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Abstract

Despite advances in learning-based methods, find-
ing valid Lyapunov functions for nonlinear dy-
namical systems remains challenging. Current
neural network approaches face two main issues:
challenges in scalable verification and limited
interpretability. To address these, we propose
an end-to-end framework using transformers to
construct analytical Lyapunov functions (local),
which simplifies formal verification, enhances in-
terpretability, and provides valuable insights for
control engineers. Our framework consists of
a transformer-based trainer that generates candi-
date Lyapunov functions and a falsifier that veri-
fies candidate expressions and refines the model
via risk-seeking policy gradient. Unlike Alfarano
et al. (2024), which utilizes pre-training and seeks
global Lyapunov functions for low-dimensional
systems, our model is trained from scratch via re-
inforcement learning (RL) and succeeds in finding
local Lyapunov functions for high-dimensional
and non-polynomial systems. Given the symbolic
nature of the Lyapunov function candidates, we
employ efficient optimization methods for falsi-
fication during training and formal verification
tools for the final verification. We demonstrate the
efficiency of our approach on a range of nonlinear
dynamical systems with up to ten dimensions and
show that it can discover Lyapunov functions not
previously identified in the control literature. Full
implementation is available on Github.

1. Introduction

A Lyapunov function is an energy-like function used to cer-
tify stability of dynamical systems. A sufficient condition
for stability is that the Lyapunov function decreases along
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system trajectories. Lyapunov functions also play a central
role in controller design, providing formal guarantees of
closed-loop stability and robustness Khalil (2002). How-
ever, designing a Lyapunov function for nonlinear systems
has long been considered more of an ‘art’ than a science,
even for stable dynamics, due to its inherent complexities.
Motivated by this challenge, we have witnessed great in-
terest in the development of computational algorithms for
Lyapunov function construction. McGough et al. (2010)
employed an evolutionary algorithm for the symbolic com-
putation of Lyapunov functions, but the exponential growth
search space impedes its scalability. Alternatively, sum-of-
squares (SOS) methods reformulate the task as a semidefi-
nite program (SDP) that certifies stability with polynomial
candidates (Papachristodoulou & Prajna, 2005a;b; Ahmadi
& Majumdar, 2016; Dai & Permenter, 2023). However,
handling local constraints or non-polynomial dynamics re-
quires auxiliary variables and extra (in)equality constraints
(Papachristodoulou & Prajna, 2005a;b), which leads to scal-
ability issues of the SOS methods for real-world problems.
Moreover, the theoretical result Ahmadi et al. (2011) on
asymptotic Lyapunov stability shows that even some very
simple globally asymptotically stable dynamics may not
agree with a polynomial Lyapunov function of any degree.

Recent advances in deep learning have enabled data-driven
neural Lyapunov function with formal verification (Chang
et al., 2019; Zhou et al., 2022; Wu et al., 2023; Dawson
et al., 2023b; Edwards et al., 2024; Wang et al., 2024; Yang
et al., 2024). However, these methods face two key chal-
lenges: 1) lack of interpretability and 2) high verification
costs (Dawson et al., 2023b). Neural networks’ black-box
nature limits insights into the system’s dynamical behavior.
Additionally, over-parameterization and nonlinear activa-
tions complicate formal verification, leading to scalability
issues. Tools like SMT Chang et al. (2019), MIP Wu et al.
(2023), and «, -CROWN Yang et al. (2024) require small,
specialized networks to ensure feasible verification times.

Compared with neural Lyapunov functions, analytical Lya-
punov functions offer two distinct advantages. First, their
symbolic nature offers interpretability, and provides insights
for designing stability-guaranteed control policy (Sontag,
1989; Feng et al., 2023a;b; 2024b; Cui et al., 2023b). Sec-
ond, analytical functions enable efficient verification due to
their simplicity and symbolic structure, which seamlessly
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Figure 1. We present the statistics of runtime for single SMT ver-
ification (precision e, tolerance error e ') on the 6-D system
(Appendix F.4). Each method is validated once per epoch. The red
line represents the median. The mean verification time is averaged
over one complete training, and the value is displayed in bold.
Neural Network in FOSSIL 2.0 Edwards et al. (2024) has a 10-D
hidden layer, and Augmented Neural Lyapunov Control (ANLC
Grande et al. (2023)) has two 10D hidden layers. Our formulas
have a complexity (number of tokens) of 20 or fewer. For ours, the
best candidate in each epoch is verified in this motivation example.

integrate with formal verification tools like SMT solvers.
This reduces parameter complexity and eliminates the need
to verify complex neural network elements like nonlinear
activations. Figure 1 highlights the efficiency of verifying
analytical expressions compared to neural networks.

In this work, we aim to address the following question:

Can neural networks effectively discover valid analytical
Lyapunov functions directly from complex system dynamics?

To tackle this challenge, we introduce an end-to-end frame-
work designed to find analytical Lyapunov functions for non-
linear dynamical systems given in analytical form. Building
on the transformer’s ability to model complex dependen-
cies Vaswani et al. (2017) and the success of deep symbolic
regression methods Holt et al. (2023), our framework de-
ploys a symbolic transformer Kamienny et al. (2022) for
Lyapunov function discovery. The transformer’s encoder
captures system dynamics represented as token sequences
derived from the ordinary differential equations (ODEs),
while the decoder generates candidate Lyapunov functions
by modeling symbolic token distributions. Given the lack of
high-quality (local) Lyapunov function datasets, particularly
for high-dimensional systems, we propose a reinforcement
learning (RL)-based approach to search for Lyapunov func-
tions on a per-system basis, instead of pre-training like
Alfarano et al. (2024). We verify Lyapunov conditions by
localized sampling in the neighborhoods of minimizers of
the candidate expressions, which are most likely to have
violations. The identified counterexamples are then incor-
porated into the training set for further optimization. Our
main contributions are summarized as follows:

* We introduce the first RL-based framework for directly
discovering analytical Lyapunov functions for nonlin-
ear dynamical systems, bypassing the need for super-
vised learning with large-scale datasets.

* We propose a novel and efficient policy optimization
pipeline integrating global-optimization-based Lya-
punov verification, reward design for candidate Lya-
punov evaluation, and risk-seeking policy gradient to
optimize the symbolic transformer, trainable on ma-
chines with limited computation resources.

* We demonstrate the efficiency of our method on vari-
ous systems, including non-polynomial dynamics like
the pendulum, quadrotor, and power system frequency
control. Notably, our approach scales to a 10-D sys-
tem and discovers a valid local Lyapunov function for
power system frequency control with lossy transmis-
sion lines, that is previously unknown in the literature.

2. Related Work

2.1. Learning-based Lyapunov Function Construction

The field of learning-based Lyapunov function construction
is advancing rapidly. Chang et al. (2019) formulated Lya-
punov condition violations as the objective, jointly learning
a neural Lyapunov function and a linear controller to guar-
antee stability for a given system, with stability verified via
SMT solvers. Zhou et al. (2022) extended this to unknown
dynamics with a neural controller. Dai et al. (2021) and Wu
et al. (2023) focused on discrete-time systems, using MIP
solvers for stability verification, requiring piecewise linear
approximations. Yang et al. (2024) applied «, 5-CROWN
for scalable neural network verification, extending state
feedback to output feedback control. However, scalability
remains a challenge: SMT solvers handle up to 30 neurons,
MIP solvers scale to 200 neurons Dawson et al. (2023a), and
a, f-CROWN Yang et al. (2024) is limited to a three-layer
architecture (16 neurons per layer).

In contrast to neural Lyapunov functions, Feng et al. (2024c)
and Alfarano et al. (2024) derived analytical Lyapunov func-
tions. Feng et al. (2024c) combined a neural network with
the symbolic regression package PySR (Cranmer, 2023),
which approximates the network to produce analytical Lya-
punov functions, but the lack of interaction between system
dynamics and symbolic regression component limits its po-
tential. Alfarano et al. (2024) pre-trained a transformer on
backward- and forward-generated global Lyapunov function
datasets, relying on beam search for candidate generation.
However, their method cannot adaptively refine the candi-
date Lyapunov functions if the beam search fails on specific
dynamics, and it requires a dataset that is expensive to gen-
erate (e.g., thousands of CPU hours for a 5-D dynamics
dataset) to achieve adequate generalization during inference.
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Furthermore, its emphasis on global stability limits its ap-
plicability to real-world, nonpolynomial control systems,
which typically only admit local stability. Consequently, an
RL-based approach that directly searches Lyapunov func-
tions for a given system is indispensable.

2.2. Symbolic Regression with Generative Model

Symbolic regression is a supervised learning task, searching
for an analytical function f : R™ — R that fits y; € R from
input z; € R™ (Petersen et al., 2020). With suitable exten-
sions, it can scale to multi-input—multi-output mappings.

RL-based Symbolic Regression. RL-based symbolic re-
gression algorithms Petersen et al. (2020); Costa et al.
(2020); Landajuela et al. (2021) employed generative mod-
els, typically RNNs, to generate distributions of symbolic
tokens representing mathematical operations and variables,
from which analytical expressions are sampled. Rewards,
evaluating the quality of the sampled expressions, are
measured by fitness metrics like RMSE. Due to the non-
differentiable step of converting token sequences into sym-
bolic equations, policy gradients are used to optimize the
output distributions. Mundhenk et al. (2021) extended this
approach by integrating Genetic Programming (GP) to refine
generated expressions, improving the overall performance.

Pre-trained Symbolic Regression methods. These meth-
ods are inspired by the success of transformers in Natural
Language Processing (NLP) tasks. These algorithms con-
tain two steps: 1) pre-train an encoder-decoder network to
model p(f|D) on curated datasets by cross-entropy loss, and
2) sample from this distribution during inference via beam
search or Monte Carlo Tree Search (MCTS). Methods like
Biggio et al. (2021); Kamienny et al. (2022); Bendinelli et al.
(2023) rely on beam search without gradient refinement, of-
ten yielding suboptimal results for out-of-distribution data.
In contrast, Holt et al. (2023) integrates RL-based policy
gradient optimization with end-to-end RMSE loss for both
pre-training and inference, allowing gradient refinement for
unseen datasets during inference. Further, Shojaee et al.
(2023); Kamienny et al. (2023) enhance the decoding pro-
cess (expression generation) by incorporating MCTS with
feedback, such as fitting accuracy and equation complexity.

3. Preliminary

Our framework searches for analytical Lyapunov functions
for autonomous nonlinear dynamical systems at an equilib-
rium point. Without loss of generality, we assume the origin
to be the equilibrium point.

Definition 3.1 (Dynamical systems). An n-dimensional
autonomous nonlinear dynamical system is formulated as

dx
E:f(m)vm(o):x07 (1)

where f : D — R” is a Lipschitz-continuous vector field,
and D C R" is a set containing the origin that defines the
state space. Each z(t) € D is a state vector.

