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Abstract001

Assessing the originality of creative ideas of-002
ten relies on their statistical infrequency within003
a population—an approach long used in cre-004
ativity research but difficult to automate at005
scale. Human annotation via manual bucketing006
of idea rephrasings is labor-intensive, subjec-007
tive, and brittle under large corpora. We intro-008
duce a fully automated, psychometrically vali-009
dated pipeline for frequency-based originality010
scoring. Our method, MUSERAG, combines011
large language models (LLMs) with an exter-012
nally orchestrated retrieval-augmented gener-013
ation (RAG) framework. Given a new idea,014
the system retrieves semantically similar prior015
idea buckets and zero-shot prompts the LLM016
to judge whether the new idea belongs to an017
existing bucket or forms a new one. The result-018
ing buckets enable computation of frequency-019
based originality metrics. MUSERAG matches020
human annotators in both idea clustering (AMI021
= 0.59) and participant-level originality scores022
(r = 0.89), while exhibiting strong convergent023
and external validity. Our work enables intent-024
sensitive, human-aligned originality scoring,025
aiding creativity research at scale.026

1 Introduction027

Assessing creativity at scale remains a core chal-028

lenge in cognitive science and computational lin-029

guistics. Two complementary creativity dimen-030

sions are of primary interest: the intrinsic qual-031

ities of ideas (e.g., creative ideas tend to be se-032

mantically ‘flexible’ or diverse) and statistical in-033

frequency (i.e., ‘original’ ideas should not appear034

very often) (Beketayev and Runco, 2016; Runco035

and Jaeger, 2012). Recent computational advances036

have enabled scalable evaluations of intrinsic idea037

qualities via unsupervised, semi-supervised, and038

supervised scoring methods (Beaty and Johnson,039

2021; Organisciak and Dumas, 2020; Organisciak040

et al., 2023). However, frequency-based original-041

ity scoring still relies on manual tabulation of re-042

sponse occurrences (Reiter-Palmon et al., 2019). 043

This process involves subjective decisions on which 044

responses are the same, as different phrasings of the 045

same idea (e.g., ‘hold papers down’ and ‘use as a 046

paperweight’) should be bucketed together. Human 047

annotators must maintain evolving mental maps of 048

a growing set of buckets, which makes the anno- 049

tation process fatigue-intensive, error-prone, and 050

infeasible for large corpora (Acar and Runco, 2014; 051

Baten et al., 2020, 2021, 2022; Buczak et al., 2023). 052

Furthermore, current literature lacks standardiza- 053

tion in defining what qualifies as an ‘infrequent’ 054

idea, resulting in limited psychometric validation. 055

We present MUSERAG, a fully automated, 056

psychometrically validated system for frequency- 057

based originality scoring—bringing us closer to a 058

complete arsenal of automated assessment tools. 059

Bucketing the same ideas together is computation- 060

ally non-trivial: (i) semantic similarity alone is 061

insufficient for idea bucketing, since similar embed- 062

dings may reflect rephrasings or entirely different 063

intents, (ii) traditional clustering algorithms strug- 064

gle with singleton and low-frequency ideas, which 065

hold crucial signals for rarity scoring, (iii) fat-tailed 066

bucket size distributions in real-world datasets defy 067

assumptions of uniform or Gaussian cluster sizes, 068

and (iv) bucket count grows as new ideas arrive, 069

rendering ineffective text labeling tools that require 070

label sets apriori. MUSERAG resolves these core 071

challenges with a retrieval-augmented generation 072

approach, where a zero-shot LLM acts as a judge 073

to incrementally assign ideas to conceptually equiv- 074

alent buckets. Unlike conventional clustering meth- 075

ods, our method replicates the subjective nature of 076

human bucketing in both structure and resolution. 077

We also contribute to the creativity literature in 078

two ways. First, we establish rigorous psychomet- 079

ric validity for frequency-based originality scoring, 080

demonstrating high agreement with human anno- 081

tations and strong correlations with relevant cog- 082

nitive traits. In doing so, we provide insights on 083
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reliable ‘infrequency’ operationalizations. Second,084

