
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Memory Efficient Block Coordinate Descent Method for Forward-Only
Second-Order Finetuning of LLM Models

Anonymous Authors1

Abstract
Fine-tuning large language models (LLMs) for
specific downstream tasks has traditionally re-
lied on memory-intensive optimizers using classi-
cal backpropagation, which demands substantial
memory to store model states for gradient com-
putation, motivating the development of memory-
efficient zeroth-order optimizers that operate in a
forward-only manner. However, the slower con-
vergence of the zeroth-order optimizer remains
a challenge, which recent research addresses by
incorporating Hessian information to accelerate
training, although storing even the diagonal Hes-
sian requires memory equivalent to that of the
model weights, leading to significant memory us-
age. To mitigate this problem, we propose a novel
approach that integrates the block coordinate de-
scent (BCD) method with a Hessian-informed
zeroth-order optimizer, allowing us to treat model
layers as separate blocks and update only a subset
of layers per training iteration, thereby reducing
memory requirements and accelerating conver-
gence. Specifically, at each iteration, an active
block of layers is selected according to the cho-
sen BCD rule, such as ascending order, and their
weights are updated while the other layers re-
main fixed, with diagonal Hessian information
stored and updated exclusively for the active lay-
ers. For fine-tuning foundation models of medium
size (OPT-1.3B and LLaMA-2-7B), our method
achieves up to 39% memory reduction compared
to existing Hessian-informed zeroth-order meth-
ods, while preserving baseline accuracy and mem-
ory usage to zeroth-order methods across vari-
ous tasks, offering a memory-efficient alterna-
tive method for LLMs fine-tuning, especially on
memory-constrained devices.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1. Introduction
Fine-tuning transformer-based large models is an essen-
tial step in adapting pre-trained models to specific down-
stream tasks and further improving performance (Raffel
et al., 2020). This process also allows the model to con-
tinue training on lower-end devices compared to those used
for pre-training, thus improving accessibility and reducing
the training cost. For this intent, parameter-efficient fine-
tuning (PEFT) techniques, such as LoRA (Hu et al., 2021),
have been proposed to enable fine-tuning on consumer-level
GPUs or even edge devices, providing significant economic
and practical benefits. Typically, fine-tuning employs tradi-
tional optimizers like SGD or Adam (Kingma, 2014), which
use backpropagation to update model weights. This process
requires storing parameters, gradients, activations, and pos-
sibly other optimizer states, significantly increasing memory
requirements (Lv et al., 2023b;a; Rajbhandari et al., 2020).
As model sizes have increased and larger batch sizes are
employed for training, the memory demands of traditional
optimizers have become a significant bottleneck for devices
with limited memory resources, even when using existing
PEFT methods (Cai et al., 2020). Our work aims to address
this challenge by exploring memory-efficient techniques
further to reduce the memory overhead during fine-tuning
on low-end devices.

To tackle the memory inefficiency issue, recent advance-
ments have explored the use of zeroth-order optimizers such
as MeZO (Malladi et al., 2023) that estimate the gradients
with only forward passes, which eliminates the need for
backpropagation, thereby significantly reducing memory
consumption by avoiding the storage of intermediate op-
timizer states. Though memory-efficient, the slower con-
vergence rates of zeroth-order optimizers have limited their
practical utility. To accelerate convergence, researchers have
incorporated second-order information, such as diagonal
Hessian approximations as proposed in HiZOO (Zhao et al.,
2024b), into the optimization process. However, this solu-
tion comes at the cost of memory overhead, as storing even
diagonal Hessian values introduces substantial memory cost
comparable to the storage required for the model weights
themselves, thereby negating the original memory-saving
intent of applying zeroth-order optimization.

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Memory Efficient Block Coordinate Descent Method for Forward-Only Second-Order Finetuning of LLM Models

MeZO
Memory Efficient,
Slow Convergence

HiZOO
2× Memory,
Faster Convergence

Random Perturbation

B-PDF (ours)

Updates

Memory Efficient,
Faster Convergence

Hessian Information

Hessian Information

Practical Alternative to MeZO

Figure 1. Illustration of MeZO, HiZOO and our proposed training pipeline.

To efficiently and effectively utilize second-order informa-
tion, we consider the traditional block coordinate descent
(BCD) method, which solves optimization problems suc-
cessively along coordinate directions, and propose a block
coordinate descent Newton method (BCD-Newton) to tackle
our challenge. Inspired by recent advances in applying BCD
with Adam (Kingma, 2014) and AdamW Loshchilov (2017)
optimizations for training large language models (LLMs)
(Pan et al., 2024; Luo et al., 2024), we introduce a layer-wise
block coordinate descent scheme to optimize memory usage,
treating model layers as independent blocks and selectively
activates a subset of layers during each iteration. In practice,
block selection is guided by various BCD rules, including
ordered selection and block-wise importance sampling, to
achieve optimal training performance. This approach sig-
nificantly reduces the memory required to store Hessian
information. In our optimization step, beyond the basic
zeroth-order method with two forward passes, a three-step
forward pass is employed to incorporate second-order up-
dates, thereby facilitating faster convergence. The second-
order term is stored as a diagonal Hessian estimate matrix,
sized according to the active block of selected transformer
layers, and is updated throughout the training process. Thus,
we propose a novel optimizer that addresses the memory-
convergence trade-off inherent in Hessian-informed zeroth-
order optimization by integrating BCD techniques, while
simultaneously improving convergence rates.

Through extensive experiments on a single RTX 4090 or
RTX A6000 GPU, we demonstrate that our method en-
hances training efficiency and memory management while
fine-tuning foundation models, including OPT-1.3B (Zhang
et al., 2022b) and LLaMA-2-7B (Touvron et al., 2023). As
a BCD zeroth-order Newton method, it empirically deliv-
ers superior convergence speed and accuracy compared to
MeZO. Additionally, compared to the HiZOO baseline, our

approach achieves approximately a 50% speedup and a 40%
reduction in memory usage with comparable baseline accu-
racy across multiple GLUE (Wang, 2018) and SuperGLUE
(Wang et al., 2019) tasks. These improvements make our
method particularly well-suited for fine-tuning large models
on devices with limited memory, expanding the accessibility
of large language models in real-world applications.

In summary, our main contributions are three-fold:

• We propose a novel block coordinate descent fine-
tuning pipeline that integrates the previous Hessian-
informed zeroth-order optimizer, reducing the mem-
ory overhead to make the method a practical and
convergence-enhanced alternative to MeZO.