Definition 3.2 (Asymptotic stability). A system of (1) is
stable at the origin if V € > 0, there exists 6 = d(e) > 0
such that ||z(0)|| < § = ||=(¢)|| < e, V¢ > 0. The origin
is asymptotically stable if it is stable and § can be chosen
such that ||z(0)|| < § = tliglo x(t) = 0 (Khalil, 2002).

Definition 3.3 (Lie derivative). The Lie derivative of a
continuously differentiable scalar function V : D — R
along the trajectory of (1) is given by

LfV(x) = .

K2
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Proposition 3.4 (Lyapunov functions for asymptotic stabil-
ity). Let x = 0 be an equilibrium point for (1) and D C R"
be a domain containing the xt = 0. Let V : D — R be a
continuously differentiable function such that

V(0) = 0and V(x) > 0in D\{0}, (3a)
L;V(z) < 0in D\{0}, (3b)

then the origin is asymptotically stable.

Definition 3.5 (Lyapunov risk). Consider a candidate Lya-
punov function V for system f from Definition 3.1. For a
dataset X = {z1, - ,zn} where z; € D, the Lyapunov
risk of V Chang et al. (2019) over D is defined by

N
L(V) = %Z (max(0, LV (2:)) + max(0, =V (2))) . (4)

4. Proposed Framework

This section introduces our RL-based generative approach,
which aims to find an analytical Lyapunov function for a
given dynamical system that certifies asymptotic stability
following conditions in Proposition 3.4. Successfully identi-
fying such a function guarantees system stability.

The framework, visualized in Figure 2 , consists of three
components: 1) a symbolic transformer, parameterized as
¢ = {(¢, 0}, for candidate analytical Lyapunov functions
generation, where ¢ and 6 denote the parameters of en-
coder and decoder, 2) a numerical verifier employing the
SHGO Endres et al. (2018) global optimization algorithm
for Lyapunov conditions’ checking (Proposition 3.4) and
counterexamples’ feedback, and 3) a risk-seeking policy
gradient algorithm optimizing the transformer’s parameters
based on candidate Lyapunov functions’ rewards. To tackle
the challenges posed by the exponentially growing search
space of complex, high-dimensional systems, our frame-
work integrates Genetic Programming as expert guidance
to improve expression quality and training efficiency. We
denote X C D as the training set for reward calculation.
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Figure 2. Framework overview: The transformer takes embeddings of the dynamical system model as input and generates candidate
Lyapunov functions in an autoregressive manner. Hierarchical information is deployed to enhance the model input. For example, when
generating the last token x2, its parent is 4, and its sibling is 1. The output is the pre-order traversal of the expression’s binary tree.
Candidates are verified using a global-optimization-based verification process, with counterexamples added to the training set for reward
calculation. The transformer is updated via the risk-seeking policy gradient. The program terminates once a valid expression is found.

4.1. Candidate Lyapunov Function Generation from
Symbolic Transformer

Expression Representation. Inspired by the deep sym-
bolic regression frameworks, we use a symbolic transformer
model as the backbone. The transformer takes a dynami-
cal system f(z) as input and generates candidate analytical
Lyapunov functions V}, such that: Vj(x) > 0 and LV, <
0,V 2« € D\{0}. Following the expression representation
rules in Lample & Charton (2020), our framework repre-
sents symbolic transformer models’ input and output as
sequences of symbolic tokens. Each mathematical expres-
sion can be converted into a symbolic expression tree, a
binary tree where internal nodes are symbolic operators
and terminal nodes (leaves in the tree) are variables or con-
stants. Symbolic operators can be either unary (i.e., one
child), such as sin, cos, or binary (i.e., two children), such
as +, x. Furthermore, each symbolic expression tree can be
represented as a sequence of node values, either symbolic
tokens or numerical coefficients, by its pre-order traversal
(i.e., first visiting the parent, then traversing the left child
and right child). In this way, each expression obtains a
pre-order traversal representation, which can uniquely re-
construct the original expression Petersen et al. (2020). We
denote f/¢ as the i"" node value in the pre-order traversal
of V¢’s expression tree, and L as the symbolic library, e.g.
{+, x,log, sin, z;}, where f/@ is sampled from.

Dynamics Tokenization. By Definition 3.1, the symbolic
transformer models’ input f(z) is composed by n ordinary
differential equations %4t = f;(z) fori = 1,--- ,n. Each
analytical expression f;(x) can be represented as a sequence
of symbolic tokens and numerical coefficients by the pre-
order traversal of its expression tree. Concatenated the se-
quences of pre-order traversal for all f;(x), with SOS (start
token) and EOS (end token) as separators, we obtain the
tokenized dynamics, which is fed into the encoder of sym-
bolic transformer and encoded as a latent vector 7 € RP.
The numerical coefficients are tokenized in two schemes:
an integer is represented as a sequence of digits in base
b =10 (e.g. 123 is tokenized as [1, 2, 3]), and a real number
is represented in scientific notation rounded to 4 significant
digits (e.g. 3.14 is tokenized as [3, 1,4, 0, 10°]). A detailed
example is illustrated in Figure 3, Appendix A, where we
present the symbolic representations of the simple pendulum
dynamics in sequences of pre-order traversal.

Candidate Expression Generation. The decoder generates
candidate expressions f/¢ in an auto-regressive manner. That
is, each token f/¢ in the pre-order traversal of V¢ is sampled
from the symbolic library £ according to conditional distri-
bution p(V, Vm(l_l),qﬁ, f(x)), where ‘7¢>1:(7:_1) is the first
(i — 1) selected symbolic tokens in the pre-order traversal
of V¢. This conditional dependence can be achieved by the
decoder, which emits a probability distribution 1 over the
symbolic library £, conditioned on the previously selected
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tokens and input dynamics. Since analytical expression in
its pre-order traversal is inherently hierarchical, we also
deploy the hierarchical tree state representation (Petersen
et al., 2020; Holt et al., 2023). This method enhances the
decoder input by concatenating the representations of the
parent and sibling nodes with previously selected outputs
and the dynamics. Once the token sampling process for V¢
is complete, we evaluate the function value at origin f/¢(0)
and subtract it from f/d,, ensuring the Lyapunov condition
f/¢(0) = 0. Through this process, we can sample a batch of
Q candidates Vy = {V ~ p(V;¢, F(2)}2,, which will
be verified according to the Lyapunov conditions.

4.2. Verification and Falsification Feedback

Leveraging the analytical nature of candidate Lyapunov
functions, efficient methods for symbolic expressions, such
as root finding Feng et al. (2024c), can be applied to Lya-
punov condition verification and counterexample generation.
In this work, we propose a global-optimization-based nu-
merical verification algorithm, using Simplicial Homology
Global Optimization (SHGO) (Endres et al., 2018), that
effectively checks the Lyapunov conditions around mini-
mizers and feedback counterexamples into the training set
X for reward calculation. SHGO is a constrained global
optimization algorithm with theoretical guarantees for con-
vergence. To make the paper self-contained, we present the
guarantees in Proposition 4.1. This algorithm identifies the
global minimizer over the state space from a set of local
minimums, each of which is obtained from a convex sub-
domain in the feasible search space. Taking advantage of
the theoretical results, we employ the SHGO algorithm for
counterexample detection in our verification process.

Proposition 4.1 (Convergence Gurantees of SHGO Endres
et al. (2018)). For a given continuous objective function f
that is adequately sampled by a sampling set of size N. If
the size of the minimizer pool M extracted from the directed
simplex (a convex polyhedron) H is |M|. Then any further
increase of the sampling size N will not increase | M.

This result shows that if the initial points are adequately
sampled, that is, the union of identified locally sub-convex
domains initiated from starting points covers the feasible
search space, then the minimizer pool M, which contains all
local minimum extracted from the directed simplexes, will
contain the global minimizer of the feasible search space.
Notably, the required sampling size N can be unbounded.

During verification, for a candidate V¢, SHGO is first ap-
plied to identify minimizers 7 and x5 of V¢ and its negated
Lie derivative —L ¢ f/¢ in the state space D. These minimiz-
ers highlight the regions where Lyapunov conditions are
most likely to fail. Next, data points « from neighborhoods
around these minimizers, B, (x}) and B, (z%) where r is

a small value relative to ||D||2, are sampled to check Lya-
punov conditions, i.e. Vz(z) > 0and —L;Vy(z) > 0 for
x € D\{0}. This localized sampling scheme effectively
identifies violations within D. Additional random sampling
covering approximately 30% of the total data and condition
checking across the state space are performed to comple-
ment this localized sampling to capture additional potential
violations and provide a global assessment. Identified coun-
terexamples X, are added to the training set X" for reward
calculations. Once a candidate Lyapunov function passes
this verification process and does not encounter any viola-
tion in X, it indicates a numerically valid solution is found,
pending the final formal verification. Appendix B details
the verification implementation.

4.3. Risk-Seeking Policy Gradient

The empirical Lyapunov risk £(17¢) in Equation (4) quan-
tifies the violation degree of Lyapunov conditions over a
given dataset. Following Petersen et al. (2020); Bastiani

et al. (2024), we apply the continuous mapping g(z) = ——

14z
and define proposed Lyapunov risk reward as:
- - 1
R(Vy)=9g(L(Vy)) = ——=—, 5
Vo) =9 (£070) = 75 )

where L(f/¢) is measured over training set X'. The contin-
uous mapping g(x) bounds the reward value to [0, 1]. For
candidate expressions that do not incorporate all state vari-
ables or are analytically incomplete, we assign their rewards
to be 0 to ensure they are effectively penalized.

Given the violation measure for each sampled f/¢ is non-
differentiable with respect to the transformer parameters
¢, we employ the risk-seeking policy gradient to update
¢ end-to-end. The objective of standard policy gradi-
ent Williams (1992) is defined to maximize Jyu(¢p) =
EV¢~p(V¢I¢,f(x))[R(V¢)]’ the expectation of the reward
function R(-) for candidates’ quality evaluation based on
the current parameter ¢. This objective is desirable for prob-
lems aiming to optimize the average performance of the
policy network. In our task, final performance depends on
finding at least one valid Lyapunov function that meets the
conditions in Proposition 3.4, rather than optimizing for av-
erage performance. Consequently, standard policy gradient
methods are inadequate due to the misalignment.

In our framework, we adopt risk-seeking policy gradient
Petersen et al. (2020) that only focuses on maximizing best-
case performance. Let R, (¢) as the 1 — « quantile of the
distribution of rewards of sampled candidates under the
current policy ¢. The learning objective of risk-seeking
policy gradient, parameterized by «, is formulated as:

Jis(®,0) =By, 016100 [~ R (Vo) | R(Vg) = Ral@)].
©)
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Algorithm 1 Training Framework for Analytical Lyapunov
Function Discovery via Reinforcement Learning

Input: Dynamics f(x), state space D, quantile «, symbolic
library £, batch size (), max complexity k, radius 7.
Output: Valid Lyapunov function V* for system f(z).

