
Partially Adaptive Regularized Multiple Regression Analysis for
Estimating Linear Causal Effects

Hisayoshi Nanmo1 Manabu Kuroki2

1Chugai Pharmaceutical Co., Ltd., Nihonbashi Muromachi, Chuo-ku, Tokyo, Japan
2Yokohama National University , Tokiwadai, Hodogaya-ku, Yokohama, Japan

Abstract

This paper assumes that cause-effect relation-
ships among variables can be described with
a linear structural equation model. Then, a
situation is considered where a set of ob-
served covariates satisfies the back-door crite-
rion but the ordinary least squares method can-
not be applied to estimate linear causal effects
because of multicollinearity/high-dimensional
data problems. In this situation, we propose a
novel regression approach, the “partially adap-
tive Lp-regularized multiple regression anal-
ysis” (PALpMA) method for estimating the
total effects. Different from standard regular-
ized regression analysis, PALpMA provides a
consistent or less-biased estimator of the lin-
ear causal effect. PALpMA is also applicable
to evaluating direct effects through the single-
door criterion. Given space constraints, the
proofs, some numerical experiments, and an
industrial case study on setting up painting
conditions of car bodies are provided in the
Supplementary Material.

1 INTRODUCTION

1.1 BACKGROUND

The multicollinearity problem [Frisch, 1934], which
occurs when two or more explanatory variables are
highly correlated, is an important issue in regression
analysis. If multicollinearity exists, because the perfor-
mance of least squares/maximum likelihood estimators
of regression coefficients is inadequate, valid results may
not be obtained. The high-dimensional data problem
occurs in the framework of regression analysis when the
sample size is smaller than the number of explanatory

variables. High-dimensional data analysis also suffers
from multicollinearity, which causes overfitting and
interferes with obtaining admissible solutions for re-
gression coefficients. Recently, due to the development
of technological advances that help collect data with
a large number of variables to better understand a
given phenomenon of interest, multicollinearity/high-
dimensional data problems have become serious in
many domains. To overcome this difficulty, numerous
kinds of variable selection techniques based on regu-
larized regression analysis, for example, the least abso-
lute shrinkage and selection operator (LASSO), elastic
net, smoothly clipped absolute deviation (SCAD) and
minimax concave penalty (MCP) methods, have been
proposed by many statistical and AI researchers and
practitioners [Bühlmann and van de Geer, 2011; Efron
et al, 2004; Fan and Li, 2001; Hoerl and Kennard, 1970;
Kuroki and Matsuura, 2018, 2019, 2020; Tibshirani,
1996; van de Geer et al, 2014; Zhang, 2010; Zou, 2006;
Zou and Hastie, 2005].

Currently, the role of regression analysis is not lim-
ited to the prediction of a response variable by ex-
planatory variables; it also plays an important role in
evaluating the linear causal effects of the treatment vari-
able on the response variable. In particular, the total
effect, which is one of the representative linear causal
effects and the main interest in this paper, means the
changes in the expected response variable by one unit
through an external intervention [Pearl, 2009, 2013,
2017]. As has often been noted in the framework of
statistical causal inference, to derive the consistent es-
timator of the total effect, in addition to the treatment
variable, confounders must be included as explanatory
variables in the regression model. However, there are
many confounders that have an effect on both the treat-
ment variable and the response variable and that are
highly correlated in reality. This situation leads to the
multicollinearity problem, which deteriorates the esti-
mation accuracy of the total effects and formulates an
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unreliable plan that prevents us from conducting appro-
priate policy decision making. On the other hand, the
present countermeasures against the multicollinearity
problem are formulated independently of the confound-
ing problem. Thus, although stable results of regression
analysis may be derived by these countermeasures from
the viewpoint of the prediction, they may yield a highly
biased estimate of the linear causal effect.

1.2 CONTRIBUTIONS

In this paper, when the cause-effect relationships
among variables can be described with a linear struc-
tural equation model, we consider a situation where a
set of observed covariates satisfies the back-door cri-
terion but the ordinary least squares (OLS) method
cannot be applied to estimate the total effects because
of the multicollinearity/high-dimensional data prob-
lem. In this situation, to evaluate the total effect, we
propose a novel regression approach, the “Partially
Adaptive Lp-regularized Multiple regression Analysis”
(PALpMA) method for p = 1, 2. In particular, PAL1MA
has the following desirable properties:

(1) In statistical causal inference, it is important not
to remove a treatment variable or confounders from
the regression model when estimating the total effects.
However, even if some covariates are guaranteed to be
important confounders from qualitative causal knowl-
edge, standard regularized regression analysis may re-
move them and the treatment variable from the model,
depending on the value of the regularization parameter.
In contrast, PAL1MA enables us to include both the
treatment variable and such covariates in the regression
model, regardless of the value taken by the regulariza-
tion parameter. In particular, when we know that a
set of covariates satisfies the back-door criterion, the
solution path with such information can be utilized as
the criteria of parameter tuning to estimate the total
effects.

