · r
(i)
dec

)
, where r

(i)
dec =

∑
m∈Si

α̃
z
(i)
dec

m Pm. (9)

3.4 Task-Aware Prototype Learning

To address the conflict between : adaptation and stability in FMTCL, we propose a training
strategy, called Task-Aware Prototype Learning (TPL), which leverages a set of shared
prototypes from decoder-side updates containing task-specific signals (see Figure 1(c)).

Prototype Initialization. The initial prototypes are generated by adding small Gaus-

sian noise ϵ ∼ N (0, 1) to normalized decoder updates z
(i)
dec (as defined in Eq 7), collected

during the first round. Rather than using purely random initialization, this approach lever-
ages meaningful task-specific update directions while injecting stochastic variation, which
prevents early collapse into the same direction and encourages broader exploration.

Loss Functions. To ensure a stable and task-aware representation, our prototype learning
is guided by two core, complementary loss functions.

First, the Prototype Diversity (PD) loss, LPD, enforces orthogonality among prototypes.
This loss ensures that prototypes span distinct directions, reducing redundancy and forming
an expressive representational basis. The equation is formulated as follows:

LPD =
∥∥PP⊤ − I

∥∥2
F
. (10)

Second, the Sparse Attention (SA) loss, LSA, encourages each client to focus its attention
on a small number of prototypes. This loss is formulated as the entropy of the final sparse

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

attention distribution, which is minimized to sharpen the focus. The equation is as follows:

LSA =

N∑
i=1

∑
m∈Si

α̃
z
(i)
dec

m log α̃
z
(i)
dec

m . (11)

By minimizing this entropy, the model guides each task to select only a few meaningful
prototypes, improving both interpretability and efficiency by reducing reliance on redundant
or irrelevant prototype combinations.

We combine these two objectives into a single prototype-level loss, called Lproto. While LPD

imposes a constraint that enforces mutual orthogonality among all prototypes, LSA leverages
each client’s update direction to encourage a sparse selection of prototypes, thereby aligning
a relevant subset with each task. Therefore, the final loss function is constructed as follows:

Lproto = LPD + LSA. (12)

3.5 Adaptive Prototype Allocation

To ensure that the prototype pool adapts to the dynamic task composition, Adaptive Pro-
totype Allocation (APA) dynamically adds new prototypes and prunes obsolete ones (see
Figure 1(d)). The decision to add is guided by how well client updates are represented by
the existing pool, while the decision to prune is based on the usage and isolation of each
prototype.

Prototype Addition. To expand the expressiveness of the prototype set, a new prototype
is introduced when a client’s update is not well-represented by any existing prototypes.
Specifically, this is determined by checking whether the maximum cosine similarity between

the client’s projected update z
(i)
dec and all prototypes is below a predefined threshold δadd.

Clients that satisfy this condition are grouped into a set U as:

U = { i | max
m

cos(z
(i)
dec, Pm) < δadd }. (13)

Their projected updates are averaged to form the new prototype Pnew:

Pnew = Normalize

(
1

|U |
∑
i∈U

z
(i)
dec + ϵ

)
, (14)

where a small Gaussian noise ϵ ∼ N (0, I) is added to maintain diversity.

Prototype Pruning. To maintain a compact and efficient pool, we prune prototypes
based on two criteria: their usage score across clients and their representational isolation
score from other prototypes. The usage score of each prototype Pm is the total initial

attention it receives from all clients, um =
∑N

i=1 α
(i)
dec,m. These scores are then normalized

across all prototypes to enable consistent thresholding across rounds (ũm). The isolation
score of each prototype Pm is the maximum cosine similarity with other prototypes, im =
maxj ̸=m cos(Pm, Pj). A prototype Pm is pruned if it satisfies both of the following conditions:

ũm <
1

M
and im < δprune, sim, where ũm =

um∑M
m′=1 um′

. (15)

Here, M is the total number of prototypes and δprune, sim is adaptively set as µ−σ, where µ
and σ denote the mean and standard deviation of all pairwise prototype similarities. Using
both conditions together prevents unnecessary pruning of prototypes that are infrequently
used but still semantically connected, or conversely those that are isolated but still play an
important role. As a result, through APA, the model efficiently allocates its capacity to
informative and frequently used components.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 2: Main Table. FedTAP achieves the best performance across all five tasks in the
FMTCL.

Setting Method
Task SemSeg

(mIoU ↑)
Parts

(mIoU ↑)
Sal

(maxF ↑)
Normals

(100-mErr ↑)
Edge

(odsF ↑) Avg. (↑)
Task Status Inactive Left Active New Inactive

Local 17.22 26.14 80.05 79.71 56.02 51.82

Traditional
FL

FedAvg (McMahan et al., 2017) 16.03 27.26 81.96 80.66 55.04 52.19

FedProx (Li et al., 2020) 17.03 26.54 80.56 79.56 55.67 51.87

Ditto (Li et al., 2021) 17.09 27.52 82.04 80.63 57.03 52.86

FCL
LANDER Tran et al. (2024) 17.70 28.78 81.11 80.27 56.88 52.94

FedTA (Yu et al., 2025) 18.03 29.32 81.91 79.94 56.21 53.08

FMTL

MOCHA (Smith et al., 2017) 17.74 28.95 81.29 81.88 56.38 53.24

MaT-FL (Cai et al., 2023) 18.92 29.12 82.37 81.37 56.81 53.71

FedHCA2 (Lu et al., 2024) 19.26 28.51 84.28 80.18 57.95 54.03

FedTAP (Ours) 23.11 33.90 86.12 82.75 61.13 57.40

Table 3: Ablation on TPL and APA.
Disabling either TPL or APA results in a
notable performance degradation, confirm-
ing the contribution of both components to
the overall effectiveness of FedTAP.

