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Abstract

Solving math problems harder than any already solved problem requires generaliza-
tion of reasoning outside the training domain. This paper investigates generalization
in tasks rooted in propositional logic that become increasingly challenging when
expressions encapsulate more deeply nested clauses. We first evaluate general pur-
pose language models on expressions of different depth. This shows that language
models struggle with highly nested expressions, despite supervised fine-tuning,
chain-of-thought reasoning with large throughput or self-reflection. We observe
that small errors propagate through the nested chain of reasoning, leading to incor-
rect outputs. To disentangle the role of training set from implicit bias, we also train
specialized models from scratch on expressions of bounded depth. Our evaluations
on test sets of varying depths suggest that large models trained on large samples
exhibit mild signs of depth extrapolation, but miss compact shortcut solutions that
can solve the problem perfectly. For both specialized and general purpose models
we demonstrate that recursive test-time inference traversing the parsed abstract
syntax tree of the input unlocks depth generalization, yet remains imperfect.

1 Introduction

Assessing whether a machine can reason on problems of unbounded difficulty raises fundamental
questions about experiment design and fairness of performance metrics [Bubeck et al., 2023, Trinh
et al., 2024, Reid et al., 2024, Shojaee et al., 2025, Opus and Lawsen, 2025]. Measuring basic capa-
bilities of neural networks has historically and also in the interpolation regime followed evaluations
on independently and identically distributed unseen data [Vapnik and Chervonenkis, 1971, Vapnik,
1998, Bartlett et al., 2005, Belkin et al., 2019, Belkin, 2021, Montanari and Zhong, 2022]. This
methodology meets its limits when assessing today’s large reasoning models’ performance, because
(1) the internet-extracted massive training sets cover most of human knowledge, possibly resulting in
leaked test sets [Mialon et al., 2023, Schaeffer et al., 2024]; and (2) the ideal test sets for reasoning
tasks contain harder than training-set problems, which are by definition non-identically distributed.

To study reasoning extrapolation, training and test samples need to be split along a parameter which
encodes levels of difficulty. Generalization of a model trained on easier data is measured on harder
test data which is not identically distributed. This data stratification strategy is not following the i.i.d.
paradigm, but has some lineage. A well studied direction of extrapolation (generalization outside the
training domain) is along the context window size. Length extrapolation was hypothesized by Vaswani
et al. [2017] to be well-handled by parameterized sinusoidal position embeddings. Subsequent studies
of the problem (e.g. [Delétang et al., 2023]) have rejected this hypothesis, in favor of competing
approaches developed using linear [Press et al., 2021], relative distance, or multiplicative position
encoding Su et al. [2024]. Memory or retrieval based methods of Dai et al. [2019], Rubin and Berant
[2024] and also sparse attention [Child et al., 2019] pool knowledge from chunks of text. They
assume that chunks that fit in the context window are independent and distributed identically to the
training data. Unfortunately, these methods fail when the input contains non-trivial connections
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between distant tokens.
In this work we are interested in input sequences of tokens organized in hierarchies but presented
to the model as a sequence. In these sequences, nested clauses create strong dependencies between
far tokens. We will see that even when the test sequence fits into the context window, Transformer
models fail at inducting the recursion needed to perform the target task. We demonstrate that symbolic
parsing enables designing a recursion through the syntax graph that permits generalization to more
deeply nested input.
A first set of experiments in Section 2 applies the proposed approach at inference time to a language
model showing a 3× relative performance improvement as compared to a self-reflection approach. In
Section 3 we pre-train a Transformer on bounded depth (≤ 3) data and demonstrate that the resulting
neuro-symbolic approach allows to achieve ≈90% accuracy up to depth 18 while the model’s context
window cannot handle expressions of depth higher than 9, where it has a near random performance
of ≈60%.