(2) Regarding PALpMA for p = 1, 2, we can derive a
collapsibility condition, i.e., a sufficient condition that
the Lp-regularized estimator of the regression coeffi-
cient of interest is consistent with the OLS estimator
regardless of the value taken by the regularization pa-
rameter, and thus leads to the consistent estimator of
the total effects under the condition. The collapsibility
problem in regression analysis have been discussed by
many researchers [Clogg et al, 1992; Geng and Asano,
1993; Guo and Geng, 1995; Wermuth, 1989ab]. How-
ever, to the best of our knowledge, there has been much
less discussion of collapsibility problem in the context
of regularized regression analysis.

(3) Compared to standard regularized regression anal-
ysis, PAL1MA can reduce the bias or provide higher
coincidence rates for the signs of the OLS estimator,
even when the collapsibility conditions are violated. In
contrast, in standard regularized regression analysis,
the regression coefficients can flip from positive to nega-
tive values and from negative to positive values as they
shrink toward zero, depending on the value of the reg-
ularization parameter. This phenomenon implies that
standard regularized regression analysis may provide
misleading qualitative results regarding the total effects
compared to PAL1MA.

From these properties, PAL1MA contributes to solv-
ing the multicollinearity/high-dimensional data prob-
lems of evaluating linear causal effects in the context of
statistical causal inference. Given space constraints, the
proofs, some numerical experiments and an industrial
case study on setting up painting conditions of car bod-
ies [Kuroki, 2012] are provided in the Supplementary
Material.

2 LINEAR STRUCTURAL CAUSAL
MODEL

In the context of statistical causal inference, a di-
rected acyclic graph that represents cause-effect rela-
tionships is called a causal diagram. A directed graph
is a pair G = (V ,E), where V is a finite set of vertices
and the set E of directed arrows is a subset of the
set V ×V of ordered pairs of distinct vertices. In this
paper, we refer to vertices in the directed acyclic graph
and random variables of the linear structural equation
model interchangeably. In addition, for the graph the-
oretic terminology used in this paper, we refer readers
to Pearl [2009].

Definition 1 (Linear Structural Causal Model) Sup-
pose a directed acyclic graph G = (V ,E) with set
V = {V1, V2, · · · , Vm} of variables is given. The graph
G is called a causal diagram when each child-parent
family in the graph G represents a linear structural
equation model

Vi = µvi
+

∑
Vj∈pa(Vi)

αvivj
Vj + ϵvi

, i = 1, 2, . . . , m

(1)

as the data generating process, where pa(Vi) denotes a
set of parents of Vi in G and random disturbances
ϵv1 , ϵv2 , . . . , ϵvm

are assumed to be independent and
identically distributed with mean 0. In addition, µvi

is
an intercept, and αvivj

( ̸=0) is called a path coefficient
or a direct effect of Vj on Vi (i, j = 1, 2, . . . , m ; i ̸= j).
Then, equation (1) is called a linear structural causal
model (SCM) in this paper.



To proceed with our discussion, we define some nota-
tion. For univariates X and Y and a set of variables Z,
let σxy·z be the conditional covariance between X and
Y given Z = z, and let σxx·z be the conditional vari-
ance of X given Z = z. The regression coefficient of X
in the regression model of Y on X and Z is denoted by
βyx·z = σxy·z/σxx·z. For sets of variables X, Y , and Z
(Y can be univariate), let Σxy·z be the conditional cross-
covariance matrix between X and Y given Z = z, and
let Σxx·z be the conditional variance-covariance matrix
of X given Z = z. In addition, let Byx·z = Σ−1

xx·zΣxy·z
denote the regression coefficient vector of X in the re-
gression model of Y on X and Z. The set of variables
Z is omitted from these arguments if it is an empty set.
Similar notation is used for the remaining statistical pa-
rameters. Furthermore, letting X = {X1, X2, ..., Xq},
the i-th element of Byx·z is denoted by βyxi·x(i)z, where
X(i) = X\{Xi} (i = 1, 2, ..., q). 0q is a q-dimensional
zero vector. Similar notation is used for other sets of
variables.

The main purpose of this paper is to estimate total
effects from observed data. The total effect τyx of X on
Y is defined as the total sum of the products of the path
coefficients on the sequence of directed arrows along
all the directed paths from X to Y . To achieve our
aim, we introduce the back-door criterion [Pearl, 2009]
as one of the representative identifiability criteria for
the total effects. Here, when a linear causal effect can
be determined uniquely from the variance/covariance
parameters of the observed variables, it is said to be
identifiable, that is, it can be estimated consistently.

