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Reproducibility Summary1

Scope of Reproducibility2

In this work we try to reproduce the results in support of the newly proposed model HierE2E in Rangapuram et al.3

[2021], which represents a hierarchical model producing coherent probabilistic forecasts. This new deep learning4

approach is compared against 11 benchmarks on 5 datasets commonly used in the time series forecasting community.5

The performance of the different models is measured in terms of the Continuous Ranked Probability Score (CRPS).6

Methodology7

The authors provide a well-organized repository at gluonts-hierarchical-ICML-2021. For our experiments we extended8

their code. Firstly, we made minor modifications to the code written for evaluation of the classical machine learning9

models. Then, we also added the scripts needed for performing the hyperparameter grid search of the deep learning10

methods.11

Results12

The results we obtain are in alignment with 2 of the 4 central claims made in the original work. We arrive at the same13

conclusion as the authors that multivariate models such as DeepVAR proposed in Salinas et al. [2019] and DeepVAR+14

(DeepVAR model modified specifically for analysis purposes in Rangapuram et al. [2021]) outperform the state-of-the-art15

in the field of hierarchical forecasting. Furthermore, we confirm their claim of HierE2E consistenly improving along16

the levels of a hierarchy. Nevertheless, our results do not conclusively show that HierE2E is the best model among the17

evaluated ones. This contrast to their findings holds for both the overall and level-wise CRPS scores.18

What was easy19

The data and code used in the experiments were adequately organized in the repository supplementing the paper. Hence,20

we could readily build upon authors’ work.21

What was difficult22

Due to resource limitation, we were unable to test certain hyperparameter configurations. However, this omission of23

configurations was done in such manner that it did not hinder the investigation of the claims made in the paper.24

We also came across minor difficulties when installing certain libraries for the test environment proposed by the authors,25

because our operating system distributions most likely did not match theirs, which was not specified in the repository26

accompanying the paper.27

Communication with original authors28

Before performing the tests, we contacted the corresponding author of the paper to obtain the runtimes of the models.29

This information was required for allocation of our compute resources. We did not get a response.30
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1 Introduction31

The model presented in the paper "End-to-End Learning of Coherent Probabilistic Forecasts for Hierarchical Time32

Series" improves on the state-of-the-art in the field of hierarchical time series forecasting in multiple respects:33

• All currently available models first optimize the loss for the base forecasts, and then a second loss for34

the reconciliation of these initial forecasts. Differently, HierE2E represents an end-to-end model trying to35

minimize a single loss while accomplishing both tasks.36

• Secondly, the proposed model accounts for great flexibility in 3 separate aspects. To begin with, although the37

tests in the original paper are all conducted on hierarchical datasets, the model allows for general constraints,38

and not solely hierarchical. Next, the mentioned loss function does not always have to be the CRPS score.39

Instead, we could use any metric that suits our needs. Lastly, in the first part of the model where we produce40

the base forecasts, any forecasting method can be used. This means we can plug in either a univariate or41

multivariate (global) forecaster, a characteristic not common to the entirety of the state-of-the-art.42

• The third major contribution that is brought by this model is the fact that it generates probabilistic forecasts.43

They have gained a great deal of popularity recently due to being instrumental in researchers’ or practitioners’44

decision-making process. So, this is another reason why in the practical world HierE2E would be preferred to45

the competing methods.46

2 Scope of reproducibility47

In the original paper, the above stated features of HierE2E were put under investigation on 5 datasets frequently48

appearing in the hierarchical forecasting literature. The performance of the model was compared against 11 benchmarks49

outlined in Section 3.1.50

The results which were obtained through this evaluation process served the authors make four central claims in the51

paper:52

• Claim 1: HierE2E outperforms its competitors on all datasets, except on Tourism, where it is second best.53

• Claim 2: The proposed model has the lowest CRPS score (lower is better) at 12 out of 25 total levels (sum of54

the levels of the 5 datasets). For the remaining 13 levels it comes at the second place with the exception of the55

