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ABSTRACT

Modular object-centric representations are key to unlocking human-like reasoning
capabilities. However, addressing challenges such as object occlusions to obtain
meaningful object-level representations presents both theoretical and practical
difficulties. We introduce a novel multi-view probabilistic approach that aggregates
view-specific slots to capture invariant content information while simultaneously
learning disentangled global viewpoint-level information. Our model resolves
spatial ambiguities and provides theoretical guarantees for learning identifiable
representations, setting it apart from prior work focusing on single-view settings and
lacking theoretical foundations. Along with our identifiability analysis, we provide
extensive empirical validation with promising results on both benchmark and
proposed large-scale datasets carefully designed to evaluate multi-view methods.

1 INTRODUCTION

The ability to capture the notion of objectness in learned representations is believed to be a critical as-
pect for developing situation-aware Al systems with human-like system-I reasoning capabilities (Lake
et al., 2017). Recent advances in object-centric representation learning have shown great potential in
this direction (Locatello et al., 2020b; Kori et al., 2023; Lowe et al., 2024). The goal of object-centric
learning (OCL) is to enable agents to learn representations of respective objects in an observed
scene in the context of their environment, as opposed to learning global representations as in the
case of traditional generative models such as variational auto-encoders (Kingma & Welling, 2013).
Object-centric approaches enable agents to learn spatially disentangled representations, which is an
important step in compositional scene generation (Bengio et al., 2013; Lake et al., 2017; Battaglia
et al., 2018; Greff et al., 2020) and understanding of causal (and physical) interactions between the
objects (Marcus, 2003; Gerstenberg et al., 2021; Gopnik et al., 2004).

Most of the recent progress in OCL has been limited to learning scene representations from single-
viewpoints (Locatello et al., 2020b; Engelcke et al., 2021; Singh et al., 2021; Kori et al., 2023; Chang
et al., 2022; Seitzer et al., 2022; Lowe et al., 2024). While these approaches may learn meaningful
object-specific representations, they face insurmountable challenges due to spatial ambiguities;
learning from single viewpoints cannot capture effective representations due to partially or fully
occluded objects. Li et al. (2020) previously proposed an intriguing approach to address some of
the spatial ambiguities. They take a view-conditional OCL perspective, which makes their approach
reliant on the availability of paired viewpoint conditioning and corresponding images. Here, we take
a step forward, exploring multi-view object-centric learning (MVOCL), allowing us to exploit objects’
inherent geometry and semantics to establish correspondences across views.

Another issue with many of the earlier OCL methods (including (Li et al., 2020)) is that they lack
rigorous formalisation of their underpinning explicit and implicit assumptions; Kori et al. (2024);
Brady et al. (2023); Lachapelle et al. (2023) make an effort to formalise these assumptions and
provide conditions under which these methods result in learning identifiable slot representations.
Similarly, formalisations in MVOCL are unexplored, and the theoretical guarantees under which the
partially or fully occluded slot representations are identifiable have not been studied before. In this
work, we consider learning the joint distribution over all viewpoints, as opposed to view-conditional
OCL (Li et al., 2020); our model provides the additional advantage of not being dependent on
camera/viewpoint information. Inspired by Kori et al. (2024); Kivva et al. (2022), we take the
perspective of imposing latent structure to achieve identifiable slot representations under viewpoint
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Figure 1: The figure illustrates a scene with four objects O° = {01, 02, 03,04}, observed
from three different viewpoints, each described with a set of clearly visible objects as O =
{01,0,4},0? = {01,03,04}, 0% = {01, Oz, O3}. The corresponding images are passed through
content and view encoders, resulting in local slot and global view GMMs, ¢(s | x) and p(v), respec-
tively. The local slot distribution is further aggregated to marginalise viewpoint information, resulting
in a content GMM ¢(c | s), which is then accumulated across all samples, resulting in our optimal
prior p(c). During image generation, we sample content from p(c) and view information from p(v),
passing them through the generator, resulting in a rendered scene from the desired viewpoint.

ambiguities. In line with Kori et al. (2024), we show that the spatial Gaussian mixture before latent
distribution across viewpoints can encourage the identifiability of object-centric representations under
viewpoint ambiguities without additional auxiliary data.

Contributions: Our main contributions in this work can be summarised as follows: (i) We propose a
multi-view probabilistic slot attention MVPS A for learning identifiable object-centric representations
from multiple viewpoints, resolving spatial ambiguities such as partial occlusions(§ 3); (ii) We
prove that our object-centric representations are identifiable in the case of partial or full occlusions
without additional view information up to an equivalence relation with a mixture model specification
(§ 4); (iii) We provide conclusive empirical evidence of our identifiability results, including visual
verification on synthetic 2-dimensional data; we also demonstrate the scalability of the proposed
method on two new, carefully designed large-scale datasets MVMOVI-C and MVMOVI-D (§ 6). The
datasets constitute a contribution on their own and are released to facilitate future work.

2 PRELIMINARIES

Probabilistic Slot Attention (PSA) as introduced by Kori et al. (2024), presents a distinct inter-
pretation of the slot attention algorithm proposed by Locatello et al. (2020b). In PSA, a set of
feature embeddings z € R™V*? per input x is taken as input, and an iterative Expectation Max-
imization (EM) algorithm is applied over these embeddings. This process results in a Gaussian
Mixture Model (GMM) characterized by mean (pu € RX*9), variance (62 € R¥*), and mixing
coefficients (7 € [0, I}K %1y The goal of PSA is to learn a spatial GMM for each scene, where
each mean in the GMM corresponds to a specific object. In summary, PSA employs the initial mean
sampled from the prior distribution and initial variance initialized with unit vector, then iteratively
updates the mean based on assignment probabilities (A,,;) using Equation 2, and adjusts the variance
accordingly. These updates are performed for 7 iterations. Given that the variance is updated using
closed-form updates, the objective function in the case of PSA is the negative log-likelihood of
p(x | u(T)1.x, 02 1 (T), 1.5 (T)) for scene x € X C REXWXC with H W, C corresponding to
image dimensions, where the mean, variance, and mixing coefficients are updated at each iteration as
described in Equation 2. Unlike slot attention (Locatello et al., 2020b), PSA learns the distribution
over slots rather than just the mean where the soft assignments are determined as follows:
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Figure 2: Graphical model for multi-view probabilistic slot attention. (a) MVPSA - every scene
ina dataset consists of V' images of an environment observed from different viewpoints, with dataset
{{xV M, each image is encoded into a respective view information vector v € R% resulting
ina GMM distribution with V' components and latents {s”}Y_,, where s’ € RV*%_to which a
local GMM with K components is fit via EM algorithm. The resulting V' GMM distributions are
further aggregated with convex combination, marginalising the effects of view information, resulting
in a view invariant content c GMM with K components. (b) View invariant aggregate content
distribution is obtained by marginalising out data from obtained content distribution resulting in:

q(c) = Zgo q(c | s,x)/M. We demonstrate ¢(c) and p(v) are tractable and non-degenerate.
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Identifiable representations. A model is considered identifiable when different training iterations
yield consistent latent distributions, thereby resulting in identical model parameters (Khemakhem
et al., 2020a;c). In the context of a parameter space © and a family of mixing functions F, identi-
fiability of the model on the dataset X is established if, for any 6,,60> ~ © and fy,, fo, ~ F, the
condition p(f;ll(x)) = p(fél(x)) holds for all x € X, implying 6; = 6,. However, in practical
scenarios, exact equality or “strong” identifiability is often unnecessary, as establishing relationships
to transformations, which can be manually recovered, proves equally effective. This concept leads
to the notion of weak identifiability, where relationships are recovered up to affine transformations
(Khemakhem et al., 2020c; Kivva et al., 2022). Similar identifiability relations have been elucidated
for OCL in prior works (Brady et al., 2023; Lachapelle et al., 2023; Kori et al., 2024; Mansouri et al.,
2023). The notion of ~ equivalence relation is elaborated in Dfn. 1.

Definition 1. (~; equivalence (Kori et al., 2024)) Let fo : S — X denote a mapping from slot
representation space S to image space X (satisfying Assumption 2), the equivalence relation ~4 W.r.t.
to parameters @ € O is defined as: 81 ~; 0> &

EIP,H7C:fgll(x;v):P(fgzl(x;v)H+a),Vx€X, 3)

where P € P C {0,1}%*¥ is a permutation matrix, H € R%*? is an affine matrix, and a € R%.