we release an automated and interpretable scor-085

ing pipeline that is deployable across a wide range086

of open-ended ideation tasks, aiding creativity re-087

search at scale1 (Kelty et al., 2023).088

This work further makes a broader contribu-089

tion to the EMNLP community. It exemplifies090

how bleeding-edge NLP techniques can solve long-091

standing annotation problems that have resisted092

algorithmic treatment. As the field seeks to extend093

its reach through interdisciplinary recontextualiza-094

tion, MUSERAG provides deep validation to en-095

able widespread adoption by adjacent disciplines.096

2 Related Work097

2.1 Computational Assessment of Creativity098

Creativity assessment has long relied on divergent099

thinking tasks like the Alternate Uses Test (AUT),100

where participants list novel uses for everyday ob-101

jects (Guilford, 1967). Responses are traditionally102

scored for fluency (number of ideas), flexibility (the103

number of distinct semantic categories), and origi-104

nality (statistical infrequency in a sample) (Dumas105

and Dunbar, 2014; Runco and Mraz, 1992).106

Several computational methods have been pro-107

posed to quantify creativity. Unsupervised mod-108

els approximate human novelty ratings by mea-109

suring an idea’s semantic distance from the task110

prompt (Beaty and Johnson, 2021; Dumas et al.,111

2021; Acar and Runco, 2014), or flexibility by112

measuring semantic diversity (Snyder et al., 2004;113

Bossomaier et al., 2009). Hybrid and supervised114

models predict novelty ratings directly using re-115

gression and clustering-based pipelines (Organis-116

ciak et al., 2023; Stevenson et al., 2020). However,117

these supervised approaches face generalizability118

issues: models trained on one task or dataset might119

perform poorly in another (Buczak et al., 2023).120

Importantly, these models typically approximate121

human novelty ratings and not social rarity.122

Recent work underscores the importance of cap-123

turing conceptual intent rather than surface similar-124

ity (Olson et al., 2021). Yet, semantic similarity and125

clustering methods can conflate or over-separate126

ideas. Our approach addresses this by automat-127

ing frequency-based originality scoring through128

intent-sensitive, zero-shot idea bucketing at scale—129

something human raters or clustering algorithms130

could not previously achieve.131

1github link omitted for anonymity

2.2 Text Clustering and Annotation 132

Recent work has explored LLMs for zero-shot 133

or few-shot clustering and annotation tasks (Xiao 134

et al., 2023b). Deductive clustering prompts 135

an LLM to partition small sets of texts simulta- 136

neously, generating categories or groupings di- 137

rectly (Viswanathan et al., 2024; Chew et al., 138

2023). Most LLM-based clustering methods as- 139

sume all clusters are discoverable upfront and 140

perform poorly when the concept space evolves 141

over time. Inductive annotation, on the other 142

hand, presents labeled exemplars to classify new in- 143

stances incrementally (Dai et al., 2023). While the 144

current approaches show promise on well-bounded 145

tasks like topic labeling or thematic analysis, it 146

remains unclear how best to navigate fat-tail dis- 147

tributed clusters where the cluster count scales in- 148

definitely with data size. 149

2.3 LLM-as-a-Judge and RAG 150

LLM-as-a-Judge has recently emerged as a power- 151

ful paradigm for evaluating, ranking, and filtering 152

outputs across tasks like summarization, transla- 153

tion, alignment, and reasoning (Li et al., 2024a; 154

Liang et al., 2023; Zhao et al., 2024). Unlike ear- 155

lier evaluation approaches in NLP tasks (Papineni 156

et al., 2002; Zhang et al., 2019), judge LLMs can 157

assess contextual appropriateness, intent, and sub- 158

tle differences between candidates. Judging can be 159

pointwise, pairwise, or listwise (Gao et al., 2023; 160

Shen et al., 2024). Our task combines listwise 161

judgment with decision-making: the LLM selects 162

whether an idea matches any retrieved exemplar 163

or forms a new semantic bucket, akin to selection- 164

based judgment (Li et al., 2024b; Yao et al., 2023). 165

To stabilize this process at scale, we adopt an 166

externally orchestrated Retrieval-Augmented Gen- 167

eration (RAG) framework (Lewis et al., 2020; Izac- 168

ard and Grave, 2020). Unlike end-to-end or tool- 169

using agent systems (Shinn et al., 2023), our model 170

remains stateless. It receives a curated prompt 171

assembled using K-NN search over a codebook 172

database of previously catalogued buckets (Khan- 173

delwal et al., 2020), aligning with modular RAG 174

practices. This separation of retrieval and genera- 175

tion ensures system stability at scale while retain- 176

ing interpretability and psychometric auditability— 177

critical in creativity research. Our architecture 178

thus blends recent advances in LLM judgment and 179

RAG to achieve scalable and valid annotations of 180

frequency-based originality. 181
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Dataset # Participants # Tasks # Ideas # Judges
socialmuse24 (Baten et al., 2024) 109 5 5703 2
beaty18 (Beaty et al., 2018) 171 2 2917 4
silvia17 (Silvia et al., 2017) 141 2 2355 3
beaty12 (Beaty and Silvia, 2012) 133 1 1807 3
mohr16 (Hofelich Mohr et al., 2016) 305 + 284 1 + 1 1930 + 1582 4

Table 1: Dataset summary. Each participant did one task in mohr16. In other datasets, all participants did all tasks.