2 Simplification of nested Boolean expressions by language models

2.1 Background on Boolean expression simplification

Simplifying a deeply nested expression has implications in logic, theorem proving [Lample et al.,
2022] and circuit design as first noted by Shannon [1938]. McCluskey [1956] proposed a solution
to the Boolean expression simplification problem. The Quine-McCluskey method searches the
exponentially large (in the variable count) truth table for prime implicants. The search space is
prohibitively large. The total number of simplified forms for an expression with k predicates is 22

k

:
the size of the truth table of the subsets of k entries. The recursive ‘simplifying inside-out’ method
of Baker [1979] post-order traverses the Abstract Syntax Tree (AST) representing the expression.
During the post-order traversal, simplified expressions of the children are merged using the parent
node’s operator. Then the resulting expression is simplified. The graph traversal algorithm visits
each node of the graph once. However, because partial expressions may not simplify, the parent
simplification operation may end up accumulating a higher cost than a unit cost per node. In the
worst case, the combined expressions do not simplify. The resulting expressions will therefore have
a length equal to the sum of the children’s. This adds up to an overall exponential complexity in
expression depth in the worst case scenario. While both approaches have exponential memory cost,
the latter approach is more practical1 and intuitive. In the rest of this section, we overview how LLMs
approach the problem.

2.2 Description of the dataset

We use a random logical clause generator which selects uniformly from the pool of Booleans and
predicates true, false, p1, · · · pk,¬p1 · · · pk,¬pk (we use k = 4 here). Clauses are joined with
operators & or | with equal probability. We generate such expressions for depths 2 to 9. Depth is
defined as the maximum number of unclosed open parentheses met in the expression. We report results
on 100 random samples from each depth. In Figure 3, left, we represent the character length of such
expressions as a function of nested depth, which appear to grow super-linearly. For each expression,
we generate a simplified version using the Python package for symbolic reasoning sympy. We test the
validity of an expression returned by a model using 2 conditions: (1) the returned expression must be
shorter than the original complex expression - note: this is a very loose requirement for simplification
(2) the simplified expressions must equate the simplified expression returned by sympy, which we
assess using sympy.simplify(y).equals(sympy.simplify(yhat)).

2.3 Chains-of-thoughts for recursive reasoning

We test language models using a prompt that states basic principles to use (inside-out reasoning,
absorption, De Morgan law etc.) for expression simplification, see Example 1 in Appendix. We run
our models on 100 samples of depths 2, · · · , 9 and report accuracy or rate of correctly simplified
expressions. To improve performance at higher depths, we experiment with extra token budget,
allowing for self-reflection, SFT, and a traversal of the parsed graph.
Maximum number of tokens. We first report results from two runs of a Claude Sonnet 3.7 model

1The inside-out method is implemented in sympy.simplify.
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Figure 1: Left: simplification of nested Boolean expressions of depth 2 to 9 using an LLM. See
Example 1 for a depth 2 case. In this experiment we vary the inference token budget / length of
the output to question (reject) the hypothesis Opus and Lawsen [2025] that token budget explains
collapse of model performance for complex problems. Right: Supervised Fine Tuned model on
shallow (depth=2) expressions generalize to slightly deeper (depth=2, 3) but not beyond, align yet
weaker than reported by Shen et al. [2023].

