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Abstract
Recent advancement in code understanding001
and generation demonstrates that code LLMs002
fine-tuned on a high-quality instruction dataset003
can gain powerful capabilities to address wide-004
ranging code-related tasks. However, most pre-005
vious existing methods mainly view each pro-006
gramming language in isolation and ignore the007
knowledge transfer among different program-008
ming languages. To bridge the gap among dif-009
ferent programming languages, we introduce010
a novel multi-agent collaboration framework011
to enhance multilingual instruction tuning for012
code LLMs, where multiple language-specific013
intelligent agent components with generation014
memory work together to transfer knowledge015
from one language to another efficiently and ef-016
fectively. Specifically, we first generate the017
language-specific instruction data from the018
code snippets and then provide the generated019
data as the seed data for language-specific020
agents. Multiple language-specific agents dis-021
cuss and collaborate to formulate a new in-022
struction and its corresponding solution (A new023
programming language or existing program-024
ming language), To further encourage the cross-025
lingual transfer, each agent stores its genera-026
tion history as memory and then summarizes027
its merits and faults. Finally, the high-quality028
multilingual instruction data is used to encour-029
age knowledge transfer among different pro-030
gramming languages to train Qwen2.5-xCoder.031
Experimental results on multilingual program-032
ming benchmarks demonstrate the superior per-033
formance of Qwen2.5-xCoder in sharing com-034
mon knowledge, highlighting its potential to035
reduce the cross-lingual gap.036

1 Introduction037

Recent advancements (OpenAI, 2023; Gunasekar038

et al., 2023; Li et al., 2023b; Rozière et al., 2023;039

Lozhkov et al., 2024; Hui et al., 2024) in code040

understanding and synthesis have seen a transfor-041

mative shift from small machine learning or deep042

learning models toward large language models043

Python

Code LLM

def find_max_value(nums):
    max_value = nums[0]
    for num in nums:
       if num > max_value:
    max_value = num
    return max_value

def find_max_value_and_index(nums):
    max_value, max_index = nums[0], 0
    for i, num in enumerate(nums):
        if num > max_value:
           max_value, max_index = num, i
    return max_value, max_index

Problem: Find the maximum value and its index in list

Java
public static int factorial(int 
n)
{

if (n <= 1) 
return 1;

return n * factorial(n - 1); 
}

public static int factorial(int n) {
    int result = 1;
    for (int i = 2; i <= n; i++)
        result *= i;
    return result;
}

Problem: Calculates the factorial 𝑛

Javascript
function fib(n) {

if (n <= 1) return n;
return fib(n - 1) + 

fib(n - 2);
}

function fibSequence(n) {
if (n === 0) return [];

   let seq = [0];
   for (let i = 1; i < n; i++)       
       seq.push((seq[i - 1]||1)+(seq[i-2]|| 0));
   return sequence;
}

Problem: Return Fibonacci sequence given 𝑛 

def max_fib_fact_sum(nums):
    fib_cache= {0: 0, 1: 1}, 
    fact_cache = {0: 0, 1: 1}

def fib(n):
if n not in fib_cache: 

fib_cache[n] = fib(n - 1) + fib(n - 2) 
        return fib_cache[n] 

def fact(n):
if n not in fact_cache: 

fact[n] = n * fact(n - 1)
return fact_cache[n] sums = []

for num in nums:
    sums.append(fib(num) + fact(num))

max_value = max(sums)
index = sums.index(max_value)
return max_value, index

Problem: Calculate the sum of Fibonacci numbers and factorials for 
the elements in the list nums, and select the largest element

Discussion

Code LLM

Code LLM

rust java

Rust Python Java Go

C C++ C# Javascript

Figure 1: An example of Qwen2.5-xCoder. The Code
LLM solves the code generation question by “translat-
ing” the pseudocode description (Universal Code) into
executable code of the target programming language.