3 Dataset Acquisition182

3.1 Primary Dataset: socialmuse24183

We use the socialmuse24 dataset (Baten et al.,184

2024) to establish criterion validity (Table 1). Two185

trained research assistants (H1 and H2) indepen-186

dently ‘bucketed’ the same yet differently phrased187

ideas in each task under common bucket IDs. The188

annotators saw the ideas in a random order. They189

followed the coding rules described by Bouchard190

and Hare (Bouchard Jr and Hare, 1970) and the191

scoring key of Guilford’s test (Guilford et al., 1978).192

The dataset thus contains two categorical bucket193

IDs assigned by H1 and H2 for each idea, giving194

our ground truth. The dataset also contains the195

computationally-derived flexibility scores, Creativ-196

ity Quotient, for each participant’s idea set, which197

we use to test convergent validity (Snyder et al.,198

2004; Bossomaier et al., 2009).199

3.2 Secondary Datasets200

We use four publicly available AUT datasets to as-201

sess convergent and external validity (Organisciak202

et al., 2023; Beaty and Johnson, 2021) (Table 1).203

The beaty18 dataset (Beaty et al., 2018) con-204

tains four judges’ Creative Qualities ratings of205

ideas on a 1 (not at all creative) to 5 (very cre-206

ative) scale. The dataset also contains scores on:207

(i) Creative Metaphor Generation: Each partic-208

ipant generated novel metaphors to describe two209

open-ended prompts (Beaty and Silvia, 2013). Four210

judges rated each metaphor on a 1 (not at all cre-211

ative) to 5 (very creative) scale; (ii) Big Five Per-212

sonality: Each participant answered questionnaires213

on neuroticism, extraversion, openness to experi-214

ence, agreeableness, and conscientiousness (Mc-215

Crae et al., 2005); (iii) Fluid Intelligence: Each216

participant guessed the next entry in sequences of217

images (Cattell and Cattell, 1960), letters (Ekstrom218

et al., 1976), and numbers (Thurstone, 1938); and219

(iv) Creative Self-concept: Each participant com-220

pleted questionnaires on self-efficacy and creative221

self-identity (Karwowski, 2014).222

The silvia17 dataset (Silvia et al., 2017) con- 223

tains three judges’ Creative Quality ratings simi- 224

larly as beaty18. The dataset also contains open- 225

ness personality scores (Lee and Ashton, 2004). 226

beaty12 (Beaty and Silvia, 2012) contains three 227

judges’ Creative Quality ratings, as well as Big 228

Five Personality, Creative Metaphor Generation, 229

and Fluid Intelligence scores similarly as beaty18. 230

mohr16 (Hofelich Mohr et al., 2016) contains 231

four judges’ ratings on idea Originality and Flexi- 232

bility. Here, Originality captured how uncommon, 233

remote, and clever a response is, on a scale of 1 234

(least original) to 5 (most original) (Silvia et al., 235

2008). Flexibility was defined as the number of cat- 236

egories present within each participant’s responses, 237

scored by averaging the three judges’ estimates. 238

4 Task Description 239

4.1 Problem Formulation 240

Let P = {p1, p2, . . . , pN} denote a corpus of N 241

participants, each completing T ideation tasks. For 242

each task t ∈ {1, . . . , T}, participant pi produces 243

a variable-length set of ni,t free-form textual re- 244

sponses, denoted Ii,t = {x(1)i,t , . . . , x
(ni,t)
i,t }. 245

Let Xt =
⋃N

i=1 Ii,t denote the full idea set for 246

task t. The goal is to induce a task-specific parti- 247

tion Bt = {Bt,1, . . . , Bt,Kt} over Xt, where each 248

‘bucket’ Bt,k ⊆ Xt contains semantically equiva- 249

lent ideas expressing the same underlying concept. 250

Let k(x) denote the index of the bucket to which 251

idea x ∈ Xt is assigned. We define mt,k as the 252

number of distinct participants contributing at least 253

one idea to bucket Bt,k. Importantly, the bucketing 254

is performed within each task and across partici- 255

pants, and no bucket identity is shared across tasks. 256

4.2 Originality Metrics 257

We explore 4 frequency-based originality metrics: 258

(i) rarity: This metric scores each idea bucket 259

Bt,k as (1− mt,k

N ), capturing relative infrequency 260

in the sample (Forthmann et al., 2020, 2017). A 261

participant’s unnormalized rarity score is the 262
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sum of these values across their ideas, Rrarity
i,t =263 ∑

x∈Ii,t

(
1− mt,k(x)

N

)
.264

(ii) shapley: This metric scores each bucket265

Bt,k as 1
mt,k

, setting the marginal value of a bucket266

to be inversely proportional to the number of partic-267

ipants sharing it (Page, 2018). A participant’s un-268

normalized shapley score is the sum of these val-269

ues across their ideas, Rshapley
i,t =

∑
x∈Ii,t

1
mt,k(x)

.270

(iii) uniqueness: This metric assigns a score of271

1 to an idea if it appears in a singleton bucket (i.e.,272

mt,k = 1), and 0 otherwise (Forthmann et al., 2020;273

Baten et al., 2021, 2024). A participant’s unnormal-274

ized uniqueness score is the count of their unique275

ideas, Runiqueness
i,t =

∑
x∈Ii,t I{mt,k(x) = 1}.276

(iv) threshold: This metric applies a tiered277

scoring function, S(x), based on the bucket preva-278

lence of an idea x (Olson et al., 2021; DeYoung279

et al., 2008; Forthmann et al., 2020) as,280

S(x) =


3 if

mt,k(x)

N ≤ 0.01

2 if 0.01 <
mt,k(x)

N ≤ 0.03

1 if 0.03 <
mt,k(x)

N ≤ 0.10

0 otherwise.

281

A participant’s unnormalized threshold score is282

the sum of these scores, Rthresh
i,t =

∑
x∈Ii,t S(x).283

To compute a participant’s overall unnormal-284

ized score across all tasks, we take Rmetric
i =285 ∑T

t=1R
metric
i,t . To account for fluency (i.e., the286

number of ideas ni,t contributed by participant287

pi in task t), we define normalized originality as,288

Ometric
i,t =

Rmetric
i,t

ni,t
and Ometric

i =
∑T

t=1O
metric
i,t .289

4.3 Evaluation Strategy290

We evaluate construct validity for (i) idea-to-bucket291

clustering alignment and (ii) participant-level origi-292

nality scoring. This helps assess how well compu-293

tational bucketing replicates human judgments.294

Bucket-level construct validity. The bucket la-295

bels are categorical and arbitrary. Moreover, the296

bucket sizes follow a fat-tailed distribution with a297

few highly frequent buckets and many rare ones298

(see §5.1). Thus, traditional clustering metrics (e.g.,299

Adjusted Rand Index) can be misleading due to be-300

ing inflated by rare buckets. We adopt Adjusted301

Mutual Information (AMI) (Vinh et al., 2010) as302

our primary metric, which adjusts for chance agree-303

ment, is robust to label permutation and skewed304

distributions, and is well-suited for comparing clus-305

terings with different numbers of clusters. For in-306

sight development, we also use Normalized Mu-307

Bucket size, mk

101100 102

10-1

10-2

10-3

P(
m

k)

Figure 1: Idea bucket size distribution based on annota-
tor H1’s bucketing. See Figure A1 for H2’s case.

tual Information (NMI) (Vinh et al., 2010), which 308

quantifies mutual dependence between clusterings 309

without chance correction, and V-measure (Rosen- 310

berg and Hirschberg, 2007), which is the harmonic 311

mean of homogeneity and completeness, reflecting 312

both internal purity and cross-cluster coverage. 313

Participant-level construct validity. For origi- 314

nality scoring agreement, we use (i) Zero-order 315

Correlations (Pearson’s r for linear agreement 316

and Spearman’s ρ for monotonic consistency), 317

(ii) Intraclass Correlation Coefficient for consis- 318

tency across judges (Shrout and Fleiss, 1979), and 319

(iii) Bland–Altman Plots to identify systematic, 320

scale-level biases (Bland and Altman, 1986). 321

Convergent and external validity. Convergent 322

validity is assessed by correlating model originality 323

scores with theoretically aligned creativity metrics 324

(e.g., Creativity Quotient and Creative Quality Rat- 325

ings). External validity is evaluated by correlat- 326

ing model scores with established psychological 327

and cognitive variables: personality traits, creative 328

metaphor generation ability, fluid intelligence, and 329

creative self-concept (Beaty and Johnson, 2021). 330

5 Understanding Human-Annotated 331

Ground Truth Characteristics 332

5.1 Distributional Properties of Idea Buckets 333

We assess the structure of idea diversity in 334

socialmuse24 using H1 and H2’s buckets. H1 335

used more buckets per task (399.6, 95% C.I.: 336

[354.1, 445.1]) than H2 (230.8 [192.8, 268.8]), in- 337

dicating finer-grained distinctions in bucketing. 338

Next, we test whether the bucket frequencies 339

follow a fat-tailed pattern. We fit a discrete power- 340

law model to the bucket frequencies for each task 341

and compare it to a lognormal distribution via a 342

likelihood ratio test (Clauset et al., 2009). Both 343

annotators produced fat-tailed distributions, with 344
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scaling exponents αH1 = 2.01 [1.73, 2.28] and345