3 MULTI-VIEW FORMALISM

Letx'V = {x!,..xV} € X = X' x .- x XV, V views of the same scene observed from different
viewpoints with an observational space X C RV *#XWxC We consider [V'] as a shorthand notation
for {1,...,V}. Let O¢° = O' U --- U OV correspond to an abstract notion of object sets of an
environment, while OV, Vo € [V] is an object set present in a considered viewpoint v. Importantly,
we consider that the number of objects per viewpoint can vary, i.e., U---uoVv| > |0°| Vv e [V],
allowing for partial or full occlusion in some viewpoints. Let vV € V = V1 x...x VPV C RV ¥4 be
inferred viewpoint-specific information!, while s{%. € S = S' x -+ x 8V C RV*&*4: correspond

'We abuse the terminology by considering viewpoint, lighting, object dimension, to be encoded in a vector v.
Note that the v is inferred by the model.
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to a viewpoint-specific slot representation. Let c;.x € C C RX*de capture the notion of an
aggregate, effectively accumulating the object knowledge across viewpoints. For any subset A of [V],
we represent scene observations as x4 = {xi (Vi€ A} € xienX ¢ In this framework, the inferred
viewpoints and the specific slots for each viewpoint are denoted as v* = {v? : Vi € A} € x;ea)?,
and si'; = {si ;- : Vi € A} € X;caS"?, respectively. We define p 4 (c) as the distribution of ¢ over
A. A more comprehensive summary of notations and terminologies is provided in App. A.

In modelling, without loss of generality, we consider access to a certain subset A C [V], ensuring the
model’s applicability across different scenarios. Furthermore, to simplify notation, we sometimes do
not include the superscript denoting the full set of views, thereby using x = x4, s1.x = sl ., and
v = v interchangeably. Likewise, if we do not specify the subscripts for ¢ and s, it implies they
represent the entire collection of objects, specifically as s = s’ﬁ x and ¢ = cy.x. Lastly, given that
the function f operates on two distinct types of inputs, its inverse is denoted by f~1(x;v), which
signifies the reversal of f applied to data points x conditioned on variable v.

Assumption 1. (View-point sufficiency) For any set A C [V], we consider set A to be view-point
sufficient iff |©O4| = |©®|. This basically means that all the objects are visible across all the
considered views A, even when the individual view may not contain all the object information.

Example 1. Based on illustrated example in Figure 1, the scene is composition of four objects
0° = {01, 05,03, 04}, view point subset A = [V] = {1, 2,3} is considered to be view point
sufficient since | J,c 4 OV = {01, 04} U{01,03,04} U{O1, 05,03} = O°.

View model. We model view as an image-level property, which we infer with the posterior go(v? |
xV) Vv € A2 Itis important to note that we use the same set of parameters 6 across all viewpoints

in A for inferring view information v. Given the access to a discrete set of viewpoints A, we consider

prior over a view distribution to be a GMM represented by p(v) = > L‘i‘l TN (V5 11y, 02).

Viewpoint specific slots. We extract object-level slot representations for a given image from all
viewpoints; we model the slot distribution as an image conditional model described as q(sﬁ x| x4,
refer Figure 2a for a graphical model for the same. Similar to Probabilistic Slot Attention, we
consider local GMM by fitting the individual posterior ¢(s” | xV), with expectation-maximisation
algorithm, resulting in the estimation of distribution parameters with closed-form updates. The
resulting likelihood is described in 4, where (y;, 02, ;) are mean, diagonal covariance, and mixing
coefficients of an i*" image for the considered view v with K components.

VI K

q(six | X{s iy 0, m0) = H ZﬂikN(S}é;MimU?k) “

v=1 k=1

Representation matching. Similar to most object-centric learning approaches, the resulting view
conditional slot representations are permutation invariant. To handle this invariance property, we
use permutation matching function with a permutation matrix P, m, : S* — S such that
Mg (s‘f‘: K) = Ufil Ps?. ;- mapping from a given vector space to the vector space with the transformed
axis. Here, we consider the content of the first Viewpoint to be the base representation and match
other contents from other viewpoints to align with it. We utilise Hungarian matching, as illustrated
in Locatello et al. (2020b); Emami et al. (2022); Wang et al. (2023); Kori et al. (2023), to permute
object indices to align them w.r.t base representations, learning the permutation matrix P.

Content aggregator. We consider g : S — C as a content aggregator function, which marginalises the
effect of view conditioning. To achieve this, we align the content representations from all viewpoints
v € A and perform a convex combination of these representations using the mixing coefficients of
the view-specific posterior, as defined in Equation 4. Once the content representations and mixing
coefficients are aligned with respect to the base representations (represented by §%j¥(, 71V, the
convex combination in our context accounts for potential object occlusions, which may cause objects
to be absent in particular views 5. the convex combination ensures that only active representations

are combined, resulting in a GMM with mixing coefficients 7, = (ZLﬂl ﬁ'k)'“) /|A| and the
parameters described in 6. The resulting MVPSA is illustrated in Algorithm 1.

>We consider the parametric form of ¢ to be Gaussian.
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Intuition. Considering an example 1, given well trained model, for images x!,x2, x2, the

: i : T ol ol ol o2
resulting matched slots and mixing coefficients correspond to s* = {so 185, 87,80,: 8, 1, 8% =

ra r
{sOl,sT,sOS,sm,sb} s = {5(91,51(392,503,&7 s3}, where S¢S, and sy correspond to slot
vector for object O;, random slot vector and background information, respectively, with mix-
ing coefficients w! = {1,0,0,1,1},7% = {1,0,1,1,1}, and 7' = {1,1,1,0,1}. Proposed
aggregation merges the slot information ignoring the random content vectors c;, resulting in
co, = (8p, +85, +56,)/3,co, = (sp, +5p,)/2 and so on.

|4

961, 7HY) = szw”iv 87,63 )
v=1

=V

A wy 2w\
E(cx) = Z |A‘k ~ E(s;); Var(cg) = Z ( |:| ) Var (s3) ; (6)

v=1 v= 17rk v=1 Zv 17Tk:

Optimal content prior. We rely on the fact that marginalising the effect of datapoints from posterior
(aggregate posterior) is an optimal prior (Hoffman & Johnson, 2016; Kori et al., 2024). This results in
the optimal content prior p(c) to be an aggregate of posteriors [ g(c|s*,x*)ds*dx*. This imposes
the structure to content distribution, rather than constraining the distribution to be close to posterior
as in VAEs (Kingma & Welling, 2013), this results in the optimal prior by design, without the need
for additional variational approximations. Given that GMMs are universal density approximates
given enough components (even GMMs with diagonal covariances), the resulting aggregate posterior
g(c) = p(c) is highly flexible and multi-modal.

Lemma 1 (Optimal Mixture). Given the a local content distribution q(cy.x | 87, x?) (per-scene
x4 € {xA}M,), which can be expressed as a GMM with K | A| components, the aggregate posterior
q(c) is obtained by marginalizing out X, s is a non-degenerate GMM with M K| A| components:

M |Al K

ple) = qlc M|A|ZZZ”N C; fik, O1f,) - (7)

i=1 v=1k=1

Proof Sketch. The result is obtained by integrating the product of involved latent posterior densities
q(c | sM)g(s? | x*)p(x*). Further, we verify if the mixing coefficients sum to one in the new
mixture, proving aggregated posterior to be well-defined. O

Mixing function and training objective. In line with Kori et al. (2024), our theory does not rely on
the additivity of the decoder structure; instead, we consider both additive and non-additive mixing
functions denoted as f; : C x V¥ — XV. For additive decoders, we use a spatial-broadcasting
(Greff et al., 2019) and MLP decoders, and for non-additive mixing function, we use auto-regressive
transformers (Vaswani et al., 2017). We use the same network f; across all views, with trainable
parameters 6, which models the conditional distribution p(x" | ¢, v¥). Probabilistically, the generative
model for a view set A can be described by a graphical model in figure 2a, resulting in the likelihood 8.
To train our model in an end-to-end fashion, we maximise the log-likelihood of the joint distribution
p(xA), which results in the evidence lower bound (ELBO), Eq. 10. Here, we consider the distribution
form of p(x | ¢, v") to be Gaussian with learnable mean with isotropic covariance, similarly we
consider ¢(v? | x) to be Gaussian with estimated mean and diagonal covariance.