TPL APA Active Inactive Left New Avg.

✗ ✗ 79.83 71.06 25.07 77.94 50.78

✓ ✗ 84.09 78.45 30.05 80.75 54.66

✗ ✓ 82.13 73.40 27.94 79.72 52.63

✓ ✓ 86.12 84.24 33.90 82.75 57.40

Table 4: Ablation on Prototype Shar-
ing Strategy. Utilizing a unified prototype
space for both encoder and decoder updates
enhances knowledge sharing and leads to su-
perior performance.

P Active Inactive Left New Avg.

Separate 84.96 80.28 30.89 81.27 55.48

Shared 86.12 84.24 33.90 82.75 57.40

4 Experiments

4.1 Experimental Setup

We use the PASCAL-Context (Mottaghi et al., 2014) with five tasks: semantic segmenta-
tion (SemSeg), human parts segmentation (Parts), saliency detection (Sal), surface normal
estimation (Normals), and edge detection (Edge). Each client performs local training on
task-specific data, with an equal number of randomly sampled data at each round. For
evaluation, we follow standard metrics: mean Intersection over Union (mIoU) for SemSeg
and Parts, maximum F-measure (maxF) for Sal, mean angular error (mErr) for Normals,
and optimal dataset scale F-measure (odsF) for Edge. We compare our method with estab-
lished baselines across three categories: traditional federated learning (FedAvg (McMahan
et al., 2017), FedProx (Li et al., 2020), Ditto (Li et al., 2021)), federated continual learning
(LANDER (Tran et al., 2024), FedTA (Yu et al., 2025)), and federated multi-task learning
(MOCHA (Smith et al., 2017), MaT-FL (Cai et al., 2023), FedHCA2 (Lu et al., 2024)).
Details of models and parameters are provided in the supplementary material (Sec. A.2.1).

4.2 Main Results

To configure the FMTCL, tasks are categorized as active (Sal, Edge), inactive (SemSeg),
left (Parts), and new (Normals), based on their correlation across tasks. Details of the
scenarios, including the exact participation rounds for each task type, are provided in the
supplementary material (Sec. A.2.2). Performance is measured on the local model at the
final round each task participates in. For example, inactive tasks (participating in rounds
1-15 and 35-50) are evaluated at round 50. To ensure higher values consistently indicate
better performance across all metrics, for surface normals, we report 100 − mErr. As
shown in Table 2, FedTAP achieves the best overall performance, outperforming all baselines
across the five tasks. Additional results for various task combinations are included in the
supplementary material (Sec. C.3).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 5: Ablation of TPL Loss Func-
tions. Removing either LPD or LSA de-
grades performance, confirming that both
are essential for learning an effective set of
prototypes.

LPD LSA Active Inactive Left New Avg.

✗ ✗ 82.13 73.40 27.94 79.72 52.63

✓ ✗ 83.95 76.39 28.55 80.4 53.85

✗ ✓ 82.58 75.44 27.81 79.93 53.15

✓ ✓ 86.12 84.24 33.90 82.75 57.40

Table 6: Ablation of APA Mechanisms.
The results show that both prototype addi-
tion for new tasks and pruning for obsolete
ones are essential for the dynamic adapta-
tion performed by APA.

Addition Pruning Active Inactive Left New Avg.

✗ ✗ 84.09 78.45 30.05 80.75 54.66

✓ ✗ 85.30 81.05 32.22 81.34 55.98

✗ ✓ 84.13 79.44 30.13 80.98 54.93

✓ ✓ 86.12 84.24 33.90 82.75 57.40

4.3 Ablation Studies

The detailed ablation results show the necessity of each design component in FedTAP. As
shown in Table 3, removing either the prototype learning (TPL) or adaptation (APA) func-
tion leads to a significant performance degradation. Table 4 demonstrates the superiority
of a shared prototype space, which creates synergy between the general representations of
the encoders and the task-specific knowledge of the decoders. Furthermore, Table 5 indi-
cates that performance drops in the absence of either the diversity or sparsity, showing the
need of a balance between expanding knowledge and specifying its application. Finally, Ta-
ble 6 shows that optimal performance requires balancing the acquisition of new knowledge
through prototype addition and the pruning of obsolete knowledge. Further ablation results
on the PGA strategies are provided in the supplementary material (Sec. B.1).

4.4 Analysis

Figure 2: Scores and Number of Prototypes
per Round. The results illustrates the link be-
tween adaptative prototype management via APA
(bottom) and its resulting performance (top). Fed-
TAP generally outperforms FedHCA2 across all
task types. Red, yellow, blue, and green lines cor-
respond to Active, Inactive, Left, and New tasks,
respectively. Solid lines represent FedTAP, while
dashed lines indicate FedHCA2.

Figure 2 demonstrates FedTAP’s abil-
ity to retain knowledge under dynamic
task composition, particularly for in-
active tasks. When inactive tasks re-
participate at round 36 after an ab-
sence, FedHCA2 suffers from catas-
trophic forgetting, whereas FedTAP
preserves the acquired knowledge and
resumes training from a higher score.
This retention is enabled by the re-use
of prototypes, as evidenced by the ab-
sence of a sudden increase in the pro-
totype count when the tasks reappears.
Such preservation and re-use knowl-
edge highlight an advantage of FedTAP
in the FMTCL setting. Further anal-
ysis on prototype space is given in the
supplementary material (Sec. B.2).

