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Abstract

Cross-modal retrieval relies on learning inter-
modal correspondences. Most existing approaches
focus on learning global or local correspondence
and fail to explore fine-grained multi-level align-
ments. Moreover, it remains to be investigated how
to infer more accurate similarity scores. In this pa-
per, we propose a novel fine-grained matching with
Multi-Perspective Similarity Modeling (MPSM)
Network for cross-modal retrieval. Specifically, the
Knowledge Graph Iterative Dissemination (KGID)
module is designed to iteratively broadcast global
semantic knowledge, enabling domain information
to be integrated and relevant nodes to be associ-
ated, resulting in fine-grained modality representa-
tions. Subsequently, vector-based similarity repre-
sentations are learned from multiple perspectives
to model multi-level alignments comprehensively.
The Relation Graph Reconstruction (SRGR) mod-
ule is further developed to enhance cross-modal
correspondence by constructing similarity relation
graphs and adaptively reconstructing them. Exten-
sive experiments on the Flickr30K and MSCOCO
datasets validate that our model significantly out-
performs several state-of-the-art baselines.

1 INTRODUCTION

Cross-modal retrieval refers to retrieving the most relevant
text (image) by utilizing the image (text) as a query. Its
core is to detect the potential correlation between differ-
ent modalities and then measure cross-modal similarity to
achieve relatively accurate matching [Hou et al., 2021].

Existing methods mainly learn global or local alignment
between image and text for retrieval. The global alignment
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Figure 1: Illustration of coarse and fine-grained alignment.

learning methods [Hardoon et al., 2004, Karpathy and Li,
2015, Zheng et al., 2020] aim to discover correspondences
between entire image and text, but fail to investigate fine-
grained correspondence between regions and words. As a
result, local alignment learning methods [Niu et al., 2017,
Chen et al., 2019, Chen and Luo, 2020] are presented that are
used to model the region-word correspondence. However,
global or local alignment is one-sided. Therefore, some
researchers jointly model global and local correspondences
to obtain multi-level alignments. The multi-level alignment
methods [Huang et al., 2018a, Li et al., 2020, Nguyen et al.,
2021, Yuan et al., 2021] can provide more complimentary
as well as comprehensive semantic cues, thus improving
performance. Furthermore, fine-grained alignment should
account for both inter-modal and intra-modal correlations.

More importantly, similarity representation and learning are
key to cross-modal matching. Most approaches [Chen et al.,
2020, Wang et al., 2020, Li et al., 2019] compute scalar-
based cosine distances to reflect the cross-modal similarity.
However, this merely yields a constant scalar value and
fails to adaptively refine the visual-semantic correspondence.
Recently, some novel methods [Kuang et al., 2019, Diao
et al., 2021] have achieved excellent results by representing
similarity with vectors rather than scalars. These methods,
however, use a single form of similarity representation and
fail to learn cross-modal similarity in a fine-grained manner.
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In summary, there are several challenges for fine-grained
image-text retrieval. To begin, it needs to consider both
global and local alignment, as they facilitate the interaction
between the "object" and the "global context", as shown in
Figure 1, where the region-global interaction "women on a
tennis court". Second, existing methods fail to explore fine-
grained intra-modal correlation which can provide richer
semantic information. As illustrated in Figure 1(b), the in-
teraction between the "racket", the "ball", and the women’s
"arm" regions corresponds to the phrase "playing tennis".
Significantly, the representation of similarity and its learning
should be considered from multiple perspectives. For exam-
ple, "A woman is hitting a tennis." is semantically related
to the image in Figure 1(vectors are in the same direction),
yet they are mismatched (there are numerical differences).

Motivated by these, we propose a novel fine-grained match-
ing with Multi-Perspective Similarity Modeling (MPSM)
Network for cross-modal retrieval. Specifically, we first con-
struct visual and textsual semantic knowledge graphs. Then,
we introduce the Knowledge Graph Iterative Dissemination
(KGID) module that learns fine-grained intra-modal correla-
tions and modal representations by iteratively propagating
the knowledge. Subsequently, we learn vector-based similar-
ity representations from multiple perspectives separately to
model multi-level alignment. The proposed similarity repre-
sentations are learnable and can comprehensively explore
image-text correspondences. Furthermore, we designed the
Similarity-Relation Graph Reconstruction (SRGR) module
to achieve more accurate matching by constructing simi-
larity relation graphs and adaptively reconstructing similar
relations. Our main contributions are summarized below:

• We propose a KGID module that integrates domain
information of nodes and iteratively propagates se-
mantic information to neighboring nodes to capture
fine-grained local and global representations.

• We learn vector-based similarity from multiple perspec-
tives, which allows for more comprehensive learning of
multi-level correspondences. To our knowledge, this is
the first work to considers both distance and direction
similarity for similarity representation and learning.