1: Initialize the conditional generator with parameters ¢,

2: Randomly sample training datapoints X =

{1, -+ ,zN} where z; € D,

3: while no valid candidates found do

4 Vo e V]~ p(Volo, f@)}Es,

5.V, + Genetic Programming(V,),

6 V< Vs UV,

7. V*, X, « verification(V, r, D), { Verify candidates
V), return the valid Lyapunov function V* (if any) and
counterexamples X... Details in App. B. }

8:  if V* is not empty then

9: Return V*.

10:  endif

11: R+ {R(V)VVieV}

12: Ry(¢) < (1 — a)-quantile of R,

13: ¢+ ¢ — Vydux(@, o) , {risk-seeking policy gradi-
ent update. Equation (6) }

14 ¢ < ¢—V4L(V,p) , {expert guidance loss based on
the genetic programming refined Lyapunov functions
f)gp to update policy. Equation (7).}

15:  Concatenate counterexamples X, to dataset X

16: end while

This objective aims to optimize only the rewards of high-
quality candidates from the top 1 — « quantile.

4.4. Automated Expert Guidance

While the risk-seeking policy gradient algorithm effectively
optimizes the model, training efficiency can be enhanced
by off-the-shelf tools that further explore the function space
based on the transformers. Inspired by Mundhenk et al.
(2021), we incorporate a Genetic Programming (GP) compo-
nent (DEAP Fortin et al. (2012)) into the training paradigm.

The GP algorithm starts with a batch of initial populations
(expression trees) and iteratively refines these populations
through evolutionary operations: mutation, selection, and
crossover, with a pre-defined metric to evaluate the fitness of
populations to the task (e.g., MSE for symbolic regression
task). Within our framework, we feed the latest batch of
generated candidates {f/(; ~ p(Vylo, f(x))}, from the
decoder into the GP module as the starting population’, re-
fine these expressions through evolutionary operations with

'Without a good initial population from the transformer, GP
algorithms itself face significant challenges in directly finding
valid Lyapunov functions for high-dimensional systems due to the
exponentially growing search space. Appendix H.3.

Lyapunov risk reward as the measure of fitness, and obtain
a batch of refined expressions. We select an ‘elite set’ of
the refined expressions V,, = {V;p ~ GP(V)}5,, regard
them as target expressions, and optimize the transformer
model in a supervised learning manner, maximizing the
probability that the generated token matches the reference
tokens from Vgp, with the following expert guidance loss:

ki

G
L) = 5 D0 RO S ~108 (T3, Vi, 6 £0)) s (D)

j=1

where G is the number of expressions in \}gp, and k; is the
complexity (number of symbolic tokens in the pre-order
traversal) of f/gip. Each expression f/gip is weighted by its
Lyapunov risk reward in £. Algorithm 1 summarizes the
training process, with more details in Appendix D. The GP
solutions explore the characteristics of Lyapunov functions
that have not been captured by the transformer yet and
effectively guide the transformer.

Remark 4.2 (Exploration—exploitation trade-off). In our
framework, exploration arises during candidate expression
generation and through GP’s evolutionary operations, while
exploitation is driven by the risk-seeking policy gradient
and the expert-guided loss.

5. Experiment

We validate the proposed algorithm across a variety of non-
linear dynamics by finding their local Lyapunov functions at
the equilibrium point to verify their stability, where the sys-
tems are autonomous (or closed-loop systems with known
feedback control laws). We use dReal Gao et al. (2013)
SMT solver for final verification of found Lyapunov func-
tions, with a numerical tolerance error ¢ = e~3 and pre-
cision § = e~'2, over the state space, i.e. V(x) > § and
LV (x) < —6 over D\B.(0). The excluded ball B.(0) is
to avoid numerical issues, which is a common practice for
SMT-based formal verification (Chang et al., 2019). Global
stability can be determined through further expert analysis;
for instance, if the Lie derivative is a negation of SOS, it is
sufficient to establish global stability.

5.1. Experimental Setting

Test Dynamics. We categorize our collected test dynamical
systems into two kinds: 1). Polynomial Systems, and 2).
Non-polynomial Systems, where three polynomial systems
are adopted from Alfarano et al. (2024) (Appendices F.2 &
F.3), and others come from real-world examples. Detailed
information about systems is summarized in Appendices F
and G. The dimension of these test systems ranges up to 10.

Implementation Details of Framework. Detailed expla-
nation for all components in our framework is presented in
Appendices A (Transformer), B (Global-optimization-based
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Table 1. Performance and time consumption of our method on test dynamics. ‘App.’ refers to Appendix.

Dynamics Runtime Ver.® Found Lyapunov Functions Stab®  Succ % *
2-D Polynomial Sys (app. £2) 68s 2ms V=922 + 223 las. 100
2-D Van Der Pol (app. £y 1265 Ims V =ux?+23 las. 100
2-D Simple Pendulum p. 61y | 288s Ims V =2(1—cos(x1)) + 3 las. 100
3-D Polynomial Sys (app. 3) 112s Ilms V= Qx% + x% + x% l.a.s. 100
3-D Trig Dynamics (p. 62 157s Ims V =1-cos(z1)?+ 23 + sin(x3)? las. 100
4-D Lossy Power Sys (ap. 6.5) 3632s 621s V= w? + w3 + (we — sin(61) +sin(dy))?  Las. 100
6-D Polynomial Sys (p. ) 1667s Tms V=39 a2 las. 100
6-D Quadrotor (app. G.4) 3218s 1ms V= Z?:1 x? gas. 80
6-D Lossless Power Sys (app.63) | 18094s 2 ms V= (Zle w2)— lLas. 60

3 3
05[> > cos(d;—46;)—1
i=1 j=1,i#j
9-D Synthetic Sys (. G 27047s  6.6s V= (ZL xf) + sin(z7)? las. 60
+x3 — cos(zg) + 1
10-D Polynomial Sys (app. £6) 642235 2ms V=312 a? las. 60

a. “Ver.” presents the time consumption for the final verification of the found Lyapunov functions. All found Lyapunov functions passed SMT solver’s verification.

1. “Stab’ means stability. In this column, ‘g.a.s’ represents globally asymptotically stable, and ‘l.a.s.” represents locally asymptotically stable.

f. 'Succ %’ denotes the successful rate of finding a valid Lyapunov function out of 5 random seeds.

Numerical Verification), C (Risk-seeking Policy Gradient),
and D (Genetic Programming). The symbolic library Ly is
defined as {+, —, x, sin, cos, z; } in all tests.

Baseline Algorithms. We compare our proposed frame-
work against four baseline algorithms for continuous non-
linear dynamics. Neural methods: 1) Augmented Neural
Lyapunov Control (ANLC) Grande et al. (2023), and 2)
FOSSIL 2.0 Edwards et al. (2024). Analytical methods: 3)
the transformer-based global Lyapunov search of Alfarano
et al. (2024), and 4) SOS methods via SOSTOOLS (Matlab)
(Papachristodoulou et al., 2013). We use the formulation of
Papachristodoulou & Prajna (2005a) on polynomial systems,
and apply the recasting technique of Papachristodoulou &
Prajna (2005b) to convert non-polynomial dynamics into
rational form so they can also be handled by SOS.

Both ANLC and FOSSIL 2.0 train a neural Lyapunov func-
tion with the empirical Lyapunov risk loss and employ a
counter-example guided inductive synthesis (CEGIS) loop
for better generalization over the state space D. Alfarano
et al. (2024) pre-trains a transformer on global Lyapunov
function datasets with beam search for candidate generation.
SOS methods formulate Lyapunov functions as the feasi-
ble solutions of some semi-definite programming tasks and
solve these tasks via convex optimization tools. Details of
each baseline can be found in Appendix E.

5.2. Performance Analysis

Table 1 summarizes the runtime, success rate, and discov-
ered Lyapunov functions for a selection of tested nonlin-
ear systems, ranging from 2-D to 10-D, demonstrating the
robustness and scalability of our framework. As dimen-
sionality increases, runtime grows with the exponentially
expanding search space, reward calculations, SHGO opti-
mization, and genetic programming.

Unlike existing methods that produce neural Lyapunov func-
tions, our framework yields interpretable analytical candi-
dates. For example, it correctly identifies the energy func-
tion as a valid Lyapunov function for the simple pendulum.
Likewise, for the 3-bus power system (Appendix G.3), it
discovers the commonly used energy-based storage function
for incremental passive systems Weitenberg et al. (2018).

Analytical Lyapunov functions can potentially bypass the
need for formal verification. In the 3-D Trig system (Ap-
pendix G.2), over the state space D = {(x1, 72, 73) € R? |
|z;| < 1.5,Vi € {1,2,3}}, the positive definiteness of the
identified Lyapunov function is evident from its formulation.
Moreover, the Lie derivative LV = —22% — x5 sin(2z3) is
directly identifiable as non-positive in D, since x sin(z) > 0
for all x € (—m, 7). By the invariance principle Khalil
(2002), the discovered function certifies the asymptotic sta-
bility of the origin in state space D. When direct identi-
fication is non-trivial, SMT solvers can efficiently verify
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Table 2. Training time and success rate comparison between ours and the neural baselines. The Succ % is the successful rate of finding a
valid Lyapunov function within 5 hours out of 5 random seeds. Runtime is the average training time for a successful trial.

2-D Dynamics

3-D Dynamics

6-D Dynamics 8-D Dynamics (App. E.5)

Frameworks | Succ % Runtime | Succ % Runtime | Succ % Runtime | Succ % Runtime
Ours 100 165s 100 124s 80 6290s 80 14358s
ANLC 53.3 1.409s 46.7 63.91s 0 - 0 -
FOSSIL 2.0 80 7.708s 66.7 221s 0 - 0 -

Lyapunov conditions given analytical formulations’ simplic-
ity.

5.3. Newly Discovered Lyapunov Function

Despite decades of effort in the control community to iden-
tify Lyapunov functions, certain stable dynamics still lack
a valid Lyapunov function to directly certify their stability.
One example is the lossy frequency dynamics in power sys-
tems Chiang (1989); Cui & Zhang (2022), where “lossy”
refers to the consideration of energy losses in transmission
lines. For simplicity, we focus on a 2-bus (4-D) lossy system
with the equilibrium point set at the origin, with detailed
descriptions provided in Appendix G.5. Using the proposed
method, we successfully discover two local Lyapunov func-
tions valid in the considered region D = { (41, da, w1, w2) €
R* | |6;] < 0.75 and |w;| < 2 fori = 1,2}:

2
V1(01, 02, w1, ws) Zwl (sm (62) — sin(dq) —|—w2) ,

2
Va(61, 02, w1, ws) Zwl (sln (62) —sln(él)—wl) .

Both functions are formally verified by the SMT solver
within the defined state space. To the best of our knowledge,
these are the first analytical Lyapunov functions used to
certify the local stability of a 2-bus lossy power system.