Definition 2 (Back-Door Criterion) Let {X, Y } and
Z be disjoint subsets of V in a directed acyclic graph G.
If a set Z of vertices satisfies the following conditions
relative to an ordered pair (X, Y ), then Z is said to
satisfy the back-door criterion relative to (X, Y ).

1. No vertex in Z is a descendant of X, and
2. Z d-separates X from Y in the graph obtained by

deleting all the directed arrows emerging from X
from graph G.

If a set Z of observed variables satisfies the back-door
criterion relative to (X, Y ) in a causal diagram G, then,
the total effect τyx is identifiable and is given by the
formula βyx·z [Pearl, 2009]. For other identification
conditions of linear causal effects, refer to, for example,
Brito [2004], Cai and Kuroki [2008], Chan and Kuroki
[2010], Chen [2017], Chen et al [2017], Kuroki and Pearl
[2014], Pearl [2009], Stanghellini [2004], Stanghellini
and Pakpahan [2015] and Tian [2004, 2007ab].

Here, a covariate is defined as an element of non-
descendants of X and Y . In addition, covariates in a

minimal set of variables that satisfy the back-door cri-
terion are called confounders. Note that such a minimal
set is not unique and whether or not a certain covariate
is considered a confounder depends on the selected
minimal set. Furthermore, a set of covariates satisfying
the back-door criterion is also called a sufficient set
of confounders; otherwise, it is called an insufficient
set of confounders. For details on the SCM, refer to
the paper by Pearl [2009]. Finally, the direct effect is
also known as one of the representative linear causal
effects. However, we are concerned with the evaluation
of the total effects because the direct effect can also
be discussed in the framework of regression analysis
through the “single-door criterion” [Pearl, 2009]. Thus,
the total effects are identified with linear causal effects
in this paper.

3 PALpMA

3.1 SETUP

Let X, Y , Z and W be a treatment variable (and
an explanatory variable), a response variable, an r-
dimensional vector of explanatory variables (Z can
be empty) and a q-dimensional vector of explanatory
variables (W can be empty), respectively. For a sample
size of n, consider the linear regression model of Y on
X, Z and W

y = xβyx·zw + zByz·xw + wByw·xz + ϵy·xzw, (2)

where x and y represent n-dimensional observation
vectors of X and Y , respectively. In addition, z and
w are an n × r observation matrix of Z and an n × q
observation matrix of W , respectively. Furthermore,
βyx·zw, Byz·xw and Byw·xz are the regression coefficient
of X, the regression vector of Z and the regression vec-
tor of W in equation (2), respectively. ϵy·xzw is an n-
dimensional vector of error variables. Here, we assume
that elements of ϵy·xzw are independent and identically
distributed with mean zero and variance σyy·xzw < ∞.
In this paper, we also assume that a treatment vari-
able, a response variable and explanatory variables are
standardized to a sample mean of zero and a variance
of one in advance. Here, we consider a situation where
(i) Z ∪ W is a set of covariates satisfying the back-
door criterion relative to (X, Y ), (ii) Z is a subset of
confounders selected from prior causal knowledge (pos-
sibly an empty set, a sufficient set of confounders, or
an insufficient set of confounders), and (iii) W is a set
of covariates for which it is uncertain which covariate
should be added to Z as a confounder, or we know
that a given set of covariates satisfies the back-door
criterion but the OLS method is not applicable to es-
timating total effects using such a set because of the
multicollinearity/high-dimensional data problem.



Then, for a smaller subset of Z ∪ W , if the signs of
the regression coefficients of X are equivalent between
the regression models using Z ∪ W and a selected
smaller set, the regression model using such a subset
will not provide misleading qualitative results regarding
the total effects. Under the above setting, the aim of this
paper is to derive a consistent or less-biased estimator
of the total effect.

This paper mainly focuses on a situation where the
sum of squares matrix of {X}∪Z is invertible but that
of {X} ∪ Z ∪ W is not, because if it is invertible then
the total effect is estimable by the OLS method [Pearl,
2009].

