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Abstract

Large language models (LLMs) exhibit im-
pressive emergent abilities in natural language
processing, but their democratization is hin-
dered due to huge computation requirements
and closed-source nature. Recent research on
advancing open-source smaller LMs by dis-
tilling knowledge from black-box LLMs has
obtained promising results in the instruction-
following ability. However, the reasoning abil-
ity which is more challenging to foster, is rel-
atively rarely explored. In this paper, we pro-
pose a tailored learning approach to distill such
reasoning ability to smaller LMs to facilitate
the democratization of the exclusive reason-
ing ability. In contrast to merely employing
LLM as a data annotator, we exploit the poten-
tial of LLM as a reasoning teacher by building
an interactive multi-round learning paradigm.
This paradigm enables the student to expose
its deficiencies to the black-box teacher who
then can provide customized training data in
return. Further, to exploit the reasoning po-
tential of the smaller LM, we propose self-
reflection learning to motivate the student to
learn from self-made mistakes. The learning
from self-reflection and LLM are all tailored
to the student’s learning status, thanks to the
seamless integration with the multi-round learn-
ing paradigm. Comprehensive experiments and
analysis on mathematical and commonsense
reasoning tasks demonstrate the effectiveness
of our method. The code will be available at
https://github.com/Raibows/Learn-to-Reason.

1 Introduction

Large language models (LLMs) with emergent abil-
ities have achieved remarkable success across a
wide range of tasks, deeply changed the landscape
of both research and applications in natural lan-
guage processing (Brown et al., 2020; Chen et al.,
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Figure 1: Tailored learning from LLM. In contrast to
previous works merely adopt a), we propose b) and c)
to further improve the reasoning distillation.

2021; Chowdhery et al., 2022; OpenAI, 2023). And
Wei et al. (2022a,b) argue that emergent abilities
particularly in reasoning only exist in LLMs whose
parameters are commonly larger than 100B. Never-
theless, a line of research (Touvron et al., 2023a,b;
Taori et al., 2023; Zeng et al., 2023) has indicated
that smaller LMs with about 7B parameters after su-
pervised fine-tuning such as Vicuna (Chiang et al.,
2023) can be comparable to LLMs in following hu-
man instructions, while still falling short of reason-
ing. In this paper, we aim to harness the untapped
reasoning potential of smaller LMs to democratize
this important emergent ability.

Chain-of-Thought (CoT) prompts LMs to gen-
erate intermediate reasoning steps (i.e., rationale)
to reach the final answer, significantly improving
the complex reasoning ability (Wei et al., 2022b;
Kojima et al., 2022a; Chung et al., 2022; Wang
et al., 2023a). However, it is challenging to prompt
smaller LMs to generate reasoning steps, since
such ability appears to be exclusive to LLMs (Wei
et al., 2022a,b; Chowdhery et al., 2022), which
indicates the necessity of utilizing data annotated
with rationales to cultivate smaller LMs’ reason-
ing ability. Unfortunately, most existing reason-
ing datasets lack high-quality rationale annota-
tions, and manual labeling them can be costly. In-
spired by the success of collecting instruction data
from LLMs (e.g., ChatGPT) for instruction tuning
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smaller LMs (Wang et al., 2023b; Taori et al., 2023;
Touvron et al., 2023a,b), we propose to leverage
the rationales generated by LLMs to train smaller
LMs to learn to use CoT towards reasoning.

Recently, teaching smaller LMs towards reason-
ing with the help of LLMs has gained increasing
attention. Most of these works (Ho et al., 2023;
Magister et al., 2023; Fu et al., 2023b; Shridhar
et al., 2023) can be summarized in two main steps:
(1) employing LLMs to generate rationales for an-
notating the training data. (2) Fine-tuning smaller
LMs on these data to enable reasoning with CoT.
This approach can be viewed as a distant variant of
black-box knowledge distillation (Jianping et al.,
2021). However, these methods only employ LLMs
to annotate the data for training smaller LMs, with-
out leveraging the smaller LMs to assist LLMs in
return. As a consequence, the LLMs are not aware
of the weaknesses of the smaller LMs, thereby hin-
dering their powerful ability to analyze and provide
targeted feedback, which undermines the effective-
ness of the reasoning distillation.

To this end, we propose a multi-round interac-
tive learning paradigm to exploit the potential of
black-box LLM as a reasoning teacher. In each
round of learning, the student (i.e., smaller LM)
first provides its learning status to the teacher LLM
who then can provide customized rationales as the
feedback to the student. The data annotated with
these rationales serves as our customized training
data. Such a paradigm is natural as it is in inline
with how we human beings learn from teachers.

Beyond learning from the teacher, another cru-
cial paradigm for human learning lies in self-
reflection on self-made mistakes. In parallel, re-
cent studies (Huang et al., 2022; Shinn et al., 2023;
Madaan et al., 2023; Pan et al., 2023) have also
shown that LLMs can self-improve by reflecting
on their own mistakes. Therefore, we exploit the
reasoning potential of smaller LM by eliciting it
to take self-reflection on the mistakes. These mis-
takes can complement correct rationales collected
from the teacher LLM to teach the student LM to
distinguish bad and good reasoning steps, thereby
enhancing its reasoning ability.

Putting them together, as briefly presented in
Fig. 1, we propose a tailored multi-round learning
paradigm based on the student’s learning status
and deficiencies, including learning from LLM’s
customized training data and self-reflection. In
summary, our contributions are three-fold:

1) A multi-round learning paradigm is introduced
to enable the student LM to provide feedback to
the teacher LLM who then can offer customized
training data in response, building the interac-
tion between smaller LM and black-box LLM.

2) We propose self-reflection learning that moti-
vates the student to learn from mistakes. To-
gether with learning from customized training
data, it can be seamlessly integrated into the
multi-round learning paradigm.

3) Experiments and analysis on mathematical and
commonsense reasoning tasks demonstrate the
effectiveness of our method in distilling the rea-
soning ability from LLMs to smaller LMs.

2 Related Work

Emergence in LLM LLMs show emergent abil-
ities in a wide range of NLP tasks (Brown et al.,
2020; Chowdhery et al., 2022; Wei et al., 2022a,b;
OpenAI, 2023), among which the reasoning ability
is the most noteworthy as it requires the model to
perform multi-hop reasoning like human beings.
Smaller LMs (< 100B) are often considered to be
falling significantly short in reasoning, highlighting
the superiority of LLMs in this aspect (Wei et al.,
2022a). In this paper, we aim to democratize such
emergent reasoning ability to smaller LMs.

CoT Prompting CoT prompts LMs to solve rea-
soning tasks by generating intermediate rationales
to reach the answer, which has greatly improved the
reasoning performance (Wei et al., 2022b; Kojima
et al., 2022b; Wang et al., 2023a). However, accord-
ing to the reasoning performance curve (Wei et al.,
2022a), the CoT reasoning performance of smaller
LMs is far from satisfactory, since the generation
of rationales is challenging for them. Chung et al.
(2022) reveal that smaller LMs can partially master
the CoT skill by training on data with rationales.
We show that the CoT performance of smaller LMs
can be further improved via tailored learning from
LLM’s customized training data and self-reflection.

Distilling Knowledge from LLM Fine-tuning
smaller LMs to follow instructions with high-
quality data collected from LLMs shows the fea-
sibility of distilling knowledge from LLMs (Taori
et al., 2023; Chiang et al., 2023; Xu et al., 2023).
This procedure can also be viewed as a distant vari-
ant of black-box distillation (Hinton et al., 2015;
Jianping et al., 2021). However, these works aim to
improve the instruction-following ability of smaller



LMs, while the reasoning ability that we focus
on is often overlooked. Some recent studies (Ho
et al., 2023; Fu et al., 2023b; Shridhar et al., 2023)
propose to employ LLMs to annotate rationales
for training smaller student LMs towards reason-
ing, not considering the student’s feedback to the
teacher. In contrast, we exploit the potential of
the black-box LLM as the teacher instead of the
data annotator by proposing a multi-round learn-
ing paradigm. This paradigm enables the mutual
feedback between the LLM and smaller LM, thus
can make the teacher LLM offer training data tai-
lored for the student LM’s learning status. Besides,
we propose self-reflection learning to motivate the
student LM to learn from mistakes.