(LLMs) based on the Transformer architecture. The 044

emergence of code LLMs equipped with instruc- 045

tion tuning has advanced a revolutionary step in 046

many code downstream tasks, where LLMs are first 047

trained on massive codebases with autoregressive 048

objectives and then aligned to human preferences 049

and downstream tasks. Code LLMs can understand 050

complex programming problems and produce code 051

closely mirroring user intents. 052

In the landscape of AI-driven code-related tasks, 053

proprietary models such as ChatGPT and GPT-4 054

have gained dominance. The open-source commu- 055

nity is making strides to narrow this gap, where 056

Self-Instruct (Wang et al., 2023b) enhances the 057

instruction-following capabilities of open-source 058

LLMs. Code Alpaca (Chaudhary, 2023) uses Chat- 059

GPT to synthesize instructions with Self-Instruct. 060

Further, Evol-Instruct evolves Code Alpaca by at- 061

1



tempting to make code instructions more complex062

and fine-tune the code LLM with the evolved data.063

A series of instruction data construction methods064

are proposed to generate diverse, high-quality in-065

struction data from code snippets. However, these066

methods mainly focus on each programming lan-067

guage in isolation, ignoring the knowledge transfer068

among different programming languages.069

To minimize the gap among different program-070

ming languages, we propose a novel multi-agent071

collaboration framework to generate the high-072

quality instruction dataset X-INSTRUCT of multilin-073

gual programming languages, which is used to fine-074

tune our proposed model Qwen2.5-xCoder. Specif-075

ically, we employ a multi-agent system where each076

agent is specialized in a different programming077

language to facilitate efficient and effective knowl-078

edge transfer across languages. Initially, we gen-079

erate language-specific instruction data from code080

snippets, with each sample serving as the basis081

for an individual language-specific agent. These082

agents then engage in a collaborative discussion to083

synthesize new instructions, applicable to either a084

new or an existing programming language, along085

with their corresponding solutions. To enhance086

cross-lingual learning, each agent retains a record087

of its generation history, using this memory to as-088

sess its strengths and weaknesses. This iterative089

process results in high-quality, multilingual instruc-090

tion data that is instrumental in training our method091

and fostering knowledge exchange among diverse092

programming languages.093

Qwen2.5-xCoder is evaluated on the Python094

benchmark, including HumanEval (Chen et al.,095

2021) and MBPP (Austin et al., 2021), and the096

extended multilingual benchmark MultiPL-E, com-097

prised of Python, Java, CPP, C-sharp, Typescript,098

PHP, and Bash. The Experimental results demon-099

strate that Qwen2.5-xCoder consistently outper-100

forms the previous baselines. Empirical studies101

show that Qwen2.5-xCoder can effectively transfer102

knowledge of data in different languages to each103

other and thus help to alleviate the negative lan-104

guage interference among various languages. The105

contributions are summarized as follows:106

• We introduce a multilingual multi-agent107

framework, where multiple agents participate108

in a collaborative discussion to synthesize new109

instructions and the corresponding answers.110

These cooperative agents work together to-111

wards a shared goal, typically exchanging in-112

formation to enhance a collective solution. 113

• Based on the code snippets extracted from 114

the open-source code, we leverage the mul- 115

tilingual multi-agent framework to create a 116

multilingual programming instruction dataset 117

X-INSTRUCT to improve the cross-lingual ca- 118

pabilities of the code LLM. 119

• To validate the effectiveness of our method, 120

we introduce a series of Qwen2.5-xCoder 121

models fine-tuned on our data generation strat- 122

egy based on Code Llama, and Deepseek- 123

Coder. 124

2 Qwen2.5-xCoder 125

2.1 Model Overview 126

In Figure 2, we develop a multi-agent framework 127

to construct a multilingual instruction dataset from 128

code snippets. Each agent in the framework spe- 129

cializes in a different programming language, fa- 130

cilitating effective knowledge transfer between lan- 131

guages. The code snippets are assigned to the re- 132

spective language-specific agents, who then gen- 133

erate individual instructions. These agents collab- 134

orate, leveraging their expertise to create new in- 135

structions that can be applied to various program- 136

ming languages, along with corresponding solu- 137

tions. To enhance cross-lingual learning, agents 138

keep a record of their generated instructions to 139

identify their strengths and areas for development. 140

This collaborative approach allows us to produce 141

a high-quality multilingual instruction dataset that 142

can be used for instruction tuning. 143

2.2 Seed Instruction Dataset 144

Instruction from Code Snippet. For the unsu- 145

pervised data (code snippets) massively existing in 146

many websites (e.g. GitHub), we try to construct 147

the supervised instruction dataset. Specifically, we 148

use the LLM to generate the instruction q from 149

the code snippets within 1024 tokens and then we 150

use the code LLM to generate the response a. Fi- 151

nally, we use the LLM scorer in Figure 4 to filter 152

the low-quality ones to obtain the final pair (q, a). 153

Given the code snippets of different programming 154

languages Lk ∈ {Lk}Kk=1, we construct instruction 155

dataset Ds1 = {DLk
s1 }

K
k=1 from the code snippets. 156

(K is the number of programming languages) 157

2



Rust Python Java Go

C C++ C# Javascript
Filtered Code

cpp

rust java

I-Generator

R-Generator

R-Generator

I-Generator

Profile:
{Profile Description}
Memory:
{Generated Samples 1}
…
{Generated Samples 𝑁}
Summarization
{Merits and Faults}
Reflection:
{Merits and Faults}
Tasks:
{Pre-defined Tasks}

• One-to-One
• One-to-Many
• Many-to-Many

Multilingual 
Instruction Data

Python Agent

Rust Agent

Java Agent

Go Agent

Code LLM

Multilingual
Instruction Dataset

Fine-tuned LLM

Supervised 
Fine-tuning

Figure 2: Overview of multilingual multi-agent data generation framework. we first construct the multilingual
instruction dataset from the code snippets. We introduce a multi-agent framework, with each agent possessing
expertise in a different programming language, allowing for efficient knowledge transfer across various languages.
“R-Generator” generates the responses based on the instruction while “I-Generator” generates the instruction based
on the responses. Each snippet is assigned to a language-specific agent who uses it to create individual instructions.
The agents then collaborate, using their specialized knowledge to create new instructions that can be applied to
either a new or existing programming language, along with the appropriate solutions. To improve cross-lingual
learning, agents maintain a history of their generated instructions, allowing them to identify their strengths and areas
for improvement. Through this collaborative process, we produce high-quality multilingual instruction data for
instruction tuning.