• We design a SRGR module in which the similarity
relational graphs are constructed and reconstructed
adaptively to achieve information interaction between
multi-level alignments, filter interference and enhance
similarity, thus improve matching accuracy.

2 RELATED WORK

2.1 IMAGE-TEXT RETRIEVAL

Existing methods can be roughly split into global alignment,
local alignment and multi-level alignment learning methods.

The global alignment learning methods seek to learn cor-
respondences between the entire image and text. Frome
et al. [2013] were the first to map the full image and text
into a common space for semantic alignment. Some ap-
proaches are inspired by generative adversarial network
(GAN)[Goodfellow et al., 2014], Wang et al. [2017] em-
ploys GAN to produce features. There were also methods
focusing on optimization, Faghri et al. [2018] presented an
optimization scheme that increases the distance between
samples and hard samples. Furthermore, Wang et al. [2018]
emphasized the need of maintaining both inter-modal and
intra-modal correspondence. Nevertheless, the above moth-
ods neglected fine-grained semantic associations between
regions and words, as well as intra-modal associations.

The local alignment learning methods explore region-word
correspondence to acquire more accurate similarities. Karpa-
thy et al. [2014] made the first attempt by combining the
alignment of related region-word pairings. Lee et al. [2018]
used an attention mechanism to align each region with all
words, verifying the efficiency of region-word alignment.
Many of the following works were based on [Lee et al.,
2018]. For example, Wang et al. [2019b] followed [Lee et al.,
2018] to model the region-word relation. Several motheds
focused on both inter-modal and intra-modal relations, such
as [Liu et al., 2019, Zhang et al., 2020, Wei et al., 2020].
However, these mothods failed to comprehensively explore
fine-grained visual-semantic similarity. Unlike, we dynami-
cally explore intra-modal correlations and model multi-level
correspondences for more complete alignment.

Recently, researchers are increasingly exploring both global
correspondence and local correspondence to measure cross-
modal similarity comprehensively[Qi et al., 2018, Ma et al.,
2019, Wen et al., 2020]. Some approaches first tried [Qi
et al., 2018, Ma et al., 2019] to tackle the image-text match-
ing in a multi-pathway, computing the global and local
similarities, and combining them into the final similarity.
However, these approaches ignore that a word or a region
may have different semantics in different global contexts,
while global contextual information can be used as a clue for
semantically similar samples [Wei et al., 2021, Xian et al.,
2022]. Based on this, Ji et al. [2021] implemented local-
to-local, global-to-local, and global-to-global cross-modal
alignments in turn. Further, Diao et al. [2021] computed sim-
ilarity representations for all local and global representation
pairs simultaneously. However, existing multi-level align-
ment methods were insufficient for the learning of similarity,
capturing only limited information.

2.2 SIMILARITY REPRESENTATION LEARNING

The core of cross-modal retrieval is the learning of similarity
between different modalities. As for global alignment meth-
ods, some [Faghri et al., 2018, Wang et al., 2016, Li et al.,
2021] explored similarity by computing the cosine distance.



Another branch [Vendrov et al., 2015, Huang et al., 2018b,
Gu et al., 2018] introduced ordered representations. As for
local alignment, most methods [Liu et al., 2019, Wang et al.,
2019b] computed scalar-based cosine distance to reflect
region-word similarity. Furthermore, most multi-level align-
ment methods [Qi et al., 2018, Ma et al., 2019] modeled
local and global alignments separately by using scalar-based
cosine distance and combined them to reflect the similarity.

The above approaches’ similarity representations are scalar
values that cannot learn fine-grained visual-semantic cor-
relations adaptively. Recently, some innovative approaches
[Diao et al., 2021] to similarity representation and learning
have been developed, Diao et al. [2021] learned vector-based
similarity representation to explore multi-level alignment,
and achieved some improvement. However, for similarity,
it appears to be one-sided and fails to learn the correla-
tion between vectors in a thorough manner. Differently, we
learns vector-based similarities from multiple perspectives
to model multilevel alignment more comprehensively.

2.3 THE DIFFERENCE WITH OTHER METHOD

Compared to the GSMN [Liu et al., 2020], which also cap-
tures semantic information, while it lacks the mining of
fine-grained intra-modal interactions. Instead of conducting
basic matching, we consider integrating and spreading se-
mantic knowledge among nodes. It allows for the dynamic
mining of intra-modal correlations as well as the captur-
ing of semantically rich features. Besides, comparison to
SGRAF [Diao et al., 2021], which also utilizes graph reason-
ing. One of the key differences is that we not only mine the
rich semantic information within the modality but also adap-
tively associates relevant nodes. It thus enables semantically
rich intra-modal correlations to be included in inter-modal
similarity learning and inference, which SGRAF [Diao et al.,
2021] does not make possible.