3 Method

As shown in Fig. 2, we propose a multi-round learn-
ing paradigm that motivates the student LM and the
teacher LLM to learn feedback from each other in
an interactive manner. Specifically, each round of
learning consists of three key steps: (1) The student
LM undergoes an “exam” on the training set for
collecting mistakes which are the wrong generated
rationales. Existing works (Fu et al., 2023b; Ho
et al., 2023; Shridhar et al., 2023; Magister et al.,
2023) merely provide the sample question for the
LLM to collect annotated rationales, neglecting the
importance of the student’s feedback. However,
the student’s feedback is crucial in knowledge dis-
tillation (Fu et al., 2021; Pham et al., 2021; Ren
et al., 2023). (2) Therefore, we propose to curate
a prompt integrated with the student’s wrong ratio-
nale to ask the teacher LLM to generate customized
feedback for the student. (3) In the last step, the
student learns to reason via training on the tailored
training data collected from the LLM, and self-
reflection on its self-made mistakes. These steps
are iterated to improve the reasoning ability of the
student LM until convergence.

3.1 Undertaking an Exam

Given a dataset Dtrain = {(x, y)}, where x is the
question and y is the answer, the correct rationale
r is often not provided. During inference of CoT,
the input is the question x, and the student LM’s
generated output f(x) = [r̂, ŷ] is the concatenation
of the generated rationale r̂ and answer ŷ. The
answer is often at the end of the output.

The student LM undertakes an “exam” on the
training set Dtrain for evaluating the learning sta-

tus, and collecting the mistakes Dneg which are the
samples with wrong rationales and answers1:

Dneg = {(x, r̂, ŷ) | ŷ ̸= y, (x, y) ∈ Dtrain}, (1)

for each question, we collect up to 4 wrong ratio-
nales through the decoding with sampling strategy.
The collected mistake set Dneg reflecting the stu-
dent’s learning status and weakness are used for
the following two purposes:

(1) As the feedback for the teacher LLM to gener-
ate rationales tailored for the student.

(2) As the negative contrastive samples for the stu-
dent to learn from self-reflection.

3.2 Student’s Feedback to LLM
We expect the black-box LLM to be a reasoning
teacher instead of a data annotator. Thus, we pro-
pose to provide the student’s feedback to help the
teacher LLM generate customized training data to
effectively target the student’s weakness. In detail,
we devise a prompt template T shown in Fig. 3,
which integrates both the question x and the stu-
dent’s feedback (i.e., the wrong rationale r̂). The
student’s feedback can not only (1) assist teacher
in identifying deficiencies in student’s reasoning,
but also (2) as the wrong demonstration example to
help LLM increase the chance of generating correct
rationales. Besides, to improve the LLM’s accuracy
and reduce the costs of calling APIs, we follow Ze-
likman et al. (2022) by adding a hint to explicitly
tell LLM the golden answer of the question.

For each sample (x, r̂, ŷ) ∈ Dneg, we request
the LLM with T (x, r̂, ŷ) to generate 4 rationales,
and only those containing correct answers are re-
tained, since training with diverse reasoning paths
can boost the reasoning performance of smaller
LMs (Ho et al., 2023; Fu et al., 2023b). The col-
lected rationale together with its question and an-
swer is denoted as (x, r, y), which extends the orig-
inal data to the customized training data Dtrain.

3.3 Tailored Learning
The reasoning ability of student LM f can be
improved via tailored learning from both self-
reflection and teacher’s customized training data.

Learning from Self-Reflection We propose to
learn from the mistakes Dneg to simulate the self-
reflection process of humans, which can help the

1Following most existing works, we simply judge the qual-
ity of the generated rationale by the correctness of its answer.



Round 3
Round 2

Problem: Tim has 30 less apples than Martha, 

and Harry has half as many apples as Tim. If 

Martha has 68 apples, how many apples does 

Harry have?

Wrong Rationale: Martha has 68 

apples. Harry has 68 – 30 = 38 apples.

Correct Rationale: Martha has 68 

apples. Tim has 68 – 30 = 38 apples. 

Harry has 38 / 2 = 19 apples.

Exam
Student’s 

Feedback to 

Teacher LLM

Learn from 

Customized Feedback

Learn from

Self-Reflection

Finish Round 1

Round 1

Student LM

Figure 2: Overview of the proposed multi-round learning paradigm. (1) The student LM first undertakes an “exam”
to gather mistakes (i.e., wrong rationales) made by itself. (2) These mistakes are subsequently utilized as the
student’s feedback to the teacher LLM, which in turn can generate training data (i.e., correct rationales) as the
teacher’s customized feedback to the student. (3) Finally, the student learns to improve reasoning via self-reflection
on self-made mistakes, and assimilation of the customized training data from the teacher LLM. The trained student
LM will initiate the next round of learning by repeating the three steps until the performance plateau is reached.

Question:  ... How man apples does Harry have?

Wrong Solution:  Bob got 9 oranges…

Please correct the wrong solution by using 

better reasoning steps.

Hint: The final answer should be 19.

Better Reasoning:

Figure 3: The prompt template T for asking the teacher
LLM to generate customized rationales. The part col-
ored in golden is the integrated student feedback.

student LM to identify the quality of different ra-
tionales. The utilization can be defined in multi-
ple forms (e.g., likelihood ranking), here we adopt
a simple triplet-loss to encourage the model to
learn different representations for good and bad
rationales. Specifically, the wrong reasoning path
[x, r̂, ŷ] ∈ Dneg, and the correct reasoning path
[x, r′, y] ∈ Dtrain are utilized as the negative and
positive contrastive samples, respectively. The hid-
den state of the last token is used as the representa-
tion of the whole reasoning path, which is denoted
as h(r,y)x . Finally, the form of self-reflection learn-
ing is defined as follows:

Lcl = EDtrain max
{
0, ρ− cos(h(r,y)x , h(r

′,y)
x )

+ cos(h(r,y)x , h(r̂,ŷ)x )
}
, (2)

where cos denotes the cosine similarity function,
and ρ set to 1.0 is the margin. (x, r, y) ∈ Dtrain is
the anchor sample whose positive and negative sam-
ples are randomly sampled from Dtrain and Dneg
with the same question x, respectively2.

Learning from Customized Feedback LLM’s
generated rationales are tailored to the student’s
weakness, thanks to the previous student’s feed-
back. These collected rationales merged into the
training set Dtrain as the customized feedback for
the student, which is used to fine-tune the student
LM f . In addition, we add several fixed demon-
strations “demo” listed in Table 15 to the prefix of
each input sample, since recent research (Min et al.,
2022; Zelikman et al., 2022; Fu et al., 2023b) have
shown that training with demonstration examples
can improve the in-context learning ability of LMs.
The training objective is as follows:

Llm = EDtrain log Pf ([demo, x, r, y]) , (3)

where the square brackets represent the string con-
catenation. This process can directly help the stu-
dent LM learn to generate intermediate reasoning
steps and master the CoT skill.

2Recall that we collect up to 4 unique correct and wrong
rationales for each question in Dtrain and Dneg, respectively.