5. level of the Wiki dataset.56

• Claim 3: HierE2E achieves performance gains consistently going from the bottom to the top hierarchy levels,57

unlike some of the state-of-the-art. According to the original work, this should hold for all datasets used in the58

experiments.59

• Claim 4: Ablation studies on the DeepVAR and DeepVAR+ models have shown that multivariate models as these60

two, in spite of not assuming a hierarchical structure in the data, produce better results than the state-of-the-art61

on the datasets tested. On the other hand, the post-processing during prediction time implemented in DeepVAR+62

increases the CRPS score, hence DeepVAR remains the better alternative.63

3 Methodology64

As stated in the Reproducibility Summary, the paper we decided to reproduce, was supported by a well-documented65

repository. Therefore, once having comprehensively studied the paper, we analyzed the code in the repository to be66

certain it aligns with the model and procedure descriptions in the paper. Subsequently, we familiarized ourselves with67

the datasets used by performing exploratory data analyses.68

After these introductory steps, we proceeded to the test phase. To replicate the paper results for the non-neural models69

only minor code additions were required. However, in order conduct the hyperparameter grid search explained in the70

supplementary material of the paper, we had to write a couple of test scripts. These files, the notebooks containing the71

exploratory data analyses mentioned previously, as well as the code written for the summarization of the experiment72

results are all accessible at the repository Reproducibility-Challenge-2021.73
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3.1 Model descriptions74

In the work of Rangapuram et al. [2021], both classical and deep learning methods are evaluated. For the classical75

approaches, the base forecasts are obtained in two ways, either from an ARIMA or ETS model. The predictions by76

these models are made using the R package hts [Hyndman et al., 2021] with auto-tuning enabled.77

Here we provide brief descriptions of the reconciliation strategies used for the forecasts produced by the ARIMA or78

ETS models:79

• NaiveBU: the univariate point forecasts for the bottom-level time series are summed according to the hierar-80

chical constraints to get point forecasts for the aggregate series,81

• MinT 1 [Wickramasuriya et al., 2019]: general reconciliation procedure that revises unbiased independent82

univariate base forecasts in such a way that variances of forecast errors are minimized,83

• ERM [Ben Taieb and Koo, 2019]: a deterministic model which relaxes the unbiasedness assumption of the base84

forecasts in MinT and instead optimizes the bias-variance trade-off of the forecast errors,85

• PERMBU 2 [Taieb et al., 2017]: utilizes information from different levels in the hierarchy through a sparse86

forecast combination and a probabilistic hierarchical aggregation.87

The main deep learning method investigated in the paper is understandably the proposed model HierE2E. As outlined88

in Section 1, it simultaneously learns from all time series in the hierarchy and incorporates the reconciliation step as part89

of a single trainable model. The resulting forecasts are both probabilistic and coherent (when predictions for individual90

series are summed, the hierarchical constraints are not violated).91

HierE2E allows any kind of base forecaster, but the authors opted for DeepVAR. DeepVAR is a multivariate, nonlinear92

generalization of classical autoregressive models. It uses a recurrent neural network (RNN) to exploit relationships93

across the entire history of the multivariate time series and is trained to learn parameters of the forecast distribution. In94

the ablation studies, besides DeepVAR the authors also evaluate DeepVAR+. This is again a DeepVAR model, but with95

the addition of applying reconciliation during prediction time (and not while training the model) as a post-processing96

measure.97

3.2 Datasets98

The empirical evaluation of HierE2E was done on publicly available hierarchical datsets. The datasets as well as the99

preprocessing scripts are available at gluonts-hierarchical-ICML-2021. In Table 1 summary statistics about the data are100

presented, and here we offer a brief description of each data source:101

• Tourism [Tourism Australia, Canberra, 2005] represents a 89-series geographical hierarchy with quarterly102

observations of Australian tourism flows in the period from 1998 to 2006.103

• Tourism-L [Wickramasuriya et al., 2019] is an extended version of the dataset Tourism. It contains 555104

series in a grouped structure, each of them having 228 data points. The series can be structured in two different105

hierarchies, either based on geography or purpose of travel, both sharing a common root. During the evaluation106

phase, we calculate the performance of the models for both hierarchies.107

• Labour [Australian Bureau of Statistics, 2020] contains monthly Australian employment data from February108

1978 to December 2020. Based on the category labels provided in the dataset, the authors constructed a109

57-series hierarchy.110

• Traffic [Cuturi, 2011] is a dataset in which the occupancy rate of car lanes on Bay Area freeways is111

documented. The original sub-hourly data is aggregated following the aggregation strategy elaborated in112

Ben Taieb and Koo [2019]. This results in a hierarchy of 207 series containing daily observations for one year.113

1The MinT method proposes computing the covariance matrix of individual time series. However, in general, it is difficult to
compute this matrix. Hence, in their tests, the authors considered the covariance matrix with shrinkage operator (MinT-shr) and the
diagonal covariance matrix corresponding to ordinary least squares weights (MinT-ols). Both of these matrices are described in
more detail in the original work introducing the MinT method [Wickramasuriya et al., 2019].

