
Published as an extended abstract at DMLR Workshop at ICLR 2024

GRAPH KERNEL CONVOLUTIONS
FOR INTERPRETABLE CLASSIFICATION

Magdalena Proszewska
University of Edinburgh, UK
m.proszewska@ed.ac.uk

N. Siddharth
University of Edinburgh, UK
The Alan Turing Institute, UK
n.siddharth@ed.ac.uk

ABSTRACT

State-of-the-art Graph Neural Networks (GNNs) have demonstrated remarkable
performance across diverse domains, hence the growing demand for more inter-
pretable GNN techniques. While current research predominantly centers on post
hoc perturbation techniques, recent studies propose use of Graph Kernel Convolu-
tions (GKConv) to increase GNNs interpretability intrinsically. These models em-
ploy trainable graph filters for extracting hidden features, yet their interpretability
is limited since they heavily rely on multilayer perceptrons (MLPs) to make the
final predictions. We argue that the latter is not necessary and it is possible to
build a model that solely relies on graph kernels and a simple linear layer. Addi-
tionally, we integrate contrastive loss to encourage the learning of a more descrip-
tive set of graph filters. In consequence, its decision-making process described
through found graph filters and said linear layer is more interpretable. As a proof
of concept, we propose a shallow GKConv Interpretable Classifier, which is able
to achieve state-of-the-art results while exhibiting better interpretability.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Kipf & Welling, 2017) serve as a versatile model for graph-based
applications, employing Message Passing Neural Networks (MPNNs) as its foundation (Gilmer
et al., 2017). Current approaches to their interpretability often use post hoc perturbation methods to
extract relevant subgraphs (Ying et al., 2019). While insightful post-training, they may fail to capture
true decision processes, posing misinterpretation risks. Recent studies (Nikolentzos & Vazirgiannis,
2020; Cosmo et al., 2021; Feng et al., 2022) propose Graph Kernel Convolutions (GKConv) to
enhance GNNs interpretability. They employ trainable graph filters to capture patterns in the data,
yet their interpretability is limited since they heavily rely on multilayer perceptrons (MLPs) to make
predictions based on kernel responses and optionally input features. MLP’s complexity, as opposed
to a single-layer network, makes it difficult to capture basic linear relationships between inputs and
outputs, and its use in GKConv model worsens its transparency. Our work seeks to overcome this
limitation and improve GKConv interpretability, particularly in classification tasks. We argue that
Graph Kernels are a powerful tool with the potential to be a breakthrough in GNNs interpretability.
We propose Graph Kernel Convolution Interpretable Classifier (GKConvIC) that demonstrates the
interpretability capabilities of GKConv, simultaneously achieving state-of-the-art accuracy.

2 METHODOLOGY

Let G = (V,E) be an input graph and let Gv represent k-hop neighborhood of v ∈ V for k ∈ N+.
Let K : G × G → R be a graph kernel that operates on pairs of graphs from the set G and yields
real-valued scores representing the similarity between them.

Graph Kernel Convolution For a graph kernel K and a set of graph filters F = {Fi}i∈I , Graph
Kernel Convolution is defined as

GKConv(G;F) =
[
K(Gv, Fi)

]
v∈V ,i∈I

∈ R|V |×|I|. (1)

The objective in GKConv training is to find a set of optimal graph filters in regard to a given loss
function, specifically their adjacency matrices and node feature matrices. For a kernel K differen-
tiable in respect to Fi, it can be done using gradient descent (Feng et al., 2022). We denote a directly
differentiable GKConv as DiffGKConv. For non-differentiable kernels and discrete representation of
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Figure 1: Pairs of graph filters discovered by DiscGKConvIC+GS, DiffGKConvIC+RW, DiffGK-
ConvIC+RW with MLP instead of W, DiffGKConvIC+RW without LCTR, respectively, trained to
distinguish graphs with a five-node cycle or a house motif.
graphs (DiscGKConv), Cosmo et al. (2021) uses Discrete Randomized Descent (DRD) strategy for
backpropagation. During backpropagation step, an edit operation of each graph filter (add/remove
edge, change node label) is sampled and accepted only if loss did not increase. The probability
distribution over the edit operations is also optimized using the same gradient estimation.
GKConv Interpretable Classifier We define a classifier GKConvIC that during the forward step:
1) Encodes an input graph G into a hidden representation Z ∈ R|V |×|I| using GKConv with trainable
graph filters F , BatchNorm and ReLU, consecutively. 2) Aggregates node embeddings into a graph
embedding denoted as ẑ = agg(Z) ∈ Rr·|I|, where r ∈ N+ is the number of aggregation functions
applied along node dimension. 3) Outputs class prediction logits ẑTW, where W ∈ Rr·|I|×C

represents weights of the last layer for C classes. Diagram in Appendix A.1 illustrates these steps.

We force the model to find filters F that allow it to distinguish between classes and make inter-
pretable prediction by incorporating contrastive loss and a specialized initialization of W. Let G
be of class y. Let Iy denote indexes of filters of class y i.e. 1/C of I . Let Zy = [Zvi]v∈V,i∈Iy ,
Z¬y = [Zvi]v∈V,i/∈Iy denote kernel responses from filters of class y and other classes, respectively.
Let σ(x) = exp(x/τ) for τ ∈ R+, Z′

y = σ(Zy) and Z′
¬y = σ(Z¬y). We define a contrastive loss

LCTR(Z, y) = − log
maxZ′

y∑
Z′

¬y +maxZ′
y

, (2)

where
∑

and max are applied across all elements of the matrix. It encourages model to find at least
one filter of class y that gives a strong response to one of the subgraphs Gv , while pushing filters
of other classes away. Moreover, we initialize W so that connections between aggregated kernel
responses for filters of a given class and its corresponding logit are set to a positive value, while
cross-class connections are set to a negative value. The training loss is as follows:

L = LCE(agg(Z)TW, y
)
+ λLCTR(Z, y), (3)

where LCE denotes the cross entropy loss and λ ∈ R+ balances two loss components1.