Algorithm 1 Multi-round learning paradigm.
Require: the student LM f , the teacher LLM, the training

data Dtrain, the template T in Fig. 3
1: Initialize f0 with pre-trained weights and set the learning

round count r ← 0
2: repeat
3: r ← r + 1; fr ← fr−1

4: Infer on Dtrain with f and collects the mistakes
(x, r̂, ŷ) ∼ Dneg by Eq. (1)

5: if r ≤ 1 then
6: Collect the rationale r for each sample of Dtrain

from teacher LLM with T (x, null, y)
7: else
8: Collect the rationale r for each sample of Dneg

from teacher LLM with T (x, r̂, y)
9: end if

10: Optimize weights of fr using Eq. (4)
11: until Converges

Joint Learning The final optimization incorpo-
rates the learning from both self-reflection and
LLM’s customized feedback. The contrastive learn-
ing loss in Eq. (2) and the language modeling loss
in Eq. (3) are combined as follows:

L = Llm + λLcl, (4)

where λ controls the impacts of self-reflection
learning, balancing the two learning objectives.

3.4 Multi-round Learning

As depicted in Fig. 2, we adopt a multi-round learn-
ing paradigm to iteratively cultivate the reasoning
ability of the student LM. Multiple rounds of learn-
ing can assist the teacher LLM in staying updated
on the student’s learning status, and thus offer more
customized training data. Based on the student’s
learning status, the customized training data and
self-made mistakes are adjusted in each round and
tailored to the student’s specific deficiencies.

The untrained student LM nearly has no reason-
ing ability, resulting in the noisy generations which
are unhelpful as the feedback to the teacher LLM.
Consequently, to prepare the data required by the
initial round, we directly request the teacher LLM
to generate rationales for the entire training set ex-
cluding the noisy feedback from the student. In the
subsequent rounds, we adhere to the procedures
outlined in Sections 3.1 to 3.3: (1) the student LM
takes an “exam” to reveal self deficiencies and col-
lect mistakes. (2) The teacher LLM is requested
to generate customized training data based on the
student’s feedback. (3) The student is trained via
learning both from self-reflection and teacher’s cus-
tomized feedback. These steps are repeated until

the student’s performance reaches a plateau. The
whole paradigm is summarized in Algorithm 1.

4 Experiments

4.1 Tasks & Datasets
Mathematical Task We adopt three math word
problem datasets to evaluate the mathematical
reasoning ability. GSM8k is a primary school
level mathematical dataset (Cobbe et al., 2021).
MultiArith is a multi-step arithmetic reasoning
dataset (Roy and Roth, 2015). SVAMP is created
by applying chosen variations over examples sam-
pled from existing datasets (Patel et al., 2021).

Commonsense Task We use two closed-ended
question answering datasets to evaluate the com-
monsense reasoning ability. CSQA (Talmor et al.,
2019) is a multi-choice commonsense question an-
swering dataset. StrategyQA dataset (Geva et al.,
2021) which implicitly requires reasoning steps
and strategies to answer the yes-no questions.

4.2 Models & Baselines
Models Following previous works (Ho et al.,
2023; Zelikman et al., 2022; Hu et al., 2023),
we mainly utilize a publicly available LM GPT-
J (Wang and Komatsuzaki, 2021) as our student
LM which has about 6B parameters. Considering
the pricing and availability, we select ChatGPT3, a
popular black-box 175B LLM provided by OpenAI,
as our teacher LLM.

Baselines To demonstrate the effectiveness of
our method, we compare with the following base-
lines: (1) the teacher LLM and student LM (w/o
fine-tuning), for showing the effectiveness of distill-
ing reasoning ability from the LLM. (2) Methods
without the help of LLMs, including the student
fine-tuned to directly generate answers without ra-
tionales, and STaR (Zelikman et al., 2022) which
self-iteratively trains the LM to generate rationales
and answers with very few annotated data. They
are compared to highlight the importance of high-
quality rationales in teaching smaller LMs. (3)
Three concurrent works which all use LLMs to
help train smaller LMs to reason, including LM
fine-tuned on CoT data (Magister et al., 2023),
Specializing smaller LMs for mathematical reason-
ing (Fu et al., 2023b), and the LLM-adapter (Hu
et al., 2023) which utilizes adapters for efficiently

3https://chat.openai.com/chat. Most experiments are con-
ducted between February and April of 2023.



Method Distillation CoT # Params
Mathematical Reasoning Commonsense Reasoning

GSM8K MultiArith SVAMP CSQA StrategyQA

Teacher LLM No Yes 175B 62.2 95.5 78.0 76.0 68.6
Student (w/o Fine-tuning) No No 6B 2.7 9.0 20.7 34.5 47.2

Student (w/ Fine-tuning) No No 6B 7.2 18.0 32.3 66.7 63.9
STaR (Zelikman et al., 2022) No Yes 6B 10.7∗ 53.9 26.7 72.5∗ 60.0

LLM-Adapter (Hu et al., 2023) Yes Yes 6B 10.6∗ 79.2∗ 45.0∗ - -
Specializing (Fu et al., 2023b) Yes Yes 11B 27.1∗ 63.0∗ 35.6∗ - -
CoT Fine-tuned (Magister et al., 2023) Yes Yes 11B 18.4∗ - - - 63.8∗

One-Round Distillation Yes Yes 6B 15.6 81.5 47.7 68.1 63.8
+ Multi-round Yes Yes 6B 32.0+16.4 83.1+1.6 51.3+3.6 70.2+2.1 65.5+1.7

+ Self-Reflection Yes Yes 6B 33.1+1.1 85.4+2.3 55.0+3.7 71.3+1.1 65.9+0.4

Table 1: Accuracy (%) on various reasoning tasks with different methods. “LLM-Adapter” refers to results of GPT-J
using LoRA adapter (Hu et al., 2022). “Specializing” refers to results of FlanT5-XXL (Chung et al., 2022) which
has about 11B parameters. “CoT Fine-tuned” refers to results of T5-11B (Raffel et al., 2020) fine-tuned on CoT
data from GPT-3 175B (Brown et al., 2020). ∗ denotes the results are from the original paper. Indentation means the
modifications are based on the up-level indentation. The best performance among small LMs are marked in bold.

tuning on CoT data. (4) Our one-round distillation
method, for demonstrating the superiority of the
proposed multi-round learning paradigm.

4.3 Experimental Setup

The student is fine-tuned with a learning rate of
1e−6 in 10 epochs using AdamW (Loshchilov and
Hutter, 2019) in default. Without any heavy tuning,
λ in Eq. (4) is set to 0.5 to control the impact of
self-reflection. The CoT prompt accompanied by a
fixed 3-shot demonstration is used for most datasets
to balance the efficiency and performance. Some
prompts are referred to previous research (Zelik-
man et al., 2022). And we use greedy decoding to
generate the rationale and answer for evaluation.
More implementation details are in Appendix A.

4.4 Main Results

The evaluation results are presented in Table 1.

Effect of Distillation From the results of smaller
LM with or without distillation, it is evident that the
reasoning performance of smaller LM can be signif-
icantly improved by distilling the reasoning ability
from LLM. Although the student LM falls short in
mathematical reasoning, it can achieve comparable
performance in commonsense reasoning with the
teacher LLM while being 20x smaller in size.

Importance of Rationales CoT can significantly
improve reasoning performance which shows the
necessity of high-quality rationales in teaching
smaller LMs. Though STaR performs well in
CSQA which often only involves single-step rea-
soning, the self-generated rationales encounter dif-

ficulties when applied to other multi-step reasoning
tasks. Conversely, nearly all distillation methods
can beat STaR in mathematical reasoning, which
indicates that LLM’s generated rationales can often
better guide the smaller LM to reason.

Comparison with Concurrent Works Com-
pared to concurrent distillation works (Hu et al.,
2023; Fu et al., 2023b; Magister et al., 2023), our
method consistently achieves better performance
across all datasets, which demonstrates the suc-
cess of customized feedback from the black-box
LLM. For GSM8K, in contrast to training an 11B
model with 130k rationales used by Specializing,
our method can yield better performance with a 6B
model and only 54k rationales, significantly reduc-
ing the cost of model training and data collection.