5.4. Comparisons with Baselines

Neural Lyapunov Function Baselines. Table 2 compares
our success rate and training runtime with two neural Lya-
punov function baselines across various test dynamics. For
low-dimensional systems, both baselines achieve notably
shorter overall training runtime. However, to achieve ef-
ficient verification, these methods rely on relatively small
neural networks, which fail to converge on more challenging
tasks (e.g., the simple pendulum and 3-D Trig dynamics in-
volving trigonometric terms). Consequently, both baselines
exhibit lower overall success rates than our approach.

As dimensionality grows, the complexity of the Lie deriva-
tive of a neural Lyapunov function increases significantly
following Definition 3.3, creating severe verification bot-

tlenecks for both baselines’ counter-example feedback
paradigm. Even networks with fewer than 15 neurons per
layer may require hours to finish formal verification. In con-
trast, our method remains robust up to 6-D and 8-D systems,
as its simpler analytical formulations allow numerical verifi-
cation to efficiently identify violation regions. Moreover, for
final verification, our candidates can pass the SMT solver
in milliseconds, thanks to term cancellations and algebraic
restructuring made possible by their analytical form.

Analytical Lyapunov Function Baselines. We evaluated
the pre-trained model of Alfarano et al. (2024) on our bench-
marks. Trained solely on globally stable systems with fewer
than six states, it produced valid Lyapunov functions only
for the low-dimensional examples in Appendices F.1, F.2,
F.3, & G.1, which have global stability guarantees, and
failed on every benchmark that is only locally stable.

Table 3 compares the training and solving times of our
method and the SOS approach on polynomial systems
from Appendix F. For low-dimensional systems, SOS finds
valid Lyapunov functions more efficiently, with shorter run-
times. However, it fails to certify stability for the higher-
dimensional systems in Appendices F.4, E.5, and F.6, which
are only locally stable. While SOS methods can scale to
10-dimensional or higher systems for global stability ver-
ification, local stability requires additional constraints on
the Lie derivative, which significantly impact scalability.
For example, in the 6D polynomial system from Appendix
F.4, verifying local stability with a degree-2 polynomial
candidate introduces hundreds of symbolic terms in the Lie
derivative constraint, rendering the problem intractable for
SOSTOOLS. More details are provided in Appendix E.4.

To use SOS on non-polynomial systems without relax-
ing the dynamics, we follow the recasting scheme of Pa-
pachristodoulou & Prajna (2005b), replacing each non-
polynomial term with auxiliary variables linked by extra
(in)equalities. We applied this procedure to the simple pen-
dulum and the 3-D trig system (Appendices G.1 & G.2).
SOS did recover Lyapunov certificates in both cases, but at
a much higher computational cost than our framework for
the 3-D trig example. Three main limitations are revealed
during implementation: (i) recasting demands substantial
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Table 3. Training/solving time of ours and sum-of-squares (SOS) on polynomial systems, averaged over successful trials. The stable
regions (local or global) of the considered dynamics are indicated in smaller font.

2-D Systems 3-D Systems | 6-D System | 8-D System | 10-D System
Test Systems
(App. E1, local; App. E.2, global.) (App. E.3, global.) (App. E4, local.) (App. ES5, local.) (App. E.6, local.)
Ours 97s 108s 1667s 14358s 64223s
Sum-of-squares 0.765s 1.503s - - -

domain expertise and hand-crafted constraints; (ii) added
variables and relations greatly increase the computational
burden; and (iii) the formulation certifies only stability, not
asymptotic stability. For the locally stable 3-D trig system,
eliminating the trigonometric terms introduces four aux-
iliary variables and two equality constraints, pushing the
solve time beyond one hour, versus 157s for our method.
These limitations undermine SOS’s practicality for high-
dimensional, non-polynomial dynamics.

Table 4. Training/solving time of ours and sum-of-squares (SOS)
on two non-polynomial systems, averaged over successful trials.

Frameworks | App. G.1 | App. G.2
Ours 288s 157s
Sum-of-squares 19.58s 6163s

5.5. Ablation Studies

Risk-Seeking Quantile . We compare the performance
on the 3-D Trig dynamics without GP refinement under
a = 0.1,0.5,1. With a = 0.1, the framework achieves
steady convergence, lower variance, and the highest success
rate of 66.67%, outperforming o = 0.5 (33.33%) and the
vanilla policy gradient o = 1 (0%). These findings confirm
the importance of the risk-seeking strategy (Appendix H.1).

Verification Comparison. We compare three verification
methods—1) root-finding (Feng et al., 2024c), 2) the dreal
SMT solver, and 3) random sampling—against our approach
on the 6-D polynomial system. SHGO-based counterex-
ample feedback is an adversarial reward, allowing fast re-
finement and stronger final guarantees but risking training
instability. In contrast, random sampling yields smoother
rewards and more stable training, yet it identifies violations
less efficiently. We thus blend both methods to balance final
performance and training stability. Meanwhile, the SMT
solver and root-finding produce mostly mild violations, of-
fering limited optimization guidance (Appendix H.2).

Expert Guidance. We evaluate four settings on the 6-D
polynomial system to assess the impact of GP refinement
and expert guidance: 1) transformer only, 2) GP only, 3)
transformer 4+ GP refinement, and 4) transformer + GP

refinement + expert guidance (ours). While the transformer
only can achieve a 100% success rate, it requires triple the
training time compared to 3) and 4). GP only fails to con-
verge due to its limited understanding of system dynamics.
In contrast, GP refinement and expert guidance learning
efficiently accelerate transformer parameters’ update and
enable faster Lyapunov function discovery (Appendix H.3).

6. Conclusion

This work introduces an end-to-end framework for discov-
ering analytical Lyapunov functions for nonlinear dynam-
ical systems. A symbolic transformer, trained with a risk-
seeking policy gradient and augmented by genetic program-
ming, proposes candidate expressions; the SHGO global op-
timizer rapidly verifies them and generates counterexamples
during training; and an SMT solver certifies the final Lya-
punov candidates. The framework scales to 10-dimensional
dynamics and has discovered previously unknown local Lya-
punov functions for lossy power system dynamics. It can
be extended to other certificate-function discoveries, such
as control barrier functions for safety certificates.

Several promising future research directions emerge from
this work. One is efficiently incorporating physical con-
stants, such as the gravitational constant and object mass,
which could significantly improve generalization—though
directly introducing them as variables may add unnecessary
complexity. Another is extending the framework to discover
control Lyapunov functions, which are essential for design-
ing stabilizing feedback laws. Theoretical analysis of the
framework, including proofs of completeness and conver-
gence, would also be valuable. Finally, since constructing
large-scale datasets for local Lyapunov functions remains
challenging, using our approach to refine pre-trained mod-
els (Alfarano et al., 2024) offers an exciting opportunity to
further advance Lyapunov function discovery.
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Figure 3. We visualize the dynamics tokenization process of the simple pendulum system. Each analytical formula in the ODE representa-
tion of input dynamics is first converted into an expression tree and then represented by the pre-order traversal in symbolic tokens and
constant coefficients.

Computation Resources: All experiments in this work were performed on a workstation with an AMD Ryzen Threadripper
2920X 12-Core Processor, an Nvidia RTX 2080Ti GPU 11 GB, and an Nvidia RTX 2080 GPU 8 GB.

A. Symbolic Transformer Model

We outline the details of our symbolic transformer model, a conditional generator for analytical candidate expression
generation, comprising two components: 1) an encoder, and 2) a decoder. ¢ = {(, 0} denotes the transformer parameters,
where ( and 6 denote the parameters of encoder and decoder respectively.

A.1. Encoder Structure

Our framework employs the vanilla transformer encoder from Vaswani et al. (2017) to encode two types of input
information: 1) the input system dynamics f(x), encoded into a latent vector F € RP, where p € R, and 2)
the hierarchical tree state representation (Petersen et al., 2020) of the selected tokens, encoded as a latent vector
W € RF, where & € R. The resulting representations are concatenated as Z. Both inputs are expressed as se-
quences of symbolic tokens and numerical coefficients when fed into the encoder. For damped pendulum example
in Figure 3, suppose we have m = 0.5kg, | = 1m, g = 9.81, and b = 0.1, the dynamics can be tokenized as:
[s0S, 12, EOS, SOS, +, X, —,9,8,1,0,10°, sin, 21, X, —,2,0,0,0, 107}, x5, EOS]. In this work, we set the embedding
dimension to 128, attention head to 2, and applied a 2-layer transformer encoder for system dynamics f(z) encoding and a
3-layer transformer encoder for hierarchical tree state representation encoding.

A.2. Decoder Structure

The decoder of the symbolic transformer model also uses the vanilla transformer decoder, with an additional linear layer
to output the token probability ) over the symbolic library L, for token selection. Candidate Lyapunov functions V¢ are
sampled as sequences of symbolic tokens in pre-order traversal. Each symbolic token f/@. is sampled autogressively from
conditional distribution p(Vj, Vs, (i—1y» @ f(x)). Upon token sampling is complete for Vs, we subtract V(0) from the

candidate expression to enforce the Lyapunov condition V¢(O) = 0. In each epoch, a batch of candidate Lyapunov functions
{ f/(; ~ p(Vy| ¢, f(m))}ZQ:l is sampled as candidates, which are verified by global-optimization-based numerical verification.
In this work, we set the embedding dimension to 128, attention head to 2, and applied a 6-layer transformer decoder for the
candidate expression generation. In each epoch, we sample () = 500 expressions as candidates.

B. Global-optimization-based Numerical Verification

For a given dynamics f(z), suppose f/¢ is an invalid analytical candidate Lyapunov function. According to Lyapunov
conditions defined in Proposition 3.4, for 27, 25 € D, where x7, 25 are the global minimizers of 17¢ and —Ly ‘7¢ in the
state space D, the following two inequalities hold: Vy(z}) < 0 and L;V,(x3) > 0. This implies that if V, is invalid, the
neighborhoods of 7 and x5 are highly likely to capture significant violations. Based on this observation, we propose a
global-optimization-based numerical verification. This verification identifies minimizers x] and x5 by Simplicial Homology
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Figure 4. This plot visualizes our proposed verification process on a sampled candidate. f/¢ = (@1 4 x2)? + x2 is a sampled candidate
during the training for Van Der Pol Oscillator. Using Simplicial Homology Global Optimization, we first identify the minimizer of
the Lyapunov function and the maximizer of the Lie Derivative, the black dots in each graph. Next, data points are sampled in the
neighborhoods of the two points, the regions in red circles. For sampled data points that violate the Lyapunov conditions, we feed them
into the training set X.

