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ABSTRACT

State-of-the-art image-to-image translation methods tend to struggle in an im-
balanced domain setting, where one image domain lacks richness and diversity.
We introduce a new unsupervised translation network, BalaGAN, specifically de-
signed to tackle the domain imbalance problem. We leverage the latent modali-
ties of the richer domain to turn the image-to-image translation problem, between
two imbalanced domains, into a balanced, multi-class, and conditional transla-
tion problem, more resembling the style transfer setting. Specifically, we analyze
the source domain and learn a decomposition of it into a set of latent modes or
classes, without any supervision. This leaves us with a multitude of balanced
cross-domain translation tasks, between all pairs of classes, including the target
domain. During inference, the trained network takes as input a source image, as
well as a reference or style image from one of the modes as a condition, and pro-
duces an image which resembles the source on the pixel-wise level, but shares
the same mode as the reference. We show that employing modalities within the
dataset improves the quality of the translated images, and that BalaGAN outper-
forms strong baselines of both unconditioned and style-transfer-based image-to-
image translation methods, in terms of image quality and diversity.

1 INTRODUCTION

Image-to-image translation is a central problem in computer vision and has a wide variety of appli-
cations including image editing, style transfer, data enrichment, image colorization, among others.
Acquiring labeled pairs of source and target domain images is often hard or impossible, thus moti-
vating the development of unsupervised methods (Zhu et al., 2017; Huang et al., 2018; Kim et al.,
2020; Park et al., 2020; Lira et al., 2020; Liu et al., 2019; Choi et al., 2020). However, these meth-
ods are often lacking in quality or robustness to domain variations. Indeed, in most unsupervised
approaches, there is an implicit assumption of “approximate symmetry” between the translated do-
mains, in term of data quantity or variety. With this assumption, the source and target domains are
treated each as one-piece, without fully leveraging the variety within either of them. In reality, most
datasets are imbalanced across different categories, e.g., ImageNet (Deng et al., 2009) contains many
more images of dogs than of wolves. As image-to-image translation can be used to enrich some do-
mains by utilizing others, improving these methods, in the imbalanced setting in particular, can play
a critical role in resolving the ubiquitous “data shortage” problem in deep learning.

In this paper, we present BalaGAN, an unsupervised image-to-image translation network specifi-
cally designed to tackle the domain imbalance problem where the source domain is much richer, in
quantity and variety, than the target one. Since the richer domain is, in many cases, multi-modal,
we can leverage its latent modalities. To do this, we turn the image-to-image translation problem,
between two imbalanced domains, into a balanced, multi-class, and conditional translation problem,
akin to style transfer. Our key observation is that the performance of a domain translation network
can be significantly boosted by (i) disentangling the complexity of the data, as reflected by the nat-
ural modalities in the data, and (ii) training it to carry out a multitude of varied translation tasks
instead of a single one. BalaGAN fulfills both criteria by learning translations between all pairs
of source domain modalities and the target domain, rather than only between the full source and
target domains. This way, we are taking a balanced view of the two otherwise imbalanced domains.
More importantly, enforcing the network to learn such a richer set of translations leads to improved
results, and in particular, a better and more diverse translation to the target domain.
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Figure 1: Our image translation network, BalaGAN, is designed to handle imbalanced input do-
mains, e.g., a set of dog images that is much richer than that of wolves. We “balance” the domains
by converting them into multiple modes reflecting their “styles” and train a GAN over all mode pairs
to learn a multitude of intra- and inter-mode cross-translations. During inference, the network takes
a source (e.g., a dog) and a reference image (e.g., a wolf) to produce a new image following the
“style/mode” of the reference while resembling the source in a pixel-wise manner.

Specifically, let us assume that the source domain A, which is significantly richer than the target
domain B, consists of multiple mode classes. We train a single GAN translator G with respect
to all pairs of modes (see Figure 1). During inference, the trained network takes as input a source
image x, as well as a reference image y from one of the modes as a condition, and produces an image
G(x, y). This image resembles x on the pixel-wise level, but shares the same mode (or style) as y. To
realize our approach, we develop means to find the latent data modalities without any supervision
and a powerful generator for the task of conditional, multi-class image-to-image translation. Our
translator is trained adversarially with two discriminators, each aiming to classify a given image to
its corresponding mode, with one trained on real images only. The generator is trained to produce
meaningful content and style representations, and combine them through an AdaIN layer. While this
architecture bears resemblance to multi-class translation networks such as FUNIT (Liu et al., 2019)
and StarGAN (Choi et al., 2020), it should be emphasized that unlike these methods, we learn the
latent modalities, and use transductive learning, where the target domain participates in the training.