2The authors only implement the PERMBU method with MinT reconciliation strategy. Consequently, in the continuation we will
refer to this method as PERMBU-MinT.

3



• Wiki [Google, 2017] includes daily views for 145,000 Wikipedia articles starting from July 2015 to December114

2016. The authors restructure the dataset to 150 bottom series and 199 in total, as described in Ben Taieb and115

Koo [2019].116

In addition to the above information, Table 1 also shows the prediction length (number of time steps ahead) τ used117

for evaluation of the models on a given dataset. These are the prediction lengths from the publications where the first118

reference of each dataset occurs.119

Dataset Total Bottom Aggregated Levels Observations τ

Tourism 89 56 33 4 36 8
Tourism-L 555 76,304 175 4,5 228 12
Labour 57 32 25 4 514 8
Traffic 207 200 7 4 366 1
Wiki 199 150 49 5 366 1

Table 1: Summary of the datasets used in the paper. Columns Total, Bottom and Aggregated refer to the number of
time series. Observations reflects the number of data points available for each individual time series in a given dataset.
For the Tourism-L dataset the first value in each of the columns Bottom and Levels is for the geographical hierarchy
and the second provides information regarding the hierarchy based on purpose of travel.

3.3 Hyperparameters120

For the classical machine learning models, the optimal hyperparameters were found automatically, as the forecasters121

were set to auto-tuning. On the other hand, a hyperparameter grid search following the authors’ guidelines in the122

supplementary material to their paper was performed for the neural models.123

The authors tune 5 different hyperparameters:124

• batch_size: in HierE2E this hyperparameter takes the value 32 for all datasets except Tourism-L where125

it is set to 4. Nevertheless, in the optimal hyperparameter sets for DeepVAR and DeepVAR+ the authors had126

batch_size equal to 32 for Tourism-L. As in all three models the base forecaster is the same, it is unclear127

why two different values are used for the hyperparameter. Unfortunately, this is not documneted in the128

repository or explained in the supplementary material, so we repeated authors’ experiments.129

• context_length_factor: DeepVAR unrolls the RNN over a short subseries of the provided time series, the130

length of which is known as context_length. In general, this is a multiple (context_length_factor)131

of the prediction length τ . For the datasets with longer prediction horizons (Tourism, Tourism-L, Labour)132

the hyperparameter range for context_length_factor was {2, 3, 4}, while for the datasets with shorter133

prediction horizons (Wiki, Traffic) the range was {15, 25, 40, 60}.134

• epochs: in the original work, the tested values of this hyperparameter are: 10, 25, 50 and 100. Due to resource135

limitation, we do not train the models for 100 epochs. Nevertheless, the number of epochs is not set to136

100 in any of the optimal configurations of the deep learning methods reported by the authors in the GitHub137

repository. Hence, our results are a valid measure for evaluation of their claims.138

• num_training_samples: number of samples to draw from the predicted distribution to compute the training139

loss. The authors tested the performance of the models when obtaining 50 and 200 samples. They report both140

settings converge to an accurate CRPS score, so we proceeded with the first option.141

• warmstart_frac: refers to the fraction of epochs in which no sampling from the learned distribution (this142

is the second step in HierE2E, which is preceded by producing base forecasts with DeepVAR, and followed143

by projection of samples to enforce coherency) was done and instead likelihood was optimized directly144

on the distribution parameters themselves (as in DeepVAR). Two values: 0 and 0.1 are considered for this145

hyperparameter. As no difference in performance, but only in convergence is reported, we run all configurations146

for HierE2E with warmstart_frac set to 0.1.147

These hyperparameters when taking different values can result in a great deal of configuration combinations. To be more148

precise, for each of the models DeepVAR, DeepVAR+ and HierE2E on the datasets Tourism, Tourism-L and Labour149
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we evaluated 9 different configurations, and for the datasets Traffic and Wiki 12 hyperparameter configurations were150

put to the test. Moreover, the tests for each configuration comprised of 5 runs.151