5 Conclusion

In this work, we introduced Feder-
ated Multi-Task Continual Learning
(FMTCL), a novel federated learning
scenario addressing the combined chal-
lenges of task heterogeneity, temporal
data shift, and dynamic task composition, for which existing methods like FMTL and
FCL are insufficient. We proposed FedTAP (Federated Task-Aware Prototype), a novel
prototype-based framework that resolves learning objective conflicts through Prototype-
Guided Aggregation (PGA) in a shared space of prototypes, which are learned to be diverse
and used sparsely through Task-Aware Prototype Learning (TPL) and dynamically man-
aged by Adaptive Prototype Allocation (APA) to prevent capacity misallocation in dynamic
task. Experimental results demonstrate that FedTAP outperforms existing methods across
tasks, validating its effectiveness in FMTCL setting. We hope our work provides a new
research direction toward realistic federated learning in dynamic environments.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

References

Sara Babakniya, Zalan Fabian, Chaoyang He, Mahdi Soltanolkotabi, and Salman Avestimehr. A
data-free approach to mitigate catastrophic forgetting in federated class incremental learning for
vision tasks. Advances in Neural Information Processing Systems, 36:66408–66425, 2023.

Cosmin I Bercea, Benedikt Wiestler, Daniel Rueckert, and Shadi Albarqouni. Feddis: Dis-
entangled federated learning for unsupervised brain pathology segmentation. arXiv preprint
arXiv:2103.03705, 2021.

Ruisi Cai, Xiaohan Chen, Shiwei Liu, Jayanth Srinivasa, Myungjin Lee, Ramana Kompella, and
Zhangyang Wang. Many-task federated learning: A new problem setting and a simple baseline.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
5037–5045, 2023.

Yi-Qiang Chen, Teng Zhang, Xin-Long Jiang, Qian Chen, Chen-Long Gao, and Wu-Liang Huang.
Fedbone: Towards large-scale federated multi-task learning. Journal of Computer Science and
Technology, 39(5):1040–1057, 2024.

Ittai Dayan, Holger R Roth, Aoxiao Zhong, Ahmed Harouni, Amilcare Gentili, Anas Z Abidin,
Andrew Liu, Anthony Beardsworth Costa, Bradford J Wood, Chien-Sung Tsai, et al. Federated
learning for predicting clinical outcomes in patients with covid-19. Nature medicine, 27(10):
1735–1743, 2021.

Jiahua Dong, Lixu Wang, Zhen Fang, Gan Sun, Shichao Xu, Xiao Wang, and Qi Zhu. Federated
class-incremental learning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 10164–10173, 2022.

Haiyang Guo, Fei Zhu, Wenzhuo Liu, Xu-Yao Zhang, and Cheng-Lin Liu. Pilora: Prototype guided
incremental lora for federated class-incremental learning. In European Conference on Computer
Vision, pages 141–159. Springer, 2024.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and trends® in machine learning,
14(1–2):1–210, 2021.

Menelaos Kanakis, David Bruggemann, Suman Saha, Stamatios Georgoulis, Anton Obukhov, and
Luc Van Gool. Reparameterizing convolutions for incremental multi-task learning without task
interference. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XX 16, pages 689–707. Springer, 2020.

Jakub Konečnỳ, Brendan McMahan, and Daniel Ramage. Federated optimization: Distributed
optimization beyond the datacenter. arXiv preprint arXiv:1511.03575, 2015.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine learning and systems,
2:429–450, 2020.

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated
learning through personalization. In International conference on machine learning, pages 6357–
6368. PMLR, 2021.

Jinglin Liang, Jin Zhong, Hanlin Gu, Zhongqi Lu, Xingxing Tang, Gang Dai, Shuangping Huang,
Lixin Fan, and Qiang Yang. Diffusion-driven data replay: A novel approach to combat forgetting
in federated class continual learning. In European Conference on Computer Vision, pages 303–
319. Springer, 2024.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 10012–10022, 2021.

Yuxiang Lu, Suizhi Huang, Yuwen Yang, Shalayiding Sirejiding, Yue Ding, and Hongtao Lu. Fed-
hca2: Towards hetero-client federated multi-task learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 5599–5609, 2024.

Kangyang Luo, Xiang Li, Yunshi Lan, and Ming Gao. Gradma: A gradient-memory-based acceler-
ated federated learning with alleviated catastrophic forgetting. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 3708–3717, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Yuhang Ma, Zhongle Xie, Jue Wang, Ke Chen, and Lidan Shou. Continual federated learning based
on knowledge distillation. In IJCAI, pages 2182–2188, 2022.

Kevis-Kokitsi Maninis, Ilija Radosavovic, and Iasonas Kokkinos. Attentive single-tasking of multiple
tasks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 1851–1860, 2019.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pages 1273–1282. PMLR, 2017.

Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan Lee, Sanja Fidler,
Raquel Urtasun, and Alan Yuille. The role of context for object detection and semantic seg-
mentation in the wild. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 891–898, 2014.

Hongming Piao, Yichen Wu, Dapeng Wu, and Ying Wei. Federated continual learning via prompt-
based dual knowledge transfer. In Forty-first International Conference on Machine Learning,
2024.

Daiqing Qi, Handong Zhao, and Sheng Li. Better generative replay for continual federated learning.
arXiv preprint arXiv:2302.13001, 2023.

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and
support inference from rgbd images. In Computer Vision–ECCV 2012: 12th European Conference
on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part V 12, pages 746–760.
Springer, 2012.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated multi-task
learning. Advances in neural information processing systems, 30, 2017.