αH2 = 1.74 [1.60, 1.88], consistent with power-346

law like behavior in linguistic and social systems347

(α ≈ 2 to 3) (Newman, 2018). This confirms that348

a few buckets are highly frequent while many are349

rare (Figure 1). However, the power-law model is350

not statistically favored over the lognormal alter-351

native (P ≥ 0.05), suggesting that the bucket size352

distributions are not strictly power-law and may be353

better described by lognormal or other alternatives.354

5.2 Inter Human Annotator Agreement on355

Idea-level Bucketing356

H1 and H2 show a mean AMI of 0.66 [0.64, 0.68],357

indicating strong alignment beyond what would be358

expected by random bucketing. NMI elucidates359

how informative one annotator’s bucketing is about360

the other’s but does not adjust for chance (i.e., NMI361

is less conservative). As expected, the mean NMI is362

higher at 0.85 [0.84, 0.87], reflecting strong under-363

lying structure shared across annotators (Table A1).364

V-measure also yields a high mean of 0.85365

[0.84, 0.87]. Its homogeneity component (0.80)366

shows that H1’s buckets are reasonably pure with367

respect to H2, and its high completeness compo-368

nent (0.92) shows that H2’s buckets almost per-369

fectly recover H1’s buckets. This pattern corrobo-370

rates that H1 split buckets more finely than H2, but371

both annotators identified similar idea groupings.372

Overall, the annotators strongly agree on their373

idea bucketing, despite granularity differences.374

5.3 Inter Human Annotator Agreement on375

Participant-level Originality Scoring376

We compute participant-level {Ometric
i } using H1377

and H2’s bucket assignments and assess agreement.378

The threshold and shapley metrics show the379

strongest correlations (threshold: r = 0.77380

[0.69, 0.84]; shapley: r = 0.79 [0.70, 0.85]; both381

P < 0.001). uniqueness and rarity show lower382

but still good correlations (uniqueness: r = 0.73383

[0.63, 0.81]; rarity: r = 0.72 [0.61, 0.81]; both384

P < 0.001; see Table A2 for ρ estimates).385

The threshold and shapley metrics also show386

the strongest average consistency across judges:387

ICC(3, k) = 0.85 [0.78, 0.90], both P < 0.001.388

uniqueness yields the lowest but good agreement:389

ICC(3, k) = 0.8 [0.71, 0.86], P < 0.001 (Ta-390

ble A3). Taken together, we note strong agreements391

in originality scoring across the human annotators.392

5.4 Takeaways for MUSERAG Development 393

These analyses establish important expectations for 394

machine-based originality scoring. First, human- 395

annotated buckets exhibit a fat-tailed structure. Any 396

automated scoring system must account for this 397

characteristic for its bucketing performance to ap- 398

proach the strong AMI baseline of humans. 399

Second, based on the above evidence, we take the 400

threshold-based normalized scores, {Othresh
i }, 401

as our person-level gold standard against which 402

we evaluate machine-based originality scoring. We 403

test for robustness against the other metrics. 404

6 The MUSERAG Originality Scorer 405

6.1 Insights from Early Prototypes 406

Our initial prototype mimicked a typical human an- 407

notator’s workflow: judging each new idea against 408

an expanding codebook of prior buckets and de- 409

ciding whether the new idea rephrases an exist- 410

ing bucket or is sufficiently different to be a new 411

one. To capture this, we prompted the LLM with 412

the full existing codebook as it judged each new 413

idea. However, this made the prompts prohibitively 414

large when the bucket count exceeded Kt ≈ 150. 415

Given the fat-tailed bucket frequency distributions, 416

massive corpora can have very large Kt, making 417

exhaustive prompting infeasible. This motivated 418

a retrieval-based approach: selecting a small set 419

of candidate buckets from the current codebook 420

against which an LLM can assess a new idea. 421

Our next prototype achieved this by adding a 422

semantic similarity-based candidate bucket set re- 423

trieval mechanism. We used a fully LLM-managed 424

pipeline for retrieval, decision-making, and code- 425

book updating. This proved brittle as pipeline man- 426

agement errors compounded, especially by smaller 427

LLMs (e.g., phi4). We therefore offloaded retrieval 428

and codebook management to external components 429

to stabilize the system, letting the LLM focus solely 430

on the subjective bucketing decisions. 431

6.2 MUSERAG System Architecture 432

Algorithm 1 summarizes MUSERAG’s workflow. 433

The LLM processes one idea at a time and assigns 434

it to a semantically equivalent bucket or creates a 435

new one. For a given ideation task, a dynamic code- 436

book is initialized and updated as new ideas arrive. 437

For each idea x ∈ X , a dictionary of candidate 438

buckets Dx is constructed via K-NN-based seman- 439

tic search over the current codebook (Khandelwal 440

et al., 2020). Dx has a maximum size of Kc. When 441
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Algorithm 1 MUSERAG: LLM-Based Incremen-
tal Bucketing for a Single Creativity Task

Require: Idea set X = {x1, x2, . . . , x|X |}, LLM,
candidate dictionary size Kc

Ensure: Partition B = {B1, . . . , BK}, assign-
ment map k(x)

1: Initialize empty codebook C ← ∅
2: Initialize bucket index K ← 0
3: for all ideas x ∈ X do
4: if |C| ≤ Kc then
5: Dx ← C
6: else
7: Use K-NN search to find top-Kc clos-

est entries in C to x
8: Dx ← {(kj , dj)}Kc

j=1

9: end if
10: Query LLM: “Is x a rephrasing of any dj ∈
Dx? Return kj or −1.” (In CoT prompting,
also return a justification sentence)

