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Abstract

Human behavior is characterized by continuous learning to reduce uncertainties
about the world in pursuit of goals. When trying to understand such behavior from
observations, it is essential to account for this adaptive nature and reason about the
uncertainties that may have led to seemingly suboptimal decisions. Nevertheless,
most inverse approaches to sequential decision-making focus on inferring cost
functions underlying stationary behavior or are limited to low-dimensional tasks.
In this paper, we address this gap by considering the problem of inferring an agent’s
knowledge or awareness about the environment based on a given trajectory. We
assume that the agent aims to reach a goal in an environment they only partially
know, and integrates new information into their plan as they act. We propose a
Bayesian approach to infer their latent knowledge state, leveraging an approximate
navigation model that optimistically incorporates partial information while account-
ing for uncertainty. By combining sample-based Bayesian inference with dynamic
graph algorithms, we achieve an efficient method for computing posterior beliefs
about the agent’s knowledge. Empirical validation using simulated behavioral data
and human data from an online experiment demonstrates that our model effectively
captures human navigation under uncertainty and reveals interpretable insights into
their environmental knowledge.

1 Introduction

As humans, we navigate a world full of uncertainty. Whether walking through a new city, browsing
the internet, or finding the way to the airport, we constantly plan under partial knowledge, balance
risks with opportunities, and revise our strategies as we gather new information. This interplay
between action and learning is a hallmark of adaptive, intelligent behavior.

Consider the following scenario: you are driving to the airport using your usual route, which you know
is typically the fastest. Midway through, you encounter unexpected construction blocking the road.
You turn around and take a longer detour. To an external observer unaware of your prior knowledge,
your behavior might appear irrational or goal-incongruent—why detour into a neighborhood instead
of heading directly to the airport? However, by reasoning about what you likely knew when the
decision was made, a more accurate and interpretable explanation emerges: you simply did not
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know about the construction when you started, and your actions reflect effective planning under that
partial knowledge. This example highlights a fundamental challenge in understanding and modeling
human behavior: observed decisions are shaped not only by goals and preferences, but also by
what they know—and don’t know. Nevertheless, most existing inverse sequential decision-making
approaches focus on recovering cost functions representing the agent’s objectives [, 2] or assume
stationary policies with complete knowledge of the environment structure [3} 4]. More general
formulations exist [, 6], but their computational cost limits them to very low-dimensional domains.
These assumptions complicate the applicability to learning agents in general and human behavior in
natural tasks in particular, which are characterized by uncertainty, learning, and adaptation.

In this work, we address the problem of inferring an agent’s latent knowledge state in a partially
known environment based on observed decisions. We focus on navigation tasks where agents act
toward a goal, while simultaneously integrating new information about the environment’s structure
into their plans. From an observed trajectory, our goal is to infer which parts of the world the agent
knew beforehand and which were newly incorporated while acting. We assume that, as researchers,
we have complete knowledge of the task and environment, but must reason about the subject’s
latent knowledge state. Although we frame our approach in terms of knowledge of the environment,
the same formulation applies to reasoning about an agent’s memory or awareness during planning,
enabling us, for example, to infer what information subjects transferred between tasks, which parts of
the environment were represented in memory, and how awareness influenced planning.

The key challenge of this problem lies in the complexity of reasoning over a large space of possible
knowledge states and their corresponding optimal policies. To address this, we combine sample-based
Bayesian inference with a tractable navigation model based on dynamic graph algorithms to efficiently
compute posterior beliefs over the agent’s knowledge state. We evaluate our approach using two
simulated tasks and behavioral data from an online human experiment. Our results demonstrate
that the model successfully captures human navigation behavior under incomplete information and
provides reasonable beliefs of the subjects’ prior knowledge in this task, improving in many cases
over both an agnostic and heuristic baseline.

1.1 Related work

The problem of inferring goals, beliefs, and knowledge when observing trajectories of agents was
approached with Bayesian inverse planning [5.|6] in environments with up to 6 belief states. While
this method could in principle be applied to our setting of inferring the knowledge of navigating
agents, the exact computation of both the posterior belief and the underlying policy is individually
intractable in the high-dimensional belief space we consider in our tasks (up to 2'%° belief states).
Other work on Bayesian inverse planning used online path planning [7]] and adaptive shortest-path
algorithms for varying goal states [8| 9]. Rabinowitz et al. [10] introduced with ToMnet a general
approach to learn representations of an agent’s mind that can be used to predict future behavior,
lacking an explicit representation of the agent’s knowledge.