Another aspect, we cleverly model multi-level alignments
and perform similarity inference from multiple perspectives,
whereas most methods simply analyze a single angle. To
our knowledge, it is the first study to consider vector-based
similarity representations and learning from multiple per-
spectives that are complementary. It enables more compre-
hensive learning of cross-modal correspondences.

3 METHODOLOGY

As shown in Figure 2, we first construct the semantic knowl-
edge graphs. The KGID modules are then developed to learn
fine-grained modal representations. Subsequently, vector-
based similarity representations are learned from two per-
spectives: distance or direction similarity, to comprehen-
sively explore multi-level correspondences. Finally, the
SRGR module, which promotes the interaction between

global and local alignments by constructing and adaptively
reconstructing similarity relation graphs.

3.1 SEMANTIC KNOWLEDGE GRAPH
CONSTRUCTION

3.1.1 Visual Semantic Knowledge Graph

Given a raw image I , we use the Faster-RCNN [Krishna
et al., 2017], which is pre-trained on Visual Genome, to
detect n (n = 36) prominent regions. Then, we add a fully
connected layer to transform them into D-dimensional vec-
tors to obtain region representations V = {v1,v2, . . . ,vn}.

Formally, we aim to create an undirected, fully connected
visual semantic knowledge graph Gv = {Vv,Ev} for each
image, with the detected regions set as nodes, and the edge
denoted as a matrix Ev. On the one hand, there are spatial
dependencies between regions. For example, "people on
the court" and "people outside the court" reflect the spatial
location relationship between "people" and "court". Thus,
we follow [Norcliffe-Brown et al., 2018] in modeling spatial
dependencies between regions using polar coordinates and
representing them as a spatial dependence matrix Pv. On
the other hand, there are also potential semantic correlations
between regions. For example, the semantic information
"playing tennis" is formed by associating the three regions:
"women", "racket" and "tennis". Therefore, we calculate the
semantic correlation matrix rv between regions:

rvij =
exp

(
λvT

i vj

)∑v
j=0 exp

(
λvT

i vj

) , (1)

where λ is the scale factor. rvij denotes the correlation be-
tween the i-th region and the j-th region. The visual seman-
tic knowledge graph is made up of the spatial interdepen-
dence and the semantic correlations between regions. We
calculate the Hadamard product of rv and Pv, then apply
column L2-normalization to obtain the edge matrix Ev .

Ev = ‖rv � Pt‖2 , (2)

where ‖·‖2 denotes column L2-normalization.

3.1.2 Textual Semantic Knowledge Graph

For a text T comprising m words, we first represent each
word as a continuous embedding vector. Then the word vec-
tors are embedded into a bi-directional GRU [Cho et al.,
2014]. Finally, textual word feature representation is ob-
tained, denoted as T = {t1, t2, . . . , tm}.

To construct a textual semantic knowledge graph Gt =
{Vt,Et}, we set words as nodes, which are semantically
related to each other. To obtain the syntactic dependency ma-
trix Pt, we first utilize Stanford CoreNLP to find syntactic
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Figure 2: An overview of our MPSM. It is made up of four modules: (1) Semantic knowledge graph construction: extracting
features and constructing semantic knowledge graphs; (2) KGID module: nvestigating semantically relevant features; (3)
Multi-Perspective Similarity Representation: learning vector-based similarity representation from distance (yellow path) or
direction (red path) similarity; (4) SRGR module: enhancing relevant similarities.

dependencies, and add self-loops (the matrix diagonal is 1).
We compute the correlation rt between words. Similarly, the
Et is then obtained by performing a column l2-normalizatio
operation on the Hadamard product of rt and Pt :

rtij =
exp

(
λtTi tj

)∑m
j=0 exp

(
λtTi tj

) , (3)

Et =
∥∥rt � Pt

∥∥
2
, (4)

3.2 KNOWLEDGE GRAPH ITERATIVE
DISSEMINATION

Considering that both images and texts are based on the
KGID module for knowledge propagation, we first depict
the knowledge propagation process on the visual semantic
knowledge graph in detail, and then roughly on the textual.

3.2.1 Visual KGID

Given a visual semantic knowledge graph Gv = {Vv,Ev},
its node representation denoted as V . We use the associated
edges to associate each node with other nodes and propagate
knowledge, resulting in a new visual semantic association
feature map. Then, the softmax function is used to learn
each region’s knowledge weight coefficients and update the
nodes’ own features by element multiplication. Therefore,
we obtain the the "knowledgeable" local representation by

V
(l)
k = ρ

(
A(l)V W (l)

)
� V , (5)

where A0 = Ev , W (l) ∈ Rd×d, ρ is the softmax function.