Effect of Multi-round & Self-reflection Com-
pared with our one-round distillation approach,
multi-round learning leads to an average improve-
ment of 5.1 in accuracy, indicating the success of
building the interaction between teacher and stu-
dent. Besides, the self-reflection learning can fur-
ther exploit the reasoning potential of the student
LM. Another advantage is that the self-reflection
can be seamlessly integrated into multi-round learn-
ing, pushing the boundaries of reasoning.

5 Analysis

5.1 Contribution of Student’s Feedback

To validate the contribution of student’s feedback
to LLM, an ablation study is conducted by remov-
ing this feedback of the requesting prompt template



GSM8K Example#1 Ground Truth: 196

Question Olaf has 150 cars at first. Grandpa gave Olaf twice as many toy cars as the uncle. Dad gave Olaf 10
toy cars, 5 less than Mum. Auntie gave Olaf 6 toy cars, 1 more than the uncle. How many toy cars
does Olaf have in total, finally?

Student’s Feedback Olaf has 150 toy cars. His family gives him twice as many toy cars as the uncle. The uncle gives Olaf
10 toy cars. Dad gives Olaf 10 toy cars. Auntie gives Olaf 6 toy cars. So, Olaf has 150 + 10 + 10 + 6
= 236 toy cars.

Teacher’s Response Dad: 10 cars, 5 less than Mum; Mum: 10 + 5 = 15 cars; Aunt: 6 cars, 1 more than uncle; Uncle: 6 - 1
= 5 cars; Grandpa: twice as many toy cars as the uncle, so 5 * 2 = 10 cars; Total: 150 + 15 + 10 + 6 +
5 + 10 = 196 cars.

Teacher’s Response
w/o Feedback

Dad: 10 cars; Mum: 10 + 5 = 15 cars; Uncle: 6 - 1 = 5 cars; Grandpa: 2 * 5 = 10 cars; Total: 150 cars
+ 10 cars + 15 cars + 5 cars + 10 cars = 190 cars.

StrategyQA Example#1 Ground Truth: Yes

Question Can you write a whole Haiku in a single tweet?

Student’s Feedback Haiku is a form of poetry that has three lines and a 5-7-5 syllable count. A tweet is 140 characters
long. So, the answer is No.

Teacher’s Response A haiku can be written in a single tweet if it follows the 5-7-5 syllable pattern within 140 characters.
For example, "Autumn moonlight. A worm digs silently into the chestnut. Dewdrops on a leaf." The
poem is considered a Haiku even if it is shorted, so it’s possible to fit a whole Haiku in a single tweet.
So, the answer is Yes.

Teacher’s Response
w/o Feedback

A Haiku is a traditional form of poetry that is comprised of three lines. The first line is five syllables,
the second line is seven syllables and the last line is five syllables. So, one cannot write a whole Haiku
in a single tweet as it exceeds the character limit. So, the answer is No.

Table 2: Case study of the impact of student’s feedback on the teacher LLM’s response. The incorrect reasoning
steps and answers are colored in red. More cases are listed in Appendix C.

Dataset # Request # Success Accuracy

GSM8K 5701 5250 28.2
w/o Feedback 5701 4641 26.5 −1.7

SVAMP 168 166 51.3
w/o Feedback 168 140 48.3 −3.0

StrategyQA 328 317 65.5
w/o Feedback 328 134 63.9 −1.6

Table 3: The effect of student’s feedback to the teacher
LLM for the 2nd round learning, based on the same 1st

round. “w/o Feedback” indicates removing student’s
feedback in the prompt template shown in Fig. 3. #
Request and Success are the number of requests to LLM
and response with correct rationales, respectively.

Dataset Method Distance Preference

GSM8K
Student 51.00 73.63
+ Self-Reflection 65.08 79.11

SQA
Student 5.03 96.54
+ Self-Reflection 24.78 98.91

Table 4: Comparison of the student LM with and
without self-reflection learning on GSM8K and SQA
datasets. “Distance” measures the Euclidean distance
between correct and wrong reasoning paths in latent
space. “Preference” is the likelihood ratio of correct rea-
soning paths to wrong ones. Both are higher is better.

(Fig. 3). Results in Table 3 show that student feed-
back to LLM can first help the teacher LLM to gen-
erate more accurate and tailored rationales (larger
# Success), which is then beneficial to the student’s
learning (higher Accuracy). Note that cooperating
with our multi-round learning paradigm, the cumu-
lative gains of student’s feedback can be substantial.
Further, we take a case study of the teacher LLM’s
generated rationales in Table 2 which shows that
the LLM can often response improved rationales
when the student’s feedback is taken into account.
For StrategyQA, the teacher LLM even gives a
counterexample to the student’s wrong answer, in-
dicating the LLM can provide customized training
data based on the student’s feedback.

5.2 Effect of Self-Reflection

First, to intuitive understand the effect of self-
reflection learning, Fig. 4 visualizes the latent space
representations of generated rationales. It shows
that the self-reflection could effectively cluster cor-
rect rationales and wrong ones respectively, helping
the model to distinguish each other. Moreover, we
compare the distance and preference differences
in Table 4 which indicates that the self-reflection
contributes to aligning the preference of the student
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Figure 4: The t-SNE visualization (van der Maaten
and Hinton, 2008) of latent space representations of
rationales generated on the GSM8K dataset.
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LM with correct reasoning paths, while away from
self-made wrong ones.

Fig. 5 illustrates the effect of the self-reflection
learning on the reasoning performance. The obser-
vation is consistent with findings in Table 1 that
self-reflection learning can help improve the rea-
soning ability when λ < 0.5. However, excessive
emphasis on self-reflection learning (i.e., a larger
value of λ) typically leads to poorer performance
and instability, especially for the MultiArith dataset.
We conjecture that it has a negative impact on the
learning of teacher’s training data.

To verify the above hypothesis, we plot the loss
curve in Fig. 6. It shows that the excessive empha-
sis on self-reflection learning (higher λ) can result
in underfitting of the these training data within a
limited number of training steps. Consequently, the
reasoning performance of the student LM could be
significantly decreased due to not fully converged.
In general, a small value of λ is preferred to achieve
a balanced learning approach that incorporates both
the teacher’s rationales and self-made mistakes.
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Figure 6: The training loss of Eq. (3) in the initial round
of the student LM with different weight λ on the Multi-
Arith dataset. We also observe that the loss of Eq. (2)
with different λ can all converge.

5.3 Analysis of Multi-round Learning

We examine each learning round of the student LM,
as detailed in Table 5. The error rate and accuracy
are typically gradually decreased and increased
with the learning rounds, respectively. This is be-
cause of each round of learning aims to enhance
the student LM in solving the questions that were
not learned well in previous round. Additionally,
inspired by recent research on employing the LLM
as the evaluator (Chiang and Lee, 2023; Fu et al.,
2023a; Liu et al., 2023), we instruct GPT-4 (Ope-
nAI, 2023) to automatically evaluate the quality of
generated rationales. From the results in Table 6,
we find that there is an enhancement in the qual-
ity of both generated correct rationales and wrong
ones as the learning rounds progress. However, the
gains in reasoning performance reach a plateau af-
ter several rounds of training. This can be attributed
as follows: (1) For GSM8K, the most challenging
task, the student is reaching its capacity after 3
rounds of learning, still not performing well (49.2
ER). (2) For SVAMP and CSQA, relatively easy
tasks, the student achieves a good performance on
the training set after the 2nd round, leading to a
small ER. Consequently, the prepared data for the
next round will be relatively scarce, which is un-
likely to further help improve the student.

