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Abstract

A recent study in turbulent flow simulation demon-
strated the potential of generative diffusion mod-
els for fast 3D surrogate modeling. This approach
eliminates the need for specifying initial states
or performing lengthy simulations, significantly
accelerating the process. While adept at sampling
individual frames from the learned manifold of
turbulent flow states, the previous model lacks the
capability to generate sequences, hindering analy-
sis of dynamic phenomena. This work addresses
this limitation by introducing a 4D generative dif-
fusion model and a physics-informed guidance
technique that enables the generation of realistic
sequences of flow states. Our findings indicate
that the proposed method can successfully sample
entire subsequences from the turbulent manifold,
even though generalizing from individual frames
to sequences remains a challenging task. This
advancement opens doors for the application of
generative modeling in analyzing the temporal
evolution of turbulent flows, providing valuable
insights into their complex dynamics.

1. Introduction
Computational Fluid Dynamics (CFD) has been a promi-
nent research direction due to vast interest across fields and
the challenge of developing new architectures grounded
in its broad theoretical framework (Pope, 2001). Recent
advancements in applied AI unlatched fast approximation
and analysis tools for fluids, yielding plenty of models that
predict the state of particles and the corresponding velocity
and pressure fields at a future timestep, autoregressively (Li
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et al., 2020; Chen et al., 2020). However, the primary ob-
jective of CFD simulations often involves exploring the
manifold of all possible flow states rather than determining
the exact trajectory of a particular flow (Lienen et al., 2024).
Lienen et al. (2024) demonstrate that a generative model can
effectively sample from this manifold directly, eliminating
the need for iterative simulations over thousands of steps,
saving time and computational resources.

Yet, in many situations turbulent flow simulations are used
to investigate the development and decay of vortices, lo-
cation of separation regions, and reattachment points, i.e.
properties that are inherently linked to temporal variations.
The model proposed by Lienen et al. (2024) is capable of
providing high-quality snapshots of the flow both visually
and according to the physically-motivated metrics they pro-
pose. However, it generates independent snapshots of the
simulation instead of sequences, which are necessary to
investigate dynamic phenomena. Furthermore, their model
does not explicitly rely on any physical knowledge.

In theory, the physics of the simulation are encoded in the
data and, therefore, a perfect generative model would have
implicitly learned the Navier-Stokes equation. In practice, a
generative model oblivious to the underlying physics may
generate samples that are reasonably close to real data while
violating the physics in important ways. To address such de-
viations from reality in the samples generated by the model,
physical knowledge can be infused into the model in a va-
riety of ways (Karniadakis et al., 2021) such as physically-
enhanced loss functions (Oldenburg et al., 2022), integrating
the model into a numerical solver (Kochkov et al., 2021),
data augmentation (Lu et al., 2020) or integrating known
equations into the structure of the model itself (Lienen &
Günnemann, 2022).

We extend the approach from Lienen et al. to generate
temporally coherent subsequences of simulations. In ad-
dition to extending the generative approach to simulation
to dynamic, time-dependent phenomena, we also propose
a physics-informed sampling procedure. In summary, our
contributions are:

• We introduce an efficient generative diffusion model for
4D turbulent flow data by combining 3D U-Net with
ConvGRU in Section 3.

• In Section 3.1, we derive a physics-informed sampling
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Figure 1: A time-varying 3D turbulent flow simulation generated by our model. Visualization shows the magnitude of the
velocity field u. The insets show that the flow evolves coherently at a similar rate as a ground-truth sample of the same
region.

procedure for diffusion models from the Navier-Stokes
equation and classifier guidance.

• We show experimentally in Section 4 that simulations
generated with our 4D model are of comparable quality
to independent snapshots from a 3D model. Our pro-
posed physics-informed guidance improves the sample
quality in terms of their turbulent kinetic energy spectra.