In the field of reinforcement learning, inverse approaches for sequential decision-making mostly
focus on learning an agent’s goals in the form of a reward function and fall under the term inverse
reinforcement learning (IRL) [1} 2, [11]]. Some of these works also consider the setting of spatial
navigation [[12]. There is also work to infer internal dynamics models [13H15]] and construals [[16]
of observed agents. Some work on IRL specifically addresses the scenario where agents have
uncertainties by regarding POMDPs [[17, 3| 4] and can additionally infer variabilities and subjective
beliefs [[18,19]. Further, inferring reward functions of learning agents was considered in [20} [21]]
and inferring their learning rules in [22]]. There is also work on inferring an agent’s belief about an
unknown discount parameter [23]] and work on belief inference under incomplete model knowledge
for observed fully informed agents [24]. Ashwood et al. [25] considered the problem of estimating
reward functions that evolve randomly over time, which shares similarities to our work, as it also
deals with high-dimensional inference with non-stationary policies. They deal with the problem
by using an expectation-maximization scheme and separate the stationary state-dependent reward
component from the time-dependent goal map process. In our case, however, state and time are not
separable: the knowledge at a certain time depends on the history of visited states.

For acting under uncertainty, the tradeoff between maximizing reward and gathering information is
known as the exploration-exploitation tradeoff [26]. The exploration behavior of humans has been
mostly studied in bandit tasks, where actions do not influence the state of the environment [27-H30].



In this regard, there is work considering restless bandit tasks [31]], spatially correlated bandits [29]],
and contextual bandits [32]. It was also shown that humans can adapt their exploration behavior
to the structure of the environment [33} 34]. Research on how humans form representations for
planning and acting when learning the dynamics of the environment was regarded for non-spatial
[35]] and spatial navigation tasks [36]]. Humans’ ability to adapt their planning strategy depending
on the structure of the problem was investigated in [37]]. The variability of humans’ planning has
been modeled using shortest path algorithms in a softmax policy [38 8l 39]. Our planning model is
conceptually related to the Explicit Explore or Exploit (E*) algorithm [40], which similarly separates
known and unknown states. However, while E? treats unknown states as maximally rewarding to
encourage exploration, our model assigns a traversal probability for uncertainty, leading instead to
uncertainty aversion. Inferring the goals and plans of artificial agents has been regarded in the field of
plan recognition [41H43]]. Furthermore, our method can be interpreted as learning properties about
the given graph (i.e., the knowledge variables) and is therefore related to graph learning [44], which
aims to reconstruct a graph from data. Standard graph learning approaches, however, typically do not
capture subjective, temporally updated knowledge states.

2 Background

2.1 Markov decision processes (MDPs) and shortest paths

For modeling decision-making, we consider deterministic finite Markov decision processes (MDPs)
[26] of the form (S, A,7T,C), where S = {si1,...,sn} and A = {ap,...,apr} are the finite
state and action space, respectively. 7 : § x A — S denotes the state transition function and
C : S x A — Riis the cost function. If all components of the MDP are known, standard offline
reinforcement learning (RL) algorithms for MDP planning can be used to learn the optimal value
function to find a policy IT : S x A — [0, 1] minimizing the long-term cost.

Deterministic finite MDPs can be equivalently modeled as graphs G = (V, ), where the nodes
V = S represent states and the edges £ = {(s,s') |Ja € A : T(s,a) = s’} CV x V denote
possible transition between them [45] 46]. An equivalent cost function C : £ — R specifies the
cost for each transition. The optimal policy for navigating between two states can be obtained by
solving the shortest path problem. This problem consists of finding the shortest path between the
two nodes such that the sum of the visited edge costs is minimized [47]. By applying the dynamic
programming principle, the single-source shortest path problem for non-negative edge costs can be
efficiently solved using Dijkstra’s algorithm [48]. The A* algorithm uses a heuristic to guide the
search to increase efficiency. D* lite [49] is a dynamic version of A*, which can efficiently update
the shortest path solution if costs of the graph change.

2.2 Bayes-adaptive MDPs

In Bayes-adaptive MDPs (BAMDPs), the goal is to solve an MDP while being uncertain about its
transition kernel 7 [50]. During interaction, the belief ¢ € ® about the unknown transition function
parameters 0 € O is updated using the observed information Z about the transition via Bayes rule,
PO|I) x P(Z|6)P(6). ABAMDP can be formally defined via state augmentation as an MDP
(8" A, T',C"), where 8’ = S X @ is the set of hyperstates, capturing jointly the state as well as
the belief about 6. The augmented transition function 77 : &’ x A — &’ specifies how the state
and belief jointly evolve. The quantities A and C’ coincide with the underlying MDP. In principle,
the augmented MDP specifies the optimal policy II, but its computation is intractable except for
a few special cases [51,152]. Approximate methods have been proposed [53]], such as BEETLE
[54], which approximates the value function of the augmented MDP but remains tractable only
for low-dimensional problems (in the original work, MDPs with up to nine states). Commonly,
scalable approximations either modify the cost function to visit states that are unknown (exploration
bonus) [55H57], or act optimistically in the face of uncertainty, e.g., by applying Thompson sampling
[58,159], or combinations of both [60, 61]. For shortest path problems in the robotic domain, it was
suggested to act purely optimistically [49].