• We design improved block coordinate descent schemes
that reduce the compute and memory cost of the
Hessian-informed forward-only optimizer. By adap-
tively updating weights across block coordinates of
the model layers, this method manages blockwise up-
dates efficiently and reduces memory and computa-
tional costs.

• We conduct experiments on fine-tuning OPT-1.3B and
LLaMA-2-7B, demonstrating that our method reduces
training memory by over 39% without a loss in accu-
racy compared to the full diagonal Hessian baseline.

2. Related Work
First and second order Optimization for LLMs. Tradi-
tional first-order optimizers, such as SGD, AdaGrad (Duchi
et al., 2011), and RMSProp (Tieleman et al., 2012), are
foundational tools in deep learning. Adam (Kingma, 2014),
with its adaptive moment estimates for faster convergence,
and its variant AdamW (Loshchilov, 2017), which modifies

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Memory Efficient Block Coordinate Descent Method for Forward-Only Second-Order Finetuning of LLM Models

the weight decay term to improve generalization, have be-
come the dominant optimizers for fine-tuning large language
models (LLMs). Second-order optimization methods incor-
porating Hessian information, such as K-FAC (Martens &
Grosse, 2015), EVA (Zhang et al., 2022a), Adahessian (Yao
et al., 2021), and Sophia (Liu et al., 2023), have been ex-
plored to further accelerate convergence. However, estimat-
ing the Hessian is computationally and memory intensive,
particularly with the growing size of LLMs, which makes
these second-order methods less practical for fine-tuning on
devices with limited memory resources.

Zeroth-order (ZO) Optimization. A classical zeroth-order
optimization method, SPSA (Spall, 1992), with its corre-
sponding SGD variant, ZO-SGD, estimates the gradient
using two forward passes before and after parameter per-
turbation. Recently, MeZO (Malladi et al., 2023) adapted
ZO-SGD by incorporating the random number generator,
enabling an in-place implementation significantly reducing
memory usage for storing random vectors during training.
Based on MeZO, recent work explores its variants like in-
corporated sparsity for memory efficiency (Guo et al., 2024).
Additionally, Zhang et al. (2024) conducted a benchmark
study to analyze and enhance zeroth-order fine-tuning meth-
ods. However, the convergence performance of ZO methods
often falls behind that of first-order methods. To improve
convergence, HiZOO (Zhao et al., 2024b) proposed to uti-
lize Hessian information through diagonal Hessian estima-
tion. Beyond these approaches, several other gradient-free
methods have been proposed, such as using evolutionary al-
gorithms for gradient-free optimization (Sun et al., 2022b;a).

Memory-efficient Fine-tuning for LLMs. Numerous al-
gorithms have been developed to reduce memory costs for
training LLMs. Based on backpropagation, practical tech-
niques such as gradient checkpointing (Chen et al., 2016)
recompute gradients, FlashAttention (Dao et al., 2022) em-
ploys tiling and recomputation to leverage cache for im-
proved efficiency, and the ZeRO optimizers (Rajbhandari
et al., 2020; Ren et al., 2021) enable offloading to man-
age memory usage effectively. Additionally, researchers
have utilized compression and quantization methods to ap-
proximate gradients, activations, and other optimizer states,
enhancing training performance (Jiang et al., 2022; Li et al.,
2024). On another front, methods like LOMO (Lv et al.,
2023b;a) fuse gradient updates to accelerate training. One
notable approach to fine-tuning is parameter-efficient fine-
tuning (PEFT) methods, which includes techniques such as
Adapters (LoRA) (Hu et al., 2021; Houlsby et al., 2019),
prompt tuning (Lester et al., 2021), and selective methods
like bias-only fine-tuning (Zaken et al., 2021) and layer-wise
freezing (Brock et al., 2017). In addition, Zhao et al. (2024a)
recently introduced GaLore which reduces memory costs
by projecting gradients into a low-rank compact space.

Block Coordinate Descent (BCD) methods for LLM Op-
timization. In BCD, the optimization objective is mini-
mized successively along coordinate directions. When ap-
plied to LLM fine-tuning, this approach can be seen as
a branch of selective methods in parameter-efficient fine-
tuning. The recently proposed BAdam (Luo et al., 2024)
showcases the effectiveness of combining block coordinate
descent with Adam. Similarly, LiSA (Pan et al., 2024)
improves performance by selectively updating transformer
layers with AdamW optimizer, outperforming LoRA across
tasks on LLaMA-2.

Overall, our method offers a complementary optimizer-
based solution that can be combined with techniques like
compression and system-level approaches to improve mem-
ory efficiency. Amid the rapid advancements in efficient
training for LLMs and other foundation models, the most
closely related works to ours are HiZOO and BAdam. How-
ever, our approach distinguishes itself by addressing the
memory overhead of these methods in two key ways: first,
by eliminating the need for backpropagation through zeroth-
order optimization, and second, by reducing the memory
cost of Hessian-informed methods through block coordinate
descent. Unlike PEFT methods, our approach enables full
parameter fine-tuning, which has been demonstrated to yield
superior performance in various tasks (Ding et al., 2022).

3. Revisiting Memory Cost: A BCD Approach
In this section, we provide a brief overview of how zeroth-
order (ZO) and Hessian-informed ZO optimizer methods
work by introducing the core concepts of MeZO (Malladi
et al., 2023) and HiZOO (Zhao et al., 2024b). Next, we
introduce block coordinate descent (BCD) methods such
as BAdam (Luo et al., 2024). To ensure consistency, we
have adapted the definitions from these works. Finally, we
reconsider the memory consumption of these methods, and
propose our BCD-integrated Newton method optimizer.

3.1. Preliminaries of Zeroth-order Optimizers

3.1.1. SPSA, ZO-SGD, AND MEZO

Let L(θ;B) represent the loss function for training the
model with parameters θ ∈ Rd on the minibatch B, omit-
ting the B for simplicity. The SPSA algorithm (Spall, 1992)
perturbs the model using z ∈ Rd, sampled from N (0, Id),
and estimates the gradient on the minibatch as follows:

∇̂L(θ) = L(θ + µz)− L(θ − µz)

2µ
z ≈ zz⊤∇L(θ) (1)

where µ is the perturbation scale.