3.2 PALpMA ESTIMATOR

We let sxy, Szw and Sxz be the sum of cross-products
between X and Y , the sum of the cross-product matrix
between Z and W and the sum of the cross-product
vectors between X and Z, respectively. In addition, we
let sxx, Szz and Iq,q be the sum of squares of X, the
sum of squares matrix of Z and a q × q identity matrix,
respectively. Furthermore, sxx·zw, Sxw·z and Sww·z are
the conditional sum of squares of X given Z and W ,
the conditional sum of the cross-product vector between
X and W given Z and the conditional sum of squares
matrix of W given Z, respectively. Similar notation is
used for the remaining sum of squares/cross-products.
Then, the proposed method, PALpMA, is formulated
as follows:

Let β̂yx·zw

B̂yz·xw

B̂yw·xz

 =

 sxx Sxz Sxw

ST
xz Szz Szw

ST
xw ST

zw Sww

−1 sxy

Szy

Swy

 (3)

when the sum of squares matrix of the explanatory
variables is invertible, and β̃yx·zw

B̃yz·xw

B̃yw·xz

 =

 sxx Sxz Sxw

ST
xz Szz Szw

ST
xw ST

zw λIq,q + Sww

−1 sxy

Szy

Swy

 ,

(4)
for λ > 0 when the sum of squares matrix of the
explanatory variables is not invertible. Then, for p =
1, 2, consider the loss function

Lp(βyx·zw, Byz·xw, Byw·xz)

= 1
2 ||y − xβyx·zw − zByz·xw − wByw·xz||22

+λp||γ ⊙ Byw·xz||pp, (5)

where γ = (γ1, γ2, ..., γq)T is a weight vector such that

γ =
(

1
|β̃yw1·xzw(1) |ξ

, . . . ,
1

|β̃ywq·xzw(q) |ξ

)T

(6)

for the non-invertible sum of squares matrix of the
explanatory variables with tuning parameter ξ ≥ 0,
and

γ =
(

1
|β̂yw1·xzw(1) |ξ

, . . . ,
1

|β̂ywq·xzw(q) |ξ

)T

(7)

for the invertible sum of squares matrix of the explana-
tory variables with tuning parameter ξ ≥ 0, where the
superscript “T ” stands for a transposed vector/matrix.
In addition, ⊙ refers to the Hadamard product. || · ||p
denotes the Lp norm, and λp is called a regularization
parameter corresponding to the Lp norm (λp ≥ 0).
| · | stands for the absolute value. The loss function
(equation (5)) is different from standard Lp-regularized
loss functions in the sense that the regularization pa-
rameter λp is not assigned to βyx·zw or Byz·xw. In this
sense, equation (5) is called a partially adaptive Lp-
regularized loss function in this paper. Here, under the
assumption the sum of squares matrix of explanatory
variables {X} ∪ Z ∪ W is invertible, letting λp = 0,
βyx·zw, Byz·xw and Byw·xz that minimize equation (5)
yield equation (3), i.e., the OLS estimators β̂yx·zw,
B̂yz·xw and B̂yw·xz of equation (2), respectively. Let-
ting λ2 = λ and ξ = 0, βyx·zw, Byz·xw and Byw·xz that
minimize equation (5) yield equation (4), i.e., the ridge-
type estimators β̃yx·zw, B̃yz·xw and B̃yw·xz of equation
(2), respectively.

For p = 1 and λ1 > 0, βyx·zw, Byz·xw and Byw·xz

that minimize equation (5) are called PAL1MA esti-
mators, denoted by β̌†

yx·zw, B̌†
yz·xw and B̌†

yw·xz, respec-
tively. If W is an active set for given λ1 > 0, that
is, a subset of explanatory variables with nonzero re-
gression coefficients, but does not include any elements
of {X} ∪ Z (i.e., any i-th element of B̌†

yw·xz does not
take the value zero for given λ1 > 0 ), and letting q
be the number of explanatory variables in the active
set W , then under the assumption that the sum of
squares matrix of explanatory variables {X} ∪ Z ∪ W

is invertible, β̌†
yx·zw is given by

β̌†
yx·zw = β̂yx·zw + λ1

sxx·zw
B̂T

xw·zγ ⊙ sign(B̌†
yw·xz). (8)

Here, B̂xw·z is given by B̂xw·z = S−1
ww·zSwx·z. In addi-

tion, for a q-dimensional vector a = (a1, a2, ..., aq)T ,
sign(a) = (sign(a1), sign(a2), ..., sign(aq))T , where

sign(ai) =


1 : ai > 0
0 : ai = 0
−1 : ai < 0

(9)

for i = 1, 2, ..., q. For p = 2 and λ2 > 0, βyx·zw,
Byz·xw and Byw·xz that minimize equation (5) are
called PAL2MA estimators, denoted by β̃†

yx·zw, B̃†
yz·xw



and B̃†
yw·xz, respectively. Then, β̃†

yx·zw is given by

β̃†
yx·zw = β̂yx·zw

+
λ2B̂T

yw·xz(Sww·z + λ2diag(γ))−1Swx·z

sxx·z − Sxw·z(Sww·z + λ2diag(γ))−1Swx·z
, (10)

where diag(γ) is a diagonal matrix whose (i, i) element
corresponds to the i-th element of γ (i = 1, 2, ..., q).