3.4 Experimental setup and code152

The evaluation of the models was done through backtesting. For the prediction length τ , let T + τ be the length of the153

time series available for a dataset. Then, the first T time steps of a time series are used to tune hyperparameters. Once154

the best hyperparameters have been determined, all models are trained on T time steps and evaluated on the time steps155

from T + 1 to T + τ .156

Important detail in relation to the model evaluation is the metric used to measure performance. Although the GluonTS157

library [Alexandrov et al., 2019] supports calculation of numerous metrics (and in my pickle files with results, all of158

these metrics are estimated for a given model and dataset), the authors focused on a single well-established metric in159

the field of probabilistic forecasting - the CRPS score introduced first by Laio and Tamea [2007].160

Given a univariate predictive CDF F̂t,i for time series i, and a ground-truth observation yt,i, CRPS can be defined as161

CRPS(F̂t, yt) :=
∑
i

∫ 1

0

QSq(F̂
−1
t,i , yt,i) dq, (1)

where QSq is the quantile score (or pin-ball loss) for the q-th quantile:162

QSq = 2(1{yt,i ≤ F̂−1
t,i (q)})(F̂

−1
t,i (q)− y). (2)

A discrete version of the metric has been implemented in GluonTS, with the integral in Eq. 1 being replaced by a163

weighted sum over a quantile set. In this work, the quantile set comprised of the quantiles ranging from 0.05 to 0.95164

with 0.05 increments.165

As aforementioned, the complete code we used for the experiments in this reproducibility study is made available at166

Reproducibility-Challenge-2021. In the repository, there are also thorough guidelines on replicating our evaluation167

process.168

3.5 Computational requirements169

The experiments were carried out on two separate machines whose specifications are shown in Table 2. The classical170

machine learning methods were tested on the personal computer on the left-hand side of Table 2, while the deep learning171

approaches were evaluated using the other more powerful virtual machine. This machine was run as a notebook instance172

in Amazon SageMaker [Liberty et al., 2020].173

OS Linux Ubuntu 20.04 (x64) Amazon Linux
CPU Intel i5-8250U (1.60GHz) 2.4 GHz Intel Xeon E5-2676 v3
RAM 8 GB 64 GB
Storage 300 GB 5 GB Amazon Elastic Block Store (Amazon EBS)

Table 2: Specifications of the hardware used for the experiments.

Details about the model runtimes are provided in Table 3. Altogether, the experiment time amounted to 70.03 hours of174

tests on the personal computer and 173.03 hours of tests on the Amazon SageMaker instance. As it can be observed175

in Table 3, a siginificant time portion (112.28 hours or 64.89%) of the tests run on the Amazon virtual machine was176

allocated to HierE2E. However, these longer runtimes for the newly proposed model do not diminish its improvement177

over the state-of-the-art shown below in Table 4 and Table 5. Our datasets have daily, monthly and quarterly resolutions178

meaning we would have sufficient time to train HierE2E appropriately.179

4 Results180

In this section we provide the results of our experiments. These have been summarized in Table 4 and Table 5, the181

former showing the overall performance of the models on different datasets, and the latter offering insights into how182

models fare in each separate level of a dataset. In Table 5, the classical methods have been considered as a single group.183

Reporting of the CRPS scores across levels for each model separately has been done in the supplementary material. In184