11: if LLM returns k∗ ̸= −1 then
12: Assign k(x)← k∗

13: Bk∗ ← Bk∗ ∪ {x}
14: else
15: K ← K + 1
16: Create new bucket BK ← {x}
17: Update codebook C ← C ∪ {(K,x)}
18: Assign k(x)← K
19: end if
20: end for
21: return B = {B1, . . . , BK}, k(x) ∀ x ∈ X

the number of existing buckets is smaller than Kc,442

all of those buckets are taken in Dx. Each candi-443

date in the dictionary Dx = {(kj , dj)}Kc
j=1 maps444

bucket IDs to representative descriptions.445

The LLM is prompted to determine whether x is446

a rephrasing of any dj (baseline prompting). If so,447

it returns the corresponding key kj ; otherwise, it448

returns −1, signaling the creation of a new bucket449

with x as its description. We also explore Chain-450

of-Thought (CoT) prompting, where the LLM ad-451

ditionally provides a one-sentence reasoning (Wei452

et al., 2022). The codebook and bucket assignment453

are updated accordingly.454

We experiment with a factorial combination of455

LLM model variants, sentence embeddings, and456

prompting strategies (see Appendix Section A.1).457

We fix Kc = 10 to keep prompt length manageable458

while leaving sufficient margin for retrieval noise,459

and test robustness against other Kc choices.460

7 Results and Discussion 461

7.1 Computational Baselines 462

We use unsupervised clustering to establish a com- 463

putational baseline for MUSERAG. We require 464

algorithms that (i) allow clusters of vastly differ- 465

ent sizes, including fat-tail distributed ones, and 466

(ii) preserve singleton and rare buckets without 467

dropping them as noise or outliers (§5.4). 468

These constraints discourage us from using algo- 469

rithms like DBScan (singleton and rare buckets are 470

likely to be marked as noise) (Ester et al., 1996) and 471

HDBScan (minimum cluster size is 2) (Campello 472

et al., 2013), and our experiments also corrobo- 473

rate their poor performance. K-means clustering is 474

poor at handling imbalanced cluster sizes or shapes, 475

and requires the number of clusters to be close to 476

the number of datapoints to allow many singleton 477

or rare buckets (MacQueen, 1967). Agglomerative 478

hierarchical clustering is a reasonable choice for 479

our constraints (Ward Jr, 1963). We report results 480

with K-means and agglomerative algorithms. 481

For each algorithm, we automatically search for 482

the optimal number of buckets Kt over the full re- 483

gion of Kt = 1 to |Xt|. We evaluate structural and 484

semantic criteria using (i) Silhouette Score, which 485

assesses cluster quality based on geometric com- 486

pactness and separation, with higher values indicat- 487

ing better-defined clusters (Rousseeuw, 1987); and 488

(ii) Semantic Score, which is the geometric mean of 489

coherence (intra-cluster similarity) and exclusivity 490

(inter-cluster distinctiveness), encouraging clusters 491

that are both internally consistent and mutually dis- 492

tinct (Mimno et al., 2011). We experiment with the 493

same sentence embeddings as MUSERAG. 494

7.2 Distributional Properties of 495

Computationally-labeled Idea Buckets 496

We find K-means and agglomerative algorithms 497

to produce an exorbitantly high Kt—588 and 838 498

buckets by agglomerative (based on Silhouette and 499

Semantic scores), and 831 and 797 buckets by K- 500

means. For reference, |Xt| ≈ 1141 per task in 501

socialmuse24. These bucket counts are signifi- 502

cantly higher than H1 and H2’s (P < 0.001). In 503

contrast, the MUSERAG models produce Kt in 504

the range of 255 to 465, overlapping those of the 505

humans. The scaling exponents of K-means and 506

agglomerative are systematically higher than the 507

human baseline (P < 0.001), but the MUSERAG 508

models align with the humans (Table A4). 509
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Model AMI NMI Pearson’s r Spearman’s ρ ICC(3, 1)

llama3.3 CoT 0.59± 0.05 0.88± 0.02 0.88± 0.04 0.87± 0.05 0.88± 0.04
qwen3 CoT 0.56± 0.05 0.87± 0.02 0.79± 0.07 0.78± 0.07 0.77± 0.08
phi4 CoT 0.54± 0.01 0.83± 0.01 0.78± 0.08 0.76± 0.08 0.72± 0.09
llama3.3 Baseline 0.59± 0.03 0.86± 0.02 0.83± 0.06 0.79± 0.07 0.81± 0.06
phi4 Baseline 0.53± 0.02 0.83± 0.01 0.80± 0.07 0.78± 0.08 0.75± 0.08

K-means Silhouette 0.32± 0.09 0.86± 0.02 0.65± 0.11 0.67± 0.11 0.62± 0.12
K-means Semantic 0.35± 0.06 0.87± 0.02 0.71± 0.10 0.70± 0.10 0.67± 0.10
Aggl. Silhouette 0.39± 0.02 0.85± 0.02 0.73± 0.09 0.68± 0.10 0.69± 0.10
Aggl. Semantic 0.31± 0.05 0.86± 0.02 0.65± 0.11 0.65± 0.11 0.61± 0.12

Table 2: Agreement metrics comparing computational models to H1’s ground truths. Values are means ± half-width
of the 95% C.I. (N = 109). See Table A5 for results based on H2’s annotations.