2. Background
2.1. Dataset

We use the dataset of 3D flow simulations introduced by
(Lienen et al., 2024). It consists of 45 simulations in a
0.4x0.1x0.1 cm channel, discretized into a regular grid of
192x48x48 cells. Each simulation has a differently shaped
object placed near the inlet, blocking part of the flow and
creating turbulent flow downstream. The simulations con-
tain 0.5s of physical time sampled at regular steps of 10−4

seconds for 5000 flow states per simulation. At an inflow
velocity of 20m s−1, the fluid flows 25 channel lengths per
simulation and with a low viscosity of ν = 10−4 achieves a
Reynolds number of about 2×105, well above the threshold
for turbulence. Yet, the sampling steps are sufficiently finely
placed that the average travel distance of the fluid along
the channel between two simulation snapshots is just 2mm,
roughly the diameter of a cell on the simulation grid. This
means that subsequences of the simulation show a coherent
evolution of flow states and the dataset is well-suited to the
study of dynamical phenomena in the flow.

For each cell i = (i, j, k) in the simulation grid and timestep
t, we have a three-dimensional velocity vector ut,i ∈ R3

and a scalar pressure pt,i.

2.2. Generative Turbulence Simulation

Lienen et al. (2024) define the task of generative turbulence
simulation as sampling from the distribution of all possible

flow states
p((u ∥ p) | B, t ≥ tturb) (1)

beyond an initial transient phase to turbulence of length
tturb given the boundary conditions B. Training a genera-
tive model pθ on this distribution is a viable substitute for
numerical simulations to explore the manifold of all possible
flow states, because turbulent flows are independent of their
initial conditions and ergodic, i.e. traverse all possible states
in the infinite simulation time limit (Galanti & Tsinober,
2004).

2.3. Generative Diffusion Models

Denoising Diffusion Probabilistic Models (DDPM) are a
recently developed class of generative models with great
generative capacity and training stability (Ho et al., 2020;
Sohl-Dickstein et al., 2015) that have been extended to di-
verse domains from molecules (Hoogeboom et al., 2022)
over adversarial attacks (Kollovieh et al., 2023b) to point
processes (Lüdke et al., 2023). DDPMs consist of a for-
ward process q(xt | xt−1), which transforms a sample
x0 ∼ p from the data distribution iteratively into a sample
xT ∼ N (0, I) of Gaussian noise, and a learned reverse
process pθ(xt−1 | xt), which is trained to reverse the for-
ward process and remove noise. The training objective is to
minimize the KL Divergence between the learnable reverse
process pθ and the forward process q.

3. Method
Lienen et al. (2024) train a generative model to sample tur-
bulent flow snapshots from the distribution in Equation (1).
While this allows practitioners to explore the manifold of
all possible flow states for some boundary conditions, e.g. a
car engine design, their approach restricts users to exploring
time-independent phenomena in the flow such as surface
pressures. To make their approach viable for the analy-
sis of dynamic phenomena such as mixing times between
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Figure 2: Architecture of our model for the denoised mean prediction µθ(xt, t) in the DDPM framework. The model
synchronizes the denoising process along the time dimension at each down- and up-sampling level of the U-Net with
bi-directional ConvGRU layers.

chemicals, temporally coherent samples are required.

We extend their approach by considering the distribution

p({(ut′ ∥ pt′)}t′=t+i·∆t,i=0...k | B, t ≥ tturb) (2)

of k flow states separated by a time step of ∆t. In effect, we
are training a generative model pθ(x) for 4D data xtijk, i.e.
3D data varying across time, where x = (u ∥ p).

To do so, we extend the TurbDiff model from Lienen et al.
(2024). TurbDiff is an instance of DDPM that uses a 3D-
U-Net (Ronneberger et al., 2015; Çiçek et al., 2016) to
learn the reverse process pθ(xt−1 | xt). At each level of
the U-Net, TurbDiff uses 3D convolutions to be parameter
efficient. While such an approach can be directly extended
to 4D convolutions in principle (Giannopoulos et al., 2022),
it is too costly in terms of runtime and memory. For the
same reason, we also cannot rely on temporal attention as
applied by Ho et al. (2022).

Instead, we stay with 3D convolutions and use a bi-
directional sequence model along the time dimension. This
can be interpreted as k 3D models communicating along
the time dimension to ensure the temporal coherence of the
sequence of generated 3D flow states. The bi-directionality
increases the information flow so that state xt′ and xt′+1

can converge jointly towards a sample during the denoising
process, instead of xt′+1 having to “follow” xt′ as it would
be with uni-directional temporal communication.