We show that reducing the imbalanced image translation problem into a cross-modal one achieves
comparable or better results compared to any unsupervised translation method we have tested, in-
cluding the best performing and most established ones, since they do not exploit the latent modalities
within the source domain. We analyze the impact of the extracted latent modalities, perform ablation
studies, and extensive quantitative and qualitative evaluations, which are further validated through a
perceptual user study. We further show the potential of our cross-modal approach for boosting the
performance of translation in balanced setting.

2 RELATED WORK

Modern unsupervised image-to-image translation methods use GANs (Goodfellow et al., 2014) to
generate plausible images in the target domain, conditioned on images from a source domain. Such
methods are unsupervised in the sense that no pairs between the source and target domain are given.
Some works (Zhu et al., 2017; Liu et al., 2017; Katzir et al., 2019; Lira et al., 2020; Park et al.,
2020) propose to learn a deterministic generator, which maps each image of the source domain to
a corresponding image of the target domain. These works often use a cycle consistency constraint,
which enforces the generator to be bijective, thus preventing mode collapse. With this approach, the
amount of possible target images one can generate per input image is often limited.

Other works (Huang et al., 2018; Lee et al., 2019) propose to view image-to-image translation as a
style transfer problem, where the content is an image from the source domain, and the style is taken
from the target domain. The style can be either a random noise from the desired style space or taken
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from some specific reference image in the target domain. By doing so, the number of possible target
images that one can generate significantly increases. These works are multi-modal in the sense that
a given image can be translated to multiple images in the target domain. This multi-modality can
also be achieved in other approaches as shown by Nizan & Tal (2020).

While the aforementioned methods require training a generator for each pair of domains, some other
works (Liu et al., 2019; Choi et al., 2020) combine style transfer with a training scheme that results
in a single generator that can translate between any pair of domains or styles that appear during
training. Moreover, Liu et al. (2019) shows that their method is capable of translating to styles that
were unseen during training as long as the GAN was trained on closely-related styles.

In our work, we adopt the style transfer approach and use the training scheme that enables one
generator to translate between multiple pairs of domains. While previous works focus on learning
the translation between the desired domains, we also learn translations between modalities of the
source domain, thus leveraging its richness. This makes our method multi-modal in the sense that
it utilizes the modalities of the source domain for the training of the translation task. Although the
apparent resemblance, the meaning of multi-modal (or cross-modal) in our work is fundamentally
different than its meaning in MUNIT, in which multi-modality refers to the ability to translate a
given image into multiple images in the target domain. Conversely, in our work, we refer to the
latent modalities in the source domain.

Recently, it has been shown that the latent modalities of a dataset can assist in generating images,
which belong to that dataset distribution (Liu et al., 2020; Sendik et al., 2020). The premise of
these works is that real-world datasets cannot be well-represented using a uniform latent space, and
information about their latent modalities helps to model the data distribution better. In our work, we
exploit these modalities to improve the generator by training it to translate between them.

3 METHOD

BalaGAN aims at translating an image between the unpaired, rich source domainA, and a data-poor
target domain B. To perform the translation, our method receives a source image and a reference
image from the target domain. The source image is translated such that the output image appears to
belong to the target domain. The training of our model consists of two steps: (i) finding k disjoint
modalities in the source domain, where each modality is a set of images, denoted by Ai; (ii) training
a single model to perform cross-translations among all pairs in (A1, ..., Ak, B), see Figure 1.

3.1 FINDING MODALITIES

To find the modalities of a given domain, we train an encoder that yields a meaningful representation
of the style for each image. Then, we cluster the representations of all source domain images, where
each cluster represents a single modality.