Minh-Tuan Tran, Trung Le, Xuan-May Le, Mehrtash Harandi, and Dinh Phung. Text-enhanced
data-free approach for federated class-incremental learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 23870–23880, 2024.

Stefanie Warnat-Herresthal, Hartmut Schultze, Krishnaprasad Lingadahalli Shastry, Sathya-
narayanan Manamohan, Saikat Mukherjee, Vishesh Garg, Ravi Sarveswara, Kristian Händler,
Peter Pickkers, N Ahmad Aziz, et al. Swarm learning for decentralized and confidential clinical
machine learning. Nature, 594(7862):265–270, 2021.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept
and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2):1–19,
2019.

Yuwen Yang, Yuxiang Lu, Suizhi Huang, Shalayiding Sirejiding, Hongtao Lu, and Yue Ding. Fed-
erated multi-task learning on non-iid data silos: An experimental study. In Proceedings of the
2024 International Conference on Multimedia Retrieval, pages 684–693, 2024.

Hanrong Ye and Dan Xu. Inverted pyramid multi-task transformer for dense scene understanding.
In European Conference on Computer Vision, pages 514–530. Springer, 2022.

Jaehong Yoon, Wonyong Jeong, Giwoong Lee, Eunho Yang, and Sung Ju Hwang. Federated contin-
ual learning with weighted inter-client transfer. In International Conference on Machine Learn-
ing, pages 12073–12086. PMLR, 2021.

Hao Yu, Xin Yang, Le Zhang, Hanlin Gu, Tianrui Li, Lixin Fan, and Qiang Yang. Handling spatial-
temporal data heterogeneity for federated continual learning via tail anchor. In Proceedings of
the Computer Vision and Pattern Recognition Conference, pages 4874–4883, 2025.

Angela Zhang, Lei Xing, James Zou, and Joseph C Wu. Shifting machine learning for healthcare
from development to deployment and from models to data. Nature biomedical engineering, 6(12):
1330–1345, 2022.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

Weiming Zhuang, Yonggang Wen, Lingjuan Lyu, and Shuai Zhang. Mas: Towards resource-efficient
federated multiple-task learning. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 23414–23424, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

A Additional Information

A.1 Notation

Table 7: Summary of Notation.

Category Symbol Description

Client

Model

Structure

C = {c1, . . . , cN} Set of all N clients

C(r) ⊆ C Participating clients in round r

T = {T1, . . . , TN} Set of tasks, one per client

T (r) = {Ti | ci ∈ C(r)} Set of participating tasks in round r

Model

Update

∆W
(i)
enc ∈ RDenc Encoder update of client i (derived by client model)

∆W
(i)
dec ∈ RDdec Decoder update of client i (derived by client model)

∆W ′
enc ∈ RDenc Aggregated encoder update from prototypes (derived by global model)

∆W
′(i)
dec ∈ RDdec Aggregated decoder update from prototypes of client i (derived by global model)

Projection

& Attention

z
(i)
enc ∈ Rd Normalized encoder update of client i (via projection of Wp,enc)

z
(i)
dec ∈ Rd Normalized decoder update of client i (via projection of Wp,dec)

s
z(i)
enc

m ∈ R Cosine similarity between z
(i)
enc and prototype Pm

α
z(i)
enc

m ∈ R Full attention weights from z
(i)
enc to prototype Pm

α̃
z
(i)
dec

m ∈ R top-k attention weight from z
(i)
dec to prototype Pm

r
(i)
enc ∈ Rd Intermediate representation of encoder update from prototypes for client i

r̃enc ∈ Rd Mean intermediate representation of encoder update from prototypes of all clients

Wp,enc ∈ Rd×Denc Encoder projection matrix

Wp,dec ∈ Rd×Ddec Decoder projection matrix

Prototype

Pm ∈ Rd m-th prototype vector

P ∈ RM×d Matrix of all M prototype vectors

um ∈ R Usage score of prototype Pm

ũm ∈ R Normalized usage score of Pm

im ∈ R Isolation score of prototype Pm

A.2 Additional Experimental Detail

A.2.1 Training Details

Client Model Architectures. The client model structure follows the same setup as that
used in FedHCA2 (Lu et al., 2024), ensuring consistency in the federated multi-task learning
configuration. Each client model consists of a common-architecture encoder and a task-
specific decoder. The encoder is implemented using a pretrained Swin-T transformer (Liu
et al., 2021), which extracts multi-scale feature maps through four hierarchical stages. To
inform the decoder of the current task, a task-specific vector is provided as input. This vector
is processed by a small fully connected network with LeakyReLU activations to generate
a task embedding. This task embedding is then used to condition the decoder during
training, allowing it to adjust its processing for different tasks. The decoder consists of four
upsampling stages, each incorporating skip connections from the corresponding encoder
layer. To fully recover the input resolution, an additional upsampling step is applied at the
end. The decoder then generates task-specific predictions through a final 1×1 convolution.

Optimization and Loss Functions. Model optimization is performed using the AdamW
optimizer with an initial learning rate and weight decay of 1e-4. A cosine learning rate
schedule is applied, beginning with a 5-round warm-up phase. Each client performs one
local training epoch per communication round, a setting commonly used in prior work (Lu
et al., 2024), with a batch size of 4. The loss function is selected based on the task. Cross-
entropy loss is used for semantic segmentation and human parts segmentation. For saliency
detection, surface normal estimation, and edge detection, we use balanced cross-entropy
loss, L1 loss, and weighted binary cross-entropy loss, respectively. In the case of edge
detection, the positive and negative pixel weights are set to 0.95 and 0.05 to reflect the

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Figure 3: t-SNE Visualization of Task Embeddings. Distances were measured
by projecting each task’s decoder update into a shared PCA space and computing
the L2 distance from the overall mean task representation. The results of distances
are as follows: Sal (8.59), Edge (11.98), SemSeg (31.93), Parts (45.65), and Nor-
mals (46.46). Each point represents a task-specific decoder embedding, and colors
indicate different tasks.

imbalance between edge and non-edge pixels. All experiments are implemented in PyTorch
and conducted on four NVIDIA RTX-3090 GPUs.