Between ConvLSTM (Shi et al., 2015) and ConvGRU (Bal-
las et al., 2015), we choose ConvGRU as our sequence
model building block for its lower count of parameters and
operations. Our ConvGRU layer follows the equations in
Ballas et al. (2015), with all 2D convolutions replaced with
3D convolutions. We make it bi-directional by applying
two independent ConvGRU layers, one in the positive and
in the negative time direction, to our sample xt and then
combining their outputs with a simple, learned linear layer.

See Figure 2 for a visual illustration of our model architec-
ture.

3.1. Physics-inspired Guidance

Diffusion guidance is a mechanism to transform uncondi-
tional generative diffusion models into conditional models
by guiding the generative process by conditioning the score
function (Dhariwal & Nichol, 2021). If we want to condi-
tion our generative model on another random variable y, we
get the updated reverse process (Kollovieh et al., 2023a)

pθ(xt−1 | xt,y) = N (xt−1 | µθ(xt, t) + σ2
t s, σ

2
t I)

s = ∇xt
log p(y | xt)

(3)
where µθ(xt, t) is the learned denoised mean and s is the
guiding score.

The Navier-Stokes equation describes the motion of viscous
fluids and as such forms the foundation of CFD and nu-
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Table 1: Evaluation results w.r.t. the TKE spectra distance
and the regional distribution distance evaluated over sample
sets generated from noise with 3 different random seeds.

Dimension 1/2σ−2
NS W2,TKE W2,R

3 – 4.04(8) 1.470(2)
4 – 4.57(8) 1.392(3)
4 10−12 4.48(2) 1.326(2)
4 10−11 4.47(2) 1.326(2)
4 10−10 4.43(2) 1.327(2)
4 10−9 4.25(2) 1.332(2)
4 10−8 4.25(2) 1.351(2)

merical solvers like OpenFOAM. For a given density ρ and
viscosity ν, the velocity field u and pressure field p have to
fulfill

∂u

∂t
= ν∇2u− 1

ρ
∇p− (u · ∇)u. (4)

Through guidance, we can use this equation to inject physi-
cal knowledge into the generative process as follows. We
define y as the residual of Equation (4),

y = −∂u

∂t
+ ν∇2u− 1

ρ
∇p− (u · ∇)u (5)

and assume that y ∼ N (0, σ2
NSI). An exact solution would

have y = 0, but the variance σ2
NSI lets us introduce some

slack to account for the unavoidable discretization error
inherent to any numerical simulation.

This lets us simplify the guiding score in Equation (3) to

s = − 1

2σ2
NS

∇xt
∥y∥2. (6)

This form of guidance would not have been possible in the
original approach from Lienen et al. (2024), because the
computation of y requires taking gradients with respect to
time, which are not available in the generation of indepen-
dent snapshots. However, since we are sampling coherent
sequences, we can approximate both spatial and temporal
derivatives in Equation (5) with finite differences from the
current sample xt = (ut ∥ pt).

4. Experiments
We trained two models to evaluate our approach. The first is
a 4D model with the architecture shown in Figure 2 trained
to generate simulations of length k = 5. To compare against
the established approach of generating independent snap-
shots of the simulation, we trained a second model to gener-
ate sequences of length k = 1, i.e. independent snapshots.
For this model, we replaced all BiConvGRU layers with
identity functions. Both models are trained for 5 epochs

and we chose the checkpoint with the lowest W2,TKE on a
validation set for further evaluation. Our training, validation
and test set split follows the setup by Lienen et al. (2024).

We evaluate the sample quality of our model with the
W2,TKE and W2,R metrics proposed by Lienen et al. (2024).
The former compares the turbulent kinetic energy (TKE)
spectra of the samples and the data, measuring if the kinetic
energy of the flow is distributed realistically over the spatial
scales. The latter measures if the samples exhibit the correct
velocity, vorticity and pressure distributions in the each re-
gion of the simulation domain, e.g. low velocities and high
pressures in a closed off corner and high velocities in the
correct direction at the flow-facing edges of an object.

To compute these metrics, we draw the same number of
samples, 16 from each model. Since the metrics compare
snapshots invididually, the 4D model would have 16k sam-
ples with some of them highly correlated compared to the
16 independent samples of the 3D model. To ensure that
the metrics can be compared between the models, we se-
lect only the middle frame of each sampled sequence for
evaluation for the 4D model.