Global Optimization (SHGO), verifies Lyapunov conditions on localized samples in neighborhoods B,.(z7) and B,.(z3),
and feeds counterexamples back into the training set X. We detail the sampling and condition-checking procedures in
Algorithm 2. Figure 4 illustrates this verification process on a sampled candidate, ‘7¢ = (z1+ x2)2 + x9, for the Van der
Pol Oscillator. In the implementation, we initiate with 2048 starting points and iterate 3 times in the SHGO algorithm
for the minimizer detection. We tested the number of starting points with values [1024, 2048, 4096, 8196] on various
high-dimensional continuous functions, and the setting with 2048 starting points achieves the best efficiency. In datapoint
sampling for counter-example identification, for each candidate expression, 800 data points are sampled from each of B,.(z7})
and B,.(z3), and additional 800 data points are randomly sampled across the state space D.

C. Risk-seeking Policy Gradient

Objective. The standard policy gradient Jq(¢) = E% ~p(Vp|é,f (2)) [R(f/;))] aims to optimize the average performance of
a policy given the reward function R(-). However, for the task of Lyapunov function construction, the final performance
is measured by identifying a single or a few valid analytical Lyapunov functions that satisfy the Lyapunov conditions.
Thus, Jua(¢) is not an appropriate objective, as there is a mismatch between the objective being optimized and the final
performance evaluation metric. To address this misalignment, we adopt risk-seeking policy gradient (Petersen et al., 2020),
optimizing the best-case performance via the objective Jyisk (¢, @), as defined in Equation (6). In implementation, we choose
o = 0.1 in the training for all tested dynamics.

Proposition C.1 (Petersen et al. (2020)). Let J,;x (¢, ) denote the conditional expectation of rewards above the (1 — «)-
quantile R, () as in Equation (6). Then the gradient of J,is (), c) is given by:

Vdik(6,0) =Byt 16500 | (Bal0) = R(Vs)) - Vylogp(Vy | 6, f(2)) | R(Vy) = Ra(@)] . ®)
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Algorithm 2 Global-optimization-based Numerical Verification

Input: A set of analytical expressions V = {V?| i = 1,--- ,Q}, radius r, and state space D.
Output: a set of numerically valid candidate V*, a set of encountered counterexample X..

LV, Xee <+ {},{},
2: fori =1to () do

3:  af, a3 + SHGO(V', D), SHGO(—L;V', D), {Identify global minimizers within the state space D}
4 Xy, Xy, Xy {xi] x; € Bo(a27)}, {zj| z; € Br(23)}, {zx] 21 € D}
5. Check Lyapunov conditions on X7 U Xo U X5,
6: if R(V?) = 1 and no counter example found in X; U X> U X3 then
7. Ve VRU{Vil.
8: else

o: Xee + Xee Uidentified counterexamples in Xy U Xo U X3. {Gather falsification }
10:  endif
11: end for

12: Return V*, X..

The proposition suggests a Monte Carlo estimate of the gradient of Ji;x (¢, ) from a batch of N samples:

RN i = (i
V¢Jrisk(¢7 a) ~ W Z {Ra(d)) - R(ng ))] : 1R( ”ds'i))zﬁa(qg)vaﬁ IOgP(Vdg ) | ¢7 f(SU)), (9)
=1

where R, (¢) is the empirical (1 — a)-quantile of the batch of rewards, and 1, returns 1 if condition z is true and 0 otherwise.
Compared to standard REINFORCE algorithm (Williams, 1992), Equation (9) has two distinct features: (1) it has a specific
baseline, Ra(qb), instead of an arbitrary baseline in standard policy gradients chosen by user; (2) the gradient computation
only uses the top « fraction of samples.

Lemma C.2 (Bastiani et al. (2024)). When using the empirical Lyapunov risk in Equation (4) as the reward function, the
risk-seeking policy gradient is not guaranteed to be unbiased.

Proof. For a given dataset X C D, the empirical Lyapunov risk is a random variable whose value is determined by the
random expression sampled from the symbolic transformer model. Let Z denote the negated empirical Lyapunov risk, with
its probability density p(z|¢) depending on transformer parameters ¢.

Z has range (—o0, 0]. Suppose negated empirical Lyapunov risk is used as the reward function for risk-seeking policy
gradient to optimize the average performance of top (1 — «)-quantile samples. In Equation (9), the risk-seeking policy
approximates the gradient of the expectation over the truncated random variable Z, = Z - 17>, with respect to ¢, where
Sq 18 the (1 — «)-quantile of distribution of Z.

Sq = inf{z : CDF(z) > 1 — a}.
The probability density of Z,, is given by
1
P(za) = ap(2|¢)1z2sa-

To effectively penalize the invalid sampled expressions that miss some state variables or are symbolically invalid, their
empirical Lyapunov risks are set to be oo, or a symbolically valid candidate that incorporates all state variables might be
less preferable than a symbolically invalid or variable-incomplete expression during the training. Consequently, s, has a
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non-zero probability density of being —oo. If s, = —o0, then the gradient of the expectation in Equation (8) is:
1 O
B(Za) = [ ap(elo)dz,

o

ElZ.] = / 2p(zld)dz,

— 00

0
ViBIZi = o [ ap(alo)dz,

—00

Since the integration lower-bound is —oo, the Leibniz rule does not apply, which means interchanging the gradient and the
integration changes the result. Therefore, the policy gradient in Equation (8) is no longer guaranteed to be unbiased. [

Reward Design. To optimize the symbolic transformer parameters ¢ such that the decoder generates a valid candidate
Lyapunov function f/¢, satisfying Lyapunov conditions, we employ empirical Lyapunov risk as the fitness metric to measure
the violation degree of Lyapunov conditions within the state space following Chang et al. (2019). However, as shown in
Lemma C.2, directly using the unbounded empirical Lyapunov risk as the reward for risk-seeking policy gradient might
introduce bias. To address this issue, we adopt a bounded reward function using the continuous mapping g(x) = % (Petersen
et al., 2020; Bastiani et al., 2024), defined as:

RTa) = 27a) = g

where E(f@) measures the violation degree over the training set X'. This design ensures the reward is bounded in [0, 1],
avoiding bias in the risk-seeking policy gradient.

Reward Calculation. The reward function in Equation (5) quantifies the degree of violation based on empirical data points.
However, as the dimensionality of the input dynamics increases linearly, the training set X must grow exponentially to
maintain precision in the empirical measurement of violation degree, which is impractical for high-dimensional cases.
To ensure the reward signal remains a reliable indicator of expression quality in the risk-seeking policy gradient without
requiring an excessively large dataset, we incorporate Projected Gradient Descent (PGD) (Madry et al., 2017) into the reward
calculation process. Prior to evaluating the reward, PGD is employed on all sampled expressions to efficiently identify a
set of “minimizers” in the state space. These minimizers are computed from a randomly sampled set of starting points
through PGD for each sampled expression, and the process can be parallelized on a GPU, enabling efficient computation.
Though PGD may converge to local minima, it remains effective in identifying a few counterexamples that violate Lyapunov
conditions across invalid candidates. These counter-examples are then added to the training set X’ for reward calculation of
all sampled expressions in the current epoch and are removed immediately after the calculation. This process leverages PGD
to capture violation data points in advance, ensuring the quality of the reward signal without the need for an excessively
large dataset.

D. Genetic Programming

In the field of symbolic regression, given the large, combinatorial search space, traditional approaches commonly utilize evo-
lutionary algorithms, especially genetic programming (GP) (Koza, 1992), to retrieve analytical expressions that approximate
the output values y given input data x. The GP-based symbolic regression operates by evolving the input population of
mathematical expressions through evolutionary operations such as selection, crossover, and mutation. A pre-defined fitness
metric serves as the objective function to guide the optimization of the population over successive generations. However, for
analytical Lyapunov function construction, GP algorithms lack the capability to directly generate Lyapunov functions from
the given dynamics and require an initial population that represents potential Lyapunov functions.

As the search space grows exponentially with the expression complexity and the number of states in input dynamics, it is a
challenging task even for the symbolic transformer model to search a valid Lyapunov function for complex, high-dimensional
systems. Inspired by Mundhenk et al. (2021), we incorporate a GP component into the training framework to complement
the symbolic transformer model - the symbolic transformer model outputs a well-behaved initial populations of expressions
f/¢, which serve as the starting points for the GP component, and GP component refines f/d, through evolutionary operations
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Algorithm 3 Expert Guidance Loss

Input: ‘Elite set’ of analytical expressions \N)gp, input dynamics f(x), and transformer parameters .
Output: The weighted cross-entropy loss between the transformer model output probability distribution and given refined
expressions Vgp,.

. G+ |Vypl, {Get the size of “elite set’ }

: L+ 0,

: fori=1to G do

L+ L+ %R(V;p) Zk ; —log (p(f/gipj |V;p1:(j71) , D, f(x))) , {Calculate the expert guidance loss based on ‘elite

j=
set’ V,,. Equation (7)}

end for

D LVyp) <+ &L

: Return £(V,,).

W =

to explore the characteristics of Lyapunov functions that might be overlooked by symbolic transformer. The fitness metric
for the GP component is the same as the reward function used in the risk-seeking policy gradient. After each refinement, we
select an ‘elite set’ of the top-performing refined expressions, f)gp, based on fitness values. These expressions are treated as
ground-truth solutions for the transformer decoder, and transformer parameters ¢ are optimized through the expert guidance
loss introduced in Subsection 4.4. In the implementation, the size of ‘elite set’ f)gp is chosen to be 0.1Q), where Q is the
number of sampled candidate expressions f/¢ in each epoch.

In our framework, we employ three evolutionary operations: mutation, crossover, and selection, within our Genetic
Programming component (DEAP (Fortin et al., 2012)). A mutation operator introduces random variations to an expression,
such as replacing a subtree of one expression with another randomly generated subtree. A crossover operator exchanges
content between two expressions, e.g., by swapping a subtree of one expression with a subtree of another expression,
enabling the combination of their features. A selection operator determines which expressions persist into the next population.
A common method is tournament selection (Koza, 1992), where a set of [ candidate expressions is randomly sampled
from the population, and the expression with the highest fitness value is selected. In each iteration of GP evolution, each
expression has a probability of undergoing mutation and a probability of undergoing crossover; selection is performed until
the new generation’s population has the same size as the current generation’s population. In empirical experiments, we set
the probability of undergoing mutation and crossover to be 0.5, and we adjust the size of the tournament and number of
evolutions proportional to the dimension of the input system.