Response from Code Snippet. To increase the158

diversity of the instruction dataset. Conversely, we159

first generate the responses from the code and then160

prompt the LLM to generate instructions. Then161

we use the LLM scorer to filter the low-quality162

to obtain the final pair (q, a). Similarly, given163

the code snippets of different programming lan-164

guages Lk ∈ {Lk}Kk=1, we can construct instruc-165

tion dataset Ds2 = {DLk
s2 }

K
k=1 from the code snip-166

pets. To fully unleash the potential of our proposed167

method, we combine two parts instruction dataset168

Ds1 ∪ Ds2 as the seed data for multi-agent data169

generation framework.170

2.3 Language Agent171

Figure 2 shows the overall framework of the multi-172

agent framework to generate the new samples.173

Instance-level Agent. Given the seed instruc-174

tion dataset Ds, each instance (q, a) ∈ Ds is175

used to initialize the agent A = {p,m, r,O},176

where A contains the pre-defined agent profile p177

(task definition), the agent operation o ∈ O =178

{o1 . . . , oa}, the memory of the generated his-179

tory m = {m1, . . . ,mT }, the reflection r = 180

{r1, . . . , rc}. O contains different evolution op- 181

erations, such as increasing difficulty and adding 182

more reasoning steps. m is comprised of T history 183

generated samples, where mi = (qi, ai) ∈ m (qi 184

and ai are the question and answer generated by 185

the agent A). 186

Memory Initialization&Update. The memory 187

module m is essential for the abilities of an agent 188

to gather, retain, and apply knowledge gained from 189

interactions. Initially, the agent A does not gener- 190

ate any samples, and thus the memory is initialized 191

by the seed data (m = {qs, as}). Memory updat- 192

ing is the process of recording new information, 193

thereby updating the knowledge base of the agent 194

with fresh insights or observations. When the agent 195

generates the new sample (q, a), the pair is added 196

into the memory m, where the similarity between 197

(q, a) and the samples already in m is less than a 198

certain threshold to prevent duplicates. m is a prior- 199

ity queue with capacity size T . When the capacity 200

is full, the sample with the lowest evaluated score 201

is first removed from the queue. 202
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You are a programming expert, very good at designing 
high-quality engineering problems and algorithmic 
problems.
[Memory]:
Here are the algorithmic problems and solutions you've 
generated in the past:
{Sample 1}
…
{Sample 𝑇}

[Guidelines]
* Please create a new prompt based on the given prompts 
in [Communication]
* Please increase the difficulty by proposing higher time 
or space complexity requirements.
* Please try to avoid generating new questions that are 
similar to the original questions.
* Please avoid creating the same problem description as 
in [memory] and generating more novel problems based 
on previous generation history.
[Created Prompt]:

[Reflection]:
Here are the merits and faults of each sample in [memory] 
you've generated in the past:
{Sample 1}
…
{Sample 𝑇}

[Goal]:
Please rewrite the problem to specify a programming 
language {target_language}.
The created problem ({target_language}) needs to fulfill 
the following requirements compared to the given 
problem.

[Communication]:
{Agent 1}
…
{Agent 𝑀}

Figure 3: Prompt of the multilingual multi-agent frame-
work.

Memory Relfection. The goal is to equip agents203

with the ability to autonomously generate sum-204

maries of their experiences and draw inferences205

that reach beyond simple data processing. After206

the agent A synthesizes one new sample (q, a), we207

use the LLM scorer to evaluate the sample in many208

aspects and obtain the reflection r in Figure 4.209

2.4 Cross-lingual Discussion210

The communication between agents in our pro-211

posed multi-agent framework is the critical infras-212

tructure supporting collective intelligence. We in-213

troduce two types of communication structures, in-214

cluding centralized communication and distributed215

communication. When multiple agents try to syn-216

thesize new samples, each agent will randomly217

select a sample from its memory for further data218

synthesis. (for the first data synthesis, the agents219

uses the provided seed data Ds1 ∪Ds2 to synthe-220

size new samples.)221

Centralized Discussion. Centralized communi-222

cation involves a central agent coordinating the223

Experts of different aspects:
* Question&Answer Consistency: Whether Q&A are 
consistent and correct for fine-tuning.
* Question&Answer Relevance: Whether Q&A are 
related to the computer field.
* Question&Answer Difficulty: Whether Q&A are 
sufficiently challenging
* Code Exist: Whether the code is provied in question 
or answer.
* Code Correctness: Evaluate whether the provided 
code is free from syntax errors and logical flaws. 
Consider factors like proper variable naming, code 
indentation, and adherence to best practices. 
* Code Clarity: Assess how clear and understandable 
the code is. Evaluate if it uses meaningful variable 
names, proper comments, and follows a consistent 
coding style. 
* Code Comments: Evaluate the presence of 
comments and their usefulness in explaining the code's 
functionality.
* Easy to Learn: determine its educational value for a 
student whose goal is to learn basic coding concepts
* Total Score: Give a final rating based on the quality 
of the data.
Please score the following Q&A (score the data as 
strictly as possible and identify errors):

As a code expert, your task is to evaluate the provided 
data based on specific criteria. Please generate a JSON 
list that includes the scores for the data, following the 
given guidelines.
Return Format:
[{"expert": "", "score": "",  "reason": ""}]
Scoring Range: 
1.0: very bad, 2.0: bad, 3.0: Neutral, 4.0: good, 5.0: 
very good, N/A: Not applicable

[Question]:
{question}
[Answer]:
{response}

Figure 4: Prompt of evaluation.