Figure 3 shows the velocity and pressure fields from a sim-
ulation generated with our model. See Appendix A for
additional samples from several test cases.

Our evaluation results in Table 1 show first that our extended
4D model generates samples of comparable quality to the
3D baseline model. While the 4D samples are weaker in
terms of their TKE spectra, they have a lower regional dis-
tribution distance W2,R. This means that the 4D samples
are distributing the TKE across the spatial scales less accu-
rately than the 3D samples. We attribute this to the fact that
generating the smallest vortices in a flow seems to be par-
ticulary difficult for the model, as we can see in the sample
in Figure 3. However, W2,R being lower in 4D means that
the overall distribution of velocities and pressures is more
accurate. Overall, these results show that our 4D model is a
viable extension of the 3D baseline model.

We attribute our metrics in the 3D case being overall slightly
worse than the ones reported by Lienen et al. (2024) to the
fact that we needed to reduce the model capacity, i.e. number
of parameters and latent channel dimensions, to ensure that
the 4D model could be trained on an NVIDIA A100.

4.1. Navier-Stokes Guidance

We also evaluate the effect of our physics-informed guidance
(Section 3.1) in Table 1. The results show that increasing
the strength of the guidance by decreasing the assumed
variance σ2

NS on the residual y (Equation (5)) improves
the TKE spectra of the samples while keeping the quality
of the overall velocity and pressure distribution constant.
This shows that our guidance is a viable approach to inject
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Figure 3: A generated sample for the step-high case compared to a ground-truth example. The dotted grid provides
visual support to highlight the dynamics of the flow.

physical knowledge into the sampling process of diffusion
models.

5. Limitations & Future Work
The main source of inaccuracy in our physics-informed
guidance is the need to approximate the derivatives in Equa-
tion (5) with finite differences. First, there is the contribu-
tion to the inaccuracy of the finite difference approximation
from the discretization of the simulation domain. However,
further increasing the resolution of the simulation domain
is challenging because the data is already challenging to
handle at its current resolution. Second, the accuracy of the
finite difference approximation on a gradient relies on the
underlying function being smooth. However, the simulation
data is inherently not smooth because the flow was not fully
resolved, which is infeasible in any practical case.

A sophisticated approach to overcome the second source
of inaccuracy might be to apply a Large-Eddy-Simulation
(LES) technique to the residual in Equation (5). This is the
same technique that was used with OpenFOAM to generate
the dataset. In LES, one splits the dynamics into large and
small scales and simulates the large scales, while applying
a model for the dynamics at sub-grid resolution scale. A
similar approach could enhance the effectiveness of our
physics-informed guidance technique further.

6. Conclusion
We have extended the generative turbulence simulation ap-
proach by Lienen et al. (2024) to 4D and shown that our
model can generate high-quality time-varying simulations
of 3D turbulent flows by combining 3D U-Nets with bi-
directional ConvGRU layers. Our Navier-Stokes guidance

mechanism lets us inject physical knowledge into the sam-
pling procedure and improves the sample quality. We be-
lieve that our contributions are an important step to make
neural networks viable surrogate models for 3D turbulent
flows.
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Lienen, M. and Günnemann, S. Learning the Dynamics
of Physical Systems from Sparse Observations with Fi-
nite Element Networks. In International Conference on
Learning Representations, 2022.
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Lüdke, D., Biloš, M., Shchur, O., Lienen, M., and
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A. Samples from the 4D model
Here, we depict samples generated by our model in 4 different scenarios. Black and white grids are added to aid the visibility
of small changes in time. Exact depictions of the shapes that block the flow are available in the appendix of Lienen et al.
(2024).

Figure 4: A generated sample from case wide-elbow. wide-elbow is an “L” shape rotated 90 degrees clockwise.

Figure 5: A generated sample from case cross-offset. cross-offset is a cross but the lines intersect each other on
the side rather than in the middle.
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Figure 6: A generated sample from case double-pillar. double-pillar is two pillars standing side by side.

Figure 7: A generated sample from case square-large. square-large is a large square in the middle of the flow.
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