The corresponding SPSA optimizer, ZO-SGD, employs
two forward passes to estimate the gradients. With learn-
ing rate η, ZO-SGD updates the parameters as θt+1 =

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Memory Efficient Block Coordinate Descent Method for Forward-Only Second-Order Finetuning of LLM Models

θt − η∇̂L(θ;Bt). In this vanilla algorithm, the sampled
vector z requires memory equivalent to that of the perturbed
weights, resulting in a memory cost that is double the cost
of inference. In contrast, MeZO (Malladi et al., 2023) intro-
duces an in-place implementation using a random number
generator. Only a random seed s needs to be sampled and
stored at each step, allowing the generator to be reset by s to
regenerate the vector z. This approach eliminates the need
to save the vector, reducing the memory cost to match that
of inference.

3.1.2. HIZOO

To harness second-order information through MeZO for
enhanced convergence rates, Zhao et al. (2024b) introduce
HiZOO, utilizing a diagonal Hessian-based preconditioner
that adjusts the update sizes of parameters based on their
curvature. By estimating and storing only the diagonal
Hessian, HiZOO requires O(d) memory, significantly less
than the O(d2) needed for the full Hessian matrix.

Let Σ denote the estimated inverse Hessian matrix, approx-
imating the diagonal Hessian as a positive definite matrix,
with Σ−1 ≈ ∇2L(θ). Define Σt as the estimated Hessian
inverse at training step t, initialized as Σ0 = Id. Storing
Σt incurs a memory cost of O(d), and it is updated at each
step. In addition, to mitigate noise in the computation, an
exponential moving average (EMA) is employed, leading to
the following update rule for the diagonal Hessian estimate:

Σ−1
t+1 = (1− αt)Σ

−1
t + αt |Σt| , (2)

where αt is a smooth scale, and |Σt| ensures that all entries
of Σt remain non-negative.

HiZOO approximates the diagonal Hessian using three for-
ward passes to compute L(θ + µΣ1/2z), L(θ − µΣ1/2z),
and L(θ). By applying Taylor’s expansion, they obtain that:

L(θ ± µΣ1/2z) =L(θ)± µ⟨∇L(θ),Σ1/2z⟩

+
µ2

2
z⊤Σ1/2∇2L(θ)Σ1/2z +O(µ3),

(3)
the difference ∆L is then calculated as:

∆L =L(θ + µΣ1/2z) + L(θ − µΣ1/2z)− 2L(θ)
=µ2z⊤Σ1/2∇2L(θ)Σ1/2z +O(µ3).

Based on Ye (2023), the following term equals∇2L(θ),

1

2
·Ez(z

⊤Σ1/2∇2L(θ)Σ1/2z·(Σ−1/2zz⊤Σ−1/2−Σ−1)),

(4)
substitute ∆L, and they show that:

1

2
E
[
∆L
µ2
·
(
Σ−1/2zz⊤Σ−1/2 −Σ−1

)]
= ∇2L(θ) +O(µ).

Consequently, the estimation of the diagonal Hessian
∇2L(θ) at θ is:

Σt =
∆L
2µ2

(
Σ

−1/2
t ziz

⊤
i Σ

−1/2
t −Σ−1

t

)
. (5)

In this manner, HiZOO approximates the diagonal entries of
∇2L(θ) by Σt, requiring one more forward pass per step
compared with MeZO.

3.1.3. BLOCK COORDINATE DESCENT

At each iteration, block coordinate descent (BCD) fixes
all other parameters and optimizes the objective function
over the selected coordinates, resulting in an optimiza-
tion problem with reduced dimension. For large lan-
guage models, a natural block partition is to organize
transformer layers in ascending order. Formally, an or-
dered block partition π = {π1, . . . , πi, . . . , πD} divides
the entire model parameters θ ∈ Rd into D blocks, such
that θ = {θπ1

, . . . ,θπi
, . . . ,θπD

} with θπi
∈ Rdi and∑D

i=1 di = d. Based on the main idea of BCD, BAdam
(Luo et al., 2024) propose to incorporate Adam updates as
its inner solver and optimize over only one active block
θπi at a time while keeping the other inactive blocks fixed.
Mathematically, BAdam solves the following subproblem at
the t-th block-epoch for i = 1, . . . , D to update the active
block θπi

:

θt+1
πi
∈ arg min

θπi
∈Rdi

L(θt+1
π1

, . . . ,θt+1
πi−1

,θπi
,θt

πi+1
, . . . ,θt

πD
).

(6)
This subproblem Equation 6 keeps inactive blocks fixed
at their latest values, leading to a significantly lower-
dimensional optimization problem compared to minθ L(θ).

3.2. Revisiting Memory Cost from the BCD Perspective

Who consumed my memory? Second-order methods in-
corporate full or diagonal Hessian matrix, or its estimation,
as a preconditioner to accelerate convergence, but this intro-
duces a significant memory cost of O(d). For large models
such as LLaMA-2-7B (Touvron et al., 2023) with d = 7 bil-
lion parameters, this requires 2d memory in FP16 precision,
resulting in approximately over 14GB of memory storage.
When combined with the memory required for model pa-
rameters, this easily exceeds the capacity of consumer-level
devices, undermining MeZO’s original goal of achieving
memory efficiency. Our experiments further demonstrate
that directly applying Hessian-based optimization steps sig-
nificantly increases memory usage, as shown in Table 1.
Even though approaches such as HiZOO offer performance
improvements, the considerable memory overhead from
storing Hessian information becomes a bottleneck, particu-
larly when fine-tuning large models. This dilemma leads to
a situation where the benefits of second-order methods are

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Memory Efficient Block Coordinate Descent Method for Forward-Only Second-Order Finetuning of LLM Models

Table 1. Experiments of actual GPU memory consumption for various algorithms.

DEVICE MODEL SGD BCD LORA MEZO HIZOO OURS B-PDF

RTX 4090 OPT-1.3B 23G 21G 11G 4.4G 7.5G 4.6G
RTX A6000 LLAMA-2-7B 48G 46G 40G 31G 48G 32G

THEORETICAL AVG MEMORY IN UNITS SGD BCD OR LORA MEZO HIZOO OURS B-PDF
PARAM+ACTIVATION+GRAD+HESSIAN 3d d ∼ 3d d 2d d+ d/D

outweighed by their heavy memory consumption, limiting
their practicality in memory-constrained environments. Fur-
thermore, the memory consumption increases with batch
size for both first-order and Hessian-based methods, intensi-
fying the memory overhead, as illustrated in Figure 2.