3 EXPERIMENTS

Sanity check experiment on a synthetic dataset For the BA-2motifs dataset (Luo et al., 2020),
GKConvIC models are expected to find graph filters corresponding to a five-node cycle and a house
motif, which define classes. Furthermore, using W instead of MLP, and LCTR should yield more
descriptive filters. We train 4 models: DiscGKConvIC with Graphlet Kernel (GS), DiffGKConvIC
with RW Kernel, and versions of the latter with MLP instead of W, and without LCTR. Each with
2 graph filters of size 5 and agg = mean. All achieved accuracy of 98%-100%. Filters visualized
in Figure 1 confirm that both our models are indeed able to discover relevant filters, while the ones
found by alternate versions are less suited. Moreover, they learned W ∈ R2×2 such that Wii > 0
for i = 1, 2 and Wij < 0 for i ̸= j, thus affirming GKConvIC effectiveness and interpretability.
Ablation study We study the influence of aggregation functions, the contrastive loss and the ini-
tialization of the last layer W. The results in Appendix B.1 show the significance of aggregation
functions and the advantages of the contrastive loss. While our initialization of W has a minor
impact on final accuracy, visualizations of learned weights illustrate its influence on interpretability.
Classification accuracy We compare GKConvIC performance against other GKConv models.
The results in Appendix B.2 show that we achieve accuracy on the state-of-the-art level, while not
relying on MLPs, hence providing more interpretability. DiscGKConvIC performance is slightly
worse, which we attribute to its unstable backpropagation technique.

4 CONCLUSIONS
In this paper, we proposed GKConv Interpretable Classifier to demonstrate potential of graph kernels
and Graph Kernel Convolutions for GNNs interpretability. Our experiments show that GKConvIC
is able to achieve state-of-the-art accuracy while exhibiting high level of interpretability.

1Code available at https://github.com/mproszewska/gkconvic.
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A METHOD

A.1 GKCONV INTERPRETABLE CLASSIFIER

Diagram in Figure 2 illustrates our method.

Figure 2: Diagram of GKConv Interpretable Classifier: 1) Node features update to kernel responses
between the 2-hop neighborhood and graph filters. 2) Aggregated node embeddings form a graph
embedding. 3) Graph embedding is passed through the last layer W, providing the class prediction.

B EXPERIMENTAL RESULTS

B.1 ABLATION STUDY

For our ablation study, we consider MUTAG dataset (Debnath et al., 1991). We use DiffGKConv
version of the model since its training is much faster and more stable than DiscGKConv, and set
number of graphs filters to 16 and their size to 6. We set input graph subgraphs to be 2-hop neigh-
borhoods with maximum size of 10. We study influence of aggregation functions, the contrastive
loss and the initialization of the last layer W. In the baseline configuration, we use 3 aggregation
functions (sum, mean, max), contrastive loss weight λ equal 1, and initialize the last layer W using
1 for positive connections (intra-class) and −0.5 for negative ones (cross-class). These parameters
are modified in order to observe their influence. Impact of the other parameters is already well dis-
cussed in Cosmo et al. (2021) and Feng et al. (2022). Each experiment is repeated with 10 different
seeds. Results are shown in Figure 3.

(a) Bar plots of classification accuracy with standard error.

(b) Final weights of the last layer for initialization with 1/ − 0.5, 1/0, and random, respectively. Each one
of these models contains 16 graph filters, was using 3 aggregation functions (sum, mean, max, in that order)
and was trained on a binary classification task, hence W ∈ R3·16×2. Column with red and blue weights,
respectively, represents aggregated kernel response which increases logit for class 0 and decreases logit for
class 1, hence explicitly describes model’s decision process.

Figure 3: Ablation study results.
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B.2 CLASSIFICATION ACCURACY

We assess the performance of our proposed GKConv models across five publicly available graph
classification datasets: PROTEINS (Borgwardt et al., 2005), ENZYMES Schomburg et al. (2004)
for binary and multi-class classification of biological and chemical compounds, respectively. More-
over, we perform experiments on social datasets: IMDB-BINARY, IMDB-MULTI, and COLLAB
(Yanardag & Vishwanathan, 2015). To ensure a fair comparison with state-of-the-art GNNs, we
follow the cross-validation procedure outlined in Errica et al. (2022). Employing a 10-fold cross-
validation, we follow the identical dataset index splits as described in Errica et al. (2022). Table
1 shows accuracies achieved by our models (DiscGKConvIC with Weisfeiler-Lehman Kernel and
DiffGKConvIC with Random Walk Kernel) in comparison to other graph kernel based GNNs (see
Errica et al. (2022) for comparison with more GNNs).

Table 1: The mean accuracy and standard deviation.

PROTEINS ENZYMES IMDB-B IMDB-M COLLAB

RWGNN 74.7±3.3 57.6±6.3 70.8±4.8 48.8±2.9 71.9±2.5
GKNN 70.9±2.9 29.3±4.3 70.6±5.7 49.9±2.4 65.6±2.2
KerGNN-1 75.8±3.5 62.1±5.5 74.4±4.3 51.6±3.1 70.5±1.6

DiscGKConvIC 69.3+3.7 22.1±6.6 69.8±5.4 47.3±1.7 59.1±2.4
DiffGKConvIC 74.0±4.5 59.0±4.3 71.5±3.7 51.8±2.2 62.8±2.2
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