7.3 Construct Validity of Idea-level Bucketing510

Table 2 and Figure A2 show the AMI and NMI511

agreements between H1 and machine bucketing.512

The results are robust to taking H2 as the reference513

(see Table A5). Interestingly, all methods score514

highly in the less conservative NMI metric and515

match the H1-H2 agreement, showing reasonable516

preservation of semantic grouping.517

However, when we correct for random chance518

and penalize mismatch in structure and granularity519

using the AMI metric, the MUSERAG models sus-520

tain human-like performance while the K-means521

and agglomerative algorithms suffer dramatically522

and systematically. Specifically, against a human-523

human AMI of 0.66 [0.64, 0.68], the llama3.3524

LLM with CoT prompting achieves the best AMI525

among the MUSERAG models at 0.59 [0.55, 0.64],526

while the silhouette-tuned agglomerative algorithm527

manages the best AMI among the baseline models528

at a poor 0.39 [0.36, 0.41]. This is unsurprising,529

since a drop in AMI implies deviation from the530

structure and resolution of the human bucketing,531

which is corroborated by the systematically larger532

number of buckets K-means and agglomerative533

algorithms produce. In contrast, the MUSERAG534

models preserve more of the mutual structures, se-535

mantic coherence, and resolution, capturing up to536

89% of the fine-grained patterns humans see.537

Overall, MUSERAG shows strong idea-538

bucketing alignment with the humans, surpassing539

the performances of clustering-based baselines.540

7.4 Construct Validity of Participant-level541

Originality Scoring542

Table 2 and Figure A3 show the participant-level543

{Othresh
i } score agreements based on H1 and ma-544

chine bucketing. The results are robust to tak-545
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Figure 2: Bland-Altman visualization for bias detection.

ing H2 as the reference (Table A5). MUSERAG 546

with llama3.3 and CoT prompting once again 547

shows the best correlation (r = 0.89 [0.83, 0.92], 548

P < 0.001). The baselines perform significantly 549

worse, with the silhouette-tuned agglomerative al- 550

gorithm achieving the best baseline correlation 551

(r = 0.73 [0.63, 0.81], P < 0.001). 552

MUSERAG with llama3.3 and CoT prompting 553

also shows the best ICC(3, 1) = 0.88 [0.83, 0.92], 554

P < 0.001. The clustering baselines reach 555

a maximum of ICC(3, 1) = 0.69 [0.57, 0.77], 556

P < 0.001, with the silhouette-tuned agglomer- 557

ative model, remaining significantly lower than 558

llama3.3’s performance (P < 0.001). Based 559

on the above evidence, we pick llama3.3 with 560

CoT prompting as the default configuration for 561

MUSERAG and use it for the remaining analysis. 562

We next visualize a Bland-Altman plot to iden- 563

tify systematic biases between H1 and MUSERAG- 564

derived originality scores (Figure 2). 94.5% of the 565

points fall within the limits of agreement (LoA) of 566

±1.96 SDs, and so does the mean difference (bias). 567

This shows that MUSERAG-derived scores stay 568

strongly in line with H1’s scores across the origi- 569
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nality spectrum. Although the proportional bias re-570