In order to aggregate and enhance semantic correlations,
we design an adaptive gate mechanism with fusion and

reconstruction procedures in the process of knowledge prop-
agation and reasoning. We obtain gating mask by combining
V

(l)
k and V . Then the gating mask are utilized to control

the flow of information between V
(l)
k and V . Therefore the

image feature representation is dynamically updated by

g(l) = σ
((

V
(l)
k � V

)
+ V

)
, (6)

Vkg
(l) = g(l) � Vk

(l) + (1− gl)� V , (7)

where σ is the sigmoid function,� is the Hadamard product.

Finally, we perform aggregated inference followed by short-
cut connection to enhance the local feature representation:

V (l+1) = ReLu
((

W
(l)
kg V

(l)
kg + b(l)

)
+ V

)
, (8)

where W
(l)
kg ∈ Rd×d. Moreover, we follow [Kuang et al.,

2019] to update the edge A(l+1) using the affinity of new
nodes, i.e., by adaptively update the semantic knowledge
through the affinity between regions:

A(l+1) = softmaxj

(
λ(W

(l+1)
O V

(l+1)
i )× (W

(l+1)
I V

(l+1)
j )

)
,

(9)
where W

(l+1)
I ∈ Rd×d and W

(l+1)
O ∈ Rd×d are linear

transformations of incoming and outgoing nodes, respec-
tively.A(l+1) means that if two regions are highly correlated,
edges with higher scores will connect the nodes.

We iteratively infer, update, and aggregate the visual seman-
tic knowledge graph in N steps, and use the output of the
last step as the local inference representation ṽ of the image.

To obtain the global feature, we perform a self-attentive
operation on the local region features. Specifically,
given the mean-pooled feature vm = 1

N

∑N
i=1 ṽi,



with vm as the query, and ṽ as the key and value,
we first calculate the attention weight distribution
av = softmax (W v

1 ((W v
2 ṽ)� (W v

3 vm))) for all regions,
where W v

1 ∈ R1×d, W v
2 ∈ Rn×d and W v

3 ∈ Rn×d. Then,
the image global feature is obtained by v̄ = 1

N

∑N
i=1 a

v
i ṽi.

3.2.2 Textual KGID

Similarly, given a textsual semantic knowledge graph Gt =
{Vt,Et}, its node representation is denoted as T , we per-
form an N -step iterative propagation and inference to mine
fine-grained local features t̃. Subsequently, a self-attentive
operation is performed to mine the global features t̄.

3.3 MULTI-PERSPECTIVE SIMILARITY
REPRESENTATION LEARNING

We learn local and global similarity representations by us-
ing distance or directional differences between vectors. It
enables a more comprehensive understanding of similarity.

In order to enhance the visual representation, we use the
words information from each sentence as cues to focus on
all regions in each image. For each image, we first compute
the cosine similarity between each region and each word to
establish the relationship R. The softmax function is then
used to calculate the attention weights. Finally, we construct
the augmented representation of images associated with the
j-th word by vtj =

∑m
i=1 softmax (Rij) ṽi.

3.3.1 Distance Similarity

To learn the distance similarity between vectors, we first cal-
culate the vector-based squared Euclidean distance between
vectors x ∈ Rd and y ∈ Rd by dis(x,y) = (x− y)

2.
Then, the distance similarity function denotes as

d(x,y,Wd) =
Wd · dis(x,y)

‖Wd · dis(x,y)‖2
, (10)

where Wd ∈ Rm×d is a learnable parameter matrix.

Using the Eq.(10), we compute the local similarity repre-
sentation dl

j between vt
j and t̃j , then calculate the global

similarity representation dg between v̄ and t̄:

dl
j = d

(
vt
j , t̃j ,W

l
d

)
, (11)

dg = d (v̄, t̄,W g
d ) , (12)

3.3.2 Direction Similarity

We consider the similarity representation learning based on
the cosine distance between x ∈ Rd and y ∈ Rd. Thus, the
"direction" similarity representation is defined as

c(x,y,Wc) =
Wc dir(x,y)

‖Wc dir(x,y)‖2
, (13)

where dir(x,y) = (x · y) / (‖x‖ · ‖y‖).

We calculate the local similarity representation clj between
feature vt

j and t̃j with Eq.(13), and calculate the global
similarity representation cg between v̄ and t̄:

clj = c
(
vt
j , t̃j ,W

l
c

)
, (14)

cg = c (v̄, t̄,W g
c ) , (15)

3.4 SIMILARITY-RELATIONAL GRAPH
RECONSTRUCTION

3.4.1 Relational Graph Building

Formally, we construct a directed relational weighted graph
of similarity representations. Specifically, we denote all "dis-
tance" (or "direction") similarity representations as graph
nodes N =

{
sg, sl1, s

l
2, ..., s

l
j

}
, where sg denotes dg (or

cg), slj denotes dl
j (or clj). For any node, the relationship

between nodes is extracted from node sa to node sb and is
defined as a variable edge weight by

E(sa,sb)
(Wout,Win) =

σ(BN(Woutsa)⊕BN(Winsb))∑
si∈N σ(BN(Woutsa)⊕BN(Winsb))

(16)

where Wout ∈ Rm×1 and Win ∈ R1×m are the linear
transformations of outgoing and incoming nodes, the "⊕"
indicates concatenation. R (sa, sb) = BN (Woutsa) ⊕
(BN (Winsb)) is the trend score of the node-node relation-
ship, and the edge weights E(sa,sb) (Wout,Win) can be
calculated by using sigmoid function σ. Note that sa → sb
differs from sa ← sb, i.e. the edges are directed.