E. Baseline Descriptions
E.1. Augmented Neural Lyapunov Control (ANLC)

The Augmented Neural Lyapunov Control (ANLC) (Grande et al., 2023) combines Artificial Neural Networks (ANNs)
with Satisfiability Modulo Theories (SMT) solvers to synthesize stabilizing control laws for the input dynamics f(x) with
formal guarantees. The neural network is trained over a dataset of state-space samples to generate candidate control laws
and Lyapunov functions, while the SMT solvers are tasked with certifying the Lyapunov conditions of the neural Lyapunov
function over a continuous domain and returning a counterexample if the function is invalid. To ease the computationally
inefficient verification process in the SMT module, ANLC proposed a discrete falsifier, which discretized the state space for
sample selection and evaluation, employed before the SMT call to avoid the frequent calling of the time-consuming SMT
falsifier. As the previous learning-based Lyapunov function construction approaches usually initialized the parameters of
control policy with pre-computed gains from state-feedback controllers, e.g. Linear-Quadratic Regulators, which requires
user time and control expertise to properly perform the initialization process, ANLC instead removes the need of control
initialization by its proposed compositional control architecture containing both linear and nonlinear control laws so that
the proposed method allows the synthesis of nonlinear (as well as linear) control laws with the sole requirement being the
knowledge of the system dynamics. For empirical experiments, we tested the ANLC algorithm for all system dynamics in
Appendices F and G. We tested on the Van Der Pol Oscillator and 3D Trig dynamics to get the best hyperparameter setting.
In bold, we show the chosen parameters, selected to have the best success discovery rate on Van Der Pol Oscillator and 3D
Trig Dynamics.
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« Ir=[0.1,0.01, 0.001]

* activations = [(z2, 22, #2), (tanh, tanh, 22), (22, 2, tanh), (tanh, tanh, tanh)]
* hidden neurons = [6, 12, 15, 20]

data = [500, 1000, 2000]

L]

* iteration = [500, 1000, 2000]

E.2. FOSSIL 2.0

FOSSIL 2.0 (Edwards et al., 2024) is a software tool for robust formal synthesis of certificates (e.g., Lyapunov and barrier
functions) for dynamical systems modelled as ordinary differential and difference equations. FOSSIL 2.0 implements a
counterexample-guided inductive synthesis (CEGIS) for the construction of certificates alongside a feedback control law. In
the loop of CEGIS, the learner, based upon neural network templates, acts as a candidate to satisfy the conditions over a
finite set D of samples, while the verifier (formal verification tools) works in a symbolic environment that either confirms
or falsifies whether the candidate from learner satisfies the conditions over the whole dense domain &'. If the verifier
falsifies the candidate, one or more counterexamples identified by the verifier are added to the sample set, and the network is
retrained. This loop repeats until the verification proves that no counterexamples exist or until a timeout is reached. Similar
to the ANLC, in the empirical experiment, we set the hyperparameters based on the Van Der Pol Oscillator and 3-D Trig
dynamics and tested for all other dynamics in Appendices F and G.

Ir = [0.1,0.01, 0.001]

* activations = [(22, 2?), (tanh, tanh, 2?), (tanh, x2)]
* hidden neurons = [6, 10, 12]

« data = [500, 1000, 2000]

* iteration = [25, 50, 100]

E.3. Global Lyapunov Function Discovery by Pre-trained Transformer

Alfarano et al. (2024) pre-trained a transformer on backward-generated and forward-generated global Lyapunov function
datasets. The backward-generated datasets involve sampling arbitrary positive definite functions and deriving corresponding
stable dynamics through some specific symbolic designs, while the forward-generated polynomial datasets contain randomly
generated dynamics with corresponding Lyapunov functions identified by SOS methods if the system is inherently globally
stable. Candidate Lyapunov expressions are sampled using beam search in a token-by-token manner. However, their
method cannot adaptively refine the candidate Lyapunov functions if the beam search fails on specific dynamics, and
it requires a dataset that is expensive to generate (e.g., thousands of CPU hours for a 5-D dynamics dataset) to achieve
adequate generalization during inference. Furthermore, its emphasis on global stability limits its applicability to real-world,
nonpolynomial control systems, which typically only admit local stability. Due to the lack of resources of multiple industrial-
level GPUs, we contacted the authors of Alfarano et al. (2024) to conduct the evaluation of their pre-trained model on our
test systems, which is shown in Section 5.

E.4. Sum-of-Squares (SOS) Methods

SOS methods formulate Lyapunov functions discovery of given dynamics as a semi-definite programming task, where the
coefficients of a pre-defined SOS candidate expressions are optimized to satisfy the Lyapunov conditions (hard constraints
in the optimization problem) using convex optimization tools. SOS methods are generally applied to polynomial systems for
stability analysis. With proper recasting techniques, SOS methods can also be applied to non-polynomial systems.

Definition E.1 (Sum of Squares, Papachristodoulou & Prajna (2005a)). For 2z € R™, a multivariate polynomial p(x) is a
sum of squares (SOS) if there exist some polynomials f;(x),i = 1,--- , M such that

M
pa) = i)
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Polynomial systems. By Papachristodoulou & Prajna (2005a), for a given n-dimensional polynomial dynamics f(x) and
an integer degree 2d, to check the globally asymptotical stability of f(x), SOS method aims to find a polynomial V' (x) of
degree 2d, such that

L V(z) = Y0, S0 a7 isa SOS, where 327 €5 > 7,¥i =1,...,n withy > 0,and ¢;; > 0V i and j,

2. —9Y f(z)is a SOS.

For local stability analysis, consider a ball of radius r centered at origin ,-(0), which can be represented by the semialgebraic
set S = {x : g(x,r) > 0, where g(x,r) = r — >, x?}. We require that the stability condition holds in S. Retaining
the same optimization objective and constraints on V' (x) as before, a modified constraint on Lie derivative is imposed:

— 9V f(x) — s(x)g(z, r) is a SOS for some SOS s(z). If such an s(z) exists, we can establish local stability.

In Section 5, we develop our code based on the findlyap function from SOSTOOLS (MATLAB) and issue-16 of
SOSTOOLS’ official GitHub repo to examine the SOS method on polynomial systems in Appendix F. Table 5 summarizes
the experiment results of SOS approach on our polynomial test dynamics.

Table 5. Training\solving time of sum-of-squares (SOS) on test polynomial systems.

Systems ‘ App. F.1 ‘ App. F2 ‘ App. F3-1 ‘ App. F3-1I ‘ App. F4 ‘ App. E5 ‘ App. F6

Degree 2d 2 2 2 4 2 2 2
Region B1(0) Global Global Global B1(0) B1(0) B1(0)
Runtime 0.697s 0.832s 0.497s 2.500s - - -

Non-Polynomial System. To apply SOS method on non-polynomial system z = f(z),z € Dy, define 1 = z as the
original states and x2 as the newly introduced variables to recast non-polynomial terms in f(z). Let x = (21, x2). The
system dynamics can then be written in rational polynomial forms:

jf‘l = fl ($)7

j}g = f2 (Z‘) )
with constraints zo2 = F(x1), G1(z) = 0,Ga(x) > 0, where F, G1, G5 are vectors of functions, to restrict the states of
recast dynamics x = (z1, z2) equal to the manifold of the original state z.

Define g(x) as the collective denominator of f1, f2, and local region of interest as a semialgebraic set:
{(z) e R""™|Gp () > 0},

where Gp(z) is a vector of polynomials designed to match the original state space. Let x5 ¢ = F'(0). Suppose there exist
polynomial functions V' (), A1 (z), A2(z), and SOS polynomials o;(x), i = 1,2, 3, 4, of appropriate dimensions such that

V(O, 1’270) = 0, (10)
V(2) = M (2)Ch(z) — T (2)Ga(x) — 0T (2)C (x) — §(x) € SOS, (an
~ @) D) + g @)fa(e) = M (@6 (@) — of (1)Ga(e) — T (0)Gp() €508, (12

where ¢(z) is some scalar polynomials with ¢(x1, F'(z1)) > 0,Vzy € D;\{0}. If constraints (10), (11), and (12) hold,
then z = 0 is stable (not necessarily asymptotically stable) (Papachristodoulou & Prajna, 2005b). In Section 5, we develop
our code from SOSTOOLS to examine the SOS methods on two non-polynomial systems: simple pendulum and 3-D trig
dynamics (Appendices G.1 & G.2).
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F. Polynomial Nonlinear Dynamical System
F.1. Van Der Pol Oscillator

Van Der Pol Oscillator is a nonconservative, oscillating system with nonlinear damping (Zhou et al., 2022). The dynamics
of the Van Der Pol Oscillator have two state variables, formulated as follows:

j}l = T2,

i = —a1 = (1~ a}) -2,

where x1 and x5 represent the object’s position in the Cartesian coordinate, parameter ;1 € R™ indicates the strength of
the damping. Under the state space D = {(z1,x2) € R? | |z;| < 1} and setting 2 = 1, our proposed method found valid
local Lyapunov function V' (21, x2) = 2% + x3. Other forms of Lyapunov functions for Van Der Pol Oscillator, for example,
V(z1,29) = 22 + x9(21 + x2), are also recovered during the experiments.

F.2. Two-variable-polynomial-system with higher degree

Here we have a polynomial system of two variables with a higher degree, adopted from Alfarano et al. (2024), formulated as:

iy = —bx$ — 2wy - 23,
By = =9z 4 323 - xy — 423,

Under the state space D = {(x1,72) € R? | |2;] < 1}, our proposed method successfully found valid local Lyapunov
function V (x1, 22) = 927 + 23.
F.3. Three-variable-polynomial-systems with higher degree

Table 6 describes two polynomial systems of three variables with a higher degree, adopted from Alfarano et al. (2024). Our
framework successfully retrieves valid local Lyapunov functions on both examples under the state space D = {(z1, 2, z3) €
R3 | |z;] < 1}.

Table 6. Three-Dimensional Polynomial Example with Higher Degree.

System | Lyapunov function
i = =323 + 3wy - 23 — 91y
ig = —23 — Bag + 53 V(zy, 9, 23) = 927 + 23 + 23
l"g = —91‘%
i’l = 78%1 . I’% - 10%%
ig = —8x3 + 3w3 — 819 V(zy, ve,x3) = 2§ - 23 - 22 + 23
.’i?g = —X3
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F.4. 6-D Polynomial Nonlinear System

This 6-D dynamics consists of three two-dimensional asymptotically stable linear subsystems that are coupled by three
nonlinearities with small gains adopted from Griine (2019). The dynamics are written as:

&1 = —x1 4+ 0.529 — 0.1,
To = —0.511 — o,
i3 = —x3 4 0.524 — 0.122,
T4 = —0.bx3 — 24,
T5 = —x5 + 0.5xg,
ig = —0.5x5 — x6 + 0.1232.