the next 4 subsections we analyze the experiment results in terms of the claims stated in Section 2.185
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Methods Labour [min] Traffic [min] Tourism [min] Tourism-L [min] Wiki [min] Total [h]
ARIMA-NaiveBU 2.61 ± 0.23 9.43 ± 0.14 0.35 ± 0.01 10.57 ± 0.63 2.26 ± 0.16 2.10
ETS-NaiveBU 1.73 ± 0.38 3.42 ± 0.17 0.32 ± 0.01 4.11 ± 0.05 2.11 ± 0.14 0.97
ARIMA-MinT-shr 3.07 ± 0.35 13.18 ± 5.18 0.45 ± 0.01 29.48 ± 0.21 2.47 ± 0.02 4.05
ARIMA-MinT-ols 2.69 ± 0.35 9.71 ± 0.05 0.47 ± 0.01 29.51 ± 0.23 2.46 ± 0.02 3.74
ETS-MinT-shr 2.28 ± 0.11 3.42 ± 0.01 0.43 ± 0.02 8.44 ± 0.19 2.54 ± 0.07 1.43
ETS-MinT-ols 2.55 ± 0.02 3.38 ± 0.01 0.42 ± 0.03 8.21 ± 0.01 2.46 ± 0.04 1.42
ARIMA-ERM 24.80 ± 0.06 13.32 ± 0.44 6.97 ± 0.69 435.63 ± 39.84 3.54 ± 0.10 40.36
ETS-ERM 16.25 ± 0.15 4.27 ± 0.22 5.91 ± 0.12 142.75 ± 17.88 2.98 ± 0.13 14.35
PERMBU-MinT 3.15 ± 0.09 7.40 ± 0.40 1.99 ± 0.12 - 6.80 ± 0.08 1.61
HierE2E 18.95 ± 0.01 55.05 ± 0.40 5.88 ± 0.03 38.35 ± 0.61 21.81 ± 0.02 112.28
DeepVAR 3.14 ± 0.05 15.82 ± 0.14 2.22 ± 0.04 4.12 ± 0.07 1.48 ± 0.02 30.56
DeepVAR+ 7.75 ± 0.08 8.25 ± 0.08 2.11 ± 0.04 18.55 ± 0.11 1.52 ± 0.02 30.19

Table 3: In this table we show the time required for a single run of a model with its optimal hyperparameters for a
particular dataset. We report the average time in minutes over 5 runs. The model PERMBU_MinT does not work for the
dataset Tourism-L, hence no average runtime is shown. In the last column, we present the time required to conduct all
our experiments for one of the 12 models evaluated.

Methods Labour Traffic Tourism Tourism-L Wiki
ARIMA-NaiveBU 0.0453 0.0753 0.1138 0.1752 0.3776
ETS-NaiveBU 0.0432 0.0665 0.1008 0.1690 0.4673
ARIMA-MinT-shr 0.0467 0.0775 0.1171 0.1615 0.2466
ARIMA-MinT-ols 0.0463 0.1123 0.1195 0.1731 0.2782
ETS-MinT-shr 0.0455 0.0963 0.1013 0.1627 0.3622
ETS-MinT-ols 0.0459 0.1110 0.1002 0.1668 0.2702
ARIMA-ERM 0.0399 0.0466 0.5885 0.5668 0.2195
ETS-ERM 0.0456 0.1027 2.3742 0.5080 0.2217
PERMBU-MinT 0.0393 ± 0.0002 0.0679 ± 0.0047 0.0763 ± 0.0003 - 0.2790 ± 0.0200
HierE2E 0.0335 ± 0.0064 0.0359 ± 0.0114 0.0916 ± 0.0082 0.1688 ± 0.0036 0.1629 ± 0.0056
DeepVAR 0.0367 ± 0.0049 0.0334 ± 0.0033 0.0953 ± 0.0056 0.1394 ± 0.0019 0.2081 ± 0.0059
DeepVAR+ 0.0457 ± 0.0116 0.0366 ± 0.0079 0.0956 ± 0.0161 0.1979 ± 0.0263 0.2053 ± 0.0130

Table 4: CRPS scores of the methods (with their optimal hyperparameter configurations for a given dataset) averaged
over 5 runs. State-of-the-art methods except for PERMBU-MinT produced the same results over all runs, thus no
uncertainty is being reported. As already mentioned, PERMBU-MinT does not work for the dataset Tourism-L.