We train our encoder following Chen et al. (2020), where contrastive loss is applied on a set of
augmented images. Given a batch of images, we apply two randomly sampled sets of augmentations
on each image. Then, we apply the encoder, and attract the result representations of augmented
images if both were obtained from the same source image, and repel them otherwise. Choosing a
set of augmentations that distort only content properties of the images, yields representations that
are content agnostic and reflecting of the style. We use the normalized temperature-scaled cross-
entropy loss (Chen et al., 2020; Sohn, 2016; Wu et al., 2018; Oord et al., 2018) to encourage a large
cosine similarity between image representations with similar styles. As the dot product between
such representations is small, spherical k-means allows for clustering images by their styles. We
denote the clusters by A1, ..., Ak, where k is chosen such that |B| ≥ |A|/k resulting in modalities
which are relatively balanced. Analysis of different values of that k is given in Section 4.2.

3.2 TRANSLATION NETWORK

Our translation network is a multi-class image-to-image translation network, where the classes
(A1, ...Ak, B) are the clusters obtained above. The network cross-translates between all the (k+1)2

pairs in (A1, ...Ak, B). The network’s architecture and training procedure are built upon FUNIT
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Figure 2: An illustration of BalaGAN’s architecture.

(Liu et al., 2019). We train the translation network G, and a discriminator D in an adversarial
manner. A high-level diagram of our architecture is shown in Figure 2.

G consists of source encoder Es, target encoder Et, and decoder F . Given a source image x, and a
reference image y, the translated image is given by:

x′ = G(x, y) = F (Es(x), Et(y)).

To train G, we sample two images from (A1, ..., Ak, B), a source image x, and a reference image
y. The network receives these two images and generates a new image which resembles x on the
pixel-wise level, but shares the same mode as y. At test time, we translate images from domain A
to domain B by taking a source image from A and a reference image from B. Note that the trained
network can translate any image from A without its cluster (modality) label.

Our discriminator consists of two sub-networks, which have shared weights in the initial layers,
denoted by Df . Each sub-network corresponds to a different task that the discriminator performs.
The first sub-network, denoted by Dadv, aims to solve an adversarial task, in which it classifies
each image to one of (A1, ..., Ak, B). That is, Dadv(·) is a k + 1-dimensional vector with score for
each modality. The translation network aims to confuse the discriminator, that is, given a source
image x and a reference image y, G aims at making Dadv predict the modality of y for G(x, y). For
such a generated image, Dadv aims to predict any modality, but the modality of y, while for a real
image it aims at predicting its correct modality. The second sub-network, denoted by Dcls, performs
a classification task. This sub-network aims to predict the modality of each image, but here it is
trained on the real images only. As shown in previous works (Chen et al., 2019), defining another
task for the discriminator helps the stability of training, and eventually strengthens the generator. In
Section 4.4 we show that this addition to the FUNIT architecture is significant for yielding better
image translations.

Losses. We use a weighted combination of several objectives to train G and D. First, we utilize
the Hinge version of the GAN loss for the adversarial loss (Liu et al., 2019; Lim & Ye, 2017; Miyato
et al., 2018; Zhang et al., 2018; Brock et al., 2019). It is given by

LGAN(D) = Ex[max(0, 1−Dadv(x)m(x))] + Ex,y[max(0, 1 +Dadv(G(x, y))m(y)],

LGAN(G) = −Ex,y[Dadv(G(x, y))m(y)],

where Dadv(·)i is the i-th index in the k+1-dimensional vector Dadv(·) and m(x) is the modality of
the image x. To encourage content-preservation of the source image and to help in preventing mode
collapse we use a reconstruction loss. Additionally, to encourage the output image to resemble the
reference image, we utilize the feature matching loss. They are given by

LR(G) = Ex[||x−G(x, x)||1], LFM(G) = Ex,y[||Df (G(x, y))−Df (y)||1],
respectively. For the classification task of the discriminator, we use cross-entropy loss, defined
by LCE(D) = CrossEntropy(Dcls(x),1m(x)), where 1m(x) is a one-hot vector that indicates the
modality of the image x. Gradient penalty regularization term (Mescheder et al., 2018) is also
utilized, given by R1(D) = Ex[||∇Dadv(x)||22]. The total optimization problem solved by our
method is defined by

min
D
LGAN(D) + λCELCE(D) + λregR1(D), min

G
LGAN(G) + λRLR(G) + λFLFM(G).
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Balanced setting. While the main motivation for the k-modal translation is for the imbalanced
translation setting, our method also shows effectiveness in translation between two balanced do-
mains, A and B. In such a setting, we split both A and B into modalities. Then, instead of defining
the classes as (A1, ..., Ak, B), we define the classes to be (A1, ..., Aks

, B1, ..., Bkt
) and train the

translation network with all (ks + kt)
2 pairs.