How to reduce Hessian memory consumption? To ad-
dress this memory-convergence trade-off, we propose in-
tegrating block coordinate descent (BCD) into the zeroth-
order Newton optimization. BCD allows us to partition the
model into blocks, optimizing only a subset of layers at each
iteration while keeping the rest fixed. This approach dra-
matically reduces the memory required for storing Hessian
information, as it is only computed for the active blocks.
For instance, by partitioning the aforementioned LLaMA-
2-7B model into D = 32 blocks, corresponding to its 32
transformer layers, we reduce the additional memory cost
associated with Hessian storage to 2d

D , bringing it to under
1GB of memory. This significantly improves memory ef-
ficiency while preserving the advantages of second-order
optimization. Moreover, we further optimize memory usage
by applying MeZO to update the embedding and language
modeling head layers, avoiding the instability and overhead
often associated with second-order methods. Our integra-
tion of BCD not only achieves comparable memory usage
to MeZO but also leverages the improved convergence rates
of Hessian-informed updates.

To validate our analysis, we conducted preliminary experi-
ments (detailed in Section 5) measuring the GPU memory
consumption of various optimizers during the fine-tuning
of medium-sized language models, specifically OPT-1.3B
(Zhang et al., 2022b) on an RTX 4090 (24GB) and LLaMA-
2-7B on an RTX A6000 (48GB). As Table 1 and Figure 2
briefly illustrate, HiZOO’s incorporation of second-order
information increases memory demand by over 70%. No-
tably, the actual allocated memory includes residual state
memory such as temporary buffers and fragments (Rajb-
handari et al., 2020), which means the overall memory re-
quirement exceeds that of the parameters alone, resulting
in the overall increase short of a full 100%. In contrast, our
BCD-integrated method significantly reduces memory con-
sumption, bringing it in line with MeZO while maintaining
comparable performance. As we will further demonstrate
in Section 5, our proposed B-PDF method achieves com-
parable accuracy, and offers a practical, memory-efficient
alternative to MeZO with the extra benefit of incorporating
second-order information.

Flexibility in BCD Block Selection. Beyond the natural
block partitioning of model layers in ascending order, BCD
can be adapted with various strategies such as descending or-
der, random reshuffling, or importance sampling (Luo et al.,
2024; Pan et al., 2024). For instance, LiSA (Pan et al., 2024)
proposes a layer-wise importance sampling approach, which
updates selected layers while keeping others frozen, utiliz-
ing AdamW as the optimizer. In this approach, layers are
randomly selected based on predefined probability values.
In Section 4.1, we will present several BCD methods for
block selection. This flexibility allows BCD to be adapted
to different optimization scenarios, enhancing the overall
training process while maintaining memory efficiency.

4. Methodology
4.1. BCD-integrated ZO-Newton Optimizer

Motivated by the revisiting of the second-order Hessian
memory consumption, we identified a significant bottle-
neck caused by the storage of diagonal Hessian estimation,
which introduced substantial memory overhead, particu-
larly for large models. Ultimately, to address this memory-
convergence trade-off, we propose a new method that inte-
grates block coordinate descent (BCD) with a zeroth-order
Newton optimizer, termed Block-wise diagonal-Hessian
Preconditioned Coordinate Descent Forward-only optimizer
(B-PDF). Recognizing the layerwise structure of the trans-
former model, we treat each layer as a block for Hessian-
informed zeroth-order optimization. By partitioning the
model into blocks and updating only a subset of layers
at each iteration, we reduce the Hessian storage require-
ment while maintaining the convergence benefits of second-
order methods. Additionally, we update the embedding and
language model (LM) head layers solely through ZO opti-
mization to mitigate the instability and overhead typically
associated with second-order methods, resulting in a more
memory-efficient and scalable approach for fine-tuning.

The block partitioning is naturally arranged in ascending
order, and various BCD algorithms can be employed to de-
termine the active block θπi

. Possible strategies include
using ascending order, a layerwise importance sampling
scheme based on the mean weight norms of each block πi,
the Gaussian-Southwell-Diagonal rule (Nutini et al., 2017),
or dynamically updated probabilistic lists employing a ban-
dit method. Formally, for the current step T , the parameter
block θπb

to update can be selected using several types of

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Memory Efficient Block Coordinate Descent Method for Forward-Only Second-Order Finetuning of LLM Models

BCD algorithms, in which θπb
is defined by the rule:

θπi
, i← [1, · · · , D], ordered / random,

arg maxθπi

1
T

∑T
t=1 ∥θt

πi
∥2, mean weight norms,

arg maxθπi

|∆L(θπi
)|2

Σπi
,Gauss-Southwell-Diagonal,

θπz , z ∼ pz, importance sampling / bandit,
· · ·

We note that while different methods can be effective in their
original settings, they vary significantly in terms of mem-
ory and computational costs. Further details are provided
in the Appendix. In practice, the substantial computation
and storage required for updates by importance-score-based
methods led us to select the more efficient default ascending
order rule, and our experiments empirically demonstrate
its performance. Now we present the pseudocode for the
proposed algorithm in Algorithm 1.

Algorithm 1 Training Pipeline of the Propose B-PDF.
0: Input: parameters θ ∈ Rd, loss function L, perturba-

tion scale µ, learning rate η, smooth scale α
0: for t = 1, . . . , T do
0: Select block θπb

∈ θ according to the BCD rule
0: if a new block is selected then
0: Σ← I|θπb

| {Diagonal Hessian initialization}
0: end if
0: Freeze other layers
0: Sample a random seed s {First-time sampling}
0: for µi = 0,+µ,−2µ do
0: for θi ∈ θπb

do
0: Sample z ∼ Ns(0, I|θi|)

0: θi ← θi+µiΣ
1/2
t z {In-place perturbation}

0: end for
0: ℓsign(µi) = L(θ)
0: end for
0: Σ̂t ← ∆ℓ

2µ2Σ
−1/2
t−1 ziz

⊤
i Σ

−1/2
t−1 {Hessian Update}

0: Σ−1
t ← (1− αt)Σ

−1
t−1 + αt

∣∣∣diag(Σ̂t)
∣∣∣

0: projected grad← (ℓ+ − ℓ−)Σ
1/2
t /2µ

0: Reset random number generator with seed s
0: for θi ∈ θπb

do
0: Sample z ∼ Ns(0, I|θi|)
0: θi ← θi − ηt∗ projected grad ∗z
0: end for
0: end for=0

Remark 1. The optimization objective is to minimize the
loss function L(θ) by leveraging diagonal Hessian precon-
ditioning within the memory-efficient framework. During
each iteration, after selecting the active blocks for updates,
zeroth-order optimization with a diagonal Hessian precon-
ditioner is performed for the chosen layers. The diagonal
Hessian estimate will be reinitialized for a newly selected

block, and updates for that block will occur over several
subsequent iterations. The algorithm applies in-place pertur-
bations to the parameters in three steps with the perturbation
scale corresponding to µi = 0,+µ,−2µ, sampling a nor-
mally distributed random vector z to perturb the selected
block θπb

. For each perturbation, the loss function L(θ) is
computed to estimate the gradient information. Afterward,
the diagonal Hessian is updated based on the difference in
the computed losses from the perturbed parameters. The
gradient for the selected block is then projected using the
updated Hessian, and the weights of the active block are
updated accordingly.