4.1 Analysis of Claim 1186

Based on the results shown in Table 4, the first claim by the authors is not completely satisfied. Although HierE2E has187

the lowest CRPS score on the datasets Labour and Wiki, it comes as second on Traffic and Tourism, while it is188

fifth on Tourism-L.189

In terms of the classical approaches, our results align perfectly to the ones reported in the original work. The main190

discrepancy between our results and the paper results exists in the performance of DeepVAR. As depicted in Table 4,191

DeepVAR has the best results for the datasets Traffic and Tourism-L and it is second on Labour. As DeepVAR192

is also a component of HierE2E, this type of scores suggest that DeepVAR might be the main reason for HierE2E193

outperforming the current state-of-the-art.194

4.2 Analysis of Claim 2195

Regarding Claim 2 stated above, we also come to different conclusions than the authors. Our results show HierE2E196

performs the best at 8 levels, and not 12 as reported in the paper. In addition, it is second at 7 of remaining 13 levels,197

whereas according to the paper, that should be the case 12 times. The explanation for this could again lie in the statement198

we made earlier about DeepVAR being instrumental to the satisfactory performance of HierE2E. If we look at the scores199

of DeepVAR in Table 5, we observe that it outperforms other models in 7 situations, and it takes the second place 8200

6



Datasets Levels Best of classical approaches HierE2E DeepVAR DeepVAR+
Labour 1 0.0406 ± 0.0004 (PERMBU-MinT) 0.0302 ± 0.0093 0.0342 ± 0.0050 0.0445 ± 0.0160

2 0.0388 ± 0.0003 (PERMBU-MinT) 0.0342 ± 0.0071 0.0362 ± 0.0059 0.0461 ± 0.0130
3 0.0382 ± 0.0002 (PERMBU-MinT) 0.0335 ± 0.0066 0.0362 ± 0.0056 0.0456 ± 0.0125
4 0.0396 ± 0.0003 (PERMBU-MinT) 0.0361 ± 0.0058 0.0403 ± 0.0067 0.0466 ± 0.0106

Tourism 1 0.0464 ± 0.0017 (PERMBU-MinT) 0.0510 ± 0.0099 0.0531 ± 0.0120 0.0509 ± 0.0190
2 0.0592 ± 0.0008 (PERMBU-MinT) 0.0765 ± 0.0113 0.0827 ± 0.0091 0.0776 ± 0.0216
3 0.0899 ± 0.0011 (PERMBU-MinT) 0.1104 ± 0.0080 0.1120 ± 0.0086 0.1148 ± 0.0180
4 0.1097 ± 0.0009 (PERMBU-MinT) 0.1286 ± 0.0079 0.1333 ± 0.0062 0.1390 ± 0.0152

Tourism-L 1 0.0443 (ARIMA-MinT-shr) 0.0959 ± 0.0105 0.0634 ± 0.0050 0.1234 ± 0.0430
2 (geo.) 0.0826 (ARIMA-MinT-shr) 0.1161 ± 0.0063 0.0814 ± 0.0029 0.1417 ± 0.0351
3 (geo.) 0.1439 (ARIMA-MinT-shr) 0.1503 ± 0.0053 0.1216 ± 0.0030 0.1775 ± 0.0304
4 (geo.) 0.2042 (ARIMA-MinT-shr) 0.1901 ± 0.0045 0.1629 ± 0.0017 0.2180 ± 0.0263
2 (trav.) 0.0834 (ARIMA-MinT-shr) 0.1209 ± 0.0039 0.0891 ± 0.0087 0.1464 ± 0.0331
3 (trav.) 0.1485 (ARIMA-MinT-shr) 0.1619 ± 0.0044 0.1302 ± 0.0040 0.1895 ± 0.0259
4 (trav.) 0.2440 (ARIMA-MinT-shr) 0.2242 ± 0.0044 0.1979 ± 0.0012 0.2556 ± 0.0234
5 (trav.) 0.3413 (ARIMA-MinT-shr) 0.2913 ± 0.0053 0.2684 ± 0.0026 0.3314 ± 0.0245

Traffic 1 0.0089 (ARIMA-ERM) 0.0166 ± 0.0170 0.0131 ± 0.0058 0.0130 ± 0.0081
2 0.0113 (ARIMA-ERM) 0.0178 ± 0.0159 0.0174 ± 0.0121 0.0158 ± 0.0080
3 0.0254 (ARIMA-ERM) 0.0186 ± 0.0154 0.0198 ± 0.0086 0.0209 ± 0.0124
4 0.1408 (ARIMA-ERM) 0.0905 ± 0.0061 0.0835 ± 0.0027 0.0969 ± 0.0096