Our proposed method is trained over the state space D = {(z1, ¥a, T3, 24, T5,7¢) € RC | |z;| < 1,Vi € {1,2,..,6}}, and
is able to find a valid Lyapunov function V (z) = 2% + 23 + 2% + 23 + 22 + 22. This dynamics is not globally asymptotically
stable since if z1, x2, or x5 has a significantly large value, the perturbations introduced by the small gains will shift the
object by a significant amount away from the equilibrium point. By empirical checking, our found Lyapunov function
certifies the asymptotical stability of this system over the region D’ = {(z1, 72, 23, T4, z5,76) € RO | Z?Zl x? < 500}.

F.5. 8-D Polynomial Nonlinear System

This 8-D dynamics consists of four two-dimensional asymptotically stable linear subsystems that are coupled by four
nonlinearities with small gains, modified from the above 6D polynomial dynamics. The dynamics are written as:

&1 = —x1 4+ 0.529 — 0.122,
"tg = —0.5‘%1 — X9,
i3 = —x3 + 0.524 — 0.127,
i‘4 = —0.55133 — X4,
&5 = —x5 + 0.526 + 0.122,
jiﬁ = —0.5335 — Te,
T7 = —x7 + 0.5xg,
iy = —0.5x7 — xg — 0.1,

Our proposed method is trained over state space D = {(x1, T2, T3, T4, T5, T¢, T7, Tg) € R® | |2;] < 1,Vi € {1,2,..,8}},
and is able to find a valid Lyapunov function V (x) = 22 + 23+ 2%+ 23 + 22+ 22+ 22+ 2. This Lyapunov function certifies
the asymptotical stability of this system over the region D = {(x1, z2, ¥3, 74, T5, Ts, T7,78) € RS | Zle x? < 450}.
This dynamics is not globally asymptotically stable since if z;, x4, x5, or z7 has a significantly large value, the perturbations
introduced by the small gains will shift the object by a significant amount away from the equilibrium point.

F.6. 10-D Polynomial Nonlinear System

Finally, we extend to the original 10-D polynomial dynamics proposed in Griine (2019). This 10-D dynamics consists of
five two-dimensional asymptotically stable linear subsystems that are coupled by four nonlinearities with small gains. The
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dynamics are written as:

&1 = —x1 4+ 0.529 — 0.122,
To = —0.511 — o,
i3 = —x3 4 0.524 — 0.122,
T4 = —0.bx3 — 24,
i5 = —x5 4+ 0.526 + 0.123,
¢ = —0.bxs — wg,
T7 = —x7 + 0.5x3,
Tg = —0.5z7 — z5.
g = —xg9 + 0.5210,
i10 = —0.529 — z19 — 0.122.

Our proposed method is trained over the state space D = {(z1, 22,3, T4, T5, Ts, T7,Ts, Tg, T19) € RO | |o;] <
1,Vi € {1,2,..,10}}, and is able to find a valid Lyapunov function V(z) = 2% + 23 + 23 + 2% + 22 + 23 +
22 + 22 + 23 + 23,. This Lyapunov function certifies the asymptotic stability of this system over the region
D = {(x1, 12,73, 74, 75,76, 77,78, T9,T19) € RO | Zilil x? < 400}. This dynamics is not globally asymptoti-
cally stable since if x1, 24, 5, Or xg9 has a significantly large value, the perturbations introduced by the small gains will
shift the object by a significant amount away from the equilibrium point.

G. Non-polynomial Nonlinear Dynamical Systems
G.1. Simple Pendulum

The simple pendulum is a well-known classical nonlinear system that contains two state variables. The dynamics are
formulated as follows,

z 1= T2,
Ty = _9 sin(xy) — 21’2
l m~

where x1 is the angular position from the inverted position, s is the angular velocity, and parameters g, m, [, b are the
acceleration of gravity, the mass of the inverted object, the length of the string, and the coefficient of friction, respectively.
In experiments, since we don’t incorporate the constant generation capability within the training framework, we set g = 1,
m = 1kg, | = 1m, and b = 0.1. Our proposed method finds the valid Lyapunov function V' = 2 — 2 cos(z1) + 22 over the
state space: D = {(x1,22) € R? | |21] < 7 and |z2| < 6}. This found Lyapunov function has the same analytical structure
as the energy function of the inverted pendulum.

G.2. 3-D Trigonometric System
3-D trig dynamics comes from exercise problems in textbook Khalil (2002) whose dynamics are written as follows,

il = T2,

.i‘g = —h(l‘l) — T2 — h(l‘3),

T3 =T — T3,
where h(z) = sin(x) - cos(z). When the state space is D = {(z1, 72, 23) € R? | |2;] < 1.5,V i € {1,2,3}}, the valid local
Lyapunov function found by our proposed method is V (21, 72, ¥3) = 1 — cos(z1)? + 23 + sin(x3)?, which is consistent to
the textbook solution of Lyapunov function for this particular dynamics.

G.3. N-bus Lossless Power System

We test our proposed framework on the N-bus power lossless system (Cui et al., 2023a; Feng et al., 2024a) to examine
its ability to handle complex high-dimensional dynamics. Consider 6;, w; as the phase angle and the frequency of bus i,

23



Analytical Lyapunov Function Discovery: An RL-based Generative Approach

respectively, the dynamics for each bus are formulated as follows,

éi = Wi,
N
miw; = p; — diw; — ui(w;) — ZBij ~sin(0; — 6;),
j=1

where m; is the generator inertia constant, d; is the combined frequency response coefficient from synchronous generators
and frequency sensitive load, and p; is the net power injection, for eachbus i = 1,--- , N. B € RV* is the susceptance
matrix with B;; = 0 for every pair {¢, j} such that bus 7 and bus j are not connected, and u;(w;) is the controller at bus ¢
that adjusts the power injection to stabilize the frequency.

Since the frequency dynamics of the system depends only on the phase angle differences, so we change the coordinates:

1 N
51:9”_N;0"

where d; can be understood as the center-of-inertia coordinates of each bus. In our experiment, we test the proposed
framework on the 3-bus power system. For simplicity, we set p; = 0, m; = 2, d; = 1, u;(w;) = w;, and B;; =
1Vi # j,Bi; = 0. In this case, the equilibrium point for our system is at the origin, i.e. §f = w; = 0, ¢ =
1,2,3. The state space for our experiment is defined as: D = {(81, da, 03, w1, wa,w3z) € R | |§;] < 0.75 and |w;| <
1.2 for 4 = 1,2, 3}. Through our method, we retrieved a valid Lyapunov function V' (81, 02, d3, w1, w2, w3) = (Zle w?) —

3 3
0.5 (Z > cos(d; —d;) — 1) , which is consistent to the known Lyapunov function presented in (Cui et al., 2023a).
i=1j=1,i#j

The Lie derivative of the identified Lyapunov function can be simplified as LV = —2(w} + w3 + w3). The analytical
structure of this found Lyapunov function and invariance principle allows us to easily identify it as a valid Lyapunov function
by hand.

G.4. Indoor Micro Quadrotor

For the angular rotations subsystems of the quadrator from Bouabdallah et al. (2004), it has 6 states to describe the
angular motion of the quadrotor. The states x1, x3, and x5 describe the roll, pitch, and yaw of the quadrator, and states
To, x4, and xg represent their time derivatives. With perturbation terms 2 and control inputs Uy, Us, and Us, the subsystem
can be formulated as follows,

$1:x2>
. I,—1, J l
g = x4z5(7‘1[ ) — TR$4Q + TU17
T3 = T4,

I, —1, Jr l
. Jroag4 b
E4 = x2x6( 1, )+Iy962 +IyU2,
1'5:.’1767
. I, —1 l
tg = Tox4( I y)JrZUS,

where I, I,,, and I, represents the body inertia, [ denotes the lever, and Jp is the rotor inertia. With the control policy

U = —7(331 — x{) = k1ma,
1 d
Uy = *7(1’3 —a3) — kowy,
Us = —1I.(x5 — x8) — k3w,
and restricting I, = I, the angular rotations subsystems is stabilized to the chosen equilibrium point X; =

{x¢,0,2¢,0,2¢,0}. In empirical experiments, we set X4 = {0,0,0,0,0,0}, state space D = {(x1, T2, T3, T4, T5, Tg) €
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RG | |Z‘,| S 3,VZ S {1,2, ..,6}}, IT = Iy = 2, Iz = 5, ]Cl = 5, kg = 20, ]{13 = 4, = 1, JR = 1, and ) = SiH(IQ) COS(£E4),
our framework successfully found Lyapunov function V (z1, z2, 3, 24, T5,T6) = Z?:l x2. By examining the Lie deriva-
tive LV = —2.523 — 1023 — 0.8z and using the Invariance principle, we conclude that this subsystem is globally
asymptotically stable. Under other parameter settings, our framework can also retrieve valid analytical Lyapunov functions
for this dynamics.

G.5. N-bus Lossy Power System

Unlike N-bus lossless power systems in Appendix G.3 which has a well-known energy-based storage function served as a
valid Lyapunov function for asymptotical stability guarantee, the N-bus lossy power system (Cui & Zhang, 2022) does not
have a known analytical Lyapunov function to certify stability, though by passivity the system should be asymptotically
stable at origin. Utilizing the proposed framework, we aim to discover a valid analytical Lyapunov function for an N-bus
lossy power system to formally certify its asymptotic stability.

The 60; and 4, are the angle and frequency deviation of bus 4, the dynamics of an N-bus lossy power system is represented by
the swing equation, formulated as:

0; = wi,

N N
miwz =p; — diwi — ’U,Z((JJZ) — Z Bij . Sin((‘)i — 9]) — Z Gij . COS(QZ' — Gj),
Jj=1 j=1

where m; is the generator inertia constant, d; is the combined frequency response coefficient from synchronous generators
and frequency-sensitive load, and p; is the net power injection, for each bus i = 1, --- | N. The susceptance and conductance
of the line (4, j) are B;; = Bj; and G;; = G};, respectively. The value is 0 if the buses are not connected. In this work, we
consider input u; to be a static feedback controller where only its local frequency measurement w; is available. Like the
lossless power system, since the frequency dynamics of the system depends only on the phase angle differences, we change

the coordinates:
1
0; = 0; — N E_l 0;

where 6; can be understood as the center-of-inertia coordinates of each bus.