3.3 Lp COLLAPSIBILITY

In this section, we extend the concept of collapsibility
from the framework of traditional regression analysis
to regularized regression analysis as follows:

Definition 3 (Lp Collapsibility) For a given p, W is
said to be Lp collapsible with the regression coefficient
of X on Y in regression model (2) when the coefficient
does not depend on W or the regularization parameter
λp. In particular, when W is Lp collapsible with the
regression coefficient of X on Y in regression model
(2) for p = 1, 2, W is said to be collapsible with the
regression coefficient of X on Y in regression model
(2).

From equations (8) and (10), the following theorem is
derived immediately:

Theorem 1 For p = 1, 2, when the sum of squares
matrix of Z ∪ W is invertible, if Sxw·z = 0q holds, W
is collapsible with the regression coefficient of X on Y
in regression model (2), i.e., we have

β̌†
yx·zw = β̃†

yx·zw = β̂yx·zw = β̂yx·z. (11)

Particularly, if X is conditionally independent of W
given Z, we have

E(β̌†
yx·zw) = E(β̃†

yx·zw) = E(β̂yx·zw) = E(β̂yx·z). (12)

Note that W is assumed to be an active set for p = 1
in Theorem 1.

Theorem 2 For p = 2, when the sum of squares ma-
trix of {X} ∪Z ∪W is invertible, if Syw·xz = 0q holds,
W is L2 collapsible with the regression coefficient of
X on Y in regression model (2), i.e., we have

β̃†
yx·zw = β̂yx·zw = β̂yx·z. (13)

Particularly, if Y is conditionally independent of W
given X and Z, we have

E(β̃†
yx·zw) = E(β̂yx·zw) = E(β̂yx·z). (14)

Generally, standard regularized regression analy-
sis does not provide consistent estimators of the re-
gression coefficients. In contrast, from Theorem 1, for
p = 1, 2, PALpMA provides the consistent estimator of
the regression coefficient of X on Y if X and W are
conditionally independent given Z, regardless of the
regularization parameter. In other words, when W is
Lp collapsible with the regression coefficient of X on
Y and Z satisfies the back-door criterion relative to
(X, Y ) in regression model (2), PALpMA can provide
a consistent estimator of the total effect. On the other
hand, when X is not conditionally independent of W
given Z, PALpMA may provide a biased estimator of
the regression coefficient of X on Y .

To reduce the bias, consider a partially adaptive L2-
regularized loss function with a weight vector γ∗ and a
tuning parameter ξ∗ such that x and y are replaced by
an empty set and x in equation (5), respectively. Letting
B̃†

xw·z and B̃†
xz·w be PAL2MA estimators of Bxw·z and

Bxz·w derived from such a loss function, respectively,
from equation (8), we formulate the modified PAL1MA
estimator of βyx·zw as

β̌∗
yx·zw = β̌†

yx·zw − λ1

s̃†
xx·zw

B̃†T
xw·zγ ⊙ sign(B̌†

yw·xz), (15)

s̃†
xx·zw = ||x − zB̃†

xz·w − wB̃†
xw·z||22 (16)

for an active set W . When the sum of squares matrix
of {X} ∪ Z ∪ W is invertible, we have

β̌∗
yx·zw = β̌†

yx·zw − λ1

s̃†
xx·zw

B̃†T
xw·zγ ⊙ sign(B̌†

yw·xz)

= β̂yx·zw + λ1

(
1

sxx·zw
B̂xw·z − 1

s̃†
xx·zw

B̃†
xw·z

)T

×γ ⊙ sign(B̌†
yw·xz). (17)

Thus, when Z ∪ W satisfies the back-door criterion,
if B̂xw·z = B̃†

xw·z and sxx·zw = s̃†
xx·zw hold (i.e.,these

estimators are not dependent on the regularization
parameter), then the total effect is estimated by β̌∗

yx·zw.
In addition, since we have

β̌∗
yx·zw = β̂yx·zw + λ1B̂T

xw·z

×
(

Iq,q

sxx·zw
− Sww·z(Sww·z + λ2diag(γ∗))−1

s̃†
xx·zw

)
×γ ⊙ sign(B̌yw·xz), (18)

if Sxw·z = 0q, the total effect is also estimated by
β̌∗

yx·zw.

On the contrary, even when the sum of squares
matrix of {X} ∪ Z ∪ W is not invertible, by taking a
small value of λ2 > 0 such that Sww·z + λ2diag(γ∗) is
invertible in equation (18), the modified PAL1MA can
provide the less-biased estimator of the total effects.