"anthropic_version": "bedrock-2023-05-31" with max_token variable set to 4,096 and
16,384 respectively. We observe that higher max_token variable does not significantly improve
reasoning capability of the model as suggested by Opus and Lawsen [2025]. When inspecting
failure cases (see Example 1) we see that small errors that happen throughout the chain-of-thoughts
propagate and result in wrong final results. In other more complex examples such as Example 2, the
model refuses to get challenged. Anecdotally, we report that Gemini 2.5 Flash Reid et al. [2024]
queried on 2025-07-12 with a depth 9 example generated a 20,293 character response ≃7× longer
than Claude’s answer, yet the final response was incorrect.
Self-reflection. In a subsequent experiment, and given observations on small mistakes made by the
language model, we provide the full prompt and the first answer as prompt to the same model. We
also recall the desired inside-out methodology and the basic Boolean simplification rules, and ask
the model to verify the reasoning and steps carefully and return the correct answer. Results of this
approach barely improve on the direct inference of the model, as displayed in Figure 1 left, cyan
hexagons.
AST traversal. We finally leverage the nested expression’s AST2. to recursively call the language
model while post-order traversing the expression’s tree. Every time a sub-expression of depth at
most 4 is met, a prompt triggers the language model to simplify the sub-expression and replace the
node with it. We observe (Figure 1 left, black triangles) that this method results in a significant
performance lift, for example at depth 9 where all competitor methods achieve ≤ 10%, the AST
traversal based method is accurate in more than 40% of cases, a 4× improvement. Performance boost
at depths ≤ 4 is due to our implementation, which first fetches the root’s children before examining
the tree depth of each of the children and calling the simplifier for each.
Supervised Fine-Tuning on shallow expressions. The previous experiment tested the capability of
an already trained (Large) Language Model with respect to inference budget. In a separate experiment
we also examine supervised fine-tuning using a few full reasoning samples of low depth. We report
results of an experiment with a Qwen3-0.6B model [Yang et al., 2025], fine-tuned with the chain-of-
thought of the correctly simplified depth-2 samples by Claude 3.7 with max_token=4,096 presented
in the experiment above. We observe in Figure 1 right, that while the fine-tuned model appears to
be superior to the off-the-shelf model at depths 2 and 3, the performance of the two models are
indistinguishably poor for depths 4 and above. This finding suggests that the Supervised Fine-Tuned
Language Model was not able to generalize beyond training depth (plus one). This is to be contrasted
with findings reported in Shen et al. [2023] that pre-trained models are able to length-generalize in
arithmetic tasks.
Observations. When prompted properly, LLMs articulate a chain-of-thought which follows the
inside-out or post-order traversal logic. Despite identifying a valid recursion path, we observed 3
pitfalls in the LLM’s reasoning: (1) small errors often occur and propagate throughout the post-order
traversal chain of reasoning, grow exponentially with the depth and super-exponentially in the number
of variables, leading to incorrect conclusions, see Example 1. (2) As input length increases, the model

2We created the AST using the ast module, since sympy’s AST applies basic simplifications.
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Figure 2: Boolean expression simplification. Left: Accuracy of depth 3 simplifiers trained on 103

and 105 minibatches, and with majority voting. Right: Performance in deeper test sets relying on a
model trained on q = 3 shallow data. The model is enhanced using majority voting and recursion,
and compared with a closed-form stack-augmented circuit.

appears to show increasing laziness to approach it, as suggested by the sub-linear growth of length of
output against length of input reported in Figure 3. (3) Ultimately, models refuse to engage in trying
to solve the problem and reject the task, as shown in Example 2.
Our experiments show that neither supervised fine-tuning nor self-reflection address the problem
in a bounded number of inference calls using the internal recursions generated by the Transformer.
In contrast, recursive calls that post-order traverse the AST give a performance boost by calling the
neural network on shallow sub-expressions only, possibly similar to samples in the training data.
How much performance boost can we get if we are certain that model calls are done on in-distribution
samples only?

3 Specialized models, a closed-form oracle and test-time recursion

To disentangle Transformers’ implicit bias from the train-test distribution gap, we run a set of
experiments with models trained from scratch on depth-stratified train and test sets. In this section, we
pre-train Transformers on a nested-depth stratified training and test set to assess whether Transformers
learn parsing and recursion required for depth generalization from large training datasets. We are
particularly interested in experimenting with test-time inference for models that perform well in the
training domain.
Data description. We experiment on expressions formed by nested clauses of Booleans true, false
joined with operators &, |. There is no negation and no predicates in the data used here, so the output
is a binary true, false and a random model has a 50% accuracy. We train a single-pass model on
expressions of depth q = 3. For example

[BOS] ((true&(true|false))|true) = true [EOS]

is one such expressions. Our test set comprises Boolean expressions of depths 3 (in sample), 6 to 18
(out-of-sample). The median length of expressions of depth 6, 9, 12, 15, 18 are respectively 87, 351,
1483, 6267, 26409 tokens.