Remark 2. The proposed algorithm efficiently combines
BCD with a zeroth-order Newton method by updating only
a subset of model layers per iteration. This approach re-
duces memory usage by eliminating backpropagation and
utilizing block-wise gradient updates, while maintaining
convergence speed through the use of diagonal Hessian ap-
proximations. The consistent use of random vectors and se-
lective parameter perturbation further enhance the method’s
memory efficiency.

4.2. Convergence Analysis

As a BCD variant of HiZOO (Zhao et al., 2024b), our pro-
posed B-PDF preserves its convergence properties. Since
our focus is primarily on the practical analysis and imple-
mentation of memory efficiency, this work emphasizes prac-
tical solutions over theoretical exploration. Nevertheless,
we provide a brief summary adapted from their convergence
analysis. Adopt the classical assumptions and update rule
θt+1 = θt − ηt∇̂Lµ(θt) as detailed by Zhao et al. (2024b),
with iteration number T and a suitable step size ηt, we have:

E[
1

T

T∑
t=1

∥∇L(θt)∥2] ≤ O(
1√
T
)(L(θ0)− L∗) +O

(
µ2

)
,

(7)

where L∗ denotes the minimization of the function L(θ;B).
As training progresses, the first term on the right-hand side
of the equation gradually diminishes to zero, while the sec-
ond term remains bounded by the perturbation scale. This
establishes that our method converges to a bounded neigh-
bourhood around a stationary point. Moreover, as T →∞,
the method converges to the optimal point, as demonstrated
by the equation above. A brief proof adapted from HiZOO
(Zhao et al., 2024b) is provided in the Appendix. For further
theoretical details, we refer readers to their original work.

5. Experiments
In this section, we build on the experimental settings of
MeZO (Malladi et al., 2023) and HiZOO (Zhao et al., 2024b)
to evaluate our proposed B-PDF method in terms of memory

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Memory Efficient Block Coordinate Descent Method for Forward-Only Second-Order Finetuning of LLM Models

consumption, runtime, and convergence. Our experimental
code builds on their open-source repositories, with the block
coordinate descent method integrated. To facilitate imple-
mentation and reduce resource requirements, we focus on
performance across several GLUE and SuperGLUE tasks,
following their approach. All experiments are conducted on
either a single RTX 4090 (24GB) or RTX A6000 (48GB)
GPU. Specific details regarding the hyperparameter grids
and implementations are provided in the appendix.

5.1. Experiments on OPT-1.3B

Settings. First, we conduct experiments by fine-tuning the
OPT-1.3B model on a single RTX 4090 GPU. Following
the settings of previous work, we select several GLUE and
SuperGLUE tasks to evaluate the performance of our pro-
posed B-PDF method. These NLP tasks include sentence
classification and text generation. We note that MeZO high-
lights the significance of incorporating prompts for optimal
performance and is structured accordingly. Therefore, we
maintained MeZO’s original setup and refrained from in-
troducing additional baselines in our experiments. For the
first-order baselines, we include SGD, BCD-based SGD (re-
ferred to as BCD in the tables), and LoRA with SGD. For the
zeroth-order methods, we compare MeZO, HiZOO, and our
proposed B-PDF. The batch size is set to 8 for zeroth-order
methods and 2 for first-order methods to prevent memory
exhaustion. Our primary goal is to demonstrate that B-PDF
reduces HiZOO’s memory consumption while maintaining
speed and accuracy.

0

6

12

18

24
Parameters Activations Gradients Hessian Information

M
e
m

o
ry

 U
sa

g
e
 (

G
B

)

batch size

Figure 2. Illustration of average GPU memory consumption for
fine-tuning the OPT-1.3B model using different methods, with
batchsize = {1, 2}. As the batch size increases, our proposed
B-PDF and MeZO maintain low memory usage, while other meth-
ods easily surpass the memory threshold of devices (red dashed
line represents an 8GB memory limit on low-end devices).

Memory Efficiency. For memory efficiency, B-PDF sig-
nificantly reduces the memory overhead of incorporating
Hessian information while maintaining accuracy. As shown
in Tables 1 and 2, our report on average GPU memory usage
during experiments demonstrates that B-PDF has a com-
parable memory cost to MeZO, while offering substantial
savings in memory consumption compared to HiZOO and
first-order methods such as SGD, BCD-SGD, and LoRA

(rank=8). This notable improvement ensures the practi-
cal adoption of the proposed method on low-end devices,
where memory is a primary bottleneck for training, which
is also the original reason why the forward-only approach
was developed to save memory down to inference-level re-
quirements. This makes our method a suitable solution for
low-memory training environments. In contrast, HiZOO
incurs a significant 72% higher memory cost than MeZO,
indicating an impractical convergence-memory tradeoff in
memory-limited scenarios. Additionally, first-order meth-
ods consume even more memory due to the overhead intro-
duced by backpropagation. For instance, BCD-SGD still
requires nearly full fine-tuning memory to store activations
and gradients for backpropagation. Consequently, due to
their substantial memory demands, they are rendered im-
practical in low-end environments, making faster conver-
gence irrelevant. This further highlights the advantages and
rationale of our approach.

Figure 3. Convergence curves of MeZO, HiZOO and proposed B-
PDF on SST-2 training OPT-1.3B.