communication, with other agents primarily in- 224

teracting through this central node. Given d 225

agents {A1, . . . ,Ad}(A1 is the main agent and oth- 226

ers are auxiliary agents), the prompt F is used 227

to generate the new sample (q, a) mainly based 228

on A1, where the process can be described as 229

F(A1;A2, . . . ,Ad). 230

Parallel Discussion. Parallel discussion equally 231

regards all agents A1, . . . ,Ad, the prompt is 232

used to consider all agents and generate a 233

new sample, where the process is described as 234

F(A1,A2, . . . ,Ad). 235

Data Generation. Based on the seed instruction 236

dataset Ds, we adopt the multilingual agent frame- 237

work to create the multilingual instruction dataset 238

D = {DLk}Kk=1 (K is the number of languages). 239

Finally, the generated multilingual data from differ- 240

ent agents comprise the corpus Ds3 . 241
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2.5 Multilingual Code Instruction Tuning242

Given the multilingual corpora D = {DLk}Kk=1,243

the training objective of the LSFT can be described:244

LSFT = −
K∑
k=1

Eq,a∼DLk
[logP (a|q;M)] (1)245

where q and a are the question and answer pair.246

LSFT is the instruction fine-tuning objective.247

2.6 Multilingual Code DPO248

LDPO = −E(x,y+,y−)∼D

[
log σ(β(

πθ(y
+|x)

πr(y+|x)
−

πθ(y
−|x)

πr(y−|x)
)

]
(2)249

where (y+, y−) is the positive and negative pair. σ250

denotes the sigmoid function. After generating the251

SFT data, we further leverage the multi-agent col-252

laboration data generation framework to synthesize253

the DPO data. For the sample query, we prompt254

the SFT model to sample 128 responses and use255

the code execution to verify the correctness of the256

generated code snippet. We feed generated test257

cases from LLM into the code snippet to verify the258

correctness of the function under the multilingual259

environment. The DPO data is denoted as the Ds4 .260

Finally, we use Ds1 ∪ Ds2 ∪ Ds3 for supervised261

fine-tuning and Ds4 for preference learning.262

3 Experiments263

3.1 Implementation Details264

For the code snippets collected from GitHub, we265

choose nearly 100K code snippets from differ-266

ent languages (Python, Java, CPP, C-sharp, Type-267

script, PHP, and Bash) to construct the synthetic268

instruction dataset. Finally, we obtain the instruc-269

tion dataset X-INSTRUCT containing nearly 95K270

training samples. We utilize Qwen2.5-Coder as271

the foundational code LLMs for supervised fine-272

tuning. We fine-tune these foundation LLMs on X-273

INSTRUCT. Qwen2.5-xCoder (32B) is fine-tuned274

on the 128 NVIDIA H800-80GB GPUs1. The275

learning rate first increases into 5e-5 with 100276

warmup steps and then adopts a cosine decay sched-277

uler. We adopt the Adam optimizer with a global278

batch size of 1024 samples, truncating sentences to279

2048 tokens.280

1https://github.com/QwenLM/Qwen2.
5-Coder/tree/main/finetuning/sft

3.2 Evaluation Metrics 281

Pass@k. We adopt the Pass@k metric (Zheng 282

et al., 2023) for evaluation by using test cases to 283

verify the correctness of the generated code. For 284

the fair comparison, we report the greedy Pass@1 285

scores for all LLMs in our work. 286

3.3 Instruction Dataset 287

We use the created instruction dataset we combine 288

three parts instruction dataset Ds1 ∪Ds2 ∪Ds3 for 289

supervised fine-tuning, comprising nearly 97.3K in- 290

struction samples. The created samples Ds1 ∪Ds2 291

from code snippets contain 30K samples. The ex- 292

isting instruction dataset Ds3 contains nearly 67K 293

samples. The data used for DPO is comprised of 294

133K samples. 295

3.4 Baselines 296

Proprietary Models. GPT-3.5 and GPT-4 (Ope- 297

nAI, 2023) are both LLMs developed by OpenAI 298

based on a neural architecture known as generative 299

pre-trained Transformers (GPT) (Radford et al., 300

2018). They are both trained on massive datasets 301

of text and code, allowing them to generate human- 302

quality text, translate languages, and write dif- 303

ferent kinds of creative content. GPT-3.5 Turbo 304

(i.e., ChatGPT) and GPT4 achieve excellent perfor- 305

mance in various code understanding and genera- 306

tion tasks. 307

Open-Source Models. To narrow the gap be- 308

tween open-source and closed-source models, a se- 309

ries of open-source models and instruction datasets 310

are proposed to improve the code foundation LLMs 311

and bootstrap the instruction-following ability of 312

code LLMs. We compare the following code 313

LLMs: Qwen-Coder (Hui et al., 2024), Code 314

Llama (Rozière et al., 2023), and DeepSeek- 315

Coder (Guo et al., 2024b) with different model 316

sizes are introduced into the based model. 317

3.5 Evaluation Benchmark 318

EvalPlus. The HumanEval test set (Chen et al., 319

2021) is a crafted collection of 164 Python pro- 320

gramming problems to test the abilities of code 321

generation models. For each problem, there are 322

roughly 9.6 test cases to check whether the gener- 323

ated code works as intended. Humaneval has be- 324

come the most popular benchmark to measure how 325

well these code-writing AI models perform, mak- 326

ing it a key tool in the field of AI and machine learn- 327

ing for coding. The MBPP dataset (Austin et al., 328
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2021), comprising approximately 1,000 Python329