Data Augmentation. We follow established data augmentation procedures widely used
in previous studies (Kanakis et al., 2020; Ye and Xu, 2022; Maninis et al., 2019). Specifically,
training images are randomly scaled with factors between 0.5 and 2.0, cropped to 512×512
resolution, horizontally flipped, and color-jittered. Image normalization is applied during
both training and evaluation.

Prototype Configuration. We initialize the total number of prototypes to M = 10.
The cumulative weight threshold for dynamic prototype selection in PGA is set to τk = 0.7
and the prototype addition threshold in APA is δadd = 0.3. These values were empirically
chosen as they showed the best performance in our sensitivity analysis, which is detailed in
Section C.1. This configuration is used throughout all experiments unless stated otherwise.

Baselines. We follow previous studies (Lu et al., 2024; Yang et al., 2024) to adapt ex-
isting methods to the FMTL setting and compare our method with seven representative
algorithms: FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020), Ditto (Li et al.,
2021), LANDER (Tran et al., 2024), FedTA (Yu et al., 2025), MOCHA (Smith et al., 2017),
MaT-FL (Cai et al., 2023), FedHCA2 (Lu et al., 2024). Following this FMTL setup, we
further modify the setting to fit our FMTCL scenario by dynamically varying task partici-
pation across communication rounds. For FedAvg and FedProx, we aggregate the encoder
and decoder parameters separately across clients. In Ditto, the encoder is shared globally
while the decoder remains local to each client, and training is performed jointly with a regu-
larization term for personalization. LANDER and FedTA also share the encoder but uses a
task-specific latent representation to modulate the decoder. For MOCHA and MaT-FL, we
adopt a parameter decoupling strategy, where only the encoder is shared and updated across
clients, while the decoder remains local to each client. FedHCA2 is evaluated by applying its
original aggregation strategies for the encoder and decoder, adapted to the FMTL context.

A.2.2 Scenario Details

Main Scenario. To evaluate FedTAP under realistic task dynamics, we design a 50-
round scenario involving five downstream tasks: semantic segmentation (SemSeg), human
parts segmentation (Parts), saliency detection (Sal), surface normal estimation (Normals),

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Table 8: Task Participation Timelines. Task participation in each round is determined
by the assigned task state, with a check mark indicating presence and a cross mark indicating
absence.

(a) 50 Rounds

Round Active Inactive Left New

1 - 5 ✓ ✓ ✓ ✗

6 - 10 ✓ ✓ ✓ ✗

11 - 15 ✓ ✓ ✓ ✗

16 - 20 ✓ ✗ ✓ ✗

21 - 25 ✓ ✗ ✗ ✗

26 - 30 ✓ ✗ ✗ ✗

31 - 35 ✓ ✗ ✗ ✓

36 - 40 ✓ ✓ ✗ ✓

41 - 45 ✓ ✓ ✗ ✓

46 - 50 ✓ ✓ ✗ ✓

(b) 100 Rounds

Round Active Inactive Left New

1 - 10 ✓ ✓ ✓ ✗

11 - 20 ✓ ✓ ✓ ✗

21 - 30 ✓ ✓ ✓ ✗

31 - 40 ✓ ✗ ✓ ✗

41 - 50 ✓ ✗ ✗ ✗

51 - 60 ✓ ✗ ✗ ✗

61 - 70 ✓ ✗ ✗ ✓

71 - 80 ✓ ✓ ✗ ✓

81 - 90 ✓ ✓ ✗ ✓

91 - 100 ✓ ✓ ✗ ✓

and edge detection (Edge). Each task is assigned one of four participation states—Active,
Inactive, Left, or New—based on how independent its representation is from the global
model. To determine task independence, we extract decoder updates for each task in the first
communication round, project them into a shared PCA space, and compute the L2 distance
from the average task representation. A t-SNE visualization of these representations is
shown in, Figure 3. A larger L2 distance implies that the task depends more on specialized
features and is less aligned with shared representations across tasks, making generalization
more challenging for the global model. Based on these distances, the tasks are ranked in
the following order of increasing independence: Sal, SemSeg, Edge, Parts, and Normals. We
assign task participation states in correspondence with this ranking.

• Sal, being the closest to the mean representation, is assigned the active state and
participates throughout all rounds.

• SemSeg and Edge are assigned the inactive state and are temporarily removed
during the middle stage of training.

• Parts is designated as the left task and permanently exits the federation after the
initial phase.

• Normals, the most independent task, is assigned the new state and joins the feder-
ation only in the later rounds.

This assignment ensures that tasks with more distant representations, hence more chal-
lenging for the global model to learn their task-specific features, participate less frequently,
thereby increasing the difficulty of generalization. Additionally, to independently observe
the impact of each participation state, we assign different transition timings for each task
state. Specifically, Inactive tasks (SemSeg and Edge) are present during rounds 1–15 and
36–50 but absent from rounds 16–35. The Left task (Parts) participates from rounds 1–25
and then permanently exits. The New task (Normals) joins in round 31 and remains until
the end. By varying the timing of each task’s entry or exit, we prevent overlaps between
state transitions, which enables independent analysis of how each participation state affects
learning and forgetting. We refer to this setup as the Main Scenario as shown in Table 8a,
and all experiments reported in the main paper are conducted based on this configuration.
By default, all results are obtained under this scenario unless explicitly stated otherwise.
We additionally extend this setup to a 100-round, as shown in Table 8b.