4 EVALUATION

We evaluate our cross-modal translation method in a series of experiments. We first show the effec-
tiveness of our method in the imbalanced setting, by evaluating its performance when decreasing the
number of images in the target domain. Next, we explore the influence of the number of modalities,
k, on the result. Then, we show that our method can also be effective in the balanced setting. Fi-
nally, we perform an ablation study to compare our architecture with other alternative architectures
and study the importance of finding effective modalities. To evaluate the results, we show a variety
of visual examples, use the FID (Heusel et al., 2017) measurement, and perform a human percep-
tual study to validate the quality of the results obtained by our method compared to results of other
leading methods.

Datasets. We use the CelebA dataset (Liu et al., 2015) and set the source and target domains
to consist of 10,000 and 1000 images of women and men, respectively. We additionally use the
Stanford Cars Dataset (Krause et al., 2013), and translate a range of different colored cars to red
cars. There, the training set consists of 7500 non-red cars, and 500 red cars. From the AFHQ dataset
(Choi et al., 2020) we take all the 4739 images of dogs as the source domain, and all the 5153 images
of cats as the target domain. Furthermore, we use the Animal Face Dataset (AFD) (Liu et al., 2019)
and set the source domain to be a mix of 16 breeds of dogs and the target domain to be a mix of
three breeds of wolves. Our training set consists of 10,000 dog images and 1000 wolf images. It
should be noted that among the above, the Animal Face Dataset is the most challenging due to the
wide range of poses and image quality.

4.1 EFFECTIVENESS IN THE IMBALANCED SETTING

We compare our approach with other methods: CycleGAN (Zhu et al., 2017), U-GAT-IT (Kim et al.,
2020), MUNIT (Huang et al., 2018), StarGAN2 (Choi et al., 2020), CUT (Park et al., 2020). We
first train a number of methods on the AFD dataset. For our method, we used 40 modalities to train
the translation network. Quantitative results are presented in Table 1.

BalaGAN CycleGAN U-GAT-IT MUNIT StarGAN2 CUT
60.88 77.8 97.16 83.38 211.77 108.64

Table 1: FID (↓) results of various image-to-image translation methods applied on AFD, translating
dogs to wolves in the imbalanced setting. For BalaGAN we use 40 modalities.

For the above leading methods, we perform additional experiments over multiple datasets to show
the effect of decreasing the number of training images in the target domain. Quantitative results
over AFD and CelebA are presented in Table 2. As can be seen, CycleGAN and BalaGAN are the
leading methods, and the image quality produced by BalaGAN is more stable as the size of the target
domain decreases. Visual results are shown in Figure 3 for these two methods, and in Appendix C.1
for the other methods.

We further compare BalaGAN and CycleGAN through a human perceptual study, in which each
user was asked to select the preferred image between images generated by these two methods. The
images were generated by models that were trained using 1000 target domain images. 50 users
participated in the survey, each answered ten random questions out of a pool of 200 questions for
each dataset. As can be seen in Table 7b, BalaGAN outperforms CycleGAN on both datasets even
though CycleGAN achieves lower FID for the women→men translation task.

Results for the Standford Cars dataset are presented in Figure 4. As can be seen, BalaGAN is almost
agnostic to decrease in the size of the target domain, while CycleGAN is sensitive to such change.

5



Under review as a conference paper at ICLR 2021

1000 500 250 125 1000 500 250 125

Source Ref BalaGAN CycleGAN

Figure 3: Applying CycleGAN and BalaGAN on the dog → wolf and woman → men translation
tasks, by training with decreasing number of images in the target domain. The numbers above the
table indicate the number of target domain images that were used for training.

|B| dogs→ wolves women→ men
BalaGAN CycleGAN CUT MUNIT BalaGAN CycleGAN CUT MUNIT

1000 60.88 77.80 108.64 83.38 33.42 28.33 55.04 42.35
500 72.46 99.80 166.36 103.07 39.95 38.59 61.08 47.51
250 102.35 136.00 225.35 123.88 38.99 54.95 82.26 53.81
125 157.67 202.61 226.97 162.97 49.42 155.60 274.53 58.48

Table 2: FID results (↓) applied on AFD and CelebA datasets in the imbalanced setting. |B| denotes
the number of images in the target domain that were used during training.