3.1 Experiments

Pre-training and majority voting. In experiments reported in Figure 2 we use the best performing
model trained on 105 minibatches and 7 majority votes. While we observe a performance improve-
ment from 103 to 105 minibatches (see Figure 2 left), we do not observe grokking of a model capable
of extrapolation as predicted by Murty et al. [2023a]: the best model has limited generalization, as
Figure 2 right, black stars show a drastic drop in performance when depth is larger than 3. For q ≥ 12
test sequence lengths exceed the context window length 1024 of our model. Our depth 3 trained
model has 8 heads and 8 layers and embedding vectors of dimension 1024. Longer training of a
model after a plateau-ed training and validation loss, and majority voting are simple mechanisms for
performance optimization. We trained and compared models on 103 and 105 minibatches of 8192
Boolean expressions with 1 to 9 majority votes and present results in Figure 2 left, where we report
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evaluations on a 10,000 sample and a model with 7+ majority votes which seemingly performs with
100% accuracy.
Recursive post-order traversal of AST relying on a pre-trained model. We experiment with
additional compute utilized at test time [Liu et al., 2025] for improving performance of a specialized
model at Boolean expression simplification. Assuming that we can access a routine that extracts
sub-expressions with a bounded training depth from the test sample. We implement a post-order
traversal for recursive simplifications performed at the known maximum depth (here q = 3) of the
base model. At every step, the model first identifies depth q expressions within a deeper expression.
It then calls the decoder Transformer to replace the depth q expression with the simplified expression
and repeats this until depth of the child to simplify decays to zero.
A closed-form model. Within the scope of the problem we study here (no negation, no predicates),
we propose a closed-form neural network (details in Appendix B) that solves the problem in a single
pass. The algorithm that this model’s forward loop implements is an isolated case which can be
written using a simple stack and as a single pass over the input sequence. It is noteworthy that the
sparse (few weights) rules-based model exists. Yet it is perhaps challenging to learn such models.
So while our findings seem to align at first glance with Joulin and Mikolov [2015], Grefenstette
et al. [2015], Murty et al. [2023b], DuSell and Chiang [2023] that stacks can enhance the ability of
neural networks to capture recursive structures; in contrast with those works (1) we did not learn
stack-augmented models but wrote the closed-form expression of one as a simple proof of existence.

3.2 Observations, limitations and relation with existing work

We first observe in Figure 2, left that the direct application of the depth 3 trained model with majority
voting has 100% performance in the training domain. The performance drops fast as test depth grows
(at q ≤ 9 we match 50% accuracy of a random coin flip), and fails above that (here q ≥ 12) as the
context length needed to express the input gets larger than the model’s positional embedding length.
The recursive program’s performance decays also but more slowly with depth, from ≈ 96% at q = 9
to ≈ 88% at q = 18. The high quality memorizer’s rare errors propagate through the inside-out
chain as fast as the number of nodes in the abstract syntax tree grows (exponentially in depth) and
result in amplification of errors as a function of test samples’ depth. This is reminiscent of the
analysis of language models’ errors as in Example 1. As shows in this figure, majority voting model’s
performance leap increases with problem difficulty. The majority vote model performs consistently
above 88% of accuracy up do depth 18. The stack-augmented closed-form model has 100% accuracy
for all depths.
Not surprisingly, results above confirm that specialized Transformers can reliably handle nested
expressions of the same nested depth as their training set. Zhang et al. [2024], Wang et al. [2025]
reported that Transformers show basic abilities to learn recursion. Our experiments suggest that
Transformers are not able to induct recursions needed to unblock depth extrapolation, nor are
they grokking short-cut compact solutions. Our empirical findings suggest that increased test-time
compute through a post-order traversal of the parsed AST seems to be the most promising strategy
for the nested extrapolation and may hold keys to unblock extrapolation in other structured sequence
problems.