Convergence Study. Regarding convergence rate, we
present the convergence curve relative to wall-clock time or
steps for training on the SST-2 dataset, as illustrated in Fig-
ure 3. The results show that while HiZOO converges more
effectively than MeZO for 20,000 steps, it requires nearly
double the completion time. Conversely, our proposed B-
PDF achieves better convergence than MeZO and matches
the performance of HiZOO, while maintaining the time
efficiency of MeZO. This speedup is attributed to the appli-
cation of the BCD strategy, which activates only a subset of
layers, thereby reducing computational demands. In our ex-
periment, the subset consists of two layers per iteration. As a
result, our method benefits from both zeroth-order and New-
ton methods, thanks to the use of BCD. Furthermore, the
results presented in Table 3 and visualized in the appendix
demonstrate that our method achieves comparable accuracy
to baseline methods across benchmarks. While first-order
methods yield superior results, their memory consumption is
several times higher than that of zeroth-order methods, mak-
ing them impractical for low-end environments. In contrast,
our method improves memory efficiency while enhancing
convergence, outperforming the MeZO baseline and offer-
ing a practical, efficient solution for low-end settings. These
findings position B-PDF as a memory-efficient optimizer
and an effective alternative to MeZO.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Memory Efficient Block Coordinate Descent Method for Forward-Only Second-Order Finetuning of LLM Models

Table 2. Experiments on OPT-1.3B on SST-2 dataset. The first-order method exceeds the memory limit of low-end devices.

Method Accuracy Runtime Average Memory

First-Order Forward+Backward
SGD 94.3 4min 05s 22.7 GB high memory demand
BCD 92.4 3min 09s 20.5 GB high memory demand
LoRA 92.0 0min 55s 10.6 GB not full fine-tuning

Zeroth-Order
2×Forward MeZO 91.7 54min 55s baseline 4.4 GB baseline
3×Forward HiZOO 91.7 99min 44s + 81.61% 7.5 GB + 72.25%
3×Forward (ours) 91.9 51min 38s - 6.98% 4.6 GB comparable

Table 3. Experiments on OPT-1.3B across different datasets.

Task SST-2 RTE CB BoolQ WSC WIC SQuAD AverageTask Type —————-classification—————- generation

First-Order
SGD 94.3 68.6 71.4 70.0 63.5 61.4 81.6 73.0
BCD 92.4 69.7 69.6 63.2 63.5 61.6 78.8 71.3
LoRA 92.4 66.4 69.6 66.8 63.5 58.5 80.5 71.1

Zeroth-Order
MeZO 91.7 64.3 69.6 65.5 63.5 57.7 77.9 70.0
HiZOO 91.7 64.6 71.4 65.5 63.5 58.5 78.7 70.6
(ours) 91.9 65.3 69.6 65.2 63.5 57.7 77.9 70.2

Table 4. Experiments of fine-tuning LLaMA-2-7B on SST-2 dataset on an RTX A6000 (48 GB).

Zeroth-Order Method Accuracy Average Memory First-Order Method Accuracy Average Memory

MeZO 85.2 31GB baseline LoRA 94.8 41GB +32.3%

B-PDF 90.6 32GB + 3.23% OOM for SGD, BCD, and HiZOO.

5.2. Experiments on LLaMA-2-7B

To further evaluate our proposed method on larger models,
we fine-tuned a LLaMA-2-7B model in FP16 precision on
an RTX A6000 GPU, using the aforementioned optimiza-
tion algorithms, as shown in Table 4. Due to the increased
model size, both the first-order method and HiZOO encoun-
tered out-of-memory (OOM) errors, and B-PDF required
longer completion times because of the higher computa-
tional cost associated with the larger Hessian estimation.
We compared the performance of three methods: LoRA
(rank=8), MeZO, and our proposed B-PDF, on the SST-2
dataset with batchsize=1. The remaining settings were
kept consistent with those in Section 5.1. Despite the lim-
ited batch size and hardware constraints, which caused an
accuracy drop from incomplete convergence, B-PDF still
demonstrated performance gains while maintaining compa-
rable memory consumption as a Hessian-informed method,
unlike first-order methods draining GPU memory, under-
scoring its potential in memory-constrained environments.

6. Conclusion
In this paper, we propose a novel memory-efficient zeroth-
order Newton method that integrates block coordinate

descent (BCD) with a diagonal Hessian-preconditioned
zeroth-order optimizer for fine-tuning large language mod-
els (LLMs). Our approach effectively mitigates the substan-
tial memory overhead commonly associated with second-
order methods by employing selective block-wise updates.
By combining the BCD technique with the Hessian precon-
ditioner, we achieve significant reductions in memory con-
sumption while preserving competitive accuracy and con-
vergence speed performance. Our extensive experiments on
OPT-1.3B and LLaMA-2-7B demonstrate that our method
can reduce memory usage by up to 39% compared to ex-
isting second-order optimizers while maintaining baseline
accuracy across various downstream tasks. Furthermore, our
approach exhibits faster wall-clock convergence than con-
ventional zeroth-order methods, making it a practical and
scalable solution for fine-tuning large models on resource-
constrained devices. Future work will aim to extend this
methodology to larger models and more complex tasks, as
well as refine the block selection strategies to further en-
hance both efficiency and performance. In summary, our
method provides a promising direction for memory-efficient
fine-tuning of LLMs, offering practical advantages, particu-
larly in memory-limited environments.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Memory Efficient Block Coordinate Descent Method for Forward-Only Second-Order Finetuning of LLM Models

7. Impact Statement
This paper presents work whose goal is to advance the field
of efficient training and fine-tuning of foundation models.
There are many potential societal consequences of our work,
none of which we feel must be specifically highlighted here.

References
Brock, A., Lim, T., Ritchie, J. M., and Weston, N. Freeze-

out: Accelerate training by progressively freezing layers.
arXiv preprint arXiv:1706.04983, 2017.

Cai, H., Gan, C., Zhu, L., and Han, S. Tinytl: Reduce acti-
vations, not trainable parameters for efficient on-device
learning. arXiv preprint arXiv:2007.11622, 2020.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training
deep nets with sublinear memory cost. arXiv preprint
arXiv:1604.06174, 2016.

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. Advances in Neural Information Process-
ing Systems, 35:16344–16359, 2022.

Ding, N., Qin, Y., Yang, G., Wei, F., Yang, Z., Su, Y.,
Hu, S., Chen, Y., Chan, C.-M., Chen, W., et al. Delta
tuning: A comprehensive study of parameter efficient
methods for pre-trained language models. arXiv preprint
arXiv:2203.06904, 2022.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of machine learning research, 12(7), 2011.

Guo, W., Long, J., Zeng, Y., Liu, Z., Yang, X., Ran, Y.,
Gardner, J. R., Bastani, O., De Sa, C., Yu, X., et al.
Zeroth-order fine-tuning of llms with extreme sparsity.
arXiv preprint arXiv:2406.02913, 2024.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
De Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, pp.
2790–2799. PMLR, 2019.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

Jiang, Z., Chen, X., Huang, X., Du, X., Zhou, D., and
Wang, Z. Back razor: Memory-efficient transfer learning
by self-sparsified backpropagation. Advances in neural
information processing systems, 35:29248–29261, 2022.