3 Method and model

We propose an approximate probabilistic inference method to estimate an agent’s latent knowledge
about transitions in the world based on a single observed navigation trajectory. Specifically, we model
the agent’s knowledge in a binary form using a vector k = (k1, ..., ky), where each k; € {0,1}
indicates whether state s; in the MDP is known (k; = 1) or unknown (k; = 0) to the agent. If a state
s; is known, we assume the agent has access to its transitions, and denote the set of all these known
transitions by €% = {(s;,s;) € €| k; V k;} C €. For unknown states, the agent instead considers a
set of potential transitions £P** C V) x V, with potential costs CP°® : £P°* — R, which are believed
to exist with probability q. The agent’s knowledge evolves over time: it begins with the initial
knowledge vector k, and states become known as soon as they have been visited. This knowledge
formulation can be easily extended, for example, to model agents that acquire knowledge of nearby
states within a certain radius, or existence probabilities depending on the structure of the environment.
In the following, we formalize the knowledge inference problem, i.e., to reason about a latent k, and
describe how to compute a sample-based solution given a likelihood and prior model with a single
evaluation per sample. Then, we show how to incrementally compute the likelihood and the prior
by leveraging an approximate solution to the agent’s planning problem. An implementation of our
algorithm is publicly available under the MIT Licencq'| For the planning algorithm, we adapted an
implementatio of D* lite, also available under the MIT License.

3.1 Bayesian knowledge inference

For reasoning about the agent’s latent knowledge k = (151, e IEN) about the world, we model
our belief about k; using a corresponding Bernoulli random variable K; ~ Bernoulli(p;), and
define K = (K7, ..., Ky). Given an observed trajectory D = (3!,...,37), our goal is to infer the

posterior distribution P(K | D). Bayes’ theorem gives P(K | D) « P(D | K) P(K), showing that
with a likelihood and prior model, the posterior can be determined. Exact inference is intractable, as
computing the normalization factor requires summing over all 2V possible values of K, which scales
exponentially in the number of states V.

To approximate the posterior, we employ Gibbs sampling [62]: At each iteration, we sample a
single variable K; from P(K; | K_;, D), where K_; denotes the vector of all knowledge variables
except K;, and K_; takes values of the previous sample kP™. For Bernoulli K;, each new sample
k = (k1,..., kn) either remains equal to the previous sample kP or differs by a single bit flip at
index ¢. The probability for a bit flip is determined by the full conditional distribution

P(D|K; =k K_;) P(K; =k K_ )\ 1)
P(D|K; = k"™ K_,) P(K, = k" K_,))

see Section[A.T]for the derivation. This formulation is computationally efficient: To produce a sample,
we only need to evaluate the prior ratio and a single likelihood P(D | K; = =k, K _;), since
the likelihood of the past sample, P(D | K; = kP, K _;), was already computed in the previous
iteration. However, even with this formulation, the inference procedure remains challenging: Each
likelihood evaluation involves solving a planning problem under partial knowledge, corresponding to
a BAMDP, which is commonly intractable. In Section[3.2] we present a tractable approximation of
the likelihood, which can be efficiently computed for the derived Gibbs update in an incremental way.
In Section[3.3] we describe a prior model suitable to navigation tasks. The complete algorithm for the
knowledge inference procedure is given in Algorithm T}

P(K; = —k"™ | K_;, D) = (1 +

3.2 Planning model and likelihood

The likelihood of a trajectory given the agent’s initial knowledge is given by P(D =
(3',...,37) | K) = [ m(5,5+1), where 7, : S x S — [0,1] denotes the agent’s policy
representing the probability to transition from state 5% to /! at time step t. For fully informed
agents in deterministic finite MDPs, the optimal policy is to follow deterministically the shortest path
to the goal [45]]. To model stochastic decision-making of planning humans, prior work has modeled
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Algorithm 1 Bayesian knowledge inference