4 Discussion

Our experiments with test-time inference show that recursive inference with explicit parsing and
post-order traversal of the parsed Abstract Syntax Tree unlocks generalization beyond the training
domain. To baseline our proposal we used a prompt which produces a seemingly correct plan or chain
/ tree of thoughts [Wei et al., 2022, Li et al., 2024, Yao et al., 2023, Zhou et al., 2023] for addressing
complex problems (see Example 1). However, despite planning the problem breakdown correctly,
the LLMs fail on deep samples. This suggests that these models do not perform recursive reasoning,
perhaps because their compute budget seems to scale sub-linearly as a function of the task difficulty as
demonstrated in Figure 3. When explicitly parsing the expression, recursive calls to the models ensure
that (1) each sub-task receives a full token budget for inference and (2) that sub-tasks are within reach
of the model’s capabilities, dictated by the training domain. In this respect, depth extrapolation is
fundamentally different from context length extrapolation and our method complements previous
work on length extrapolation by leveraging the syntax tree of the context. Our study opens a new
direction of leveraging symbolic parsing for enhancing neural models’ effectiveness.
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Appendix

Appendix A - LLM reasoning on nested Boolean expressions

Examples of prompts and answers

Example 1 Example of errors in LLM responses to a depth 2 Boolean expression simplification.

[Prompt] You are my math logic assistant and you are helping me solve a logic
problem. We are looking at Boolean expressions with 4 variables A, B, C, D.
Each can take values true or false. We are given a nested Boolean expression
and we would like to simplify the expression onto a shorter expression which is
equivalent to the long and complex expression. My suggestion is that you try
to use De Morgan’s laws and simplify the Boolean expression starting from inside
and going out. If you write your reasoning step by step you should be able to
solve this problem. For example (A & ¬ A), i.e "A and not A" simplifies to
"false"
Here we go: can you simplifying this Boolean expression which appears between
<bool> and </bool> into its simplest irreducible form:

<bool>( ( ( ¬ C | ¬ D ) & true ) ) & ( ( ¬ C & ( B | A ) ) ) & ( ( D & ¬
C ) )</bool>
Put your final answer between <answer> and </answer> tags.

[LLM] To simplify the given Boolean expression, I will follow these steps:
1. Simplify the expressions inside the innermost parentheses using Boolean laws
and De Morgan’s laws.
2. Work outwards, simplifying the expressions in the next level of parentheses
using the simplified expressions from the previous step.
3. Repeat step 2 until the entire expression is simplified.

Step 1: Simplify the innermost parentheses.
(¬C | ¬D) & true = ¬C | ¬D (since A & true = A)
¬C & (B | A) = (¬C & B) | (¬C & A)
D & ¬C = D & ¬C (no simplification)

Step 2: Simplify the next level of parentheses using the results from step
1.
((¬C | ¬D) & true) = ¬C | ¬D
((¬C & B) | (¬C & A)) = ¬C & (B | A)
(D & ¬C) = D & ¬C

Step 3: Simplify the outermost parentheses using the results from step 2.
((¬C | ¬D) & true) & ((¬C & (B | A))) & (D & ¬C)
= (¬C | ¬D) & (¬C & (B | A)) & (D & ¬C)
= (¬C & ¬D & (B | A)) & (D & ¬C) // Error: no need to carry ¬ D
= (¬C & ¬D & B) | (¬C & ¬D & A) & (D & ¬C)
<answer>(¬C & ¬D & B) | (D & ¬C)</answer> // Error: middle term missing

This is the simplest form of the given Boolean expression using the variables
A, B, C, and D.
// Note: the correct answer is D & ¬ C & (A | B)
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Example 2 LLM refusal to be challenged on a depth 9 problem