(X1:V) — //pA(XLV ‘ CLK’Vl:V) pA(ClzK) p(vl:V) dvl:V dcl:K (8)
P(Vitg) A

log p(x // vA | xMp(erx) log p(xA | ek, v )ﬁ dvA derx  (9)

= Eev [logp(x™ | ¢,v)] =KL (q(v [ x*) || p(v)) (10)
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4 THEORETICAL ANALYSIS

In this section, we leverage the properties of the MVPS A method proposed in Section 3 to theoretically
demonstrate the learning of identifiable representations under challenging viewpoint ambiguities. In
summary, we show three main results; firstly, we show that aggregate content representations (c)
are identifiable without supervision (up to an equivalence relation). Secondly, we show that these
representations are invariant to the choice of viewpoints under viewpoint sufficiency. Finally, we
show that the trained model results in an approximate representational equivariance up to an affine
transformation, i.e., for any two viewpoints sub-sets A, B C [V] 3 A # B, the resulting content
distribution p4(c) can be recovered by pp(c) up to an affine transformation.

Assumption 2 (Weak Injectivity). Let f : Z — X’ be a mapping between latent space and image
space, where dim(Z) < dim(X’). The mapping f4 is weakly injective if there exists xo € X" and
§ > Osuch that | f~1({x})| = 1, Vx € B(x0,0) N f(Z),and {x € X : |f1({x})| = =} C f(2)
has measure zero w.r.t. to the Lebesgue measure on f(Z) (cf. Kivva et al. (2022)).

Theorem 1 (Mixture of Concatenated Slots). Let fs denote a permutation equivariant PSA function
such that fs(z°, Ps¥) = Pf(z?,s"), where P € {0, 1}X*¥ is an arbitrary permutation matrix. Let
c=(g(si,.),...,9(s%,.)) € RE be the concatenation of K individual content vectors, where each
vector is an aggregate of all the slots obtained from considered viewpoints in a viewpoint-set A C [V
(cf- Kori et al. (2024)). Due to the nature of the aggregator function, the individual content vector
is Gaussian distributed within a K -component mixture: cj, ~ N (pux, Xx) € R4, VEk € {1,... K}.
Then, c is also GMM distributed with K mixture components:

K!
p(c) = E:Trpj\f(c;up7 %), where w™e ARl p, e REY 3 ¢ REIXKC (11)
p=1

Theorem 2. (Affine Equivalence of aggregate content) For any subset A C [V], such that |A| > 0,
given a set of images x* € X and a corresponding aggregate content ¢ € C and a non-degenerate
content posterior q(c | s?), considering two mixing function fy, fq satisfying assumption 2, with a
shared image, then c are identifiable up to ~ s equivalence.

Intuition. Considering an example 1, with two perfectly trained models fy and fy. Resulting
aggregate contents are described as ¢ = f{;l(xA; v4) = {co,,c0,,C0;,Co,,Co,} and & =
(x4 vA) = {€0,, €0,, €04, €0, , €0, } for A = [V] = {1,2,3}. ~, equivalence states that
there exists a permutation matrix P which aligns the object order in ¢ to match with ¢ and there
exists and invertible affine mapping A such that ¢o, = Acp, Vk € {1,2,3,4}.

Proof Sketch. To prove the following result, we follow multiple steps as described below: (i). We
demonstrate the distribution p(c) obtained as a result of lemma 1 is non-degenerate and a valid
distribution, (ii). With the above results, we demonstrate invertibility restrictions on mixing functions,
(iii). Finally, we constrain the subspace to affine, demonstrating ~ ¢ of aggregate content c. O

Theorem 3. (Invariance of aggregate content) For any subset A, B C [V, such that |A| > 0,|B| > 0
and both A, B satisfy an assumption 1, we consider aggregate content to be invariant to viewpoints if

fa ~s fB fordata X4 x XB.

Intuition. Considering an example 1, with A = {1,3}, B = {2, 3}, such that both sets
A, B are viewpoint sufficient. Let f4 and fp, correspond to perfectly trained models on
X4 and X'P respectively. Resulting aggregate slots are described as ¢ = f!(x?;v4) =
{Co1 , €04, CO4,CO,, CO;,} and ¢ = fgl (XB; VB) = {6(927 Co,,€o,, €0y, CO, } Content invari-
ance states that there exists a permutation matrix P which aligns the object order in ¢ to match
with ¢, and there exists an invertible affine mapping A such that ¢p, = Acp,, even when the
model is trained on completely different scenes with same objects.

Proof Sketch. To prove the following result, we extend the proof of Theorem 2, and first establish
that there exist two inevitable affine functions h 4, hp for mixing functions f4, fg : C XV — X to
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map representations ¢ with a given view set v to observations x*. Later, we show that, in the case
of invariance, an affine mapping exists from i 4 to hp. O

Theorem 4. (Approximate representational equivariance) For a given aggregate content c, for any
two views v,V ~ pa(V), resulting in respective scenes X ~ pa(x | v,c) and X ~ pa(x | v,c), for
any homeomorphic transformation h,, € H, such that h,(x) = X, their exists another homeomorphic
transformation h, € M, such that H, C H, C R and v = hit (£ (ha(x);c)).

Remark 1. Note that we do not claim viewpoint equivariance here. Instead, we say that the transforma-
tion function transforming the view representations v as an effect of the homeomorphic transformation
of x lies in the same subspace of input transformations.

Remark 2. Implications of this result: the homography matrix H between two cameras with non-
degenerate relative pose matrix, with fixed intrinsic camera matrices and non-zero translation and
rotation matrix is a homeomorphic transformation (Hartley & Zisserman, 2003).

Intuition. In the scenario when the cameras are positioned such that they have overlapping fields
of view, and their relative pose (rotation and translation) must avoid degeneracies like aligning
on the same plane or mapping points to infinity. This results in the transformation between
views being smooth, invertible, and consistent. If the scene is planar or depth variations are
minimal, the homography can capture the transformation accurately without the need for inverse
rendering. Notably, the cameras should have non-zero rotation and translation to avoid collapsing
the scene, and their intrinsic parameters must be known or identical to prevent distortions. When
the scenario satisfies all the above properties, the 2D homography transformation H between
two camera views can be learned as a homeomorphic transformation.

Proof Sketch. We prove the following result by following the steps in theorem 3, over a view
distribution p(v) but for a fixed content vector c. O

5 RELATED WORKS

Identifiable representation learning. Learning meaningful representations from unlabeled data has
long been a primary objective of deep learning (Bengio et al., 2013). Several approaches, such as
those proposed by (Higgins et al., 2017; Kim & Mnih, 2018; Eastwood & Williams, 2018; Mathieu
et al., 2019), relied on independence assumptions between latent variables to learn disentangled
representations. However, Hyvirinen & Pajunen (1999); Locatello et al. (2019) demonstrated the
provable impossibility of unsupervised methods for learning independent latent representations from
i.i.d. data. Which is tackled by restricting mixing functions to conformal maps (Buchholz et al., 2022)
or volume-preserving transformations (Yang et al., 2022), or with additional data assumptions (Zim-
mermann et al., 2021; Locatello et al., 2020a; Brehmer et al., 2022; Ahuja et al., 2022; Von Kiigelgen
et al., 2021), or by imposing structure in the latent space as in nonlinear Independent Component
Analysis (ICA) (Hyvarinen et al., 2019; Khemakhem et al., 2020a;b), resulting in identifiable models.
In the context of nonlinear ICA, Dilokthanakul et al. (2016) introduced a VAE model with a GMM
prior, and Willetts & Paige (2021) empirically demonstrated the effectiveness of the GMM prior,
which was later rigorously proven by Kivva et al. (2022). Kori et al. (2024) use this notion of latent
GMM in the context of OCL, achieving identifiability guarantees for object-centric representations.
Here, we use this notion in the context of multiview object-centric representations, tackling the issues
with spatial ambiguities and uncertainties in bindings.