Diverse Scenario. Beyond the main scenario described above, we conduct further exper-
iments to assess the robustness of FedTAP under more generalized task dynamics, referred

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Table 9: Task-to-State Combinations in Diverse Scenario. Five task-to-
state combinations are designed to evaluate the robustness of FedTAP, with the
first combination corresponding to the main scenario.

Task State Active Inactive Left New

Task Comb. 1 Sal Edge, SemSeg Parts Normals

Task Comb. 2 Normals Sal, Edge SemSeg Parts

Task Comb. 3 Parts Normals, Sal Edge SemSeg

Task Comb. 4 SemSeg Parts, Normals Sal Edge

Task Comb. 5 Edge SemSeg, Parts Normals Sal

Table 10: Comparison of Normalization Strategies. The comparison shows
that using L2 normalization for client updates in FedTAP results in higher perfor-
mance than no normalization, Min-Max and L1 normalization.

Norm. Active Inactive Left New Avg.

No Norm. 80.04 72.17 26.93 79.59 51.74

Min-Max 81.09 72.90 27.45 79.06 52.10

L1 83.83 78.64 28.74 80.39 54.32

L2 86.12 84.24 33.90 82.75 57.40

to as the Diverse Scenario. To this end, we construct five different task-to-state combina-
tions by rotating the participation states—Active, Inactive, Left, and New—across the five
tasks—Sal, SemSeg, Edge, Parts, and Normals. In each configuration, one task is assigned
to each state (with two tasks marked as Inactive), resulting in five unique mappings. For
example, in one alternative configuration, Normals is Active, Sal and Edge are Inactive,
SemSeg is Left, and Parts is New. The task-to-state combinations used in Diverse scenario
are summarized in Table 9.

B Additional Analysis of FedTAP

B.1 Ablation of Prototype-Guided Aggregation (PGA).

Ablation of Normalization To investigate the effect of normalization strategies on rep-
resentation learning within our method, we compare various normalization techniques ap-
plied to client updates, including L1, L2, min-max, and no normalization. As shown in
Table 10, FedTAP, which adopt L2 normalization, achieves higher performance across all
tasks. This performance gap can be attributed to the fundamental difference in how these
normalization strategies affect vector geometry. Without normalization, client updates re-
tain their original magnitudes, resulting in scale discrepancies across tasks. This leads to
unstable representation alignment, where updates from semantically similar tasks may be
treated unequally. Min-max normalization rescales values to a fixed range but does not
preserve the directional information. While L1 normalization can induce sparsity, it distorts
the original direction of client updates. Since FedTAP relies on prototype-based attention
guided by cosine similarity, preserving directionality is crucial. Thus, this distortion leads
to less reliable prototype selection and increased task interference. In contrast, L2 nor-
malization preserves the directionality of updates, enabling more stable and semantically
meaningful alignment between task representations. This directional consistency allows the
prototype attention mechanism to generalize better across heterogeneous and temporally
shifting tasks, resulting in more robust performance in FMTCL.

Ablation of Aggregation Strategies. To validate the design principle of our asymmet-
ric aggregation strategy for the encoder and decoder, we conducted an ablation study where
we intentionally reversed the aggregation method for each component. For the encoder

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Table 11: Comparison of Aggregation Strategies for the Encoder. The
comparison shows that aggregating encoder updates using the full set of prototypes
results in a higher average performance than using a selective subset.

Encoder-side Agg. Active Inactive Left New Avg.

Selective 85.03 80.93 30.96 81.49 55.68

FedTAP (Ours) 86.12 84.24 33.90 82.75 57.40

Table 12: Comparison of Aggregation Strategies for the Decoder. The
comparison shows that using a selective subset of prototypes for decoder aggrega-
tion achieves a higher average performance than aggregating over the full set.

Decoder-side Agg. Active Inactive Left New Avg.

Full 83.90 78.85 29.54 81.09 54.67

FedTAP (Ours) 86.12 84.24 33.90 82.75 57.40

analysis, we compared our default ‘Full’ aggregation approach, which leverages the entire
set of prototypes to learn generalizable features, against a ‘Selective’ approach that mim-
ics the decoder by using only a subset of prototypes based on cosine similarity. As shown
in Table 11, ‘Full’ aggregation method achieved significantly higher performance than the
‘Selective’ method. This result indicates that the encoder must aggregate over the entire
prototype set to prevent it from becoming biased towards the features of a few specific
tasks, thereby ensuring it develops a balanced and general-purpose representation beneficial
for all clients. In contrast, for the decoder analysis, we compared our ‘Selective’ method,
designed for task specialization, against a ‘Full’ method that aggregates updates over all
prototypes. Table 12 shows that ‘Selective’ approach substantially outperformed the ‘Full’
aggregation method. This suggests that for the task-specific decoder, forcing the integration
of information from all prototypes, including those irrelevant to its task, acts as noise and
degrades performance. Taken together, these contrasting results provide strong evidence
that our asymmetric design, by optimizing the aggregation strategy for the encoder’s role
of generalization and the decoder’s role of specialization, effectively minimizes inter-task
interference while maximizing the benefits of collaboration.