programming challenges sourced from a crowd of330

contributors, is tailored for beginners in program-331

ming, focusing on core principles and the usage of332

the standard library. The MBPP test set comprised333

of 500 problems is selected to evaluate the few-shot334

inference of the code LLMs.335

MultiPL-E. The MultiPL-E test set (Cassano336

et al., 2023) translates the original HumanEval test337

set to other languages and we report the scores338

of the languages Python, Java, CPP, Typescript,339

Javascript, PHP, and Bash.340

3.6 Baselines341

Proprietary Models. GPT-3.5 and GPT-4 (Ope-342

nAI, 2023) are both LLMs developed by OpenAI343

based on a neural architecture known as genera-344

tive pre-trained Transformers (GPT). They are both345

trained on massive datasets of text and code, allow-346

ing them to generate human-quality text, translate347

languages, and write different kinds of creative348

content. GPT-3.5 Turbo (i.e., ChatGPT) and GPT4349

achieve excellent performance in various code un-350

derstanding and generation tasks.351

Open-Source Models. To narrow the gap be-352

tween open-source and closed-source models, a se-353

ries of open-source models and instruction datasets354

are proposed to improve the code foundation355

LLMs and bootstrap the instruction-following abil-356

ity of code LLMs. Starcoder (Li et al., 2023a),357

Code Llama (Rozière et al., 2023), and DeepSeek-358

Coder (Guo et al., 2024b) with different model359

sizes are introduced into the based model. Oc-360

toCoder, WiazrdCoder, MagiCoder, WaveCoder361

4 Base Models362

Qwen2.5-Coder. The Qwen2.5-Coder (Guo363

et al., 2024b) series contains a range of open-source364

code models with sizes from 0.5B to 32B, pre-365

trained on 5.5 trillion tokens from the Qwen2.5366

base model. These models are fine-tuned on a high-367

quality code corpus, using a 32K token window for368

a fill-in-the-middle task to improve code generation369

and completion.370

4.1 Main Results371

Python Code Generation. Table 1 illustrates372

that Qwen2.5-xCoder significantly outperforms the373

base Code Llama and previous strong open-source374

baselines, minimizing the gap with GPT-3.5 and375

GPT-4. Particularly, Qwen2.5-xCoder outperforms 376

the WizardCoder with 15B foundation LLM and 377

Evol-Instruct techniques. Magicoder (Wei et al., 378

2023) and Wavecoder (Yu et al., 2023) both prove 379

the effectiveness of data construction from code 380

snippets. 381

Multilingual Code Generation. For the multi- 382

lingual code generation task, our proposed model 383

Qwen2.5-xCoder is evaluated on the MultiPL-E, 384

including Python, Java, CPP, C-sharp, and other 385

languages. The experimental results in Figure 1 386

show that DS-Coder and Qwen2.5-Coder signif- 387

icantly outperform across all languages. The en- 388

hanced version, Qwen2.5-xCoder, further improves 389

the multilingual performance of LLM, rivaling the 390

CodeLlama-70B-Instruct model with only 14B pa- 391

rameters. Remarkably, we introduce the language- 392

specific multi-agent framework to compose new 393

samples for enhancing cross-lingual transfer among 394

different programming languages. 395

Multilingual Code Understanding. Given the 396

multilingual correct code snippet, the code LLM is 397

tasked to generate an explanation of the code and 398

then regenerate the code only based on its own ex- 399

planation. For the different backbones Code Llama 400

and Deepseek-Coder, our method beats most previ- 401

ous methods, especially in other languages, which 402

demonstrates that X-INSTRUCT can bring multi- 403

lingual agreement for different programming lan- 404

guages. 405

5 Analysis 406

Ablation Study. Given the synthetic instruc- 407

tion dataset, we can obtain the fine-tuned model 408

Qwen2.5-xCoder based on the Qwen2.5-Coder-7B 409

denoted as ①. Our multilingual instruction dataset 410

contains four parts {Ds1 , Ds2 , Ds3 , Ds4}. Ds1 is 411

created from the code snippets by first generating 412

instructions and then outputting the response while 413

Ds2 is developed from the code snippets by first 414

generating responses and then synthesizing the in- 415

structions. Ds3 is derived from our multilingual 416

multi-agent framework. Ds4 is derived from the 417

temperature-based sampling for DPO training. Spe- 418

cially, we can observe that ③ drops a lot compared 419

to ②. It indicates the significance of the dataset Ds3 420

from the multi-agent data generation framework. 421

Table 2 summarizes the results of the ablation study 422

of these datasets, which shows that our multilingual 423

multi-agent framework can leverage code snippets 424
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Model Size HE HE+ MBPP MBPP+ Python Java C++ C# TS JS PHP Bash Avg.