Multiview nonlinear ICA. It has been noted that addressing the challenge of nonlinear Independent
Component Analysis (ICA) can involve incorporating a learnable clustering task within the latent
representations, thereby imposing asymmetry in the latent distribution (Willetts & Paige, 2021; Kivva
et al., 2022). Moreover, the study by Gresele et al. (2020) delves into multiview nonlinear ICA,
particularly in scenarios involving corrupted observations, where they aim to recover invariant repre-
sentations while accounting for certain ambiguities. Along similar lines, Daunhawer et al. (2023);
Von Kiigelgen et al. (2021) explore the concept of style-content identification using contrastive learn-
ing, focusing on addressing the multiview nonlinear ICA problem. Here, we work along similar lines
by emphasising the learning of invariant content and identifiable object-centric representations. We
achieve this by formulating a reconstruction objective where the enforced invariance and equivariance
stem from the underlying probabilistic graphical model rather than relying on a contrastive learning
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Figure 3: Identifiability of ¢(c) and ¢(s). First image illustrates 2 datapoints observed from 2
different viewpoints enclosed in and red boxes, respectively). Recovered marginalised slot
distribution (¢(s)-blue contours) and marginalised content distribution (¢(c)— contours, across
4 runs of MVPSA. As detailed in CASE STUDY 1, we used a 2D synthetic dataset with 5 total
‘objects’, with each observation containing at most 3. This provides strong evidence of recovery of
the latent space up to affine transformations, empirically verifying our claims in Theorem 2.

Table 1: Comparing identifiability of ¢(s), ¢(c), and p(v) scores wrt existing OCL methods.

METHOD CLEVR-AUG CLEVR-MV GQN
SMCCt  INV-SMCC ¢ MCCt | SMCCT  INV-SMCC 1 MCCt | SMCCT  INV-SMCC 1 MCC 4
AE 0.26 + .01 - 0.26 £.02 | 0.32+.02 - 0.29 +.02 | 0.29 + .02 - 0.22 + .02
SA 0.45 + .05 - 0.28+£.02 | 0.47 +.03 - 0.29+.01 | 0.38+.02 - 0.29 + .01
PSA 0.48 + .03 - 0.28 .01 | 0.49 £ .02 - 0.32+.02 | 0.38 %+ .02 - 0.29 + .01
MulMON  0.56 .04  0.57 + .01 - 0.61£.03  0.62=+.02 - 0.61+.03  0.62+.02 -
MVPSA  0.64+.01 0.66+.01 0.63+.04 | 0.67+.01 0.66+.01 0.69+.04 | 0.59+.01 0.63+.0l 0.52+.03

objective. Similar to the noiseless setting in Gresele et al. (2020), we demonstrate the recovery of
invariant content representations using different subsets of viewpoints.

Object-centric learning. Extending nonlinear ICA from representation learning to object-specific
representational learning has been heavily explored before (Burgess et al., 2019; Engelcke et al.,
2019; Greff et al., 2019) by employing an iterative variational inference approach (Marino et al.,
2018), whereas Van Steenkiste et al. (2020); Lin et al. (2020) adopt more of a generative perspective,
studied the effect of object binding and scene composition empirically. Recently, the use of iterative
attention mechanisms has gained a significant interest (Locatello et al., 2020b; Engelcke et al.,
2021; Singh et al., 2021; Wang et al., 2023; Singh et al., 2022; Emami et al., 2022). Most of these
works operate in a single-view setting, which causes fundamental issues of viewpoint ambiguities
in terms of occlusions and uncertainties in binding. Recent methods including Eslami et al. (2018);
Arsalan Soltani et al. (2017); Tobin et al. (2019); Wu et al. (2016) consider single object from
multiple views to tackle this particular problem, additionally Kosiorek et al. (2018); Hsieh et al.
(2018); Li et al. (2020) explore multi-object binding in videos and multiple views, tackling object
binding issues across frames. Despite their empirical effectiveness, most of these works lack formal
identifiability guarantees. In line with recent efforts analysing theoretical guarantees in object-centric
representations (Lachapelle et al., 2023; Brady et al., 2023; Kori et al., 2024), we formally investigate
the modelling assumptions and their implications for achieving identifiability guarantees in the
context of multi-object, multiview object-centric representation learning settings.

6 EMPIRICAL EVALUATION

Given the work’s theoretical focus, experimentally, we aim to provide strong empirical evidence of
our identifiability, invariance, and equivariance claims in a multiview setting. We also extend our
experiments to standard imaging benchmarks along with large-scale images with high variability,
demonstrating the framework’s scalability and applicability in high-dimensional settings.

Experimental setup. We consider standard benchmark datasets from OCL literature, including
CLEVR-MV, CLEVR-AUG, GQN (Li et al., 2020), and proposed datasets MV-MOVIC, MV-MOVID
which are multiview versions of MoViC dataset with fixed and scene-specific cameras (Greff et al.,
2022). To verify our claims on (i) identifiability claim, we train our model on a given view subset
A C [V] and compare view averaged SMCC measures as described in Kori et al. (2024), (ii) invariance
claim, we train multiple models on different subsets of viewpoints A, B C [V] and compare the
aggregate content representations across models, quantifying the similarities with SMCC, we consider
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Figure 4: Viewpoint invariance for ¢(c). First image illustrates 3 datapoints observed from 3
different viewpoints enclosed in , red, blue boxes, respectively). Recovered marginalised
aggregate content distribution ¢(c) when trained with different view pairs {( , red), (red, blue),
( , blue)} are illustrated in later figures. As the resulting distributions with different datasets only
vary by an affine transformation, providing strong evidence for Theorem 3.

this measure to be invariant SMCC (INV-SMCC), and finally, (iii) for subspace equivariance, we
consider a trained model with a view subset A C [V] and compute MCC of view information v by
applying random homeomorphic transformations on samples x* ~ X4 (which can also be done by
considering samples x® ~ X'B, where cameras relative position satisfy the required constraints 2).

Models & baselines. We consider two ablations with two types of decoders: (i) additive with MLPs
and spatial broadcasting CNNs and (ii) non-additive decoders, which include transformer models. In
all cases, we use LeakyReLU activations to satisfy the weak injectivity conditions (Assumption 2).
In terms of object-centric learning baselines, we compare with standard additive autoencoder setups
following (Brady et al., 2023), slot-attention (SA) (Locatello et al., 2020b), probabilistic slot-attention
(PSA) (Kori et al., 2024), and MulMON (Li et al., 2020).

CASE STUDY 1: ILLUSTRATION OF IDENTIFIABILITY RESULTS. To definitively show the
validity of our claims about identifiability (Theorem 2, Theorem 3, and Theorem 4), we created
a synthetic scenario for modeling. This setup enables us to visually examine both the aggregate
posterior distributions and the prior distributions in detail. The process used for generating data is
thoroughly explained in App. C.1. In Figure 3, we display the distributions of marginalized slots
and the aggregate content distribution ¢(s) and ¢(c), comparing different runs that are either rotated,
skewed, or mirrored with respect to each other. To quantitatively measure the same, we computed
SMCC and observed it to be 0.95 £ 0.01, empirically verifying our Theorem 2. Furthermore,
to illustrate the invariance of distribution ¢(c) across viewpoints (Theorem 3), we consider three
different viewpoints. We use all possible pairs to learn ¢(c) distributions as illustrated in Figure 4,
where the distributions from second to last sub-figures are learned wrt viewpoints described by {g, r},
{r, b}, and {g, b}, respectively. Similar to our previous findings, these distributions were also found
to be rotated, skewed, or mirrored relative to each other, with an observed SMCC of 0.87 + 0.11,
further confirming the claims in Theorem 3.

CASE STUDY 2: IMAGING APPLICATIONS. In this section, we demonstrate the generalizability
and scalability of our method to higher-dimensional image settings. We first evaluate the framework on
synthetic benchmarks, specifically focusing on CLEVR-MV, CLEVR-AUG, and GQN with simple
objects. Given the frue generative factors are unobserved, we derive our quantitative assessments
from multiple runs. The results are shown in Table 1, confirming the validity of our theory on imaging
datasets. Regarding the baseline comparisons that utilize a single viewpoint, the INV-SMCC mirrors
the SMCC due to its inherent design (i.e., aggregation of a set with a single element is the same
element). Moreover, in the case of MULMON, the model does not estimate view information, but
use the observed view conditioning, rendering the MCC metric inapplicable. Figure 5 showcases
how the number of viewpoints impacts the identifiability of the s, v, and c variables; the involved
experiments reflect the increase in performance with an increase in the number of views to a certain
extent, across all three benchmark datasets.

Additionally, we applied our methodology to our proposed MV-MOVIC and MV-MOVID datasets.
The latter enables us to examine how the model performs when the assumption detailed in 1 is not
satisfied. To evaluate model behaviour in an environment with consistant objects but with different
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Table 2: Identifiability and generalisability analysis on MV-MOVIC dataset.