We test the proposed framework on a 2-bus lossy power system. In experiment, we set p; = 1,m; = 2, d; = 1, u;(w;) = w;,
Bij =1,G;; =1VY1i#j, B; =0,G;; = 0. By this setting, the equilibrium point for this system is at the origin, i.e. §; =
w} = 0. The state space for the experiment is defined as: D = {(d1, b2, w1, wa) € R* | |§;] < 0.75 and |w;| < 2 fori =
1, 2}. The proposed method found two valid Lyapunov function V (1, 62, w1, ws) = w? + w? + (wy — sin(dy) + sin(dz))?
and V (81, 62, w1, ws) = w? + w3 + (—wy — sin(dy) + sin(d2))2. Both Lyapunov functions pass the formal verification by
SMT solver in the state space D\ B (0), where precision ¢ is set to be e "2 and € = e~ to avoid tolerable numerical error.

G.6. 9-D Synthetic Dynamics

Consider the synthetic dynamics adapted from Appendices F.4 & G.2 with linear interactions between two subsystems:

i1 = —x1 + 0.505 — 0.1,

To = —0.521 — 2 4+ 0.1xg,

i3 = —x3+ 0.524 — 0.122,

T4 = —0.bxg — 24,

T5 = —x5 + 0.5z,

ig = —0.5x5 — x5 + 0.122,

&7 = ws,

tg = —sin(x7) cos(x7) — xg — sin(zg) cos(zg) — 0.1x2,

{tg = g — X9g.

25



Analytical Lyapunov Function Discovery: An RL-based Generative Approach

1.05
— a=0.1 1.0 — a=0.1
1.004 — @=05 — a=05
— a=1 A~ TV — a=1
0.95 W os M\/\/——
wn wn
() (V)
50.90 3 /\/\/j\
5 06 {
50851 >
= —
ool | :
i 0.80 3 0.4
o o
0.75
0.2
0.70
0.65 0.0
0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch

Figure 5. Reward Trajectory Comparison for Ablation Study I: Test proposed framework (without GP component) on 3-D Trig
dynamics with three different choices of a for 100 epochs. The figure on the left visualizes the highest reward in the batch of samples
obtained in each epoch, and the figure on the right visualizes the 90% quantile of reward distributions of the batch of samples obtained in
each epoch.

To properly address the trigonometric terms in zg, the Lyapunov function for this dynamics can’t be a simple form like
>, 7 and should include some trigonometric terms. Setting the state space D = {z € R%||z;| < 1.5,Vi=1,---,9},
our method successfully identifies a valid Lyapunov function V = 3% | 22 + sin(z7)? + 22 — cos(x9) + 1, which passes
formal verification following settings in Section 5.

H. Ablation Studies
H.1. Ablation Study I - Risk-seeking Policy Gradient

To better understand the influence of « in policy gradient on the training performance of the symbolic transformer, we
experiment with our framework without GP refinement on 3-D Trig dynamics under different choices of « (the risk-seeking
quantile) over 100 epochs. Specifically, we choose o« = 0.1, 0.5, 1 and compare the transformer model’s performance by
the reward trajectories and success discovery rate. Figure 5 plots the reward trajectories—both the highest reward and the
90%-quantile—under the three different choices of « (the risk-seeking quantile). For o = 0.1, the setting we used on tested
dynamics in experiments, the highest reward and the 90% quantile converge steadily to 1 and 0.9, respectively, exhibiting
lower variance and faster stabilization. For o = 0.5, the median-based threshold increases steadily but shows greater
instability. Finally, for o = 1 vanilla policy gradient, the best reward reaches only 0.94, while the 90% quantile hovers
around 0.6. Additionally, with & = 0.1, the framework achieves the highest success recovery rate (66.67%) compared to
33.33% and 0% for a = 0.5 and o = 1. These findings correspond to the analysis of misaligned objective between the
standard policy gradient and Lyapunov function construction in Subsection 4.3, confirm the importance of risk-seeking
policy optimization, and highlight the effectiveness of setting @ = 0.1 in experiments.

H.2. Ablation Study II - Global-optimization-based Numerical Verification Process

This work proposes a global-optimization-based numerical verification for candidate verification and counterexamples’
feedback within the training paradigm. To identify the effectiveness of the proposed verification algorithm, this ablation
study compares the following verification methods on the proposed framework without the GP component on the 6-D
polynomial dynamics (Appendix F.4):

* Global optimization (SHGO): Proposed framework with global-optimization-based numerical verification in Subsec-
tion 4.2.

* Root finding: Proposed framework with root-finding numerical verification introduced in Feng et al. (2024c).

e SMT: Proposed framework with formal verification dreal (Gao et al., 2013) SMT solver.

* Ramdom sampling: Proposed framework with random sampling verification.
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Table 7. Number of epoch, training time, success rate, and formal verification time comparison between four different settings in Ablation
study II. Runtime is the average training time for successful trials. The Succ. % is the success rate of finding a valid Lyapunov function
out of 3 random seeds. Ver. Time is the average formal verification time of identified candidates on successful trials. The experiment
terminates either when a valid Lyapunov function is found (passes formal verification), the training epoch exceeds 250, or a timeout (4
hours limit).

Stats. Global optimization | Root finding | SMT | Random sampling

Epoch 168 - - 160
Runtime 8399s - - 5684s
Succ. % 100 0 0 100
Ver. Time 1.67s - - 15.93s
1.1 1.1
1.0 1.0

o
o
o
o

o
o

i

Reward Values
o
~
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o
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Figure 6. Best Reward Trajectory for Ablation Study II: Visual- Figure 7. Best Reward Trajectory for Ablation Study III:

ize the best reward trajectory of our framework with SHGO, root Visualize the best reward trajectory of the proposed framework
finding, and random sampling schemes in Ablation Study II on under four different settings in Ablation Study III on 6-D
6-D polynomial dynamics. The SMT-verification-based trajectory polynomial dynamics.

is not included as it timeouts at the beginning training stage.

Figure 6 compares the highest reward trajectory in each epoch for all four settings, and Table 7 summarizes the training
and formal verification statistics. SMT is not included in Figure 6 as the training stuck on the SMT solver for hours in the
middle of the training stage. The proposed SHGO-based counterexample feedback makes the training reward an adversarial
reward, as it can identify the most critical violations. As a ‘challenger’, the global optimization method finds the adversarial
counterexamples, not just mild violations. Consequently, this leads to a faster refinement of the policy to mitigate the critical
violations and results in stronger guarantees on the final Lyapunov candidates. However, it risks training stability and may
over-focus on ‘hard’ violations. In this case, it identifies a valid Lyapunov function V; (z) = 22 + 23 + 23 + 22 + 22 + 22
which is well-structured and easy to verify by formal verification tools. Note that, unlike in the experiment section, the GP
component is not used here, resulting in a less structured local Lyapunov function with a few squared interaction terms
(x; + z;)? under one random seed. This increases verification time compared to Table 1, yet remains significantly faster
than verifying the final result from the random sampling scheme.

Among the four settings, random sampling achieves the fastest convergence for this polynomial system, as it yields smoother
rewards, covers the whole state space uniformly, and promotes training stability. However, because random sampling cannot
actively search for violations—and its search space grows exponentially with dimensionality—it becomes less effective
for larger or more complex systems (e.g., power systems). Even with a reward near 1, it may fail to find a valid Lyapunov
function as the high reward only means it fails to locate counterexamples instead of nonexistence; or if it does, it can
converge to a local minimum with poor generalization or verification properties. For instance, the discovered Lyapunov
function Va(x) = 2% — cos(z2) cos(x3) — cos(x4) — cos(wg) — cos(z1 +x4) +4 has a complex shape that formal verification
tools struggle to handle, and it offers limited insight beyond the training region D. By contrast, V; () remains valid over the
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Table 8. Number of epochs, training time, and success rate comparison between four settings of the proposed framework. Runtime is the
average training time for successful trials. Succ. % is the successful rate of finding a valid Lyapunov function out of 3 random seeds.

Training Stats. | Transformer only | Transformer + GP | Ours | GP only

Epoch 168 20 18 -
Runtime 8399s 2731s 2467s -
Succ. % 100 100 100 0

much larger domain D’ = {(x1, z2, 23, ¥4, T5, 76) € RS | Z?:1 x? < 500}.

Root-finding usually identifies counterexamples near function roots, producing mostly mild violations. Although an ideal
root-finding algorithm might be efficient, off-the-shelf methods become inaccurate for dimensions above five. As a result,
they fail to provide precise violation signals or strong optimization guidance to the transformer, causing the best reward
to stall at 0.7. Similarly, dreal SMT often locates only mild violations rather than critical ones, limiting its impact on
optimization. While these counterexamples help the transformer reduce violations, the refined transformer increasingly acts
as an adversary to the SMT solver, prolonging verification until timeout. In neural network + formal verification settings,
this effect is even exacerbated by the model’s overparameterization. Consequently, we rely on global optimization instead of
formal verification in the training loop.

H.3. Ablation Study III - Generic Programming and Expert Guidance Loss

In the proposed framework, the Genetic Programming (GP) component refines sampled candidates I~/¢ from the symbolic
transformer and optimizes the transformer parameters ¢ using the expert guidance loss in Equation (7). To assess the impact
of the GP component on the training paradigm, we evaluate the following four settings of the proposed framework on the
6-D polynomial dynamics (Appendix F.4):

* Transformer only: A pure symbolic transformer model without GP component.

* Transformer + GP: A symbolic transformer model with a GP component for candidate refinement but without
expert-guided learning.

* Transformer + GP + expert-guided learning (ours): A symbolic transformer model with a GP component for both
candidate refinement and expert-guided learning for transformer optimization.

¢ GP only: GP component only. The initial population of the first epoch comes from a randomly initialized symbolic
transformer, and the initial population of other epochs comes from the latest refined expressions.

Figure 7 shows the highest reward in each epoch for the four settings, and Table 8 compares their training statistics. The
transformer-only approach achieves a 100% success rate across three random seeds, proving its capability to generate
Lyapunov functions on high-dimensional systems. However, without the GP component, it requires significantly more
training time and epochs to identify a valid Lyapunov function because it must independently explore all necessary
characteristics of a valid solution. Conversely, the GP-only approach fails to find any valid Lyapunov functions when starting
from a random population, as it lacks the transformer’s deeper understanding of system dynamics and relies on less capable
evolutionary operations for exploration.

Figure 8 explicitly compares the reward trajectories with and without expert-guided supervised learning, where ours (with
expert-guided learning) achieves the fastest convergence. Comparing the reward trajectory, ours achieves faster and more
stable training. Overall, these visualizations and comparisons emphasize the benefits of GP refinement and the expert-guided

learning on ‘elite set’ V,,, to accelerate transformer parameters’ update and enable faster Lyapunov function discovery.
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Figure 8. The figure on the left visualizes the overall best reward (best candidate among ]2;5 U ]N/gp) trajectory. The figure on the left
visualizes the best reward trajectory for transformer candidates (best candidate among Vy only, excludes GP-generated solutions). These
two plots compare the performance of transformer + GP refinement and our method in Ablation Study III.
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