Closed-APIs

Claude-3.5-Sonnet-20240620 µ 89.0 81.1 87.6 72.0 89.6 86.1 82.6 85.4 84.3 84.5 80.7 48.1 80.2
Claude-3.5-Sonnet-20241022 µ 92.1 86.0 91.0 74.6 93.9 86.7 88.2 87.3 88.1 91.3 82.6 52.5 83.8
GPT-4o-mini-2024-07-18 µ 87.8 84.8 86.0 72.2 87.2 75.9 77.6 79.7 79.2 81.4 75.2 43.7 75.0
GPT-4o-2024-08-06 µ 92.1 86.0 86.8 72.5 90.9 83.5 76.4 81.0 83.6 90.1 78.9 48.1 79.1
o1-mini µ 97.6 90.2 93.9 78.3 95.7 90.5 93.8 77.2 91.2 92.5 84.5 55.1 85.1
o1-preview µ 95.1 88.4 93.4 77.8 96.3 88.0 91.9 84.2 90.6 93.8 90.1 47.5 85.3

0.5B+ Models

Qwen2.5-Coder-0.5B-Instruct 0.5B 61.6 57.3 52.4 43.7 61.6 57.3 52.4 43.7 50.3 50.3 52.8 27.8 49.6
Qwen2.5-xCoder (SFT) 0.5B 69.5 66.5 52.6 45.5 68.9 57.6 53.4 67.7 63.5 66.5 57.8 33.5 57.1
Qwen2.5-xCoder (DPO) 0.5B 72.6 67.1 51.9 45.2 72.0 58.2 54.0 68.4 66.7 64.0 57.8 36.7 58.0

1B+ Models

DS-Coder-1.3B-Instruct 1.3B 65.9 60.4 65.3 54.8 65.2 51.9 45.3 55.1 59.7 52.2 45.3 12.7 48.4
Yi-Coder-1.5B-Chat 1.5B 69.5 64.0 65.9 57.7 67.7 51.9 49.1 57.6 57.9 59.6 52.2 19.0 51.9
Qwen2.5-Coder-1.5B-Instruct 1.5B 70.7 66.5 69.2 59.4 71.2 55.7 50.9 64.6 61.0 62.1 59.0 29.1 56.7
Qwen2.5-xCoder (SFT) 1.5B 85.4 79.9 69.3 59.5 70.1 68.4 66.5 68.4 71.1 72.7 70.2 44.3 65.9
Qwen2.5-xCoder (DPO) 1.5B 65.2 60.4 70.9 61.6 74.4 69.6 67.7 70.9 75.5 74.5 69.6 44.9 67.5

3B+ Models

Qwen2.5-Coder-3B-Instruct 3B 84.1 80.5 73.6 62.4 83.5 74.7 68.3 78.5 79.9 75.2 73.3 43.0 72.1
Qwen2.5-xCoder (SFT) 3B 84.8 79.9 69.3 61.1 67.7 57.6 39.8 28.5 43.4 55.3 38.5 31.6 42.1
Qwen2.5-xCoder (DPO) 3B 85.4 80.5 75.7 66.7 80.5 11.4 70.2 80.4 82.4 82.6 74.5 43.7 63.6

6B+ Models

CodeLlama-7B-Instruct 7B 40.9 33.5 54.0 44.4 34.8 30.4 31.1 21.6 32.7 - 28.6 10.1 -
DS-Coder-6.7B-Instruct 6.7B 74.4 71.3 74.9 65.6 78.6 68.4 63.4 72.8 67.2 72.7 68.9 36.7 66.1
CodeQwen1.5-7B-Chat 7B 83.5 78.7 77.7 67.2 84.1 73.4 74.5 77.8 71.7 75.2 70.8 39.2 70.8
Yi-Coder-9B-Chat 9B 82.3 74.4 82.0 69.0 85.4 76.0 67.7 76.6 72.3 78.9 72.1 45.6 71.8
DS-Coder-V2-Lite-Instruct 2.4/16B 81.1 75.6 82.8 70.4 81.1 76.6 75.8 76.6 80.5 77.6 74.5 43.0 73.2
Qwen2.5-Coder-7B-Instruct 7B 88.4 84.1 83.5 71.7 87.8 76.5 75.6 80.3 81.8 83.2 78.3 48.7 76.5
OpenCoder-8B-Instruct 8B 83.5 78.7 79.1 69.0 83.5 72.2 61.5 75.9 78.0 79.5 73.3 44.3 71.0
Qwen2.5-xCoder (SFT) 7B 86.0 79.9 81.2 67.2 84.1 39.2 78.9 79.7 81.8 78.9 68.3 46.2 67.6
Qwen2.5-xCoder (DPO) 7B 86.0 79.9 82.3 69.3 82.3 23.4 77.0 81.6 81.1 82.0 65.8 47.5 65.5

13B+ Models

CodeLlama-13B-Instruct 13B 40.2 32.3 60.3 51.1 42.7 40.5 42.2 24.0 39.0 - 32.3 13.9 -
Starcoder2-15B-Instruct-v0.1 15B 67.7 60.4 78.0 65.1 68.9 53.8 50.9 62.7 57.9 59.6 53.4 24.7 54.0
Qwen2.5-Coder-14B-Instruct 14B 89.6 87.2 86.2 72.8 89.0 79.7 85.1 84.2 86.8 84.5 80.1 47.5 79.6
Qwen2.5-xCoder (SFT) 14B 88.4 83.5 84.1 73.3 89.0 81.0 75.2 81.6 84.3 85.1 75.2 46.8 75.6
Qwen2.5-xCoder (DPO) 14B 89.0 84.8 83.1 72.0 91.5 81.0 78.9 82.9 85.5 85.1 77.0 48.1 76.9