We conduct the 4th round learning on GSM8K
for justifying the above analysis, where the ER re-
mains unsatisfactory (51.8 ER) despite a marginal
improvement (+1.4∆) in accuracy. Besides, the
results of the 3rd round on SVAMP and CSQA
datasets show that there are no more gains after the
2nd round. Thus, we suggest to take early stopping



Dataset Initial 1st 2nd 3rd

GSM8K

# Data - 15k 16k 13k
ER 98.3 76.3 66.2 49.2
Acc/∆ 2.7 +12.9 +12.6 +2.4

SVAMP

# Data - 2k 0.6k 0.3k
ER 76.0 24.0 16.7 17.6
Acc./∆ 20.7 +27.0 +3.6 +1.0

CSQA

# Data - 26k 7k 3k
ER 67.8 18.9 7.6 9.2
Acc./∆ 34.5 +31.8 +3.9 -0.6

Table 5: Observation of the student LM in each round
of learning. “Initial” refers to model w/o distillation.
“#Data” represents the size of training samples. “ER”
refers to the error rate on train set. “Acc” denotes the
initial accuracy of the student LM, and “∆” indicates
its performance change after each round.

Dataset Round Correct Wrong

GSM8K
Initial 2.59 ±0.27 1.02 ±0.07

1st 4.50 ±0.18 1.15 ±0.20

2nd 4.88 ±0.14 1.26 ±0.23

SVAMP
Initial 4.53 ±0.20 1.07 ±0.18

1st 4.86 ±0.16 1.09 ±0.21

2nd 4.90 ±0.24 1.11 ±0.20

CSQA
Initial 4.44 ±0.22 1.24 ±0.28

1st 4.84 ±0.27 1.41 ±0.28

2nd 4.96 ±0.12 1.55 ±0.33

Table 6: Results of GPT-4 score for student LM’s gen-
erated rationales in each round of learning. The score
is given based on accuracy and quality of the reasoning
path. “Correct” and “Wrong” stand for the rationales
with correct answers and wrong answers, respectively.

in the multi-round learning if the student can nearly
reach its plateau. By prior estimation of the task
difficulty and observing performance gains in each
round, we can avoid excessive parameter tuning
on the number of learning rounds and balance the
reasoning performance and training costs.

5.4 Feasibility Study

To further benefit the community concerning about
individual affordable computation resources, we
conduct a feasibility study by using different LMs
spanning from 760M to 2.7B parameters. The
tested models include two common LM architec-
tures, i.e., encoder-decoder and decoder-only. The
results shown in Table 7 first suggest that the rea-
soning abilities of these small LMs can all be en-

Method 760M 770M 1.3B 2.7B

SV
A

M
P

Student 0.0 2.7 5.3 3.7

+ Distillation 11.0 13.3 31.7 34.3
+ Self-Reflection 14.7+3.7 15.3+2.0 32.0+0.3 36.3+2.0

+ Multi-round 15.3+0.6 17.0+1.6 35.0+3.0 36.0−0.3

SQ
A

Student 0.0 39.6 51.2 38.9

+ Distillation 62.0 62.2 62.0 62.2
+ Self-Reflection 64.0+2.0 64.2+2.0 64.8+2.8 65.2+3.0

+ Multi-round 64.8+0.8 62.4−1.8 65.8+1.0 63.8−1.4

Table 7: Results of our method with various LM
sizes. “760M”, “770M”, “1.3B” and “2.7B” refer to
T5-Large (Raffel et al., 2020), GPT-2 Large (Radford
et al., 2019), OPT-IML (Iyer et al., 2023) and GPT-
Neo (Gao et al., 2020; Black et al., 2021), respectively.
The indentation means the modifications are based on
the up-level indentation.

hanced with the proposed self-reflection learning.
With self-reflection, student LMs often achieve sat-
isfying performance with just one round of learning
for commonsense tasks. Moreover, we find that our
multi-round learning can generally further improve
the performance in mathematical reasoning. How-
ever, there are no more gains for StrategyQA, as
it heavily relies on the memorization of common-
sense knowledge mostly acquired from the pre-
training stage, rather than on complex reasoning.
Another evidence is that increasing the model size
seems not to have contribution to the performance
on this dataset. Besides, the relatively limited ca-
pacity of these smaller LMs may also restrict the
gains from additional rounds of learning.

6 Conclusion

In this paper, we propose a tailored learning ap-
proach to cultivate the reasoning ability of the
smaller LM, aiming to democratize the emergent
reasoning ability of the LLM. First, we propose
a multi-round interactive learning paradigm that
enables the teacher LLM to provide customized
training data according to the student’s feedback.
Next, we propose the self-reflection learning to
motivate the student to distinguish correct ratio-
nales from wrong ones. Further, the integration
of learning from LLM’s customized feedback and
self-reflection can complement each other within
the proposed multi-round learning paradigm. The
empirical results from mathematical and common-
sense reasoning tasks demonstrate the success of
unleashing the reasoning potential of smaller LMs.
We believe that these findings can benefit the open-
source and NLP communities in the era of LLM.



Limitations

In this section, we discuss the limitations of our
method with integrity while offering potentially
useful advice for future research.

1) Our experiments primarily utilize ChatGPT and
GPT-J (Wang and Komatsuzaki, 2021) as the
teacher LLM and student LM, respectively, due
to the considerations of availability and costs.
Although fine-tuning GPT-J on the outputs of
ChatGPT boosts their reasoning performance, a
substantial gap still remains between them. It
is valuable to validate our findings using more
powerful LMs (e.g., LLaMA (Touvron et al.,
2023a,b)). And training better foundation LMs
should be the primary task for the open-source
community, since imitating proprietary LLMs
may be a false promise (Gudibande et al., 2023).

2) We have demonstrated the importance of stu-
dent’s feedback in distilling the knowledge from
the black-box LLM, but without extensive engi-
neering the feedback prompt templates (e.g., ex-
plicitly instructing the LLM to act as a teacher).
And the interactions (e.g., use reinforcement
learning to connect LLM and smaller LM) can
be explored in the future.

3) Our self-reflection learning currently is defined
in a straightforward triplet-loss form. However,
the core of self-reflection is learning from mis-
takes. Thus, the training objectives or forms can
be defined in various ways, such as ranking loss
or verbal critic are expected to further help the
smaller LMs to reflect and learn from mistakes.

4) Evaluating the correctness of generated ra-
tionale is mainly based on the final answer.
Though most existing works (Zelikman et al.,
2022; Ho et al., 2023; Fu et al., 2023b; Shridhar
et al., 2023) in this field adopt this simple crite-
rion, we call attention to develop more trustwor-
thy criteria to evaluate the quality of rationales.
Potential methods can be using GPT-4 (OpenAI,
2023) or a process reward model (Lightman
et al., 2023) for automatic evaluation.

Ethics Statement

Risk in using closed-source LLMs Though the
datasets used for evaluation is publicly available,
the annotated rationales in this paper are collected
from close-source ChatGPT provided by OpenAI.

Open-source LLMs (e.g., LLaMA) have boomed
in recent months, it is noteworthy that many of
them use the outputs from closed-source LLMs
(e.g., Alpaca and Vicuna are trained on ChatGPT’s
outputs) for further improvements. According to
the Sec. 2 "Usage Requirements", within OpenAI’s
terms of use4, there exists a prohibition against "use
output from the Services to develop models that
compete with OpenAI". However, beyond its terms
of use, the crucial matter lies in determining "own-
ership of the copyright pertaining to the outputs
of generative AI". As of today, there remains an
ambiguity regarding the copyright status of genera-
tive AI outputs, both in scholarly circles and legal
contexts. Compelling evidence indicates that these
closed-source LLMs undergo training using numer-
ous copyrighted materials, such as books, academic
publishings, etc. Thus, we think at least the authors
of the training data that directly supports LLM’s
outputs hold the copyright, as opposed to the LLM
service provider. The prompt creators may also
hold the copyright if their prompts substantially
influence LLM’s outputs. For open-source and
research communities, we call for a responsible
discussion about data collection.