Hereafter, the modified PAL1MA estimator is merely
called the PAL1MA estimator.

3.4 I-PROGLES

Similar to standard regularized regression analy-
sis such as LASSO, adaptive LASSO and elastic net,
it is difficult to provide the explicit formula of the
PAL1MA estimator of the regression coefficient of X
on Y , since equation (5) includes the non-differentiable
term ||γ ⊙ Byw·xz||11; the optimization algorithm is
needed to derive the PAL1MA estimator. Here, note
that standard LASSO algorithms such as least angle
regression [Efron et al, 2004] and generalized path seek-
ing [Friedman, 2012] are not applicable to achieve our
aim since neither βyx·zw nor Byz·xw are regularized in
equation (5).

To derive the PAL1MA estimator β̌∗
yx·zw, we propose

a novel optimization algorithm that adopts the idea
of the block coordinate relaxation method [Sardy et
al, 2000]: “integrated algorithm of PROximal Gradient
method and LEast Squares method” (i-PROGLES).
i-PROGLES, which is shown in Algorithm 1, can be
considered the integrated iterative algorithm of the
proximal gradient method [Daubechies et al, 2004] and
the OLS method. i-PROGLES enables us to include
both the treatment variable and some of important
confounders in the regression model, regardless of the
value taken by the regularization parameters. In addi-
tion, if we know that a set of covariates satisfies the
back-door criterion, the solution path with such in-
formation can be utilized as the criteria of parameter
tuning of i-PROGLES to include the set of covariates.

To construct i-PROGLES, let wi be an n-
dimensional observation vector of the i-th explanatory
variable Wi of W (Wi ∈ W : i = 1, 2, ..., q). In addi-
tion, based on the weight vector γ from equations (6)
and (7), we define the n × q matrix w♯ and B♯

yw·xz as
w♯ =

(
γ−1

1 w1, γ−1
2 w2, . . . , γ−1

q wq

)
and γ ⊙ Byw·xz, re-

spectively. Then, for p = 1, equation (5) is reformulated
as

L♯
1(βyx·zw, Byz·xw, B♯

yw·xz)

= 1
2 ||y − xβyx·zw − zByz·xw − w♯B♯

yw·xz||22

+λ1||B♯
yw·xz||11. (19)

Here, B♯
yw·xz[0] is defined as the solution of equation

(19) given βyx·zw = β̂yx·z(= βyx·zw[0]) and Byz·xw =
B̂yz·x(= Byz·xw[0]). Based on equation (19), in the first
substep of the k+1-th step (k ≥ 0), we evaluate B♯

yw·xz

as the solution of the naive LASSO given βyx·zw =
βyx·zw[k] and Byz·xw = Byz·xw[k]:

B♯
yw·xz[k + 1]

= argmin
B

(
L♯

1(βyx·zw[k], Byz·xw[k], B)
)

. (20)

Here, letting S♯
ww, S♯

yw, S♯
wx and S♯

wz be the sum of
squares matrix of W ♯, the sum of cross-products vector
between Y and W ♯, the sum of cross-products vector
between W ♯ and X and the sum of cross-products
matrix between W ♯ and Z, respectively, and

f ♯(βyx·zw, Byz·xw, Byw·xz)

= 1
2 ||y − xβyx·zw − zByz·xw − w♯Byw·xz||22, (21)

B♯
yw·xz[k + 1] is formulated by

B♯
yw·xz[k + 1] = proxηλ1

(
B♯

yw·xz[k] − η (22)

× ∂

∂B
f ♯ (βyx·zw[k], Byz·xw[k], B)B=B♯

yw·xz [k]

)
,

which is straightforward from equation (20) through
the proximal gradient method [Daubechies et al, 2004]
given βyx·zw[k] and Byz·xw[k]. In this paper, proxa(b)
is defined as

proxa(b) =


b − a : b ≥ a

0 : −a < b < a

b + a : b ≤ −a

. (23)

In addition, noting

∂

∂B
f ♯ (βyx·zw[k], Byz·xw[k], B)B=B♯

yw·xz [k] (24)

= S♯
wxβyx·zw[k] + S♯

wzByz·xw[k] + S♯
wwB♯

yw·xz[k] − S♯
wy,

we have

B♯
yw·xz[k + 1] = proxηλ1(B♯

yw·xz[k] − η (S♯
wxβyx·zw[k]

+S♯
wzByz·xw[k] + S♯

wwB♯
yw·xz[k] − S♯

wy)), (25)

where η satisfies η ≤ (λmax(S♯
ww))−1. Here,

λmax(S♯
ww), which is the maximum eigenvalue of S♯

ww,
corresponds to the Lipschitz constant with respect to
(∂/∂Byw·xz)f ♯.