[LLM] Okay, let’s try to simplify this Boolean expression step-by-step using De
Morgan’s laws and other Boolean algebra rules.
<bool>( ( ( ( ( ( ( false & ¬ A ) | ( ( ¬ C & C ) & ( ¬ C | A ) ) ) | ( ( ( (
¬ B | D ) | false ) & ( A & ¬ D ) ) & ( ( D & ¬ B ) | ( ( true & A ) | ¬ B
) ) ) ) & ( ( ( ¬ D | ¬ D ) & false ) | ( ( ¬ B | A ) | A ) ) ) | ( ( ( ( ( (
true & true ) | false ) | ( ( ( ¬ D & ¬ A ) & ( D | A ) ) & ( B | A ) ) ) &
( ( D & ¬ C ) | ( ¬ B & ¬ D ) ) ) & ( ( C | ( ¬ B | ¬ B ) ) | ( ( false | C )
| ( ( ¬ C & ¬ A ) & ( false & false ) ) ) ) ) | ( ( ( ¬ C & true ) | ( false
& true ) ) | ( ( ( ¬ C & A ) & false ) & ( ¬ C | ¬ D ) ) ) ) ) & ( ( ( ( (
D | ¬ A ) & ( ¬ B | ¬ B ) ) & ( ( ( true & true ) & ( ¬ C & ¬ D ) ) | ( (
false & D ) | ( ¬ C & true ) ) ) ) & ( ( ( ( ¬ C & C ) | ( A | ¬ D ) ) | ( (
true & ¬ C ) & ( true | ¬ C ) ) ) | ( ( ( B | B ) & ( ( A | D ) | ( C | ¬ C )
) ) & ( true & false ) ) ) ) | ( ( ( ( ( true | B ) | D ) | ( ( ( B | true ) &
( ¬ B | ¬ B ) ) | ( ¬ B | ¬ B ) ) ) & ( ( ( C & ( ¬ D & C ) ) | ( ( true | B
) & B ) ) & ( ( ( ¬ D & ¬ B ) | ( ¬ C | false ) ) & ( false & ¬ D ) ) ) ) &
( ( ( A & B ) | ( ( A | C ) | B ) ) & ( ( ( false & ¬ D ) & ( ¬ A & ¬ A ) )
| ( ( C & ( D & false ) ) & ( ¬ A | C ) ) ) ) ) ) ) )</bool>
Simplifying from the innermost parentheses:

1. (false & ¬ A) = false
2. (¬ C & C) = false
3. (¬ C | A) = (¬ C | A)
4. (false | (¬ C & C)) = false
5. (false | (¬ C | A)) = (¬ C | A)
6. ((¬ B | D) | false) = (¬ B | D)
7. (A & ¬ D) = (A & ¬ D)
8. (D & ¬ B) = (D & ¬ B)
9. ((true & A) | ¬ B) = (A | ¬ B)
10. ((¬ B | D) & (A & ¬ D)) = ((¬ B | D) & (A & ¬ D))
11. ((D & ¬ B) | (A | ¬ B)) = (D & ¬ B) | (A | ¬ B)
12. (¬ D | ¬ D) = false // Error
13. (false & false) = false
14. ((¬ D | ¬ D) & false) = false
15. (¬ B | A) = (¬ B | A)
16. (¬ B | A) | A = (¬ B | A)

... (continuing simplification) ... // Refusal

<answer>(¬ C | A) | (((¬ B | D) & (A & ¬ D)) & ((D & ¬ B) | (A | ¬ B))) | (((¬
B | A) | A) | false) | (((B | A) & ((D | ¬ C) | (¬ B & ¬ D))) | ((C | (¬ B & ¬
B)) | (C | ((¬ C & ¬ A) & false)))) | ((((D | ¬ A) & (¬ B | ¬ B)) & ((¬ C &
¬ D) | (¬ C & true))) | (((¬ C | (A | ¬ D)) | ((¬ C & (true | ¬ C)) | ((B | B)
& ((A | D) | (C | ¬ C))))) & false)) | (((B | D) | ((B & (¬ B | ¬ B)) | (¬ B | ¬
B))) & (((C & (¬ D & C)) | (B & B)) & ((¬ D & ¬ B) | (¬ C | false)))) | (((A |
B) | (A | C)) & (((¬ A & ¬ A) | (C & false)) | (C & (¬ A | C))))</answer>

// Note: the correct answer is false
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Lengths of expressions and generated answers
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Figure 3: Number of characters in (left) complex Boolean expressions as a function of expression
depth (middle) generated response as a function of depth and (right) generated response as a function
of the input expression length. Note the sub-linear growth of responses lengths as a function of input
length.