METHOD IN-DOMAIN RESULTS OUT-OF-DOMAIN RESULTS

mBO 1 SMCC 1t INV-SMCC 1 MCCt |  mBOT SMCC 1 INV-SMCC 1 MCC
SA-MLP 0.28 £0.091  0.36 & 0.004 - 0.3840.004 | 0.26+0.08  0.38 +0.006 - 0.43 + 0.016
PSA-MLP 0.30 +0.022  0.38 + 0.002 - 0.43+0.012 | 0.30+0.03  0.40 % 0.005 - 0.43 + 0.019
MVPSA-MLP 0.284+0.021 0.52+0.021 0.61+0.023 0.54+0.026 | 0.27+0.02 0.51+0.029 0.58+0.031 0.52 % 0.021
SA-TRANSFORMER 0.3440.014  0.36 £ 0.016 - 0.46 + 0.009 | 0.33+0.041  0.36 % 0.043 - 0.45 + 0.008
PSA-TRANSFORMER 0.37 +0.021  0.38 £ 0.007 - 0.47 +0.007 | 0.37+0.033  0.39 4 0.016 - 0.45 + 0.008

MVPSA-TRANSFORMER ~ 0.38 £ 0.008  0.44 £0.003  0.46 £ 0.001  0.53 £0.011 | 0.36 £0.017  0.46 £0.033  0.46 £ 0.018  0.55 £ 0.082

scenarios, we conducted in-domain and out-of-domain (OOD) evaluations. For in-domain analysis,
the model is trained and assessed on the same viewpoint group A = [1, 2, 3]. Conversely, for OOD
evaluation, we consider the previously trained model, but test it against a new set of viewpoints
B = [3,4,5]. The findings presented in Table 2 regarding the MV-MOVIC dataset reveal that
the SMCC, INV-SMCC, and MCC metrics show similar performance across both domains. This
indicates that the distributional characteristics remain unchanged when both the training and testing
environments contain the same objects. The MV-MOVID dataset analysis can be found in App. F.

Dataset-CLEVR-aug Dataset-CLEVR-mv Dataset-GQN
I | S

| I

. L= | |

e vis - = Vi3 vis
Number of views Number of views Number of views

Figure 5: Influence of Number of viewpoints on identifiability for synthetic datasets.

7 CONCLUSION & DISCUSSION

Understanding when object-centric representations are both unambiguous and identifiable is essential
for developing large-scale models with provable correctness guarantees. Unlike most existing work
on identifiability, which largely focuses on single-view setups, we offer identifiability guarantees
in multi-view scenarios. Building upon the approach by Kori et al. (2024), we use distributional
assumptions for latent slot and view representations, drawing inspiration from mixture model-based
structures. To achieve this, we propose a model that is viewpoint-agnostic and does not require
additional view-conditioning information.

Our model specifically guarantees the identifiability of view-specific slot representations, viewpoint-
invariant content representations, and view representations, all without the need for additional
supervision (up to an equivalence relation). We visually validate our theoretical claims using
illustrative 2D data points. We then empirically demonstrate the model’s identifiability properties on
multiple object-centric benchmarks, highlighting its ability to resolve view ambiguities in imaging
applications. Furthermore, we showcase the scalability of our approach on large-scale datasets and
more complex decoders using realistic datasets and transformer decoders, respectively, demonstrating
its capacity to scale effectively with both data volume and decoder complexity.

Limitations & future work. We recognize that our assumptions, particularly regarding the viewpoint
sufficiency, are strong and may not always hold in practice. However, we did not observe limiting
effects of this assumption on the proposed MV-MOVID dataset. A more extensive analysis of this
assumption and its implications in real-world applications is left for future work. We would also
highlight that the weak injectivity of the mixing function may not always hold for different types
of architectures. While generally applicable, the piecewise-affine functions we use may not always
capture valid assumptions for real-world problems, e.g., when the model is misspecified. Nevertheless,
to the best of our knowledge, our theoretical results on multi-object, multi-view identifiability are
unique and capture key concepts in multi-view object-centric representation learning, opening various
new avenues for future research.

10
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we will be making all relevant code, data, and docu-
mentation available. The benchmark datasets used are publicly available, and for the additionally
proposed datasets, the data-generating scripts and the datasets themselves are provided with instruc-
tions for further research. We detail all the involved hyper-parameters later in the appendix, along
with hardware requirements to reproduce our results.

BROADER STATEMENT

This paper proposes a multi-view probabilistic slot attention algorithm, addressing spatial ambiguities
to achieve identifiable object-centric representations. The work extends theoretical advancements in
the field of OCL, and as such it has little immediate societal or ethical consequences. Our method
might be a step towards interpretable, equivariant, and aligned models, which are desired properties
of trustworthy Al
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: Abstract object set as observed from viewpoint v.
: Exhaustive set of viewpoints, representing all possible views.
: Subsets of viewpoints, selecting specific views from the complete set.

: Data space, formed by the Cartesian product of data spaces for each
view in subset A.

: Data sample, where x" is the data from view v, and x4 represents the
set of data across all views in A.

: Encoder model, which maps input data to a latent space or feature
representation.

: Spatial latent features, representing inferred spatial properties from the
data across views.

: View-specific slot space, a space for features that are tied to particular
viewpoints.

: View-invariant content space, representing features that are constant
across different viewpoints.

: Samples from the view-specific slot space, representing view-dependent
latent features.

: Samples from the view-invariant content space, representing features
that remain consistent across views.

: Probabilistic slot attention module, responsible for attending to and
disentangling different parts of the input related to different views.

: Mixing function, which combines view-specific and view-invariant
features into a unified representation.

: View information space, a space that encodes information specific to
each viewpoint (e.g., angle, position).

: A sample from the view information space representing a specific view
or camera configuration.

: View extractor function, which extracts viewpoint-related information
from the data.

: Mean of invariant content, view-specific slots, and view distributions.

: Standard deviation of invariant content, view-specific slots, and view
distributions.

: Mixing coefficients of invariant content, view-specific slots, and view
distributions.

: Assignment confidence of a slot £ getting mapped to token n.

: Permutation matrix.

: Matching function used to align object representations across views.
: Simplex in the space of dimension K.

: Space of homeomorphic transformation.
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B ALGORITHM

Here we illustrate all the steps involved in the of proposed method MVPSA, refer 1.

Algorithm 1 Multi-view Probabilistic Slot Attention MVPSA

1: Input: A € [V], 24 = {f.(x") Yo € A} € RIAIXNxd > input representations
2: key?  Wyz? € RIAXNXA yalue? + W,z4 € RIAIXNxd > optional value := key
s 00
4: forv e Ado
5: Yk, w(0)g + 1/K, pu(0)g NN(O,Id),U(O)z — 14
6: fort:OAT—ldo( )
) ()N (key s Won(H)k.o ()7 . . :
7: Ak ST (0, N (ke Wa (), (07 I> compute attention
. A Anik -malize attent
8: Anp — S > normalize attention
9: p(t+ 1), 25:1 A, - value, > update slot mean
10: o(t+1); « 27]:[:1 Apy - (value, — p(t + 1)k)2 > update slot variance
11: w(t+ 1), + + ijzl Ank > update mixing coefficient
12: end for
13: s+ sU{(p1.x(T),0% (1)} 7 U {m.x(T)} > slot collection
14: end for
15: return ConvexCombination(s, 7) > K view invariant content

C DATASETS

C.1 ILLUSTRATIVE DATASET

To visually illustrate the effectiveness of our theory we experiment with 2 dimensional illustrative
dataset. For this, similar to Kori et al. (2024), we defined a K = 5 component GMM, with
differing mean parameters p = {1, ..., i5 }, and shared isotropic covariances, which we use to
sample locations for object. For a given location we randomly select one object from ‘cube’,
‘cylinder’, ‘torus’, ‘pyramid’, and ‘sphere’ and generate 64 random points on
the surface of the selected shape uniformly covering it. To create a single data point, we randomly
select three of the five locations and place a randomly selected object at the location. To include
multiple viewpoints, we consider V' = 2 camera location and project the objects creating two different
scenes. We use different colors representing different objects in Figure 3, 4 and used 1000 data points
in total to train our toy MVPS A models.

C.2 PROPOSED DATASET

In this work, we introduce the MV-MOVT datasets, created using Kubric Greff et al. (2022), which
feature multi-view scenes with segmentation annotations. We propose two variants of the dataset:
MV-MOVIC, where the camera locations for every viewpoint remain fixed across all scenes, and
MV-MOVID, where the camera locations dynamically change for each scene.