gression slope is slightly positive (0.09), the effect571

is not statistically significant (P > 0.05), suggest-572

ing no systematic trend where the machine over-573

or under-scores ideas as originality increases. This574

supports the conclusion that MUSERAG provides575

stable, human-comparable originality assessments.576

Taken together, MUSERAG shows strong origi-577

nality scoring validity against human ground truth.578

7.5 Convergent and External Validity579

MUSERAG’s {Othresh
i } scores correlate strongly580

with participant-level Creativity Quotient (CQ)581

scores in the socialmuse24 dataset (r = 0.4582

[0.23, 0.55], P < 0.001). CQ is a flexibility mea-583

sure that captures the diversity of semantic cat-584

egories. However, CQ is unnormalized and con-585

founded by idea fluency. Unsurprisingly, unnormal-586

ized {Rthresh
i } shows a stronger correlation with587

CQ (r = 0.47 [0.32, 0.61], P < 0.001).588

MUSERAG’s {Othresh
i } scores correlate589

strongly with person-level average cre-590

ative quality ratings (beaty18: r = 0.77591

[0.71, 0.83], P < 0.001; silvia17: r = 0.54592

[0.41, 0.65], P < 0.001; beaty12: r = 0.42593

[0.27, 0.55], P < 0.001). The mohr16 dataset594

contains rating-based originality scores, which595

correlate strongly with our frequency-based origi-596

nality scores (r = 0.42 [0.35, 0.49], P < 0.001).597

This dataset also contains manually annotated598

flexibility scores, which do not account for fluency.599

Unsurprisingly, this flexibility score correlates600

strongly with unnormalized {Rthresh
i } (r = 0.76601

[0.73, 0.80], P < 0.001). Overall, MUSERAG602

demonstrates excellent convergent validity.603

In terms of external validity, we find604

MUSERAG’s {Othresh
i } scores to correlate605

significantly with the person-level average creative606

metaphor generation ratings (beaty18: r = 0.2607

[0.04, 0.35], P < 0.05; beaty12: r = 0.25608

[0.09, 0.41], P < 0.01). {Othresh
i } correlates609

well with openness personality trait (beaty18:610

ρ = 0.16 [0.01, 0.30], P < 0.05; beaty12:611

r = 0.30 [0.14, 0.45], P < 0.001; silvia17:612

ρ = 0.14 [−0.02, 0.30], marginal P = 0.09). We613

find strong correlations with creative self-identity614

(r = 0.34 [0.19, 0.48], P < 0.001) and self-615

efficacy (r = 0.29 [0.14, 0.44], P < 0.001). We616

did not find any correlation with fluid intelligence617

or other personality traits. Our results largely618

corroborate previous insights (Beaty and Johnson,619

2021), establishing strong external validity.620

7.6 Robustness 621

The results depend on LLM, sentence embed- 622

ding, and prompting strategy choices. We 623

obtain the best results for the llama3.3:70b 624

LLM (Meta AI, 2024), e5-large-v2.1 sentence 625

embedding (Wang et al., 2022), and Chain-of- 626

Thought prompting (Wei et al., 2022) combina- 627

tion (§A.1). We further probe this configuration’s 628

robustness across Kc ∈ {5, 15}, and find results 629

statistically similar to the default Kc = 10. To 630

assess ordering effects, we run the configuration 631

with randomly ordered Xt across 3 seeds. We find 632

the results stable within the bounds reported in 633

Table 2. The main results with the threshold met- 634

ric are largely reproduced by the other three. But 635

we find that rarity shows proportional bias in 636

the Bland-Altman plot (slope = 0.2, P < 0.01), 637

while shapley and uniqueness show no correla- 638

tion with openness in the silvia17 dataset, losing 639

some external validity. The threshold metric thus 640

emerges as the most robust choice. 641

8 Conclusion 642

This work presents a scalable, zero-shot LLM- 643

based system for scoring the originality of cre- 644

ative ideas, addressing long-standing challenges 645

in the automation of divergent thinking assess- 646

ment. By leveraging the LLM-as-a-judge paradigm 647

with externally orchestrated retrieval, our method 648

provides psychometrically aligned, intent-sensitive 649

judgments without the need for task-specific fine- 650

tuning or training data. 651

The proposed system robustly handled all four 652

distinct datasets used in our evaluation, demon- 653

strating consistent performance across varying task 654

structures and idea distributions. Unlike opaque 655

embedding-based approaches, our use of chain- 656

of-thought (CoT) prompting enables interpretable 657

outputs, offering justifications for each originality 658

score and increasing transparency in AI decision- 659

making. 660

Our approach is well-suited to support the grow- 661

ing body of research in human-AI creativity assess- 662

ment, particularly as large-scale, high-throughput 663

studies become increasingly common (Doshi and 664

Hauser, 2024). By combining reliability, inter- 665

pretability, and scale, this system expands the prac- 666

tical and methodological toolkit for creativity re- 667

searchers and opens new avenues for measuring 668

and understanding creative potential in both human 669

and artificial agents. 670
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Limitations671

Although not the focus of this paper, future appli-672

cations of frequency-based originality scoring sys-673

tems should carefully consider demographic fair-674

ness and accessibility. Differences in language675

use across cultural or educational backgrounds676

may affect bucketing judgments—particularly in677

non-English settings—potentially introducing un-678

intended bias if not monitored.679

Our validation is confined to the AUT and simi-680

lar text-based divergent thinking tasks. It remains681

to be seen how well our approach generalizes to682

other domains of creative production (e.g., design,683

visual arts).684

The effectiveness of our approach depends on685

carefully curated prompts. Although we use ex-686

ternally orchestrated RAG to control the context687

injected into the LLM, the system may still be sensi-688

tive to prompt length or phrasing (Liu et al., 2023).689

Subtle changes in prompt format can positively690

or negatively affect judgment outcomes, which re-691

mains to be explored further.692

The system has room for improvement in terms693

of efficiency. We loop one idea at a time through694

the LLM. Future research can explore multi-idea695

batching to enhance efficiency. However, we ob-696

serve simple and focused LLM assignments to sta-697

bilize the system, and demanding more out of the698

LLM at each prompt may make the system brittle,699

especially for small-sized LLMs.700

The bucketing reasoning performance can be im-701

proved by adding multi-step thinking approaches.702

However, that might also increase computation703

cost.704

We kept the candidate dictionary size, Kc, small705

at {5, 10, 15}. Whether increasing the size further706

improves performance remains to be seen. How-707

ever, any performance improvement mechanism708

must be justified against the associated token usage709

and computation cost increases.710

Our most successful threshold metric applies a711

heuristic-based scoring function borrowed from712

prior literature. The robustness of the tiering713

choices of the scoring function remains to be ex-714

amined.715

Ethical Considerations716

We reanalyzed datasets from prior works and did717

not collect any new human data for this research.718

Given the nature of the project in creative assess-719

ment, we do not readily foresee potential harm.720
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A Supplementary Materials1082

A.1 System Component Choices1083

We experiment with the following system compo-1084

nent alternatives:1085

(i) Large language models: M =1086

{llama3.3:70b-Instruct (Meta AI, 2024;1087

Grattafiori et al., 2024), qwen3:32b (Yang et al.,1088

2025), phi4:14b (Abdin et al., 2024)}. We pick1089

these mid-sized, open-source models for their cost1090

and computation efficiencies.1091

(ii) Sentence embedding models: E =1092

{all-mpnet-base-v2 (Reimers and Gurevych,1093

2019), bge-large-en-v1.5 (Xiao et al., 2023a),1094

e5-large-v2.1 (Wang et al., 2022)}. These mod-1095

els are freely available on Huggingface and have1096

been widely used in recent technological develop-1097

ments.1098

(iii) Prompting strategies: P =1099

{baseline_prompting, cot_prompting (Wei1100

et al., 2022)}.1101

In our experiments, we found the combination of1102

llama3.3:70b-Instruct, e5-large-v2.1, and1103

cot_prompting to give the best performance.1104

A.2 Experimentation Setup and GPU Usage1105

We conducted all experiments using (i) an Intel1106

Core i7-based computer with 64GB RAM and an1107

RTX 3070 Ti graphics card, and (ii) three MacBook1108

Pro laptops. All our code and data are available on1109

GitHub. The R&D and final result generation took1110

roughly 100 GPU days.1111

A.3 LLM Prompts1112

System Prompt (Baseline Condition)1113

You are an idea bucket annotator for ideas
generated for the object {object_name} in
Guilford’s Alternative Uses Test. You
will be given an input_idea to annotate
against up to {comparison_k} comparison_ideas,
given to you in a dictionary format
with key-value pairs of comparison_idea_ID:
comparison_idea_description. The keys are
integers, and the values are strings. Your
goal is to determine if the input_idea
is a rephrased version of one of those
comparison_idea_description, or if it is
different.
if input_idea is a rephrased version of a
certain comparison_idea_description:

your_annotation_ID = comparison_idea_ID
key of that comparison_idea_description value
elif input_idea is a different one:

your_annotation_ID = -1
Your response must be a text string containing
exactly: <your_annotation_ID>.

1114

For example: if your_annotation_ID is
6 since the input idea is a rephrased
version of comparison_idea_ID 6, your response
string should be "6". Another example:
if your_annotation_ID is -1 because the
input idea is not a rephrasing of any
comparison_idea_ID, your response string
should be "-1".
Absolutely do not provide any extra text.