Ablation on the Prototype Subset Selection. To further investigate the decoder’s se-
lective aggregation, we evaluated the effectiveness of our dynamic selection mechanism. We
compared our ‘Dynamic’ approach, which adaptively selects a variable number of prototypes
based on a cumulative weight threshold τk, against a ‘Fixed’ baseline that always selects a
constant number of top-k most similar prototypes. To ensure a fair comparison, the value
of k was set to the rounded integer average of the number of prototypes selected by our
dynamic method over the entire training process. The result in Table 13 shows that the ‘Dy-
namic’ approach consistently outperforms the ‘Fixed’ approach across all task categories.
This performance gap arises from the inherent inflexibility of the fixed-k method, which
proves suboptimal in two key scenarios. First, when an update is well-aligned with only a
small subset of existing prototypes, a fixed-k selection can be harmful because it forces the
inclusion of less relevant prototypes, adding noise that distorts the update’s true directional
signal. Second, when an update requires a careful combination of multiple prototypes, such
as those from a new task, the fixed-k selection restricts the model’s expressive capacity and
prevents it from fully capturing the novel information in the update. Our dynamic mech-
anism addresses this limitation by flexibly adjusting the subset size to the representational
needs of each individual update. This adaptability is essential for achieving both robustness
and high performance in the challenging FMTCL setting.

Ablation of Integration Strategies in Decoder-Side Aggregation. To analyze the
integration strategy for the decoder-side update, as detailed in Eq. (9), we compare our
method, which combines the original client update with the prototype-guided representation,
against a ‘Prototype Attention Only’ baseline that discards the original update. As shown in

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Table 13: Comparison of Dynamic and Fixed Prototype Selection. The
results show that the dynamic selection of a prototype subset achieves consistently
higher performance across all task types than the selection of a fixed number of
top-k prototypes.

P Selection Active Inactive Left New Avg.

Fixed 84.15 80.96 30.36 30.31 55.15

Dynamic 86.12 84.24 33.90 82.75 57.40

Table 14: Comparison of Integration Strategies in Decoder-Side Aggre-
gation. The results indicate that combining the original client update with the
prototype-guided representation yields a higher average performance than using
the prototype-guided representation alone, as described in Eq. (9).

Integration Active Inactive Left New Avg.

Prototype Attention Only 85.11 81.59 31.89 81.53 56.02

FedTAP (Ours) 86.12 84.24 33.90 82.75 57.40

Table 14, our integration strategy shows better performance than the ‘Prototype Attention
Only’ baseline. This result reveals a key insight for personalization in FL that optimal
performance is achieved by combining the collaborative guidance of prototypes with the
local signals of the original update.

B.2 Analysis on the Learned Prototype Space.

Results on Prototype Disentanglement and Alignment with Task Representa-
tion. To examine how well FedTAP organizes the prototype space with respect to task
representation, we visualize both the learned prototypes and task embeddings using t-SNE
at the final round of training. As shown in Figure 4, the prototypes are well separated from
one another without overlapping and positioned close to the regions associated with their
respective tasks. Such structure is driven by the combined effect of the two loss functions in
TPL. This indicates that the learned prototypes are both well disentangled and semantically
aligned.

C Generalization and Robustness of FedTAP

C.1 Results on Hyperparameter Sensitivity

Figure 5 shows the sensitivity analysis of three key hyperparameters: the initial number
of prototypes M , the dynamic selection threshold τk in PGA, and the prototype addi-
tion threshold δadd in APA. Across all three parameters, FedTAP consistently outperforms
FedHCA2, the best-performing baseline, with the highest performance achieved at M = 10,
τk = 0.7 and δadd = 0.3.

C.2 Results Under Various Number of Clients per Task.

To evaluate the scalability of our method, we varied the number of clients per task from 2 to
10 and compared the performance with FedHCA2. As shown in Table 15, the performance
of both methods degrades as the number of clients increases, as each client consequently
holds fewer data samples for local training. However, FedTAP consistently perform higher
than FedHCA2 across all scales. This suggests that our prototype-based aggregation more
effectively synthesizes knowledge even when individual client updates are derived from more
limited local data.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure 4: t-SNE Visualization of Tasks and Prototypes. The results show
that prototypes are well disentangled and positioned to align with the characteris-
tics of their associated tasks, as observed at the final round.

Figure 5: Hyperparameter Sensitivity. The results shows that FedTAP main-
tains stable performance across different values of M , τk, and δadd, demonstrating
robustness to hyperparameter variation.

Table 15: Performance with a Varying Number of Clients per Task. The
comparison shows that while performance for both methods decreases with more
clients per task, FedTAP consistently outperforms the FedHCA2.

Number of clients per task
Method

FedHCA2 (Lu et al., 2024) FedTAP (Ours)

2 54.03 57.40

3 50.19 52.16

5 28.93 34.76

10 9.10 13.37

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Table 16: Comparison of Model Performance under Main and Diverse
Scenarios. The comparison highlights that FedTAP consistently outperforms
baseline methods across the main scenario, its 100-round extension, and the five
task-to-state combinations defined in the diverse scenario, demonstrating strong
robustness to dynamic task compositions.

Setting Method
Scenario Main Main Diverse

of Rounds 50 100 50

Local 51.82 51.88 51.95

Traditional
FL

FedAvg (McMahan et al., 2017) 52.19 52.19 52.30

FedProx (Li et al., 2020) 51.87 51.93 51.89

Ditto (Li et al., 2021) 52.86 52.89 52.85

FCL
LANDER (Tran et al., 2024) 52.94 52.92 52.04

FedTA (Yu et al., 2025) 53.08 53.27 53.46

FMTL

MOCHA (Smith et al., 2017) 53.24 53.31 53.54

MaT-FL (Cai et al., 2023) 53.71 54.01 53.98

FedHCA2 (Lu et al., 2024) 54.03 54.35 54.14

FedTAP (Ours) 57.40 57.51 57.49

Table 17: Comparison of FedTAP and baselines on the NYU Depth v2
dataset. Results on NYU Depth v2 using the main scenario setup from PASCAL-
Context as described in Table 8a, showing that FedTAP consistently outperforms
all baselines across evaluation metrics.