4.2 THE INFLUENCE OF k

The number of modalities that our translation network is trained on, k+1, is an important factor for
the success of our method. For k = 1, our method is reduced to the common setting of image-to-
image translation, and as we increase k, our network is enforced to train and learn more translation
tasks, resulting in more accurate translation. Here we show that the value of k influences the quality
of the generated images. Visual results that were obtained on the dog → wolf translation task are
shown in Figure 5a and quantitative results are provided in Figure 7d. As can be seen, as k increases,
FID decreases, i.e., the images quality is improved. Note, however, that once k goes beyond 16, the
number of dog breeds, the improvement of the results is rather moderate.

500 250 125 500 250 125

Source Ref BalaGAN CycleGAN

|B| car→ red-car
BalaGAN CycleGAN

500 37.02 33.38
250 40.38 40.46
125 40.25 51.17

Figure 4: Visual (left) and FID(↓) (right) results of CycleGAN and BalaGAN applied on the
car→ red-car translation task, by training with decreasing number of images in the target domain.
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(a)

AFD GT VAE Ours
A 49.89 151.27 62.97
B 72.87 190.33 100.67
C 168.94 202.90 187.76

(b)

C B A

(c)

Figure 5: (a) Results of BalaGAN applied with varying values of k. Below each column we specify
the number of modalities that the translation network was trained on, that is k+1. (b) FID(↓) of our
ablation study applied on the dog→ wolf translation task with k = 16 which is the number of dogs’
breeds. Rows and columns notation are explained in 4.4 (c) Visual results of ablation study.

4.3 EFFECTIVENESS IN THE BALANCED SETTING

Here we present results on a balanced dataset. We choose the AFHQ dataset, translating dogs to
cats. We train BalaGAN using latent modalities extracted in both the source and target domain. For
this dataset, we extracted 30 modalities in each domain. We compare our method with five strong
baseline methods: CycleGAN (Zhu et al., 2017), CUT (Park et al., 2020), GANHopper (Lira et al.,
2020), StarGAN2 (Choi et al., 2020), and MUNIT (Huang et al., 2018). We denote the StarGAN2
that is trained on the two domains as StarGAN21, and StarGAN2 that is trained to translate between
each pair of the 60 modalities that we find as StarGAN230. For MUNIT, we show results when
the style is taken from a reference image (denoted by MUNITr), and from a random noise vector
(denoted by MUNITn). Figure 6 shows a random sample of results from this comparison, and in
Table 3 we present a quantitative comparison. As can be observed, our method outperforms other
methods both visually and quantitatively.

Source Ref CycleGAN CUT GANHopper StarGAN21 StarGAN230 MUNITr MUNITn BalaGAN30

Figure 6: Various methods applied on AFHQ dataset, which is balanced, to translate dogs to cats.
The super-index denotes k. Additional results are shown in Appendix C.2.

CycleGAN CUT GANHopper StarGAN21 StarGAN230 MUNITr MUNITn BalaGAN
29.98 27.37 33.79 29.56 25.89 35.80 27.11 19.21

Table 3: FID (↓) results of applying various image-to-image translation methods over AFHQ dataset.

As the leading methods according to the FID measure are BalaGAN and StarGAN2, we further
compared them through a human perceptual study. Similarly to the imbalanced user study, each
user answered 10 random questions out of a pool of 200 questions. Here, the user was asked to
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(a)

Task BalaGAN CycleGAN
dogs→ wolfs 83.3 16.7

women→ men 66.4 33.6

(b)
BalaGAN StarGAN30 StarGAN1

43.9 27.4 28.7

(c)

(d)

Figure 7: (a) BalaGAN on the AFD trained on 1000 wolves using 40 modalities. (b) Human percep-
tual study in the imbalanced setting. We present the percentage of users that chose the corresponding
image as the preferred one. (c) Users preferences for the AFHQ dataset in a balanced setting. (d)
FID (↓) of our method applied on AFD in an imbalanced setting. The number of modalities is k+1.

choose between images of BalaGAN, StarGAN30 and StarGAN1. As observed in Table 7c, most
users chose images of BalaGAN, where the scores of StarGAN30, and StarGAN1 are similar.