3.4.2 Relational Graph Reconstruction

We perform a series of processes, such as propagation of
similarity relations and gate mechanisms, to achieve the
interaction of similar information and the reconstruction of
the similarity-relational graph. Since the relational edges
are directed, we take the outgoing and incoming inference,
respectively, to implement bi-SRGR:

−→̃
sa =

∑
sb∈N

−−−−−→
E(sa,sb) (Wout,Win) · sb,←−̃

sa =
∑

sb∈N
←−−−−−
E(sa,sb) (Win,Wout) · sb,

(17)

where Wout ∈ Rm×m and Win ∈ Rm×m. The
edge weights of sa output and input are denoted by
−−−−−→
E(sa,sb) (Wout,Win) and

←−−−−−
E(sa,sb) (Win,Wout), respec-

tively.
−→̃
sa and

←−̃
sa denote the results of propagating all sim-

ilarity information from node sa outgoing and incoming,
respectively, both of which contain the same node sa.

Furthermore, to improve the quality of dynamic decision-
making, we propose a conditional selection strategy to adap-
tively filter node information and suppress unnecessary in-
formation. Specifically,

−→̃
sa and

←−̃
sa are first concatenated,



followed by a fully connected layer and a sigmoid function
to obtain the conditional mask,

g̃ = σ
(
W̃
(−→̃
sa ⊕

←−̃
sa

)
+ b̃
)
. (18)

Then, we use the generated conditional control masks to
control the information flow of the original

−→̃
sa and

←−̃
sa, fol-

lowed by a shortcut connection to achieve an adaptively
filtered and enhanced similarity representation, thus the re-
constructed

−→̃
s∗a and

←−̃
s∗a can be achieved by

−→
s∗a = W ∗

1

(
g̃ �
−→
s̃a

)
+
−→
s̃a,

←−
s∗a = W ∗

2

(
g̃ �
←−
s̃a

)
+
←−
s̃a.

(19)

Furthermore, we aggregate
−→̃
s∗a and

←−̃
s∗a, followed by a fully

connected layer, n, which is formulated as,

s∗a = W ∗
(−→
s∗a +

←−
s∗a

)
+ b∗, (20)

where W ∗ ∈ Rm×m. Finally, we feed s∗a into a fully con-
nected layer to predict the final similarity score.

3.5 TRAINING OBJECTIVES AND INFERENCE
STRATEGIES

We employ bidirectional triplet ranking loss as the objective
function. Given a representation of the matched image-text
pair (v, t), its corresponding negative pairs are denoted as
(t,v−) and (v, t−). We compute the loss with

Ldis(v, t) =
∑

(v,t) {max [0, γ − Sdis(v, t) + Sdis (v, t−)]

+ max [0, γ − Sdis(v, t) + Sdis (v−, t)]} .
(21)

where Sdis(v, t) is the similarity prediction function based
on the "distance" similarity representation. Similarly, we
define the ranking loss of MPSM(dir) as Ldir.

In this paper, we use the proposed "distance" and "direction"
similarity representations to investigate two training and in-
ference strategies: joint training and independent training.
For joint training, We combine Ldis and Ldir to train our
MPSM model, i.e., we combine the "distance" and the "di-
rection" similarity representation for training. For indepen-
dent training, we train two single model, MPSM (dis) based
on the "distance" similarity representation and MPSM (dir)
based on the "direction" similarity representation. Then, in
the inference phase, we average the similarities predicted by
the MPSM (dis) and the MPSM (dir) for retrieval evaluation.

4 EXPERIMENTS

4.1 DATASETS AND IMPLEMENTATION DETAILS

The Flickr30K dataset [Plummer et al., 2015] and MS-
COCO dataset [Lin et al., 2014] (1K and 5K test set) were

used for validating the effectiveness our proposed method.
We utilize the typical Recall@K (K=1, 5, 10) as the perfor-
mance evaluation metric. We trained our model with Adam
optimizer with 30 epochs on the Flickr30K dataset and 20
epochs on the MS-COCO dataset. The dimensionality of the
similarity representation to 256, and the other parameters
are set to: l = 3, γ = 0.2, λ = 9.

4.2 QUANTITATIVE RESULTS

We compare the proposed MPSM with several state-of-the-
art baselines. Note that the majority of these models are
ensemble models. Therefore, we provide two versions of
MPSM: MPSM (dis) and MPSM (dir) that based on the "dis-
tance" and the "direction" similarity representation, respec-
tively. Then, we integrate them by averaging their similarity
scores, and denotes as MPSM*.