20B+ Models

CodeLlama-34B-Instruct 34B 48.2 40.2 61.1 50.5 41.5 43.7 45.3 31.0 40.3 - 36.6 19.6 -
CodeStral-22B-v0.1 22B 81.1 73.2 78.2 62.2 81.1 63.3 65.2 43.7 68.6 - 68.9 42.4 -
DS-Coder-33B-Instruct 33B 81.1 75.0 80.4 70.1 79.3 73.4 68.9 74.1 67.9 73.9 72.7 43.0 69.2
CodeLlama-70B-Instruct 70B 72.0 65.9 77.8 64.6 67.8 58.2 53.4 36.7 39.0 - 58.4 29.7 -
DS-Coder-V2-Instruct 21/236B 85.4 82.3 89.4 75.1 90.2 82.3 84.8 82.3 83.0 84.5 79.5 52.5 79.9
Qwen2.5-Coder-32B-Instruct 32B 92.7 87.2 90.2 75.1 92.7 80.4 79.5 82.9 86.8 85.7 78.9 48.1 79.4
Qwen2.5-32B-Instruct 32B 87.8 82.9 86.8 70.9 88.4 80.4 81.0 74.5 83.5 82.4 78.3 46.8 76.9
Qwen2.5-72B-Instruct 32B 85.4 79.3 90.5 77.0 82.9 81.0 80.7 81.6 81.1 82.0 77.0 48.7 75.1
Qwen2.5-SynCoder 32B 92.7 87.8 86.2 74.7 92.1 80.4 80.7 81.6 83.0 85.7 77.6 49.4 78.8
Qwen2.5-xCoder (SFT) 32B 87.8 84.1 84.9 74.9 89.6 74.7 73.3 79.1 82.4 81.4 78.3 46.2 73.6
Qwen2.5-xCoder (DPO) 32B 89.0 86.0 85.4 74.9 90.9 76.6 72.7 79.1 83.6 81.4 78.9 49.4 74.5

Table 1: The performance of different instruction LLMs on EvalPlus and MultiPL-E. “HE” denotes the HumanEval,
“HE+” denotes the plus version with more test cases, and “MBPP+” denotes the plus version with more test cases.

ID Methods Python Java C++ C# Avg.

① Qwen2.5-xCoder 90.9 76.6 72.7 79.1 79.8
② ① - Ds4 89.6 74.7 73.3 79.1 79.2
③ ② - Ds3 82.9 69.6 68.3 70.3 72.8
③ ② - Ds2 (Ds1) 79.9 67.1 65.8 68.4 70.3

Table 2: Ablation study of our proposed method.
Qwen2.5-xCoder is fine-tuned on the combination of all
generated instruction datasets.

and existing instruction datasets to transfer knowl-425

edge from Python to other languages.426

Effect of Instruction Data Size. To discuss the427

effect of the size of our created instruction dataset428

X-INSTRUCT (nearly 97.3K sentences), we plot 429

evaluation scores with different training data sizes 430

in Figure 5. We randomly sample {1K, . . . , ALL} 431

sentences from the whole corpora to fine-tune the 432

base Qwen2.5-Coder. With the training data size 433

increasing, the fine-tuned model gets better perfor- 434

mance. Surprisingly, only 50K pseudo annotated 435

sentences bring large improvement to the multi- 436

lingual code generation, which benefits from the 437

knowledge transfer of the multilingual agents. 438

Token Count Distribution. Figure 6 illustrates 439

the distribution of lengths for both the generated 440

problems and their corresponding solutions. On the 441
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Figure 5: Evaluation results (average scores of 8 pro-
gramming languages) of Pass@1 on the MultiPL-E with
different training sizes by randomly down-sampling.
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Figure 6: Length distribution of problem and solution
for the SFT data and DPO data.