Social Impact This paper explores how to uti-
lize the LLM as a teacher to enhance the reasoning
performance of smaller LMs, which can help de-
mocratize these emergent abilities for the benefit of
broader communities (e.g., math education). Fur-
thermore, we firmly believe that the utilization of
LLMs can be a significant area of interest in natural
language processing applications and research.
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A Implementation Details

The codes will be made publicly available after
anonymous reviewing period.

A.1 Data Preparation

The dataset statistics are shown in Table 8. Fol-
lowing Ho et al. (2023), the data of SVAMP (Patel
et al., 2021), MultiArith (Roy and Roth, 2015) and
StrategyQA (Geva et al., 2021) is split with a ratio
of 70 : 30 for the training and evaluation, while
GSM8K (Cobbe et al., 2021) and CSQA (Talmor
et al., 2019) datasets follow the original split. In
mistakes collection, we use sampling decoding to
prompt student LM to generate 4 rationales for each
sample, and only the wrong ones are collected. In
rationales collection, the teacher LLM is requested
to generate 4 diverse rationales for each question,
and only the correct ones are collected. An exam-
ple of Fig. 3 for using student’s feedback to request
the LLM is shown in Table 12. The decoding gen-
eration configs are listed in Table 9.

A.2 Training & Evaluation

Hyperparameter Experiments are performed
with the help of Transformers5 (Wolf et al., 2020)
and Deepspeed6 (Rajbhandari et al., 2020) libraries.
We use 8 Tesla V100 GPUs with FP16 for training
and evaluation. The adopted training hyperparame-
ter settings across all datasets are shown in Table 10.
The student LM is trained with a 1e−6 learning rate
for the initial round learning, and 7e−7 for the fol-
lowing rounds, to make the training more stable.
And we set a random seed 42 for all experiments
to ensure reproducibility.

Demonstration Following Min et al. (2022); Ze-
likman et al. (2022); Fu et al. (2023b), we use sev-
eral fixed demonstrations selected from the train-
ing set as the prefix of each sample to improve
the in-context learning performance. Considering
the memory consumption and efficiency, we use 3-
shot demonstrations for GSM8K, MultiArith, and
SVAMP datasets. For CSQA and StrategyQA, we
respectively use 5-shot and 4-shot demonstrations
to reduce the label bias (Zhao et al., 2021) since
they are essentially 5 (“a, b, c, d, e”) and 2 (“yes,
no”) labels classification tasks. These demonstra-
tions are listed in Table 15.

5https://github.com/huggingface/transformers
6https://github.com/microsoft/DeepSpeed

Dataset Type # Train # Test Split

GSM8K Mathmatical 7473 1319 Original
MultiArith Mathmatical 420 180 70:30
SVAMP Mathmatical 700 300 70:30
CSQA Commonsense 9741 1221 Original
StrategyQA Commonsense 1603 687 70:30

Table 8: Dataset statistics.

Arguments Mistakes LLM

Temperature 1.0 1.0
Top-p - 0.9
Top-k 50 -
Max Generation Len. 128 128
# Return Sequences 4 4

Table 9: Generation configs for collecting student’s self-
made mistakes and rationales from teacher LLM.

Hyperparameter Value

Epoch 10
Batch Size 16
Learning Rate {1e−6, 7e−7}
β of AdamW (0.9, 0.999)
ϵ of AdamW 1e−8
Weight Decay 0.01
Warmup Steps 100

Table 10: Training hyperparameter settings.

In addition, from pilot experiments, we empir-
ically find that assigning less weights (0.1) to the
fixed demonstration examples than the input sam-
ple helps the model focus on the input sample and
yield better performance, which can be investigated
in the future.

Evaluation We use a simple-yet-effective CoT
prompt template as follows:

Question:x \n Reasoning: r \n Answer: y (5)

where \n is the line break symbol, x is the question,
r and y are expected reasoning steps and answer, re-
spectively. The greedy decoding is adopted for the
generation of the student LM though beam search
may further improve the performance. The answer
extraction of evaluation is simply using the first
valid token after the “Answer:”, which can avoid
complex post-processing.

https://github.com/huggingface/transformers
https://github.com/microsoft/DeepSpeed


B Generalization Results

Generalization experiments are conducted to evalu-
ate the generalization of the student LM, as shown
in Table 11. The results reveal the following in-
sights: (1) the in-domain generalization perfor-
mance is enhanced after the reasoning distillation,
while the out-of-domain (OOD) performance is
usually slightly decreased. This finding is consis-
tent with Fu et al. (2023b) although our method
is better than theirs in terms of OOD performance.
(2) The in-domain performance can be further im-
proved by employing our multi-round learning
paradigm. And we surprisingly find that, for some
cases, the OOD performance can also be improved
via multi-round learning. This can be attributed to
that the customized training data of the following
rounds may assists the model in generalizing its
reasoning abilities to other domains. (3) The stu-
dent LM trained on the GSM8K dataset exhibits the
most significant improvements in in-domain rea-
soning performance. Note that the GSM8K dataset
is the most challenging one among these mathe-
matical datasets. Consequently, it is reasonable to
expect gains on the other datasets if the student can
already tackle the difficult problems.

C Case Study

Contribution of Student’s Feedback Additional
examples of the LLM’s generated rationales are
presented in Table 13. We observe that the teacher
LLM, ChatGPT, is capable of generating more
detailed and precise reasoning steps when pro-
vided with student’s feedback (i.e., wrong solution).
These detailed reasoning steps can help address the
student’s deficiencies and thereby improve the rea-
soning performance in the subsequent round of
learning. Although both rationales, with and with-
out feedback, are correct, their quality can vary.
More precise and customized rationales can help
the student better understand its own mistakes, es-
pecially coupled with our self-reflection learning,
which is beneficial for student’s reasoning learning.

Multi-round Learning To better understand the
impact of each learning round, we conduct a case
study in Table 14. First, it is clear that the student
LM initialized with pre-trained weights (i.e., the
0th round) is powerless to generate meaningful an-
swers for the mathematical reasoning task, which
may confuse the teacher LLM. Thus, we tend not to
utilize these noisy feedback for preparing the train-

ing data of the initial round. Second, the LLM’s
generated response is often tailored to student’s
current deficiencies, thus effectively improving stu-
dent’s reasoning performance in the next round of
learning. Third, a single round of distillation may
not enable the student to solve challenging ques-
tions. However, with the help of our multi-round
learning paradigm, the student can have the oppor-
tunity to tackle such challenging questions.



Train on
Evaluation on

GSM8K MultiArith SVAMP CSQA StrategyQA

None 2.7 9.0 20.7 34.5 47.2

GSM8K
1st 15.6 46.6 25.3 28.4 38.3
Last 32.0 80.3 42.3 30.0 38.3

MultiArith
1st 4.7 81.5 14.7 32.3 52.5
Last 5.0 83.1 19.3 31.4 52.1

SVAMP
1st 4.0 12.4 47.7 29.6 45.4
Last 5.4 14.6 51.3 34.0 44.7

CSQA
1st 2.6 5.1 12.3 68.1 48.0
Last 2.3 5.1 14.3 70.2 51.1

StrategyQA
1st 3.8 9.0 19.0 33.3 63.8
Last 9.6 9.6 17.3 33.5 65.5

Table 11: Generalization results of our multi-round learning paradigm on in-domain and out-of-domain reasoning
tasks. “None” refers to the student model initialized with pre-trained weights, without any fine-tuning. “1st” refers
to the student LM taken the first round of learning. Similarly, “Last” refers to the last round of learning. Results
colored in green indicate the in-domain reasoning, while blue indicate the out-of-domain reasoning.