Output: Samples {k!, ... kl'} from the distribution P(K | D)
Input: Number of samples L, Partial world model W, Trajectory D
1: Initialize k° with IV random boolean elements
2: Compute likelihood of k° using Algorithm
3: foriin{1,...,L} do
. Select j from {1, ..., N} randomly
Initialize ksWVitth « ki—1
Switch the value £5*'*"
Compute likelihood for k*¥ih by updating the past shortest path result (Algorithm
Compute prior fraction for k*Vi“h using Eq.
9:  Compute acceptance probability p using Eq.
10:  With probability p, set k? < k*Vih otherwise k? < k*~!
11: end for

AN

agents using softmax policies [42}[38,|8,139]]. In particular, Chandra et al. [39] model the probability
of moving from state s to a s if there is a corresponding edge as

7(s,8") ocexp (BV4(s')), with Vi(s') = C(s,g) — C(s',9g), )

where C'(s, g) denotes the cost of the shortest path from s to goal g, which is computed using the A*
algorithm [63]], and V5 (s") describes the reduction of in shortest path length towards g. To extend this
model to our problem setting, we face two key challenges: First, the agent has only partial knowledge
of the environment, turning the problem into a BAMDP. Exact planning in this setting is in most cases
infeasible, as the number of belief states grows exponentially with the number of unknown states.
Second, the Gibbs sampling procedure from Section [3.1} requires evaluating a likelihood for each
sample to draw. Since the agent’s knowledge evolves while acting, the policy must be recomputed at
every time step with the updated knowledge, requiring a large number of policy computations.

We address the first problem by extending the stochastic policy model from Eq. (§) to approximate
planning under partial knowledge: Instead of computing the shortest path under full knowledge,
we model the agent to plan based on expected costs under probabilistic transitions reflecting their
uncertainty. Specifically, we assume that uncertain transitions succeed with probability ¢, leading to
an expected cost of CP°!(s, s) /q for a transition from s to s, while known transitions retain their true
cost C(s, s). This approximation can be interpreted as planning optimistically with a penalization for
uncertainty that is proportional to the risk of failure. Importantly, it assumes that planning is based
on the current belief only, ignoring effects of knowledge acquisition along the path. We use these
expected costs for the softmax policy in Eq. (§) and assume that the agent replans at each time step
based on its updated knowledge.

To mitigate the second challenge, the excessive recomputation of policies, we observe that the
knowledge vector k is updated only at one position both between sampling iterations and trajectory
steps. This leads to a modification of only a relatively small number of graph edges in the graph.
We take advantage of this by employing a dynamic shortest path algorithm, specifically the D* lite
algorithm [49] instead of A*. This enables the reuse of past intermediate results and reduces the
computational cost for policy computations significantly. Section [A.2] provides a more detailed
derivation of the likelihood and policy model, and presents the full algorithm for incrementally
computing the likelihood (Algorithm [2)).

3.3 Spatial prior

For the prior model, we make the plausible assumption that a subject is more likely to possess
information about a state if nearby states are known, for example because the subject has visited this
region. To capture this spatial correlation of knowledge values, we use the Ising model [[64]]. The
conditional probabilities for the Ising model are given by

P(K;=ki k)= [ expilkilky)), withpi(k;|k;) =28 (~1)k - (=1)k,

55 €Adjo(s0) kj
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Figure 1: Evaluation of the planning models on human data. The graphs show the difference of
log likelihood of all transitions between the random actor model and each respective planning model
for individual trajectory (depicted as dots). Positive values indicate an improvement compared to
the random actor model. The black triangles represent medians. For most trajectories, the optimistic
models demonstrate improvements over both the random actor and uncertainty bonus model. For an
extended figure of World 0, see Fig. |'1;1'| in the appendix.

where we defined k_; = k\{k;}. As ts;(—k;, ks) = —1bs;(ki, ks), we obtain for the prior fraction
in Eq. (T))
P(K; = k" | K_;)

P, = H Ky~ P20k [ Ra)), 3)

which enables us to sample from the posterior distribution as outlined in Algorithm[I} This prior
allows the incorporation of the structure of the agent’s knowledge without significantly increasing
computational cost, as its computation cost is negligible compared to planning during inference.