4.2.1 Results on Flickr30K Dataset

The quantitative results on the Flickr30K dataset are shown
in Table 1, and it can be observed that our MPSM model out-
performs the state-of-the-art in most assessment measures.
Compared with GSMN, our method outperforms it in all
metrics. Unlike GSMN, our approach propagates and aggre-
gates semantic knowledge, rather than performing image-
text matching directly. Furthermore, we simulate the interac-
tion of global and local alignments, which obtains more com-
prehensive cross-modal correlations. Improvements show
that propagating semantic information to learn fine-grained
intra-modal correlations and incorporating them into cross-
modal similarity learning improves matching performance
significantly. Our proposed method outperforms other mod-
els that use the same word feature learning method (i.e.,
bi-GRU). Compared to CAMERA, our method achieves rel-
ative R@1 gains of 2.2% and 1.2% for I2T and T2I match-
ing, respectively. However, our method reduces the relative
R@5 and R@10 to 1.4% and 1.6% for T2I matching, re-
spectively. This could be because CAMERA employs a
pre-trained BERT. BERT learns feature representations of
words based on a massive corpus, with powerful language
representation and sentence processing capabilities.

When compared to SGRAF, a multi-level alignment learning
method that also employs vector-based similarity represen-
tation, our method achieves relative R@1 gains of 2.4% and
3% for I2T and T2I matching, respectively. Unlike SGRAF,
we model the vector-based similarity representation from
two perspectives: distance and direction. Furthermore, our
SRGR module makes the visual-semantic correspondence
more fine-grained. Moreover, our KGID module provides
rich semantic information within modalities. The advance-
ments demonstrate that learning similarity from multiple
perspectives, can help with cross-modal alignment.

It’s worth mentioning that compared with MPSM (dis) and



Table 1: Results on Flickr30K and MSCOCO. * indicates to the ensemble result. The best result is marked in bold.

Method

Flickr30K dataset MSCOCO 1K Test Set MSCOCO 5K Test Set

Image to Text Text to Image Image to Text Text to Image Image to Text Text to Image
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

VSE++ [Faghri et al., 2018] 52.9 79.1 87.2 39.6 69.6 79.5 64.6 90.0 95.7 52.0 84.3 92.0 41.3 71.1 81.2 30.3 59.4 72.4
MTFN [Wang et al., 2019a] 65.3 88.3 93.3 52.0 80.1 86.1 74.3 94.9 97.9 60.1 89.1 95.0 48.3 77.6 87.3 35.9 66.1 76.1
SCAN* [Lee et al., 2018] 67.4 90.3 95.8 48.6 77.7 85.2 72.7 94.8 98.4 58.8 88.4 94.8 50.4 82.2 90.0 38.6 69.3 80.4
VSRN* [Li et al., 2019] 71.3 90.6 96.0 54.7 81.8 88.2 76.2 94.8 98.2 62.8 89.7 95.1 53.0 81.1 89.4 40.5 70.6 81.1
IMRAM* [Chen et al., 2020] 74.1 93.0 96.6 53.9 79.4 87.2 76.7 95.6 98.5 61.7 89.1 95.0 53.7 83.2 91.0 39.7 69.1 79.8
MMCA [Wei et al., 2020] 74.2 92.8 96.4 54.8 81.4 87.8 74.8 95.6 97.7 61.6 89.8 95.2 54.0 82.5 90.7 38.7 69.7 80.8
GSMN* [Liu et al., 2020] 76.4 94.3 97.3 57.4 82.3 89.0 78.4 96.4 98.6 63.3 90.1 95.7 - - - - - -
CAMERA* [Qu et al., 2020] 78.0 95.1 97.9 60.3 85.9 91.7 77.5 96.3 98.8 63.4 90.9 95.8 55.1 82.9 91.2 40.5 71.7 82.5
SMFEA [Ge et al., 2021] 73.7 92.5 96.1 54.7 82.1 88.4 75.1 95.4 98.3 62.5 90.1 96.2 54.2 - 89.9 41.9 - 83.7
CASC [Xu et al., 2020] 68.5 90.6 95.9 50.2 78.3 86.3 72.3 96.0 99.0 58.9 89.8 96.0 47.2 78.3 87.4 34.7 64.8 76.8
SHAN* [Ji et al., 2021] 74.6 93.5 96.9 55.3 81.3 88.4 76.8 96.3 98.7 62.6 89.6 95.8 - - - - - -
SGRAF* [Diao et al., 2021] 77.8 94.1 97.4 58.5 83.0 88.8 79.6 96.2 98.5 63.2 90.7 96.1 57.8 - 91.6 41.9 - 81.3