4.4 DIVERSITY AND ABLATION STUDY

The diversity of generated images that can be achieved by our method, is shown in Figure 7a (see
additional results in Appendix C.3). We additionally perform an ablation study, in which we change
the translation network and the decomposition of the source domain. For the ablation of the transla-
tion network, let A denote our BalaGAN method, then (i) in B we removed the Dcls loss, and (ii) in
C, we additionally do not use the target domain images during training. Note, that the setting in C
degenerates into FUNIT (Liu et al., 2019). For the ablation of the source’s decomposition, let AFD
GT denote the dogs’ breeds ground truth class labels and VAE denotes a variational autoencoder that
replaces our encoder. The results presented in Table 5b and Figure 5c show that Dcls significantly
improves the architecture of FUNIT, even in a transductive setting.

We explore the robustness of our method by comparing the results of two variations of StarGAN2,
one trained on two domains and one trained on the learned modalities, denoted by StarGAN21 and
StarGAN230 respectively. The results are shown in Figure 6 and Table 3. As one can see, training
StarGAN2 to translate between modalities improves the network’s ability to translate between the
two domains. Therefore, we conclude that the benefit of training on modalities is not specific to our
architecture, and can be utilized by other multi-class image-to-image translation methods.

5 CONCLUSION

We have presented an image-to-image translation technique that leverages latent modes in the source
and target domains. The technique was designed to alleviate the problems associated with the im-
balanced setting, where the target domain is poor. The key idea is to convert the imbalanced setting
to a balanced one, where the network is trained to translate between all pairs of modes, including the
target one. We have shown that the balanced setting leads to better translation than strong baselines.
We further showed that analyzing and translating at the mode-level, can benefit also in a balanced
setting, where both the source and target domains are split and the translator is trained on all pairs. In
the future, we would like to use our technique to re-balance training sets and show that downstream
applications, like object classification and detection, can benefit from the re-balancing operation. We
believe our work to be a step in the direction of analyzing domain distributions and learning their
latent modes, and would like to reason and apply this idea on a wider range of problems beyond
image-to-image translation.
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A ADDITIONAL DETAILS

A.1 IMPLEMENTATION DETAILS

Finding Modalities. For finding the modalities, we use ResNet-18 as the encoder and train it
from scratch. We train the encoder over all training samples in the source and target domains. Input
images are resized to 128×128, and the embedding dimension is set to 256. We use Adam optimizer
with a learning rate of 3e−4 and weight decay of 1e−6. To cluster the images into modalities, we use
the spherical k-means implementation of Johnson et al. (2017). We cluster only the source domain
images, while keeping the target domain as its own cluster. For the balanced case, we cluster the
source and target domains separately.

Translation Network. For the translation network, we built our model based on FUNIT imple-
mentation. The architectures of Dadv and Dcls are the same, and these networks share all the layers
besides the last two convolution blocks. We trained the translation network to generate 128 × 128
images, using a batch size of 10 and 150,000 iterations for the CelebA dataset, and 100,000 iterations
for the other datasets.

A.2 ABLATION STUDY

As Explained in 4.4, we explore the influence of the modalities on the performance of the translation
network. To do that, we (i) define the modalities according to the ground-truth dog breeds obtained
from ImageNet labels, and (ii) train a variational autoencoder, and cluster the images embeddings
obtained by the encoder. We define the modalities to be the result clusters. We use the variational
autoencoder implemented by Subramanian (2020).

B RESULT MODALITIES

In this section we present the modalities found by our method and discuss the augmentations used
for each dataset.

AFD. For this dataset, the augmentations that we use are: crop, horizontal-flip, color-distortion,
gray-scale, and blur. We show the modalities that are obtained by our method compared to the
modalities that are obtained by the variational-autoencoder in Figure 8. Here, 10 modalities are
randomly sampled from the results of each method.