horizontal axis, we quantify length in terms of the442

number of tokens comprising each problem or solu-443

tion. The solution has a similar length distribution444

to the distribution of the problem.445

6 Related Work446

Code-related Tasks. Pre-training has signifi-447

cantly enhanced the model capabilities of code448

understanding and synthesis in downstream var-449

ious tasks, such as CodeBERT (Feng et al., 2020)450

and CodeT5 (Wang et al., 2021). The model ar-451

chitecture and pre-training objectives originating452

from natural language processing (NLP) (Lu et al.,453

2021; Yan et al., 2023; Liu et al., 2023; Xie et al.,454

2023) have been increasingly adopted to synthe-455

size programs from human language and perform456

code infilling, effectively addressing a multitude of457

software engineering challenges, such as code sum-458

marization, code refinement, and code translation.459

Code-specific Large Language Model. Code-460

specific large language models (LLMs) (Li et al.,461

2023a; Guo et al., 2024a; Yang et al., 2024a,b)462

trained on large-scale code corpora show remark- 463

able performance across a diverse set of software 464

engineering tasks. Code LLMs culminate in a foun- 465

dational competence in general code generation 466

and understanding, such as CodeGen (Nijkamp 467

et al., 2023) and Code Llama (Rozière et al., 2023), 468

which enables them to tackle code-related tasks 469

with better performance. 470

Multilingual Code Instruction Tuning. Instruc- 471

tion tuning is a powerful paradigm enhancing the 472

performance of LLMs by fine-tuning them with 473

the instruction dataset (Ouyang et al., 2022; Zhang 474

et al., 2023; Wang et al., 2023b). Instruction tun- 475

ing enables LLMs to generalize better and follow 476

instructions more directly. The previous works 477

(Wang et al., 2023b; Chaudhary, 2023) use a foun- 478

dation LLM to generate the instruction data and 479

then refine the model through instruction tuning 480

with the synthetic data. To further enhance Self- 481

Instruct, WizardCoder (Luo et al., 2023) introduces 482

code Evol-Instruct to produce more high-quality 483

data by using heuristic prompts to increase the com- 484

plexity and diversity of synthetic data. Recently, 485

OSS-Instruct (Wei et al., 2023) and CodeOcean (Yu 486

et al., 2023) leveraged real-world code snippets to 487

inspire LLMs to generate more controllable and re- 488

alistic instruction corpora. A series of multilingual 489

benchmarks (Cassano et al., 2023; Chai et al., 2024; 490

Liu et al., 2024a,b; Zhuo et al., 2024) (e.g. MultiPl- 491

E, McEval, and MdEval) are proposed to evaluate 492

the multilingual capabilities of code LLMs. 493

7 Conclusion 494

In this work, we propose a novel multilingual multi- 495

agent collaboration framework to bridge the lan- 496

guage divide in programming by generating a com- 497

prehensive and high-quality multilingual instruc- 498

tion dataset X-INSTRUCT for fine-tuning Qwen2.5- 499

xCoder. Our proposed model leverages the exper- 500

tise of individual agents, each fluent in a different 501

programming language, to achieve effective knowl- 502

edge transfer. The collaborative efforts among mul- 503

tiple agents, informed by their individual gener- 504

ation histories, enable the synthesis of versatile 505

programming instructions and solutions. This en- 506

riches the instruction dataset and bolsters the capa- 507

bility of our model to generalize across languages, 508

promising significant advancements in the field of 509

multilingual programming development. 510
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Limitations511

We acknowledge the following limitations of this512

study: (1) This work focuses on exploring instruc-513

tion tuning for multilingual code-related works.514

The investigation of this paradigm on other multi-515

lingual tasks has not been studied yet. (2) While516

our approach aims to facilitate knowledge transfer517

across multiple programming languages, it may not518

be equally effective for all languages, potentially519

leading to a bias towards more commonly used or520

better-represented languages in the dataset.521

Ethics Statement522

Qwen2.5-xCoder, as a novel multi-agent collabora-523

tion framework, enhances multilingual instruction524

tuning for code LLMs, where multiple language-525

specific intelligent agent components with genera-526

tion memory work together to transfer knowledge527

from one language to another efficiently and ef-528

fectively. Qwen2.5-xCoder effectively enhances529

the multilingual code generation capabilities of the530

LLMs but the constructed SFT and DPO data may531

contain unsafe queries and thus lead to unsafe code532

generation and execution. Therefore, to ensure the533

security and reliability of the code execution, we534

filter the unsafe queries with an LLM filter and sug-535

gest the users should run the code under a sandbox536

to verify the safety of the generated code.537
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A Related Work787

Code-related Tasks. Pre-training has signifi-788

cantly enhanced the model capabilities of code789

understanding and synthesis in downstream var-790

ious tasks, such as CodeBERT (Feng et al., 2020)791

and CodeT5 (Wang et al., 2021). The model ar-792

chitecture and pre-training objectives originating793

from natural language processing (NLP) (Lu et al.,794

2021; Yan et al., 2023; Liu et al., 2023; Xie et al.,795

2023) have been increasingly adopted to synthe-796

size programs from human language and perform797

code infilling, effectively addressing a multitude of798

software engineering challenges, such as code sum-799

marization, code refinement, and code translation.800

Code-specific Large Language Model. Code-801

specific large language models (LLMs) (Li et al.,802

2023a; Rozière et al., 2023; Guo et al., 2024a; Yang803

et al., 2024a,b) trained on large-scale code corpora804

show remarkable performance across a diverse set805

of software engineering tasks. Code LLMs culmi-806

nate in a foundational competence in general code807

generation and understanding, such as CodeGen808

(Nijkamp et al., 2023) and Code Llama (Rozière809

et al., 2023), which enables them to tackle code-810

related tasks with better performance. Inspired by811

the success of multi-agent collaboration in other812

fields (Guo et al., 2024c; Wang et al., 2023a), we813

introduce the language-specific agent to formulate814

a multilingual instruction dataset.815

Multilingual Code Instruction Tuning. Instruc-816

tion tuning is a powerful paradigm enhancing the817

performance of LLMs by fine-tuning them with818

the instruction dataset (Ouyang et al., 2022; Zhang819

et al., 2023; Wang et al., 2023b). Instruction tun-820

ing enables LLMs to generalize better and follow821

instructions more directly. The previous works822

(Wang et al., 2023b; Chaudhary, 2023) use a foun-823

dation LLM to generate the instruction data and824

then refine the model through instruction tuning825

with the synthetic data. To further enhance Self-826

Instruct, WizardCoder (Luo et al., 2023) introduces827

code Evol-Instruct to produce more high-quality828

data by using heuristic prompts to increase the com-829

plexity and diversity of synthetic data. Recently,830

OSS-Instruct (Wei et al., 2023) and CodeOcean (Yu831

et al., 2023) leveraged real-world code snippets to832

inspire LLMs to generate more controllable and re-833

alistic instruction corpora. A series of multilingual834

benchmarks (Cassano et al., 2023; Chai et al., 2024;835

Liu et al., 2024a,b; Zhuo et al., 2024) (e.g. MultiPl-836

E, McEval, and MdEval) are proposed to evaluate 837

the multilingual capabilities of code LLMs. 838
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