Kingma, D. P. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Lester, B., Al-Rfou, R., and Constant, N. The power of scale
for parameter-efficient prompt tuning. arXiv preprint
arXiv:2104.08691, 2021.

Li, B., Chen, J., and Zhu, J. Memory efficient optimiz-
ers with 4-bit states. Advances in Neural Information
Processing Systems, 36, 2024.

Liu, H., Li, Z., Hall, D., Liang, P., and Ma, T. Sophia: A
scalable stochastic second-order optimizer for language
model pre-training. arXiv preprint arXiv:2305.14342,
2023.

Loshchilov, I. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101, 2017.

Luo, Q., Yu, H., and Li, X. Badam: A memory efficient
full parameter training method for large language models.
arXiv preprint arXiv:2404.02827, 2024.

Lv, K., Yan, H., Guo, Q., Lv, H., and Qiu, X. Adalomo:
Low-memory optimization with adaptive learning rate.
arXiv preprint arXiv:2310.10195, 2023a.

Lv, K., Yang, Y., Liu, T., Gao, Q., Guo, Q., and Qiu, X. Full
parameter fine-tuning for large language models with lim-
ited resources. arXiv preprint arXiv:2306.09782, 2023b.

Malladi, S., Gao, T., Nichani, E., Damian, A., Lee, J. D.,
Chen, D., and Arora, S. Fine-tuning language models
with just forward passes. Advances in Neural Information
Processing Systems, 36:53038–53075, 2023.

Martens, J. and Grosse, R. Optimizing neural networks with
kronecker-factored approximate curvature. In Interna-
tional conference on machine learning, pp. 2408–2417.
PMLR, 2015.

Nutini, J., Laradji, I., and Schmidt, M. Let’s make block
coordinate descent converge faster: Faster greedy rules,
message-passing, active-set complexity, and superlinear
convergence. arXiv preprint arXiv:1712.08859, 2017.

Pan, R., Liu, X., Diao, S., Pi, R., Zhang, J., Han, C., and
Zhang, T. Lisa: Layerwise importance sampling for
memory-efficient large language model fine-tuning. arXiv
preprint arXiv:2403.17919, 2024.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21
(140):1–67, 2020.

Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. Zero:
Memory optimizations toward training trillion parameter
models. In SC20: International Conference for High Per-
formance Computing, Networking, Storage and Analysis,
pp. 1–16. IEEE, 2020.

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Memory Efficient Block Coordinate Descent Method for Forward-Only Second-Order Finetuning of LLM Models

Ren, J., Rajbhandari, S., Aminabadi, R. Y., Ruwase, O.,
Yang, S., Zhang, M., Li, D., and He, Y. {ZeRO-Offload}:
Democratizing {Billion-Scale} model training. In 2021
USENIX Annual Technical Conference (USENIX ATC
21), pp. 551–564, 2021.

Spall, J. C. Multivariate stochastic approximation using a
simultaneous perturbation gradient approximation. IEEE
transactions on automatic control, 37(3):332–341, 1992.

Sun, T., He, Z., Qian, H., Zhou, Y., Huang, X., and Qiu, X.
Bbtv2: Towards a gradient-free future with large language
models. arXiv preprint arXiv:2205.11200, 2022a.

Sun, T., Shao, Y., Qian, H., Huang, X., and Qiu, X. Black-
box tuning for language-model-as-a-service. In Inter-
national Conference on Machine Learning, pp. 20841–
20855. PMLR, 2022b.

Tieleman, T., Hinton, G., et al. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude.
COURSERA: Neural networks for machine learning, 4
(2):26–31, 2012.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Wang, A. Glue: A multi-task benchmark and analysis plat-
form for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A.,
Michael, J., Hill, F., Levy, O., and Bowman, S. Super-
glue: A stickier benchmark for general-purpose language
understanding systems. Advances in neural information
processing systems, 32, 2019.

Yao, Z., Gholami, A., Shen, S., Mustafa, M., Keutzer, K.,
and Mahoney, M. Adahessian: An adaptive second order
optimizer for machine learning. In proceedings of the
AAAI conference on artificial intelligence, volume 35, pp.
10665–10673, 2021.

Ye, H. Mirror natural evolution strategies. arXiv preprint
arXiv:2308.00469, 2023.

Zaken, E. B., Ravfogel, S., and Goldberg, Y. Bitfit:
Simple parameter-efficient fine-tuning for transformer-
based masked language-models. arXiv preprint
arXiv:2106.10199, 2021.

Zhang, L., Shi, S., and Li, B. Eva: Practical second-order
optimization with kronecker-vectorized approximation.
In The Eleventh International Conference on Learning
Representations, 2022a.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V.,
et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022b.

Zhang, Y., Li, P., Hong, J., Li, J., Zhang, Y., Zheng,
W., Chen, P.-Y., Lee, J. D., Yin, W., Hong, M.,
et al. Revisiting zeroth-order optimization for memory-
efficient llm fine-tuning: A benchmark. arXiv preprint
arXiv:2402.11592, 2024.

Zhao, J., Zhang, Z., Chen, B., Wang, Z., Anandkumar,
A., and Tian, Y. Galore: Memory-efficient llm train-
ing by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024a.

Zhao, Y., Dang, S., Ye, H., Dai, G., Qian, Y., and Tsang,
I. W. Second-order fine-tuning without pain for llms: A
hessian informed zeroth-order optimizer. arXiv preprint
arXiv:2402.15173, 2024b.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Memory Efficient Block Coordinate Descent Method for Forward-Only Second-Order Finetuning of LLM Models

A. Implementation Details
The implementation of the B-PDF function is designed to enhance zero-order optimization (ZOO) by incorporating selective
layer-wise updates based on Hessian-informed perturbations.

In the zo Hessian step update function (Zhao et al., 2024b), the Hessian matrix is initialized if it does not already
exist. This matrix is created by iterating over each trainable parameter of the model and initializing a tensor of ones with the
same dimensions as the respective parameter. The estimate Hessian matrix serves as a second-order approximation that is
updated during the optimization process.

In our framework, we introduce a layer-specific update mechanism within the optimization function hizoo step update,
which implements a periodic selection of layers, referred to as ”hizoo layers.” These layers are chosen iteratively every fixed
number of steps, with the cycle determined by a step counter.

The layers can be selected either sequentially, in an ordered manner, or via other rules such as Gauss-Southwell quadratic
diagonal selection (GSQ) (Nutini et al., 2017), which prioritizes layers based on previous scores.