Question: Is Europa linked to Viennese waltzes?
Wrong Solution: Europa is a moon of Jupiter, and it is named after a Phoenician queen of Crete. Viennese waltzes are a type
of dance that originated in Austria. So, the answer is No.
Please correct the wrong solution by using better reasoning steps.
Hint: The final answer should be yes.
Better Reasoning: While Europa is a moon of Jupiter and named after a Phoenician queen of Crete, it is also the title of a
famous waltz composed by Austrian composer Johann Strauss II in 1889. The waltz is named after the mythical princess
Europa from Greek mythology, who was abducted by Zeus and taken to Crete. So, the answer is Yes.

Question: Would a honey badger fit inside an oven?
Wrong Solution: Honey badgers are large animals that can grow up to be about the size of a small dog. An oven is a small,
enclosed space. So, the answer is No.
Please correct the wrong solution by using better reasoning steps.
Hint: The final answer should be yes.
Better Reasoning: The answer is actually Yes, a honey badger could fit inside an oven, but the size of a honey badger can
vary and an oven can also vary in size. So, the answer is yes.

Question: Would a pacifist be opposed to hunting?
Wrong Solution: Pacifists believe in non-violence and do not support the use of violence. Hunting is a form of violence. So,
the answer is Yes.
Please correct the wrong solution by using better reasoning steps.
Hint: The final answer should be no.
Better Reasoning: While pacifists do believe in non-violence, their opposition is generally focused on human-on-human
violence. Some pacifists may be opposed to hunting due to their belief in non-violence towards animals, but it is not
necessarily a universal position among pacifists. So, the answer is No.

Question: { question x }
Wrong Solution: { mistake r̂ }
Please correct the wrong solution by using better reasoning steps.
Hint: The final answer should be { answer y }.
Better Reasoning: { Expected LLM’s customized feedback }

Table 12: An example of the prompt template introduced in Fig. 3 for asking the LLM to generate customized
rationales, for a given question x, student’s mistake r̂, and the ground truth answer y from the StrategyQA dataset.



GSM8K Example#2 Ground Truth: 12

Question Janet bought some muffins at the bakery. Each muffin is 75 cents. Janet paid 20 and got 11 in change
back. How many muffins did Janet buy?

Student’s Feedback Janet bought some muffins at the bakery. Each muffin is 75 cents. Janet paid 20 and got 11 in change
back. We know that:1) Janet bought some muffins at the bakery.2) Each muffin is 75 cents.3) Janet
paid 20 and got 11 in change back.From these three pieces of information, we can infer that: Janet
bought 9 muffins.

Teacher’s Response We know that Janet paid 20 and got 11 in change back. To find how much money Janet paid to buy
muffins, we can subtract 11 from 20 which results in 9. If 1 muffin costs 75 cents and Janet paid 9
then she must have bought 12 muffins ( 9 divided by 75 cents per muffin = 12 muffins).

Teacher’s Response
w/o Feedback

The change Janet got back is 11. This means Janet spent 20 - 11 = 9 on muffins. If each muffin costs
75 cents, then Janet bought 9 / 0.75 = 12 muffins.

SVAMP Example#1 Ground Truth: 5

Question A waiter had 11 customers. After some left he still had 3 customers. How many more customers left
than those that stayed behind?

Student’s Feedback To find the number of customers who left, we need to subtract the number of customers who stayed
behind from the number of customers who left. The number of customers who left is 11 - 3 = 8.

Teacher’s Response Let X be the number of customers who left the restaurant. We know that 11 - X = 3, as 3 customers
stayed behind. We can solve for X by adding X to both sides of the equation, resulting in X = 11 - 3 =
8. Therefore, the number of customers who left is 8 and the number who stayed is 3. 8 - 3 = 5 is the
number of customers who left than those that stayed behind.

Teacher’s Response
w/o Feedback

To find the number of customers who left, we must subtract the number of customers who stayed
from the total number of customers the waiter had: 11 - 3 = 8. Therefore, 8 more customers left than
those that stayed behind.

SVAMP Example#2 Ground Truth: 9

Question 5 children were riding on the bus. At the bus stop 63 children got off the bus while some more got on
the bus. Then there were 14 children altogether on the bus. How many more children got on the bus
than those that got off?

Student’s Feedback To find the number of children that got on the bus, we need to subtract the number of children that got
off the bus from the total number of children on the bus. Therefore, the number of children that got on
the bus is 14 - 63 = -49.

Teacher’s Response Let X be the number of children who got on the bus. Initially, there were 5 children on the bus and 63
children got off. Therefore, after getting off the bus, the number of children on the bus is 5 - 63 =
-58. Adding the children that got on the bus, we get -58 + X = 14. Therefore, X = 72. And we can
calculate the difference between children that got on the bus and children that got off. 72 - 63 = 9.
Therefore, 9 more children got on the bus than those that got off.

Teacher’s Response
w/o Feedback

First, we know that 5 children were riding on the bus before the bus stop, then 63 children got off the
bus. So, there were 5 - 63 = -58 children on the bus. Then, 14 children were on the bus, so we know
that 14 - (-58) = 72 children got on the bus. To find the number of children who got on the bus than
those who got off, we find the difference between the number of children who got on and the number
who got off which is 72 - 63 = 9 children.

StrategyQA Example#2 Ground Truth: Yes

Question Do mail carriers need multiple uniforms?

Student’s Feedback Mail carriers work for the United States Postal Service (USPS) and they have one uniform. So, the
answer is No.

Teacher’s Response Mail carriers typically have multiple uniforms, with some designed for indoor use, some for outdoor
use, and others for different weather conditions. Some mail carriers may also have different clothing
items for specialized tasks such as carrying mail bags. The answer is Yes.

Teacher’s Response
w/o Feedback

Mail carriers work outdoors in various weather conditions. They need to wear different clothes to be
protected from different weather conditions. So, the answer is Yes.

Table 13: Case study of the impact of student’s feedback on the teacher LLM’s response. The incorrect reasoning
steps and answers are colored in red. With the student’s feedback, the teacher can often generate more detailed and
precise reasoning steps.



GSM8K Example#1

Question: The number of short students in a class is 2/5 of the total number of students. If there are 90 tall students,
and the class has 400 students, calculate the total number of students with average height. Ground Truth: 150

Round Student’s Generation Correctness: %

0th The number of short students is 2/5 of the total number of students.The number of tall students is 2/5 of the total
number of students. The number of students with average height is 2/5 of the total number of students.

Teacher’s Feedback

1st The number of short students in the class is 2/5 of the total number of students, which means there are (2/5) * 400
= 160 short students. If there are 90 tall students, then the number of students with average height can be calculated
by subtracting the number of short and tall students from the total number of students. The total number of students
with average height is 400 - 160 - 90 = 150 students.

Student’s Generation Correctness: %

1st There are 90 tall students in the class. There are 2/5 of 400 students, which is 2/5 * 90 = 36 short students. So the
total number of students in the class is 90 + 36 = 126.

Teacher’s Feedback

2nd There are 90 tall students in the class. Short students are 2/5 of the total number of students. The total number of
students in the class is 400. Short students: 2/5 * 400 = 160. We know the total number of students in the class
is 400, so 90 + 160 = 250 is the number of tall and short students. Therefore, the total number of students with
average height is 400 - 250 = 150.

Student’s Generation Correctness: %

2nd The number of short students in a class is 2/5 of the total number of students. So, 2/5 * 400 = 160. The number of
tall students in a class is 90. So, the total number of students with average height is 400 - 160 - 90 = 170.

Teacher’s Feedback

3rd The total number of students in the class is 400. The number of short students is 2/5 of the total number of students,
2/5 * 400 = 160. The number of tall students is 90. The total number of short and tall students is 160 + 90 = 250.
So the total number of students with average height is 400 - 250 = 150.

Student’s Generation Correctness: "

4th The number of short students is 2/5 of the total number of students, which is 2/5 * 400 = 160. The total number of
students with short height is 160 + 90 = 250. The total number of students with average height is 400 - 250 = 150.