Setting Method
Task SemSeg

(mIoU ↑)
Depth

(RMSE ↓)
Normals
(mErr ↓)

Edge
(odsF ↑)

Task Status Inactive Left New Active

Local 17.10 0.7978 23.19 55.03

Traditional
FL

FedAvg (McMahan et al., 2017) 17.52 0.7641 23.17 54.12

FedProx (Li et al., 2020) 18.49 0.7510 22.55 55.18

Ditto (Li et al., 2021) 18.04 0.7694 22.36 56.10

FCL
LANDER (Tran et al., 2024) 18.91 0.7409 21.79 57.17

FedTA (Yu et al., 2025) 19.05 0.7357 21.20 57.69

FMTL

MOCHA (Smith et al., 2017) 18.87 0.7258 22.18 57.03

MaT-FL (Cai et al., 2023) 19.01 0.7092 23.07 57.23

FedHCA2 (Lu et al., 2024) 19.12 0.6915 22.21 57.81

FedTAP (Ours) 20.59 0.6491 20.94 58.43

C.3 Results Under Various Scenarios

We evaluate FedTAP under various task scenarios to assess its robustness. As shown in
Table 16, FedTAP achieves the best performance not only in the original task combination
used in the main scenario—where Sal is assigned as Active, SemSeg and Edge as Inactive,
Parts as Left, and Normals as New—and when this scenario is extended to 100 rounds, but
also on average across all five task-to-state combinations defined in the diverse scenario, as
illustrated in Table 9. This demonstrates the robustness and generalization capability of
FedTAP across a wide range of dynamic task composition settings.

C.4 Results on Another Dataset

To evaluate the effectiveness of the proposed FedTAP method, we conducted experiments on
the NYU Depth v2 dataset (Silberman et al., 2012), a widely used benchmark for multi-task
learning (MTL), and compared its performance with several existing baselines. NYU Depth
v2 consists of indoor scene images, and we followed the experimental configuration described
in previous work (Lu et al., 2024). This dataset includes four tasks: edge detection, semantic
segmentation, surface normal estimation, and depth estimation. The experiment adopts the

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Table 18: Computational Cost and Communication Overhead. The result
shows that FedTAP is the most efficient method, achieving the lowest FLOPs/Score
and no additional communication overhead compared to FedAvg.

Method Training FLOPs/Round Data Exchange/Round FLOPs/Score(↓)
FedAvg (McMahan et al., 2017) 1.0 × (≈ 1.13×1013) 1.0 × (≈ 166MB ↑↓) 2.18×1011

FedHCA2 (Lu et al., 2024) 1.7 × 1.0 × 3.57×1011

FedTAP (Ours) 1.1 × 1.0 × 2.12×1011

same main scenario used in PASCAL-Context (Mottaghi et al., 2014), shown in Table 8a,
which runs for a total of 50 rounds. The only difference is that the dataset includes a
different set of tasks, resulting in a different assignment of task states. Each of the four
task states—Active, Inactive, Left, and New—is assigned to exactly one task: semantic
segmentation (SemSeg) is inactive, depth is left, normals is new, and edge is active. As in
the PASCAL-Context setting, evaluation is based on the performance of the client model
at the final round in which each task is involved. For example, SemSeg, which is inactive, is
evaluated at round 50, while depth, designated as left, is evaluated at round 20. As shown in
Table 17, FedTAP outperforms the baselines across all evaluation metrics on NYU Depth v2.
This indicates that FedTAP achieves consistent and robust performance improvements not
only on PASCAL-Context but also on other representative MTL benchmarks, demonstrating
strong generalization ability and practical applicability across diverse settings.

D Efficiency of FedTAP

D.1 Results on Computational Cost and Communication Overhead

We provide a detailed analysis of the computational cost and communication overhead, with
results summarized in Table 18. All values are reported as ratios relative to the FedAvg
baseline. The computational cost was calculated as the total FLOPs from all client-side
training and the server-side aggregation for each round. The communication overhead, de-
fined as Data Exchange per Round, quantifies the total data transmitted between clients
and the server in each round. Since FedTAP only transmits the standard updates for the
local encoder and decoder, not the prototypes themselves, it incurs no additional communi-
cation overhead. To evaluate the trade-off between computation and performance, we use
the FLOPs per Score metric, where a lower value indicates higher efficiency. By achieving
the lowest score, FedTAP demonstrates that it is the most efficient method.

20

	Introduction
	Related Work
	Method
	Problem Setup: Federated Multi-Task Continual Learning
	Local Training and Global Aggregation
	Prototype-Guided Aggregation
	Task-Aware Prototype Learning
	Adaptive Prototype Allocation

	Experiments
	Experimental Setup
	Main Results
	Ablation Studies
	Analysis

	Conclusion
	Additional Information
	Notation
	Additional Experimental Detail
	Training Details
	Scenario Details

	Additional Analysis of FedTAP
	Ablation of Prototype-Guided Aggregation (PGA).
	Analysis on the Learned Prototype Space.

	Generalization and Robustness of FedTAP
	Results on Hyperparameter Sensitivity
	Results Under Various Number of Clients per Task.
	Results Under Various Scenarios
	Results on Another Dataset

	Efficiency of FedTAP
	Results on Computational Cost and Communication Overhead