MPSM (dis) 77.5 94.0 97.0 58.7 83.6 89.1 78.4 96.0 98.5 63.1 90.0 95.6 58.1 84.3 91.4 41.5 70.9 81.4
MPSM (dir) 76.8 94.3 97.0 57.3 82.9 88.9 78.4 96.3 98.8 63.5 90.4 95.8 57.5 84.4 91.7 41.7 71.2 81.5
MPSM* 80.2 94.9 98.0 61.5 84.5 90.1 80.9 96.5 99.0 65.0 91.1 96.1 60.3 86.1 92.5 43.5 72.8 82. 8

MPSM (dir), MPSM* has increased by 2.7% and 3.4% in
I2T retrieval, has increased by 2.8% and 4.2% in T2I re-
trieval relative to R@1, respectively. This demonstrates that
the MPSM(dis) and MPSM(dir) models can complement
and enhance each other, allowing for a more comprehensive
exploration of the correspondence between modalities. Fur-
thermore, our single model’s retrieval performance is very
competitive, demonstrating the effectiveness of our method.

4.2.2 Results on MSCOCO Dataset

Table 1 shows quantitative results for the larger and more
complex dataset MSCOCO (1K and 5K test sets). Our
MPSM surpasses existing approaches in all metrics in the
1K testset. Compared with GSMN, our method outperforms
it in all metrics. Compared to SGRAF, on I2T and T2I re-
trieval, our MPSM improves by 1.3% and 1.8%, respectively.
The gain in our method’s performance over R@5 and R@10
is not as large as it is for R@1, which could be owing to
the presence of more interference sources in a big target set
for a particular query. Our MPSM maintains its superiority
in the 5K testset. Our model outperforms SGRAF by 2.5%
and 1.6 % in I2T and T2I retrieval, respectively.

4.3 ABLATION STUDIES AND ANALYSIS

4.3.1 Impact of Different Network Structures

We compare MPSM (dis) and the integrated model MPSM
with four other models (based on "distance" similarity repre-
sentation). (1) w/o KGID denotes the removal of the whole
KGID module from the model; (2) w/o V-KGID denotes
the absence of the visual KGID module; (3) w/o T-KGID
denotes the absence of the textual KGID module; and (4)
w/o SRGR denotes the absence of the SRGR module.

As shown in Table 2, both MPSM (dis) and MPSM out-
perform these four types of models. Specifically, when we

remove the KGID module, the model performance suffers,
which justifies the usage of modality-specific semantic infor-
mation to investigate fine-grained semantic correlations and
modal representations. Noting that the performance of w/o
V-KGID and w/o T-KGID is better than that of w/o KGID,
owing to the inclusion of semantic information from text
or image, which can help with cross-modal correspondence
investigation.The performance of MPSM (dis) is superior
to that of w/o SRGR, demonstrating the effectiveness of
the SRGR module. It also demonstrates that in-depth explo-
ration of cross-modal similarity relation can facilitate aggre-
gation and enhance similarity for more accurate matching.

Table 2: Impact of different structures on Flickr30K.

Modal Image to Text Text to Image

R@1 R@5 R@10 R@1 R@5 R@10

w/o KGID 75.8 93.2 96.3 57.0 81.5 88.4
w/o T-KGID 76.2 93.9 96.9 56.6 82.5 88.1
w/o V-KGID 75.2 94.0 96.6 56.8 82.7 88.7
w/o SRGR 75.2 93.7 97.1 57.7 82.1 89.0
MPSM (dis) 77.5 94.0 97.0 58.7 83.6 89.1
MPSM* 80.2 94.9 98.0 61.5 84.5 90.1

4.3.2 Impact of Different KGID Layers

We researched the impact layers of KGID modules on per-
formance, gradually increasing the number of KGID layers
from 0 to 4 for training and evaluation. As can be seen in
Table 3, increasing the KGID improves performance. The
model performs best when the number of KGID layers is
increased to 3, demonstrating that iteratively propagating
semantic knowledge is effective in boosting performance.
This is because, during knowledge dissemination, the KGID
module may integrate nodes’ domain information and build
connections with related nodes. The performance of KGID
degrades as the number of layers increases to 4. This could
be due to the fact that as the network grows deeper, the noise



level rises in tandem with the number of connected nodes,
interfering with the learnt correspondence. As a result, we
finally set the KGID module to 3 layers.

Table 3: Impact of different KGID layers on Flickr30K.