Both Mv-MOVIC and MV-MOVID primarily consist of scenes generated by randomly selecting a
background from a set of 458 available options and choosing K objects, where 3 < K < 6, from
a pool of 930 objects. In total, the datasets contain 3,000 scenes, each captured from 5 different
viewpoints. Additionally, each scene has 24 frames of data and object segmentation masks for every
frames are provided for all 5 views to facilitate the evaluation of model performance.

D MASK GENERATION

In the case of additive decoders, the decoder outputs K three channelled tensors along with K
single channelled mask. We consider normalise these masks with softmax transformation along
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slot dimension, ensuring the each pixel only contribute to a single slot. The resulting softmaxed
masks are used in composing (image = ), mask;, - image,,) the slots to reconstruct an image
for training. During inference we normalise masks with sigmoid transformation, allowing us to
estimate occluded objects visually resolving the spatial ambiguities, with occluded objects. In later
section, we illustrate the results with both softmax and sigmoid transformations.

D.1 ADDITIVITY IMPLICATIONS

As pointed out in Lachapelle et al. (2023), softmax-based masks do not truly fall under the category
of additive decoders due to the competition between masks for groups of pixels. This implies that
the additive decoders studied in Lachapelle et al. (2023) are not expressive enough to represent the
“masked decoders” typically employed in object-centric representation learning. The issue arises
from the normalization of alpha masks, and care must be taken when extrapolating the findings from
Lachapelle et al. (2023) to the models used in practice.

Although sigmoid-based masks satisfy the condition of additivity during inference, it is important
to note that in our setting the model is still trained using softmax normalization. The effect of
using sigmoid masks during inference can be visually observed in Appendix F.

E IDENTIFIABILITY PROOFS

Lemma 1. (Optimal Content Mixture) For A € [V], given the a local content distribution ¢(cy.x |
st o, x?) (per-scene x4 € {x{1}M ), which can be expressed as a GMM with K components, the
aggregate posterior ¢(c) is obtalned by marginalizing out x, s is a non-degenerate global Gaussian

mixture with M K |A| components:

M Al K

p(c) = g(c) MWZZZMN C; fhik, O3y - (12)

i=1v=1k=1

Proof. We begin by noting that the aggregate posterior ¢(c) is the optimal prior p(c) so long as our
posterior approx1mat10n q(c | s?,x4) is close enough to the true posterior p(c | s4,x4), since for a
dataset x4 € {x2}M . for which we start with ¢(s* | x*), we have that:

ps") = [ p(s" [ xplct i’ (13)
= IEx“‘wp(x“‘) [p(SA ‘ XA)] (14)
| M
~— ) ps? | x) (15)
p>
| M
~ — q(sA | xf) (16)
Py
= q(s™), (17)
We further extend this to ¢(c) as follows
o) = [ ple] shp(s")is® as)
= Eganp(sa) [p(c | s)] (19)
1 U N
~ — p(c|si) (20)
opy
| M
~— qlc|sh) 21)
>
=: ¢(c), (22)
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where we approximated p(x) using the empirical distribution, then substituted in the approximate
posterior and marginalized out x to get p(s), we later consider the distributional form of p(s) and
marginalise s to get p(c). This observation was first made by Hoffman & Johnson (2016) and was
used in Kori et al. (2024) we use it to motivate our setup. Given PSA fits a local GMM to each latent

variable sampled from the approximate posterior: z4 ~ q(z# | x!), fori = 1,..., M. Let f,(z*)
denote the (local) the product of GMM density, its expectation is given by:
Ep(x).q(zrfxr) [fs(2 // 2 | x*) fo(2")dx" dz” (23)

//MZ<5 —xNq(z* | x*) f(z)dx"dz” (24)

/ 7 2% | %) f(2")dz" (25)

K
Zﬂk(Xf‘)N (2" i (x), o (1) dz? (26)
k=1
1 M K
~ [ D00 - ) Y m N (% ). o ) o
=1 k=1 (27)
1 M K
= 3D N (2 (), o () (28)
1=1 k=1
= q(z"), (29)

where we again used the empirical distribution approximation of p(x), and the following basic
identity of the Dirac delta to simplify: [ 6(x — x') fe(x)dx = fe(x').

For the general case, however, we must instead compute the product of ¢(z* | x) and f,(z*) rather
than use a Dirac delta approximation as in Equation 27. To that end we may proceed as follows w.r.t.
to each datapoint x{:

K
a(2” | x{) - fole) = N (2 p(xi), o () - D mu(xON (2% (x), of(x)  GO)
k=1

m(xi) [V (2% p(xf) o2 (xi)) - N (2% (x() o (x)] - BD)

1Al

D ik (2 Bivk: T ) (32)

k=1v=1

Given the product of GMM is a GMM with the number of components equal to product of number of
components in individual GMM, however in our setting we consider all the components in individual
GMM across viewpoints are aligned resulting in GMM with number of compoenents equal to sum
of individual components which in our case correspond to |A|K. The posterior parameters of the
resulting mixture are given in closed-form by:

_ 1 1L\ (e ()
L2Uk ( 2 /v + v)) ) Hivkzo'guk <0_2( )+ 2 /v ) (33)

op(xj)  o?(x; X7 o (x})
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which are the standard distributional parameters obtained from a product of two Gaussians.

Now to show that the resulting GMM is non-degenerate we need to show Zle Tiok = 1,fori =
1,2,...,M,v € A. Based on equation 28:

M K
1
[ A“} = MA == 1 4
= ] 2 2 o M|A\Z M= Y
1 M K
—_ Fion = 1. (35)
M|A|;; b

based on the above equation we can say that the scaled sum of the mixing proportions of all K
components in all M GMMs along all |A| views when the components are aligned must equal 1,
show that the resulting aggregate posterior is non-degenerate and a valid probability distribution. [J

We additionally borrow some theorems and definitions from Kivva et al. (2022) which are essential
for our proofs. First, we restate the definition of a generic point as outlined by Kivva et al. (2022)
below.

Definition 2. A pointx € fq(R™) C R™ is generic if there exists § > 0, such that f, : B(s,d) — R"
is affine for every s € f; ' ({x})

Theorem 5 (Kivva et al. Klvva et al. (2022)). Given f; : R™ — R" is a piecewise affine function
such that {x € R : |f;1({x})| = 00} C fa(R™) has measure zero with respect to the Lebesgue
measure on fq(R™), this implies dim( f4(R™)) = m and almost every point in f;(R™) (with respect
to the Lebesgue measure on f4(R™)) is generic with respect to f,.

Theorem 6 (Kivva et al. Kivva et al. (2022)). Consider a pair of finite GMMs in R™:

’

y = Zﬂg (yiw;:2;),  and  y' = wN(y'iu) ). (36)

J=1

Assume that there exists a ball B(x, ) such that y and 'y’ induce the same measure on B(x, ). Then
y =y, and for some permutation T we have that w; = TI'_II_(i) and (p;, ;) = (u'T(i), E’T(i)).

Theorem 7 (Kivva et al. Kivva et al. (2022)). Given z ~ Z;’Zl wN(z;pi, ;) and 7 ~
Z}],:1 miN(2's 1, X)) and f4(z) and fa(2') are equally distributed. We can assume for x € R"
and § > 0, fqis invertible on B(x,28) N f4(R™). This implies that there exists x; € B(x,d) and
81 > 0 such that both f4 and f, are invertible on B(x1,1) N fq(R™).

Theorem 2 (Affine Equlvalence of aggregate content) For any subset A C [V], such that |A| > 0,
given a set of images x” € X' and a corresponding aggregate content ¢ € C and a non-degenerate
content posterior ¢(c | s), considering two mixing function f4, f4 satisfying assumption 2, with a
shared image, then c are identifiable up to ~, equivalence.