1115

System Prompt (CoT Condition) 1116

You are an idea bucket annotator for ideas
generated for the object {object_name} in
Guilford’s Alternative Uses Test. You
will be given an input_idea to annotate
against up to {comparison_k} comparison_ideas,
given to you in a dictionary format
with key-value pairs of comparison_idea_ID:
comparison_idea_description. The keys are
integers, and the values are strings. Your
goal is to determine if the input_idea
is a rephrased version of one of those
comparison_idea_description, or if it is
different.
if input_idea is a rephrased version of a
certain comparison_idea_description:

your_annotation_ID = comparison_idea_ID
key of that comparison_idea_description value
elif input_idea is a different one:

your_annotation_ID = -1
You will also provide a reason string
containing a single sentence explaining
why you gave the input_idea that specific
your_annotation_ID.
Your response must be a text
string containing exactly:
<your_annotation_ID><SPACE><reason>.
For example: if your_annotation_ID is 6
and the reason is "The input idea is
a rephrased version of comparison_idea_ID
6", your response string should be "6
The input idea is a rephrased version of
comparison_idea_ID 6". Another example: if
your_annotation_ID is -1 and the reason is
"The input idea is not a rephrasing of
any comparison_idea_ID", your response string
should be "-1 The input idea is not a
rephrasing of any comparison_idea_ID".
Absolutely do not provide any extra text.

1117

User Prompt Per Idea (Both Conditions) 1118

input_idea: {idea_text}
comparison_ideas: {repr(comparison_ideas)}

1119

A.4 AI Usage 1120

We used Grammarly AI to improve the grammati- 1121

cal accuracy of the manuscript. 1122
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A.5 Supplementary Tables and Figures1123

Table A1: Inter-human annotator agreement on idea
bucketing in socialmuse24.

Metric Mean [95% C.I.]
AMI 0.66 [0.64, 0.68]
NMI 0.85 [0.84, 0.88]
V-measure 0.85 [0.84, 0.87]
Homogeneity 0.80 [0.77, 0.82]
Completeness 0.92 [0.89, 0.95]

Table A2: Pearson and Spearman correlations of
participant-level scores based on H1 and H2’s bucketing.
N = 109 in all cases.

Scoring Method Correlation Type Estimate 95% C.I. P -value
threshold Pearson’s r 0.77 [0.69, 0.84] P < 0.001

Spearman’s ρ 0.75 [0.65, 0.82] P < 0.001
shapley Pearson’s r 0.79 [0.70, 0.85] P < 0.001

Spearman’s ρ 0.74 [0.64, 0.82] P < 0.001
rarity Pearson’s r 0.72 [0.61, 0.80] P < 0.001

Spearman’s ρ 0.64 [0.51, 0.74] P < 0.001
uniqueness Pearson’s r 0.73 [0.63, 0.81] P < 0.001

Spearman’s ρ 0.66 [0.54, 0.76] P < 0.001

Table A3: ICC reliability of the participants’ originality
scores based on H1 and H2’s bucketing.

Scoring Method ICC(3, k) F df1 df2 P -value 95% C.I.
threshold 0.85 6.79 108 108 P < 0.001 [0.78, 0.90]
shapley 0.85 6.67 108 108 P < 0.001 [0.78, 0.90]
rarity 0.83 5.73 108 108 P < 0.001 [0.75, 0.88]
uniqueness 0.80 4.97 108 108 P < 0.001 [0.71, 0.86]

Table A4: Cluster count K and power-law exponent α
for various computational scoring methods.

Model K [95% C.I.] α [95% C.I.]
llama3.3 CoT 465.4 [426.8, 504.0] 2.28 [2.14, 2.42]
qwen3 CoT 462.4 [432.7, 492.1] 2.43 [2.20, 2.67]
phi4 CoT 255.0 [207.3, 302.7] 2.39 [1.72, 3.05]
llama3.3 Baseline 367.8 [333.3, 402.3] 2.29 [1.97, 2.61]
phi4 Baseline 275.6 [229.5, 321.7] 2.51 [2.23, 2.78]
K-means Silhouette 830.6 [729.2, 932.0] 3.12 [2.82, 3.43]
K-means Semantic 797.4 [757.8, 837.0] 3.12 [2.67, 3.57]
Agglomerative Silhouette 588.0 [524.9, 651.1] 5.68 [1.26, 10.09]
Agglomerative Semantic 838.0 [815.9, 860.1] 3.80 [2.63, 4.97]
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Table A5: Agreement metrics comparing computational
models to H2’s ground truths. Values denote mean ±
half-width of the 95% C.I. (N = 109).

Model AMI NMI Pearson’s r Spearman’s ρ ICC(3, 1)

llama3.3 CoT 0.57± 0.04 0.84± 0.02 0.76± 0.08 0.74± 0.09 0.74± 0.09
qwen3 CoT 0.54± 0.04 0.83± 0.02 0.74± 0.09 0.73± 0.09 0.74± 0.09
phi4 CoT 0.56± 0.03 0.79± 0.01 0.67± 0.10 0.68± 0.10 0.67± 0.10
llama3.3 Baseline 0.59± 0.03 0.83± 0.01 0.76± 0.08 0.74± 0.09 0.75± 0.08
phi4 Baseline 0.55± 0.04 0.80± 0.01 0.73± 0.09 0.71± 0.10 0.73± 0.09

K-means Silhouette 0.28± 0.07 0.80± 0.02 0.59± 0.12 0.62± 0.12 0.59± 0.12
K-means Semantic 0.30± 0.05 0.80± 0.02 0.66± 0.11 0.68± 0.10 0.66± 0.11
Aggl. Silhouette 0.36± 0.03 0.80± 0.02 0.65± 0.11 0.60± 0.12 0.64± 0.11
Aggl. Semantic 0.26± 0.05 0.80± 0.02 0.60± 0.12 0.64± 0.11 0.60± 0.12
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Figure A1: Idea bucket size distribution based on annotator H2’s bucketing.
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Figure A2: AMI and NMI performance comparison against annotator H1
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Figure A3: Pearson’s r and ICC performance comparison against annotator H1
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