In the second substep of the k+1-th step, we evaluate
βyx·zw[k + 1] and Byz·xw[k + 1] by the OLS method
given Byw·xz = Byw·xz[k + 1]:(

βyx·zw[k + 1], BT
yz·xw[k + 1]

)T

= argmin
b,B

(
f ♯(b, B, Byw·xz[k + 1])

)
(26)

=
(

sxx Sxz

ST
xz Szz

)−1(
xT

zT

)
(y − wByw·xz[k + 1]) .

Regarding the convergence of i-PROGLES, the follow-
ing theorem can be derived:



Algorithm 1 : i-PROGLES (both λ2 and ξ2 are used to derive B̃†
xw·z and s̃†

xx·zw)
Input: x, y, z and w, k∗ > 0, λ1 ≥ 0, λ2 ≥ 0, ξ1 > 0, ξ2 > 0

βyx·zw[0] = β̂yx·z, Byz·xw[0] = B̂yz·x

B♯
yw·xz[0] = argmin

B

(
1
2 ||y − xβ̂yx·z − zB̂yz·x − w♯B||22 + λ1||B||1

)
Calculate the weight vector: If the sum of squares matrix of the explanatory variables is not
invertible, set

γ =
(

1
|β̃yw1·xzw(1) |ξ1

,
1

|β̃yw2·xzw(2) |ξ1
, . . . ,

1
|β̃ywq·xzw(q) |ξ1

)T

If the sum of squares matrix of the explanatory variables is invertible, set

γ =
(

1
|β̂yw1·xzw(1) |ξ1

,
1

|β̂yw2·xzw(2) |ξ1
, . . . ,

1
|β̂ywq·xzw(q) |ξ1

)T

1: for k = 0 to k∗ do
2: Set

η ≤ (λmax(S♯
ww))−1

B♯
yw·xz[k + 1] = proxηλ1(B♯

yw·xz[k] − η(S♯
wxβyx·zw[k] + S♯

wzByz·xw[k] + S♯
wwB♯

yw·xz[k] − S♯
wy))

3: Set

Byw·xz[k + 1] =
(

γ−1
1 β♯

yw1·xzw(1)
[k + 1], γ−1

2 β♯
yw2·xzw(2)

[k + 1] . . . , γ−1
q β♯

ywq·xzw(q)
[k + 1]

)T

4: Set

βyx·zw[k + 1] = β̂yx·z − B̂wx·zByw·xz[k + 1], Byz·xw[k + 1] = B̂yz·x − B̂wz·xByw·xz[k + 1]

5: end for
6: Set

β̌∗
yx·zw = βyx·zw[k∗ + 1] − λ1

s̃†
xx·zw

B̃†T
xw·zγ ⊙ sign(Byw·xz[k∗ + 1])

7: return β̌∗
yx·zw

Theorem 3 Let {βyx·zw[k]}k≥0, {Byz·xw[k]}k≥0 and
{Byw·xz[k]}k≥0 be the sequences of βyx·zw, Byz·xw and
Byw·xz, respectively, generated by i-PROGLES, and let
u = (x, z). When β∗

yx·zw, B∗
yz·xw and B∗

yw·xz minimize
equation (19) regarding βyx·zw, Byz·xw and Byw·xz, re-
spectively, there exists the natural number K for any
ϵ > 0 such that

L1
(
β∗

yx·zw, B∗
yz·xw, B∗

yw·xz

)
−L1 (βyx·zw[k + 1], Byz·xw[k + 1], Byw·xz[k + 1])

≤ λmax(S♯
ww)

2k
||B♯

yw·xz[0] − B♯∗
yw·xz||22

+λmax(Suu)
2 λmax(S♯

wuS−2
uu S♯

uw)ϵ. (27)

holds for any k ≥ K, where B♯
yw·xz[k] = γ ⊙ Byw·xz[k]

and B♯∗
yw·xz = γ ⊙ B∗

yw·xz.

The proof is given in the Supplementary Material.

4 NUMERICAL EXPERIMENT

In this section, we present a numerical experiment to
compare the performance of LASSO, adaptive LASSO,



Table 1. Results based on cross-validation.