Proof. Based on the results of Kori et al. (2024) we know that when p(s) is aggregate posterior of
q(s | x), p(s is identifiable upto ~ equivalence. Additionally, based on lemma 1 we know that both
q(s | x) and ¢(c | s) are a non-degenerate GMM with valid probability distribution. Using similar
arguments in Kori et al. (2024); Kivva et al. (2022) we show that p(c) and p(s) are identifiable up to
~¢ equivalence.
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‘We know that
p(s4) = / g(sthye | xA)p(x)dx (37)
/ T a(s® [ x")p(x*)dx (38)
veEA
/ H(Zwv s pi(x"), o7 (x ))>p( V)dx (39)
vEA
|X|/<Zﬂ'k/\/ s pi(x"), o (x ))) §(x” = x})dx* (40)
vEA
|X|K
=11 Z |X|7T”kN % ok, Go,) (41)
vEA

Change of variables from s to c to get prior over random variable ¢, with matching function g, results
in:

o) = [ st (st — oste mane)) def @2)
Given the transformation g is linear, resulting us with the distribution with mean given by:
Ec (c1:x) = Es (9(stix, ma 1)) 43)
= g (Es(stix), ma,1:x) (44)
Ty,1:
=) =R (sfi) (45)

wEA EueA Truvl:K

and the covariance follows the diagonal structure as in p(c), which can be described as follows:

Var(erx) = Y (E“”’”{fwrc(cﬁm (46)

veA vEA T, 1: K

Finally, the mixture components can be expressed as:
. Ty, 1:K
K = M (47)
Al

With distribution parameters described in equations 45, 46, and 47, we define the aggregate content
distribution as GMM expressed as follows:

S D vea Tk ok ?
p(c) = A TV Ar flok, (”~) ~12} (48)
( kz::l [ 4] ( I;ZUEAM 7;‘ 2vea ok ’

Validity of p(c): The outer summation in equation 48 can be split into two one for image samples
and other for original mixing coefficients, which results in the equation:

¥l K 1 Z T k ik ik 2

vt ~ ~
“X S AN (o D e () o) @
=1 k=1 ‘ | | ved ZveA T ik ved ZveA Tvik

Based on this we can observe the each component in our GMM corresponds to particular slots for a
given image in a given viewpoint, triple describing each component is:

{Fviks Boik, i}, for v=1,...,|4] i=12,...,|x], and k=1,2,... K.
(50)
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To verify that p(c) is a non-degenerate mixture, we observe the following implication:

X

lZi 1 ZveAﬂ-mk -1 (51)

2.2 17 A !

=1 k=1

[X]

ik = = |X| |4 1=1 52

\X||A|ZZZ - |X|\A|' 14l 52

1=1 vEA k=1

similar to lemma 1, this says that the scaled sum of the mixing proportions of all K components
in all |X| GMMs must equal 1, proving that the associated aggregate posterior mixture p(c) is a
well-defined and non degenerate probability distribution.

Invertibility restrictions: ~Given two piece-wise affine compositional functions fq, fg : CxV — X,
for a given set of views v, letc = (cy,...,cx), D cx ~ N(ck; pr, Xx) and ¢’ = (cf,...,cl), >
cj, ~ N(c}; p),, X).) be a pair of aggregate content representations, result of sampling a concatenated
higher dimensional GMM distribution in R ?, as shown in Theorem 1, Kori et al. (2024). In the
case when, fa;(C, {v*}) and fu(C’, {VA}) are equally distributed. Now assume that there exists
x4 € Xand§ >0 such that f; and f; are invertible and piecewise affine on B(x*,8) N f4(S), for
a given set of views v, which implies dim f4(C, {v*}) = |C|.

Affine subspace: We now restrict the space B(x4,6) to a subspace B(x'4,§’) where x4 €
B(x'4,§") such that f; and f; are now invertible and affine on B(x'4 6’) N fa(C x {vA}).
With L C X“ be an |C|-dimensional affine subspace (assuming | A\ IC]), such that

B(x',d) n fay(C,{v*}) = Bx",6) N L. We also define hy,h; C > Ltobea

pair of invertible affine functions where A7, (B(x'#,8') N L) = fd’ﬁl(B(x’A7 §") N L;vA4) and

hfti (B(x™,8") N L) = f,"(B(x'4,6') N L;v*). Implying hy(c) and / 7(c') are finite GMMs

that coincide with B(x'4,46") N L and hy(c) = hj(c’), theorem 6, Kivva et al. (2022). Given,
h= h};l ohyand hg(c) and h7(c’) then h is an affine transformation such that h(c) = c'.

~ equivalence: Given Theorems 5 and 7, there exists a point x € f4(C, {vA}) that is generic
with respect fy and f; and invertible on B(x,d) N f4(C,{v?}). Having established that there

is an affine transformation h(c) = ¢’ and invertiblility of piece-wise affine functions f; and fa
on B(x4,68) N fay(C,{vA}), this implies that c is identifiable up to an affine transformation and
permutation of ¢, € ¢, concluding our proof.

Remark: Given Theorem 6, we know that for each higher dimensional mixture component
in p(c) induces the same measure on B(x*,J) and hence for some permutation 7 we have that
(Br(i), Br(i)) = (u;(ﬂ(i)), E’T(W(i))). Therefore, each mixture component c ;) is identifiable up to
affine transformation, and permutation of aggregate content representations in c. Now, given sampling
¢y, is equivalent to obtaining K samples from the GMM, ¢(z) and concatenating, this makes ¢(z) iden-
tifiable up to affine transformation, h and permutation of slot representations in c. It now trivially fol-
lows that each of the aggregate content representation cj, ~ N (cy; pp, Xx) € R4 VE € {1,... K}
is identifiable up to affine transformation, / based on the following observed property of GMMs:

K K
> wihy (N (sk; g, Bi) ~ hﬁ(Zﬂk/\/(SZ;%yzL))v (53)
k=1 k=1

[

Theorem 3 (Invariance of aggregate content) For any subset A, B C [V], suchthat|A| > 0,|B| > 0
and both A, B satisfy an assumption 1, we consider aggregate content to be invariant to viewpoints if
fa ~s fp fordata X4 x XB.

3 fay correspond to push forward operation, applying function f; on all the elements of the given set.
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Proof. Based on equation 48, p4(s) and pp(s) can be expressed as follows:

X% 1 Z 0y k 0y k by k 2
UEA v v ~ v ~92
— = Mk, <~> g, 54
Z | |A| < Z ZUEA Tk UEZA D ven Tok k)
[X|K - 2
1 ZuGB TrUk < Tuk ) ~2
== Huk; = = (55)
Z | |B| < Z ZuGB Tuk “ EB ZUGB Tuk Tuk

Given the assumption of viewpoint sufficiency 1 we know the objects observed in viewpoint set A
are same as the object observed in set B. Following the results of Theorem 2, we know that both
pa(s) and pp(s) are independently identifiable up to ~ equivalence, which means f4 and fp are
invertible for a given views v and v respectively.

Affine mapping. Without loss of generality, for a given set of views v, there exists some L C X4
be an |S|-dimensional affine subspace, such that B(x'4,8) N fa3(C, {v* }) N fBﬁ(C, vA}) =
B(x'4,8) N L. This implies their exists an affine map between ¢ = f;'(x*;v4) and ¢ =
fzt(x B vA4). Let ha : C — L to be an invertible affine functions where hAn (B(x'4,0"YNL) =
fAﬁ (B(x'4,6") N L;vA) = fB (B(x'B,6") N L;vA) resulting in h4(c) = c’. Similarly, we can

show their exists an affine map between & = f,'(x*;v?) and & = f5'(x®;v?), such that
hi(E) = &.

Invariance setup. In the case when representations are invariant, p4(c) and pp(c) are equally
distributed, which means aggregate content domain in both cases are same or similar C4 = Cp.

¢ = h(&) (56)
= ha(c) = (hohp)(©) (57)
= ¢ = (hy' ohohp)(€) (58)

Given composition of affine maps is affine, we can consider the mapping (h;l1 ohohpg)tobean
affine, resulting in an ~ equivalence between f4 and fg.

O

Theorem 4 (Approximate representational equivariance) For a given aggregate content c, for any
two views v,V ~ p4(v), resulting in respective scenes x ~ pa(x | v,¢) and X ~ pu(x | v, c),
for any homeomorphic, monotonic transformation h, € H, such that h,(x) = X, their exists
another homeomorphic and monotonic transformation h, € H, such that 4, C H, C RAm(x) gpd

o (f (ha(x):0)).