Modal Image to Text Text to Image

R@1 R@5 R@10 R@1 R@5 R@10

w/o KGID 75.8 93.2 96.3 57.0 81.5 88.4
1KGID 75.4 93.7 96.5 57.6 82.9 88.8
2KGID 75.9 93.8 96.5 57.8 82.9 88.9
3KGID 77.5 94.0 97.0 58.7 83.6 89.1
4KGID 76.4 93.6 96.9 56.9 82.5 88.3

4.3.3 Impact of Different Alignment Strategies

We investigated three alignments: (1) global alignment learn-
ing strategy, which implies that only global alignment is
used in the model; (2) local alignment learning strategy,
implies that only local alignment is used; and (3) multi-level
alignment learning strategy, which indicates that global and

(a) Rsum results on Flickr30K (b) Rsum results on MSCOCO

Figure 3: Comparison of Rsum results on Flickr30K and
MSCOCO 1K test set with different alignment strategies.

local alignment are combined. As shown in Figures 3, the
model’s performance decreases dramatically when only the
global correspondence is considered, without taking into ac-
count the relationship between local and global. Moreover,
when compared to local alignment learning, the multilevel
alignment learning strategy achieves superior performance.
It demonstrates that global and local alignments can com-
plement each other’s semantic information to achieve more
accurate matching by interacting with "part" and "whole".

4.3.4 Impact of Training Strategies

We design two different training strategies, "joint training"
and "independent training with integration”, and compare
them. From Table 4, we can see that the "independent train-
ing and integration" strategy achieves superior performance
than the "joint training" strategy. On the one hand, the train-
ing with individual learners tends to cause underfitting or
overfitting, resulting in insufficient generalization ability
of the joint training strategy. Instead, we train MPSM (dis)
and MPSM (dir) separately, and integrate them by calculat-
ing their means to complement each other, resulting in an

ensemble modal with superior generalization performance.
On the other hand, the "distance" similarity representation
focuses on measuring the magnitude of similarity while ig-
noring directional differences between images and text; the
"direction" similarity representation distinguishes the differ-
ence between vectors more from direction than numerical
value, and thus fails to quantify the image-text correspon-
dence finely. However, they are complementary. Thus, the
ensemble model MPSM is based on "distance" and "di-
rection" similarity representations, which can facilitate the
exploration of fine-grained cross-modal correspondences.

Table 4: Impact of different KGID layers.

Modal distance direction Joint Split Image to Text Text to Image

R@1 R@10 R@1 R@10

Flickr30K

X 77.5 97.0 58.7 89.1
X 77.0 97.0 57.3 88.9

X X X 77.1 97.2 59.3 88.7
X X X 80.2 98.0 61.5 90.1

MSCOCO 1K

X 78.4 98.5 63.1 95.6
X 78.4 98.8 63.5 95.8

X X X 79.5 99.0 63.6 95.9
X X X 80.9 99.0 65.0 96.1

4.4 QUALITATIVE RESULTS AND ANALYSIS

Furthermore, we show the qualitative results of I2T and T2I
retrieval on the Flickr30K in Figure 4. For the I2T retrieval
in (a), we show the top-5 retrieved sentences based on our
predicted similarity score ranking. Our model can retrieve

1. Two children are in a grassy area near two horses. 
2. 2 kids talk to the horses. 
3. Two children looking at horses through a small fence. 
4. Two children feeding horses through a fence. 
5. Two children pet horses in a field. 

1. A group of men in blue uniforms are standing together. 
2. Men dressed up in blue uniforms standing in formation. 
3. Military men in blue and red suits stand in the street. 
4. A crowd of guards standing on a sidewalk. 
5. Men in uniform are standing on a street. ×

(a) image-to-text matching

Text Query1:Two people bicycle on a path separated by small mountains.

Text Query2: Two dogs are biting each other in the woods.

(b) text-to-image matching

Figure 4: Visualization of image-text retrieval on Flickr30K.



almost all sentences that match the query image; even the
incorrect instances have some similarity. For example, the
"men" region corresponds to the word "men", and the men
are wearing uniforms which corresponds to the phrase "men
in uniform". Thus, the semantics between the matched sen-
tence "5" and the query image are almost identical. This is
due to the KGID module, which investigates fine-grained
correlations between fragments. In addition, MPSM consid-
ers similarity from multiple perspectives and SRGR module
explore more comprehensive similarity and more precise
matching. As for the T2I retrieval, we show the top-3 re-
trieved images and mark the correct results with green boxes.
The top-1 image is the ground-truth, and all other results are
close to the sentence’s semantics. These results demonstrate
our model’s ability to perform finer-grained matching.

5 CONCLUSIONS

In this paper, we propose a fine-grained matching with
Multi-Perspective Similarity Modeling (MPSM) Network
for cross-modal retrieval. Specifically, we develop a knowl-
edge graph iterative dissemination module that iteratively
propagates semantic knowledge to capture fine-grained intra-
modal correlations and modal representations. Then, from
multiple perspectives, we learn vector-based similarity repre-
sentations to adequately learn multi-level correspondences.
Further, we designed a relationship graph reconstruction
module that focuses on aggregating and improving the simi-
larity between similar modalities to be able to obtain more
accurate matches. Experiments on both datasets show that
our network is superior.
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