Following MeZO (Malladi et al., 2023) and HiZOO (Zhao et al., 2024b), we apply a noise-based perturbation to the
selected Hessian-informed layers during each iteration using Gaussian noise. The noise is scaled by the square root of
the corresponding Hessian matrix and a random vector sampled from a normal distribution. This approach allows the
optimization process to focus on specific layers while updating their parameters iteratively.

By controlling the frequency and scope of these updates, we distribute optimization efforts across different parts of the
network over time. This can ensure that updates are not applied uniformly but are instead targeted based on layer importance,
thereby improving the overall efficiency of the training process.

Additionally, memory management is considered throughout the implementation, as the Hessian matrix is periodically
cleared, and GPU memory is freed using torch.cuda.empty cache(), ensuring that the training process remains
efficient, even in memory-constrained environments.

In addition, we use torch.clamp API to clamp the intermediate results to meet the precision requirements and reduce
the instability of second-order methods.

Overall, the B-PDF implementation introduces a structured and targeted optimization approach that leverages layer-wise
perturbations to enhance the zero-order optimization process effectively.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Memory Efficient Block Coordinate Descent Method for Forward-Only Second-Order Finetuning of LLM Models

B. Hyperparameter Search
Here, we present the detailed hyperparameter grids used in our experiments, as shown in Table. 5. Empirically, we found
that the optimal learning rate for B-PDF is an order of magnitude higher than that for MeZO. Some outlier values in the
results may stem from insufficient parameter search or incomplete convergence, likely caused by limited training steps and
small batch sizes due to hardware memory constraints.

Model Method Hyperparameters Values

Learning rate schedule Linear decay
General Settings in Common Steps 20000

LoRA rank 8

OPT-1.3B First-order

Batch size {1, 2}
Learning rate {1, 3}or{5, 7} × {1e−6, 1e−7}

µ 1e−3
Weight Decay 0

OPT-1.3B Zeroth-order

Batch size {1, 2, 8}
Learning rate {1, 3}or{5, 7} × {1e−5, 1e−6}

µ 1e−3
Weight Decay 0

Hessian Smooth Type Constant 1e−9
BCD-Hessian Smooth Type Constant 1e−5

BCD-Update Interval {5, 10}
BCD-selected layers {1, 2}

LLaMA-2-7B First or Zeroth-order

Batch size {1}
Learning rate {3} × {1e−6, 1e−7}

µ 1e−3
Weight Decay 0

Table 5. The hyperparameter grids used for OPT-1.3B and LLaMA-2-7B experiments.

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Memory Efficient Block Coordinate Descent Method for Forward-Only Second-Order Finetuning of LLM Models

C. Additional Visulization Results
Here, we present the bar chart illustrating the test results of OPT-1.3B, as shown in Figure. 4.

Figure 4. Bar chart illustrating the results of training OPT-1.3B with different methods across various benchmarks.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Memory Efficient Block Coordinate Descent Method for Forward-Only Second-Order Finetuning of LLM Models

D. Convergence Analysis
As a block coordinate descent variant of HiZOO (Zhao et al., 2024b), our proposed B-PDF retains the convergence properties
of HiZOO. Since our focus is on practical memory reduction rather than theoretical analysis, we offer a brief convergence
analysis of our method, adapted from Zhao et al. (2024b), with adjustments made primarily for consistency. For more
in-depth theoretical details, we direct readers to their original work.

We adopt several classical assumptions:

Assumptions. 1. The objective function L(θ;B) is Ld-smooth with respect to θd, and L∞ = maxd Ld ; 2. The stochastic
gradient ∇L(θ;B) has σ2 variance, i.e. E

[
∥∇L(θ;B)−∇L(θ)∥2

]
≤ σ2 ; 3. Each entry of Σt lies in the range [βℓ, βu]

with 0 < βℓ ≤ βu.

The the descent direction ∇̂Lµ(θt) defined as:

∇̂Lµ =

πb∑
i=1

L(θt + µΣ
1/2
t zi;B)− L(θt − µΣ

1/2
t zi;B)

2bµ
Σ

1/2
t zi. (8)

and update rule is θt+1 = θt − ηt∇̂Lµ(θt).

Proof. By the update rule of θt and above assumptions, we have

E [L(θt+1)]− E [L(θt)]

≤− ηtE
[
⟨∇L(θt), ∇̂Lµ(θt)⟩

]
+

L∞η2t
2

E
[
∥∇̂Lµ(θt)∥2

]
≤− ηt∥∇L(θt)∥2Σt

+ ηtO (µ∥∇L(θt)∥)
+ 2η2tL∞ (tr(Σt) + βu) ∥∇L(θt)∥2Σt

+ 2η2tL∞ (tr(Σt) + βu)σ
2 +O(µ2)

≤− ηt
2
∥∇L(θt)∥2Σt

+ 2η2tL∞ (tr(Σt) + βu) ∥∇L(θt)∥2Σt

+ 2η2tL∞ (tr(Σt) + βu)σ
2 +O(µ2)

=− ηt
2
(1− 4ηtL(tr(Σt) + βu)) ∥∇L(θt)∥2Σt

+ 2η2tL∞ (tr(Σt) + βu)σ
2 +O(µ2)

≤− ηt
4
∥∇L(θt)∥2Σt

+ 2η2tL∞ (tr(Σt) + βu)σ
2 +O(µ2),

where the second inequality is derived from the following lemma (Zhao et al., 2024b):

E
[
∇̂Lµ(θt)

]
= Σt∇L(θt) +O(µ)

E
[
∥∇̂Lµ(θt)∥2

]
≤ 4 (tr(Σt) + βu) ∥∇L(θt)∥2Σt

+ 4βu (tr(Σt) + βu)Σ
2 +O(µ2).

By rearranging and summing over T iterations, we have:

E

[
1

T

T∑
t=1

∥∇L(θt)∥2
]
≤ 1

Tβℓ

T∑
t=1

∥∇L(θt)∥2Σt

≤4(L(θ1;B)− L(θ∗;B))
Tβℓη

+
8ηL∞ (tr(Σt) + βu)

Tβℓ
σ2 +O(µ2)

=
32L∞ (tr(Σt) + βu) (L(θ1;B)− L(θ∗;B))√

Tβℓ

+
σ2

T 3/2βℓ
+O

(
µ2

)
,

where the first inequality is based on the assumption 3, and η selected as 1
8
√
TL∞(maxt(tr(Σt)+βu

.

14