Appendix B - Solving Boolean evaluation in a single pass with a Neural Network

Closed-form model. We propose a closed-form stack-augmented circuit which establishes the
existence of a neural-network with perfect simplification capability in a single pass. Our method uses
a d = 2 dimensional state to encode counts of true and & in expressions formed by the 6 tokens:
E[true] = (1, 0), E[&] = (0, 1) and for c ∈ {false, |, (, )}, E[c] = (0, 0).

ET =

(
1 0 0 0 0 0
0 0 1 0 0 0

)
true false & | ( )

Given a Boolean expression, the proposed method initializes a state variable at (0, 0), the stack at
empty stack = []. It then performs a single pass over the expression, see Algorithm 1. For each
token in the sequence of tokens representing the Boolean expression, the state variable increments
with the embedding vector E[char], then operations on the state variable or the stack are executed
conditional on the token.

Why this works. The inner functioning of the proposed closed-form algorithm relies on two key
observations.

1. Operator precedence: The algorithm effectively gives & a higher precedence than | without
an explicit precedence table or operator stack. When an & is encountered, state[1] (the
and_count) increments. The true_count continues to accumulate for all subsequent
literals until a closing parenthesis or a | is encountered. When a |is encountered, state[0]
(the true_count) is immediately capped at min(1, state[0]). This effectively "collapses"
the OR chain so far, and any subsequent & or true will be evaluated after this collapse.
This logic implicitly groups & operations together and treats | as a lower-priority separator.

2. Simplification rules. There are two simplification rules for Boolean expressions with no
predicates and no ¬.

(a) true|X = true : The state[0] = min(1, state[0]) line for | is a compact way of
implementing the "domination" rule for OR. If any true is found, the true_count
becomes 1 and stays there.

(b) false & X = false : The pass for false and the

subexpr_true > subexpr_and

check for & together implement this. false doesn’t increment the true_count, so if
it’s present in an & chain, the condition for the result to be true will fail, correctly
yielding false.

Implementation as a neural network. The functions phi and min(1, .) in Algorithm 1 can both
be implemented using feed-forward networks on a higher dimensional embedding space which also
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encodes the other 4 tokens for conditional operations. The function phi uses 2 layers of ReLU and 1
layer of sign (approximated with a sigmoid σ) and min(1, .), i.e. −ReLU(−x0 + 1) + 1, has a
single ReLU non-linearity. We can write φ as

φ(x) = σ(−x1) ∗ ψ0 + σ(x1) ∗ ReLU(ψ1)

ψ0 = − ReLU(−x0 + 1) + 1

ψ1 = ReLU(x0 − x1 + 1)− ReLU(x0 − x1 − 1)− 1

The pass over the sequence sums up tokens’ embeddings to update the state variable, applies
feed-forward updates to the state variable and also pushes and pops elements from a stack. The
model can hence be written as a uniform attention model augmented with a stack.

Algorithm 1 Single pass stack-augmented simplifier

def phi(true_ct, and_ct):
if and_ct > 0: # AND: any f => f

return int(true_ct > and_ct)
else: # OR: any t => t

return min(1, true_ct)

def stack_aug_simplify(expr):
stack = [] # Stack
state = [0,0] # true_ct, and_ct
for char in expr: # single pass

state += E[char]
if char == ’(’:

stack.append(state)
state = [0, 0] # reset

elif char == ’)’:
subexpr_result = phi(*state)
state = stack.pop()
state[0] += subexpr_result

elif char == ’|’: # any t => t
state[0] = min(1, state[0])

return true if state[0] > 0 else false
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