(a) τyx = 0.474 parameter settings
mean bias mse sd sign λ ξ ϕ λ1 ξ1

LASSO 0.1812 0.2929 0.1012 0.1238 0.8824 0.0830 - - - -
adaptive LASSO 0.2736 0.2006 0.0776 0.1934 0.8932 3.4300 1.7000 - - -

Elastic net 0.2101 0.2641 0.0807 0.1047 0.9664 0.0780 - 0.5500 - -
MCP 0.2290 0.2451 0.0862 0.1617 0.8462 0.0600 19.5000 - - -
SCAD 0.1909 0.2832 0.1032 0.1517 0.8216 0.0860 15.5000 - - -

PAL1MA 0.4486 0.0256 0.0640 0.2516 0.9746 - - - 0.0100 0.1000
OLS 0.4717 0.0025 0.2961 0.5441 0.8154 - - - - -

mean: sample mean; bias: bias between the true value and the sample mean; mse: mean squared error; sd: standard
deviation; sign: coincidence rate between the signs of the true value and the estimates; λ, λ1: regularization
parameters; ξ, ξ1: tuning parameters; ϕ: mixing parameter. The regularization parameter λ2 and tuning parameter
ξ2 are selected as λ2 = 0.0014, ξ2 = 0.0013. Refer to the Supplementary Material for the selection of these
parameters.

elastic net, SCAD, MCP, OLS and PAL1MA. For sim-
plicity, letting X and Y be the treatment variable and
the response variable, respectively, consider the linear
SCM with 42 explanatory variables for Y in the form
of

Y = αyxX + αyz1Z1 + αyz2Z2 + AywW + ϵy

X = αxz1Z1 + αxz2Z2 + ϵx

}
(28)

for Fig. 1(W includes 39 variables). In this setting, we
assume that {Z1, Z2} satisfies the back-door criterion
relative to (X, Y ) and the path coefficients of {Z2}∪W
on Y are regularized but Z1 is not. Then, Theorem 1
does not hold, and the estimated total effect may be
biased.

To set up a simulation, we first construct the pop-
ulation variance-covariance matrix. To eliminate the
arbitrariness, the true values of the path coefficients
αyx, αyz1 , αyz2 , Ayw = (αyw1 , ..., αyw39), αxz1 and αxz2

are randomly and independently determined according
to the uniform distribution with the interval [−3, 3]. In
addition, we assume that (i) the random disturbances
ϵx and ϵy independently follow the normal distribu-
tion with mean zero and variance one, and (ii) the
random disturbances are also independent of their non-
descendants. Furthermore, the population variance-
covariance matrices of {Z1, Z2} ∪ W are randomly
determined according to Pourahmadi and Wang [2015].

We generated 30 random samples of 42 variables
from a multivariate normal distribution with a zero
mean vector and the above variance-covariance matrix
for 5000 replications. Table 1 shows the basic statis-
tics of the total effects estimated by LASSO, adaptive
LASSO, elastic net, SCAD, MCP, OLS and PAL1MA

Fig. 1. Causal diagram

based on the given sample size of 30 for each parameter
setting. Regarding the parameter tuning for regularized
regression analysis, see the Supplementary Material.
Here, for the OLS method, we select a set of covari-
ates based on prior causal knowledge; i.e., {Z1, Z2} are
selected.

From Table 1, both the PAL1MA estimators and
the OLS estimators are almost consistent with the true
values of the total effects, but the other regularized
regression methods yield highly biased estimators. In
addition, the coincidence rates between the signs of
the estimated total effects and the true total effects for
PAL1MA are better than those for the other regression
methods. From Fig. 2, the interquartile ranges of both
PAL1MA and OLS include the true value of the total
effects, but the other regularized regression analyses
do not include this value of the total effects. For fur-
ther discussion on the simulation experiments, see the



Supplementary Material.

Fig. 2. Boxplots of the estimated total effects. The
dashed lines show the true total effects.

5 CONCLUSION

In current situations where advanced artificial in-
telligence (AI) technology enables us to collect large
datasets, it would not be so difficult to observe a large
number of covariates. In such situations, it would be
reasonable to consider that such a set of covariates satis-
fies the back-door criterion to estimate the total effects.
However, when multicollinearity/high-dimensional data
problems occur in even this situation, it is difficult to
evaluate the linear causal effects reliably. To solve this
problem, we established PALpMA to provide a con-
sistent or less-biased estimator of the total effects. In
addition, through numerical experiments and a case
study in Supplementary Material, we confirmed that
PAL1MA is superior to other estimation methods. The
results of this paper are applicable to evaluating the
direct effect in the framework of regression models
through the “single-door criterion” [Pearl, 2009]. The
results of this paper would also help us to obtain the
reliable evaluation of the mean of the response vari-
able when conducting the external intervention (e.g.,
Kuroki and Nanmo 2020, Nanmo and Kuroki 2021)
from multicollinearity/high-dimensional data.

Finally, although PALpMA is formulated based on
linear regression models, it would be interesting to
extend our approach to a wide variety of statistical
models, including generalized linear models, general-
ized estimating equations and proportional hazards
models. Such an extension would be straightforward —
the objective function would be replaced with a more
general form. This extension will be left for future work.
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