Wiki 1 0.1558 (ETS-ERM) 0.0668 ± 0.0056 0.0751 ± 0.0153 0.0523 ± 0.0158
2 0.1614 (ETS-ERM) 0.1184 ± 0.0062 0.1199 ± 0.0143 0.1053 ± 0.0090
3 0.2010 (ETS-ERM) 0.1536 ± 0.0082 0.2238 ± 0.0074 0.2076 ± 0.0187
4 0.2399 (ETS-ERM) 0.1711 ± 0.0067 0.2555 ± 0.0109 0.2567 ± 0.0205
5 0.3506 (ETS-ERM) 0.3047 ± 0.0076 0.3663 ± 0.0047 0.4047 ± 0.0223

Table 5: CRPS scores computed at each aggregation level, again as the average of 5 runs. Level 1 corresponds to the
root of a hierarchy. Here we include the results of HierE2E, its 2 variants, and the best classical machine learning
approach. The best classical machine learning approach on a particular dataset is the one having the lowest CRPS
score at as many levels as possible. In case of ties, the performance of the approach with the best overall CRPS score
(averaged over all hierarchy levels) is reported. The best result for a given level is shown in boldface and the second
best is italicized.

times. With regard to the classical approaches, it is important to note PERMBU-MinT manages to beat the deep learning201

models at each level of the dataset Tourism.202

4.3 Analysis of Claim 3203

Claim 3 is certainly confirmed by our experiment results. There is only a single exception for the Labour dataset204

where the CRPS score of HierE2E for the 3. level is lower than the CRPS score for the 2. level. Here we note the same205

consistency is present in DeepVAR and DeepVAR+, which might lead us to believe this is an inherent characteristic of206

DeepVAR, and not solely an improvement brought by the newly proposed method.207

The authors’ statement in terms of the state-of-the-art is supported by our results as well. These methods do not always208

manage to improve as approaching the higher levels in a hierarchy. Complete level-wise results for each method can be209

found in the supplementary material.210

4.4 Analysis of Claim 4211

Our results agree with the last claim in the paper. DeepVAR scores better than the state-of-the-art in the hierarchical212

forecasting field across all datasets. Additionally, DeepVAR+ is superior to these methods on 3 datasets, and is213

comparable to them on the dataset Labour. However, it has a worse performance than DeepVAR on all datasets, but214

Wiki where it is marginally better. Hence, it is safe to say that the inclusion of the reconciliation step only when testing215

the model is not beneficial.216
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5 Discussion217

Overall, the experiment results support the statement that HierE2E outperforms the classical approaches, and opposed218

to some of them, also maintains uniform gains along the levels of the hierarchy. Nonetheless, similar observations can219

be made regarding DeepVAR and DeepVAR+, with the former empirically proven to be the better option. So, despite the220

ablation studies in the original work demonstrating HierE2E improves on DeepVAR, we take the view that DeepVAR is221

the crucial component in HierE2E. This is reflected in the results in Table 4 and Table 5. Moreover, even in the cases of222

datasets where HierE2E had a lower mean CRPS score than DeepVAR, the uncertainty we report was high enough to223

not be able to decisively claim the new approach is the optimal one.224

The only difference between our experimentation and the one by the authors lies in not training the neural models225

for 100 epochs. However, as previously mentioned, in the official repository for the paper, they provide optimal226

hyperparameter configurations none of which has the epochs parameter set to more than 50. The results obtained using227

these configurations serve them do the analysis in the paper. Consequently, our hyperparameter grid search and the228

experiments as a whole can be considered valid when assessing the claims in the original paper.229

5.1 What was easy230

The data used in the experiments was adequately organized in the repository provided as an addition to the paper.231

Therefore, we did not experience any issues while carrying out the exploratory data analyses. The same applies to the232

structure of the code provided as its extension could be done without major problems.233

5.2 What was difficult234

Due to resource limitation, we were unable to test certain hyperparameter configurations. However, as elaborated235

in the introduction of Section 5, this omission of configurations was done in such manner that it did not hinder the236

investigation of the claims made in the paper.237

We also came across minor difficulties when installing certain libraries for the test environment proposed by the authors,238

because our operating system distributions most likely did not match theirs, which was unfortunately not specified in239

the GitHub repository accompanying the paper.240

5.3 Communication with original authors241

As aforementioned, at the beginning of the reproducibility study, we contacted the corresponding author of the paper to242

obtain the runtimes of the models. The information was required for allocation of our compute resources. We did not243

get a response.244
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