CSQA Example#1

Question: Where do students keep rubber bands?
(a) trees (b) drug store (c) trash (d) beside table (e) classroom Ground Truth: (e)

Round Student’s Generation Correctness: %

0th The answer should be a place where students would keep rubber bands. Bedside tables are often where students
keep their rubber bands. Therefore, the answer is bedside table (d).

Teacher’s Feedback

1st The answer should be a place where students might keep rubber bands. Students might keep rubber bands in their
desks in the classroom. Therefore, the answer is classroom (e).

Student’s Generation Correctness: "

1st The answer should be a place where students would keep rubber bands. Rubber bands are often used for school
projects, so students would keep them in their classroom. Therefore, the answer is classroom (e).

Table 14: Case study of the student LM’s generation and teacher LLM’s feedback by multi-round learning. The
teacher can generate more tailored training data thanks to being aware of the student’s deficiencies. And the student
can gradually improve its reasoning ability with the help of these customized feedback.



3-shot demonstrations of GSM8K dataset

Question: Albert is wondering how much pizza he can eat in one day. He buys 2 large pizzas and 2 small pizzas. A large pizza has 16
slices and a small pizza has 8 slices. If he eats it all, how many pieces does he eat that day? \n Reasoning: A large pizza has 16 slices, so 2
large pizzas have 32 slices. A small pizza has 8 slices, so 2 small pizzas have 16 slices. If we add 32 slices and 16 slices, we get 48 slices.
Therefore, he will eat 48 slices of pizza in that day. \n Answer: 48
Question: Mary does her grocery shopping on Saturday. She does her shopping only at a specific store where she is allowed a credit of 100,
which must be paid in full before her next shopping trip. That week she spent the full credit limit and paid 15 of it on Tuesday and 23 of it on
Thursday. How much credit will Mary need to pay before her next shopping trip? \n Reasoning: Mary spends her entire credit limit of
100 on Saturday. On Tuesday, she pays 15 towards her debt. On Thursday, she pays 23 towards her debt. This leaves her with a remaining
balance of 100 - 15 - 23, which is equal to 62. \n Answer: 62
Question: Ralph is going to practice playing tennis with a tennis ball machine that shoots out tennis balls for Ralph to hit. He loads up the
machine with 175 tennis balls to start with. Out of the first 100 balls, he manages to hit 2/5 of them. Of the next 75 tennis balls, he manages
to hit 1/3 of them. Out of all the tennis balls, how many did Ralph not hit? \n Reasoning: Ralph hits 2/5 of the first 100 balls, so he hits 40
balls. Then, Ralph hits 1/3 of the next 75 balls, so he hits 25 more balls. In total, Ralph hits 40 + 25 = 65 balls. Finally, we know that Ralph
started with 175 balls, so 175 - 65 = 110 balls not hitted. \n Answer: 110

3-shot demonstrations of MultiArith dataset

Question: There are 64 students trying out for the school’s trivia teams. If 36 of them didn’t get picked for the team and the rest were put
into 4 groups, how many students would be in each group? \n Reasoning: The number of students who got picked for the team is 64 - 36 =
28. To find how many students would be in each group, we need to divide the number of students by the number of groups, which is 28 / 4 =
7. \n Answer: 7
Question: Cody bought 7 boxes of chocolate candy and 3 boxes of caramel candy. If each box has 8 pieces inside it, how much candy did he
have total? \n Reasoning: First, we need to find the total number of boxes Cody bought, which is 7 + 3 = 10 boxes. Then, we can multiply
the number of boxes by the number of pieces of candy in each box to find the total amount of candy. Therefore, Cody had 10 x 8 = 80 pieces
of candy in total. \n Answer: 80
Question: For Halloween Robin scored 23 pieces of candy. She ate 7 pieces the first night and then her sister gave her 21 more pieces. How
many pieces of candy does Robin have now? \n Reasoning: We need to add the number of pieces of candy she had after the first night to the
number of pieces her sister gave her. Therefore, the total number of pieces of candy Robin has now is 23 - 7 + 21 = 37. \n Answer: 37

3-shot demonstrations of SVAMP dataset

Question: Paul had 50 books. After buying some in a garage sale he had 151 left. How many books did he buy? \n Reasoning: The number
of books Paul bought can be found by subtracting the final number of books from the initial number of books: 151 - 50 = 101. Therefore,
Paul bought 101 books in the garage sale. \n Answer: 101
Question: Luke played a trivia game and scored 154 points. If he gained the 11 points in each round. How many rounds did he play? \n
Reasoning: We need to divide Luke’s total score by the number of points he gained in each round. Therefore, the number of rounds Luke
played is 154 / 11 = 14. \n Answer: 14
Question: Julia played tag with 17 kids on monday, 15 kids on tuesday and 2 kids on wednesday. How many kids did she play with
altogether? \n Reasoning: To find the total number of kids Julia played with, we need to add the number of kids she played with on each day.
Therefore, the total number of kids Julia played with is 17 + 15 + 2 = 34. \n Answer: 34

5-shot demonstrations of CSQA dataset

Question: What do people use to absorb extra ink from a fountain pen? \n Answer Choices: \n (a) shirt pocket \n (b) calligrapher’s hand \n
(c) inkwell \n (d) desk drawer \n (e) blotter \n Answer: The answer must be used to absorb extra ink. Blotters are designed to absorb liquids.
Therefore, the answer is blotter (e).
Question: What home entertainment equipment requires cable? \n Answer Choices: \n (a) radio shack \n (b) substation \n (c) television \n
(d) cabinet \n (e) desk \n Answer: The answer must require cable. Cable is used to provide satellite channels to televisions. Therefore, the
answer is television (c).
Question: Sammy wanted to go to where the people were. Where might he go? \n Answer Choices: \n (a) populated areas \n (b) race track
\n (c) desert \n (d) apartment \n (e) roadblock \n Answer: The answer must be a place with many people. Populated areas, by definition, have
a lot of people. Therefore, the answer is populated areas (a).
Question: Where do you put your grapes just before checking out? \n Answer Choices: \n (a) mouth \n (b) grocery cart \n (c) super market
\n (d) fruit basket \n (e) fruit market \n Answer: The answer should be the place where grocery items are placed before checking out. Of the
above choices, grocery cart makes the most sense for holding grocery items. Therefore, the answer is grocery cart (b).
Question: Google Maps and other highway and street GPS services have replaced what? \n Answer Choices: \n (a) united states \n (b)
mexico \n (c) countryside \n (d) atlas \n (e) oceans \n Answer: The answer must be something that used to do what Google Maps and GPS
services do, which is give directions. Atlases were also used to give directions. Therefore, the answer is atlas (d).

4-shot demonstrations of StrategyQA dataset

Question: Are chinchillas cold-blooded? \n Reasoning: Chinchillas are rodents, which are mammals. All mammals are warm-blooded. So,
the answer is No. \n Answer: No
Question: Would Janet Jackson avoid a dish with ham? \n Reasoning: Janet Jackson follows an Islamic practice. Islamic culture avoids
eating pork. Ham is made from pork. So, the answer is Yes. \n Answer: Yes
Question: Can a honey bee sting a human more than once? \n Reasoning: Human skin is tough, and the bee’s stinger gets lodged in the skin.
The stinger becomes separated from the bee which dies soon after. So, the answer is No. \n Answer: No
Question: Is average number of peas in a pod enough commas for a billion? \n Reasoning: The average number of peas in a pod is 6 or 7. A
billion is a number that has only 3 commas in it. So, the answer is Yes. \n Answer: Yes

Table 15: The demonstrations used for each dataset. The “\n” indicates a line break. The key token is marked
in bold for clear view. The prompt for CSQA is slightly different from others since we adopt the original prompt
template of STaR (Zelikman et al., 2022). And we only use 5 out of 7 demonstrations from STaR.