BalaGAN 40 Modalities BalaGAN 17 Modalities VAE Modalities

Figure 8: Modalities that are found by clustering the representations obtained by BalaGAN’s en-
coder, compared to those that obtained by a VAE.

AFHQ. Here we use the same augmentations as in AFD, and split both the source and target
domains into 30 modalities each. The obtained modalities are presented in Figure 9a.

CelebA. Here we used the same augmentations as in AFD, and split the source domain into 30
modalities. The obtained modalities are presented in Figure 9b.
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(a) (b)

Figure 9: Modalities that were obtained by BalaGAN for (a) AFHQ dataset and (b) CelebA dataset.

Stanford Cars Dataset. To demonstrate the effect of the augmentations chosen to train
the encoder, we show clusters that were obtained by training the encoder with two dif-
ferent augmentations sets. One set of augmentations yields clusters that are associated
with style while the other set yields content-related clusters. For finding style clus-
ters we use {crop, horizontal flip, shuffle, gray-scale, blur} and for the content clusters we use
{crop, color-distortion, gray-scale, blur}. The results are shown in Figure 10.

(a) Style Clusters (b) Content Clusters

Figure 10: Clusters that were obtained by training the encoder with two different sets of augmenta-
tions. Each column corresponds to a cluster.
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C ADDITIONAL RESULTS

In this section we show additional visual results. We first show a comparison of our method with
other methods when decreasing the target domain size (Figures 11 and 12). Then, we show a com-
parison of our method with other methods in the balanced setting (Figure 13). Finally, we show
that our method can generate diverse images in the target domain, which enable to enrich the target
domain. Diverse images can be obtained by changing the source and reference images (Figures 15,
16, 17), and further by interpolating between images in the latent space (Figure 14).

C.1 DECREASING TARGET DOMAIN SIZE

Here we show additional results of various methods that are trained over a training data with decreas-
ing number of images in the target domain. For each method, we used the official implementation,
and used the default training configuration with images resized to 128× 128.

1000 500 250 125 1000 500 250 125

Source Ref BalaGAN CycleGAN
1000 500 250 125 1000 500 250 125

Source Ref MUNITn CUT

Figure 11: Applying CycleGAN, MUNITn, CUT and BalaGAN on the dog → wolf translation
task, by training with decreasing number of images in the target domain. The numbers above the
table indicate the number of target domain images that were used for training. As can be seen,
BalaGAN achieves the best results for the imbalanced setting. The results of CUT resemble those of
CycleGAN, but the performance decline in CUT is more significant. MUNIT struggles in learning
the varied wolves distribution out of a small target domain.
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1000 500 250 125 1000 500 250 125

Source Ref BalaGAN CycleGAN
1000 500 250 125 1000 500 250 125

Source Ref MUNITn CUT

Figure 12: Applying CycleGAN, MUNITn, CUT and BalaGAN on the women→ men translation
task, by training with decreasing number of images in the target domain. The numbers above the
table indicate the number of target domain images that were used for training. As can be seen,
BalaGAN is almost agnostic to decrease in the size of the target domain. While MUNIT struggled
in learning the varied wolves distribution, here it produces better results since the distribution of
men’s faces is not as varied.
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C.2 BALANCED SETTING

Source Ref CycleGAN CUT GANHopper StarGAN21 StarGAN230 MUNITr MUNITn BalaGAN30

Figure 13: Results of various methods applied on AFHQ in the balanced setting.
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C.3 BALAGAN ADDITIONAL RESULTS

Here we show additional results of BalaGAN. For AFD and CelebA we trained our method using
1000 images in the target domain. For AFHQ we used the balanced setting of our approach.

Figure 14: As our translation network is applied in latent space, it is possible to interpolate between
two given reference images. This significantly increases the ability of enriching the target domain.
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Figure 15: BalaGAN applied on the dogs→wolves translation task. We trained our method over
10,000 dogs and 1000 wolves, using 40 modalities.
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Figure 16: BalaGAN applied on the balanced dogs→cats translation task. We decomposed both the
source and target domains into 30 modalities.

17



Under review as a conference paper at ICLR 2021

Ref So
ur

ce

Figure 17: BalaGAN applied on the women→men translation task. We trained our method over
10,000 women and 1000 men, using 30 modalities.
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