Proof. For a given view v and a mixing function f that satisfy assumptions 2 and is piecewise affine,
from theorem 2 we know the latent view representations are identifiable up to ~4 equivalence for a
given aggregate content vector. Based on equation ??, we know that p(v) is expressed as GMM with
a considered set of viewpoints, ideally learning each component for each viewpoint.

|A|

= Z WUN(V; Mo, O'u)
v=1

Following similar arguments in Theorem 2 and Kivva et al. (2022), we can show that for a given
content representation c the view distribution p(v) is identifiable up to affine transformation. This
means, for any two considered models fg, f4, such that fg(V; {c}) and fdﬁ(V; {c}) are equally
distributed, then for any x* ~ X’ with the corresponding content representations given by c the views
v = f;1(x"¢), v/ = f;}(x";c) are related in by an affine transformation h(v) = v/, results in:
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|A| |A|

Z Trvh’?i (N(V; Mo, 0'121)) ~ h’ﬁ Z W'UN(V; Mo, 0'12;) ) (59
v=1

v=1

Without loss of generality we can consider any function f : C x V — X is identifiable up to
affine transformation, with this for given views v,v ~ p(v) and for any object representations
c, the resulting scenes are sampled by distributions learned with mixing function f is given by
x ~pr(x|c,v),x ~psr(x|c,V). As previously established for some affine transformation h,

h(v) = [ (Xe) = v=h"" (f" (X)) (60)
Given h,(x) = X, when combined with above equation we know v = h™! (f~(x;c)),v =
R~ (f~(hs(x); ), for some invertible affine transformations / and /.
Given h,, is homeomorphic and monotonic, and f is piecewise linear, the inverse can be transferred
resulting in v = &'~ (h,(f~(x;¢))), similarly we can also swap A’~* with h,, resulting in
v = hy, ("7t (f7(x;¢))). Additionally combining the results from theorem 2 and Kivva et al.
(2022), we know that A'~! o h is an affine transformation h. This results in:

h=h""toh (61)
= V= (hyohoh)(f*(x;c)) (62)
= V= hy(v) (63)

Given affine transformation preserves monotonicity and homeomophism, the resulting transformation
hy, € H, and h,, € H,, concluding the proof.

O

F EXPERIMENTS

F.1 SYNTHETIC DATASET RESULTS

Here, we illustrate visual results reflecting object binding in the case of view ambiguities. In figure 6
we demonstrate the results of MVPSA across 3 different views and compare them against PSA, and
SA baselines. We additionally highlight some of the occluded regions which seem to better captured
by our proposed model, which can be attributed to multi-view setting and the sigmoid mask. The
spatial ambiguities in SA model misrepresents the blue dolphin in figure 6(a) as horse, which does
not seem to be the case in the proposed model.

Additionally, we also illustrate the results from CLEVR-MV and GQN datasets in figures 7 and 8
respectively.

F.2 MVMOVI RESULTS

Here, we discuss the results obtained from the proposed dataset. To reiterate, MVMOVI-C is a variant
where fixed camera positions are maintained for all viewpoints across all scenes in the dataset. This
setup helps assign a fixed type of viewpoint conditioning for all images captured from a particular
camera.

The detection and binding quality of different models are illustrated in Table 2. From these results, we
can clearly observe that while the model demonstrates similar binding capabilities, the identifiability
of object representations is improved in our proposed model. This suggests that the use of fixed
camera positions in MVMOVI-C enhances the consistency and quality of object representation
learning, leading to better detection performance across different viewpoints.

Figure 9 showcases the object discovery capabilities of the MVPSA, PSA, and SA models, displayed
from the top to the bottom row.

In the iteration of the MVMOVI-D dataset, we vary the camera position for each scene, making
the dataset more dynamic and allowing for the potential violation of assumption 1 in certain cases.
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(a) (b)

(© (@

Figure 6: Visual illustrations of benchmark results on CLEVR-AUG dataset.

Table 3 presents the binding and identifiability results for both in-domain and out-of-domain data,
following a similar analysis as in Table 2. We observe consistent trends and behaviors, suggesting
that the impact of the assumption is minimal. A more detailed analysis of the assumption’s effects
will be left for future work.

Figure 10 similarly demonstrates the object discovery capabilities of the MVPSA, PSA, and SA
models, arranged from top to bottom row.

Table 3: Identifiability and generalisability analysis on MV-MOVID dataset.

METHOD INDOMAIN ANALYSIS OUT OF DOMAIN

mBO T SMCC 1t INV-SMCC 1 MCC 1t ‘ mBO 1 SMCC 1t INV-SMCC 1 MCC 1t
SA-MLP 0.24 4 0.031 0.44 £+ 0.005 - 0.45 4+ 0.007 | 0.24 £0.097  0.45 £+ 0.008 - 0.49 4 0.003
PSA-MLP 0.26 4+ 0.022  0.44 £ 0.006 - 0.52 4+ 0.017 0.254+0.012  0.42 £ 0.006 - 0.50 & 0.004
MVPSA-MLP 0.244+0.099 0.48 £0.009 0.46 £0.054 0.57 £0.021 ‘ 0.2540.011  0.48 £0.006  0.51 £0.021  0.55 £ 0.021
SA-TRANSFORMER 0.3440.017  0.40 £ 0.041 - 0.44 £ 0.005 0.34 4+ 0.066  0.38 £ 0.031 - 0.44 £ 0.008
PSA-TRANSFORMER 0.37 £ 0.021 0.38 + 0.007 - 0.46 = 0.001 0.36 £0.024 0.36 = 0.016 - 0.46 + 0.007

MVPSA-TRANSFORMER  0.39 +0.016  0.46 & 0.001 0.48 4 0.001 0.54 4 0.032 ‘ 0.37 4 0.051 0.46 £0.022  0.4540.010  0.54 £ 0.029

F.3 OPTIMIZATION DETAILS

For training the MVPS A model on the large-scale MVMOVT datasets, we employ a gradual view
addition approach. This is made possible by the model’s inherent ability to handle an arbitrary number
of viewpoints, as it is viewpoint-agnostic by design.

Initially, the model is trained using only single-view data, allowing it to focus on learning robust
feature representations from a simpler setup. After 100,000 iterations, we progressively introduce

24



Under review as a conference paper at ICLR 2025

(@) (b)

(© (d)

Figure 7: Visual illustrations of benchmark results on CLEVR-MV dataset.

additional viewpoints into the training pipeline. By doing so, the model incrementally learns to
handle multi-view data without being overwhelmed by the complexity of multiple viewpoints from
the start.

The primary motivation for this approach is to mitigate potential training uncertainties, particularly
those caused by incorrect view matching in the aggregator module g. Gradually introducing views
helps stabilize the training process, allowing the model to effectively bind and integrate information
from different perspectives in later stages of training.

F.4 HYPERPARAMETERS

In Table 4 we detail all the hyper-parameters used in our experiments. In the case of benchmark
experiments, we use trainable CNN encoder as used in Locatello et al. (2020b); Kori et al. (2023),
while in the case of proposed MVMOVI datasets we use DINO (Caron et al., 2021) encoder to extract
image features and change our objective to reconstruct these features rather than the original image
as proposed in Seitzer et al. (2022). For most of hyperparameters we use the values suggested by
Locatello et al. (2020b); Seitzer et al. (2022), based on their ablation results.

F.5 COMPUTATIONAL RESOURCES

We run all our experiments on a cluster with a Nvidia NVIDIA L40 48GB GPU cards. Our training
usually takes between eight hours to a couple of days, depending on the model and the dataset. It is
to be noted that speed might differ slightly with respect to the considered system and the background
processes. All experimental scripts will be made available on GitHub at a later stage.
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Table 4: Experimental details w.r.t datasets

DATASETS(].) PARAMETERS VALUES
No. Layers 4
No. Views 10
No. Slots 7
Training Epochs 5000
Batch Size 32
Optimizer ADAM
CLEVR-MV, CLEVR-AUG Learning Rate 0.0002
Initial Slot g N(0,1)
Initial Slot o I
Warmup Steps 10000
Decoder SPATIAL BROADCASTING-CNN
x— likelihood N (p, 021)
No. Layers 4
No. Views 10
No. Slots 4
Training Epochs 5000
Batch Size 64
Optimizer ADAM
GQN Learning Rate 0.0002
Initial Slot p N(0,1)
Initial Slot o I
Warmup Steps 10000
Decoder SPATIAL BROADCASTING-CNN
x— likelihood N (py, o21)
No. Layers 4
No. Views 5
No. Slots 7
Training Epochs 560
Batch Size 64
Optimizer ADAMW
MVMOVI-C, MVMOVI-D Learning Rate 0.0002
Initial Slot g N(0,1)
Initial Slot o I
Warmup Steps 10000
Pretrained Encoder DINO_VITB16
Decoder MLP, TRANSFORMER
x— likelihood N(pz, 1)
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Figure 8: Visual illustrations of benchmark results on GQN dataset.
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(a) (b)
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Figure 9: Visual illustrations of benchmark results on MVMOVI-C dataset.

28



Under review as a conference paper at ICLR 2025

() (b)

(© (@)

Figure 10: Visual illustrations of benchmark results on MVMOVI-D dataset.
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