4 Evaluation

We evaluate our method on two domains: a series of grid-world navigation tasks and a parking
problem. In the evaluation, we compare our proposed approximate model for planning under partial
knowledge against several other planning models: The optimal policy for a fully informed agent (FI),
arandom actor model (R), a model based on exploration bonus (EB), a purely optimistic model (OPT),
and our approximate model (OUR) from Section[3.2} which can be interpreted as an optimistic model
with penalization for uncertainty. Detailed information about these planning models is provided in
Section[A.7] and hyperparameters are listed in Section[A.8] An additional complexity comparison
between our method and exact inference is provided in Section[A3]

4.1 Application to grid world navigation tasks

For the grid world navigation tasks, we designed 8 grid worlds, where only a subset of fields was
sampled as initially known. There, the goal is to control an avatar from a start field to a target field
using a minimum number of steps. To validate our method on human behavioral data, we developed
a browser game that allowed human subjects to navigate through these partially occluded grid worlds.
We conducted an online experiment with 52 participants recruited via the Prolific platform. The
experiment was approved by the local institutional review board (IRB). Detailed information about
the grid worlds and the experiment design is provided in Section[A4]

Planning model To evaluate how accurately our proposed approximate planning model captures
human behavior in comparison to other methods, we computed the likelihoods of the trajectories
collected in the human experiment. Figure[T|shows the log-likelihood differences between the random
actor model and each of the other planning models. The results indicate that, for most trajectories, our
proposed approximation and the optimistic planning model achieve higher log-likelihoods than the
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Figure 2: Models for planning under uncertainty. Subjects need to navigate through the partially
visible maze from a start field (smiley) to a target (flag) using a minimum number of steps. Hatched
fields indicate initially visible fields. (FI) The rational agent with complete world knowledge follows
the shortest path on the left side. (R) The random agent shows undirected behavior and only reaches
the goal after a large number of steps. (EB) The model with exploration bonus explores locally
until it discovers the path to the goal. (OPT) A purely optimistic agent plans as if all unknown
fields were navigable and heads towards the goal if uncertain. (OUR) Our proposed approximation,
which is optimistic with a penalization for uncertainty, initially navigates towards the goal due to its
uncertainty but prefers the known path thereafter. This trajectory was most frequently observed in
our online experiment.

other models. A Wilcoxon signed-rank test confirms that these differences are statistically significant
for nearly all comparisons, with the exception of the exploration-bonus model in World 0 and the
purely optimistic model in World 7 (see Section[A.6.1]for details). Although this analysis provides
evidence for differences between models, it does not explain why penalizing uncertainty is important
for modeling human behavior in these grid worlds.

To qualitatively differentiate the planning strategies, we designed one of the eight grid worlds (World
0) to be smaller (6 x 5) and structured such that each planning model predicts distinct behaviors.
Fig. 2] shows the grid world along with the predicted trajectory when the most likely action is taken at
each decision. Matching these unique trajectories to the online experiment data gave the following
results: 21% of the subjects chose path FI, 19% chose path EB, 21% chose path OPT, and most
participants, 35%, chose path OUR, representing our proposed approximate planning model. 4% of
the trajectories did not fit any of the trajectories. Note that subjects who followed path FI could not
have done so based on complete knowledge; their choice may have been influenced by variability or
the belief that the “most obvious” path would be blocked, based on their previous trial experience.

Inference model To evaluate our proposed inference approach, we empirically compared it against
two baselines. The first one is a simple agnostic model that assumes all fields are known with equal
probability of 0.5, except for the start and goal positions. The second baseline additionally assigns a
probability of 0.1 to a field where the agent turns around, based on the reasonable assumption that at
these points the agent received new information. While our approach generates samples showing
correlations between the fields, for the evaluation, we only consider the empirically estimated marginal
probabilities. Consequently, our evaluation likely underestimates the information contained in the
samples about the true posterior. We evaluate our method on two datasets: (1) trajectories from
simulated agents using our proposed approximate planning model, and (2) trajectories collected in
our online experiment. Since we controlled which fields were initially visible to participants, we can
compare the inferred beliefs against the ground-truth knowledge.

We applied the inference approaches to each trajectory to estimate the probabilities of the fields being
known. Figure [3|presents the results for two grid worlds (0 and 4). Although there are occasional
false beliefs due to the high variability of the subjects’ behavior, the inferred explanations produced
by our method appear reasonable. Additional inference results for the other worlds and more human
trajectories can be found in Fig. [I5]in Section[A.6] For quantitative evaluation, we assessed the
likelihood of the true knowledge variables under the inferred marginal knowledge beliefs, shown in
Fig.|4] On simulated data, our method shows clear improvements over both baselines, and a Wilcoxon
signed-rank test confirms that these differences are significant (see Section [A.6.1]for details). On
experimental data, the quantitative results are more mixed: while we observe overall improvements in
most environments, there are exceptions due to the high variability in participants’ trajectories. The
Wilcoxon signed-rank test indicates significant differences in five of the eight worlds. Inference for



)
—

(umoux)d

(A0) (B+CO0) (D0) (EO) (Fo)
((Af//‘; - { /K Jf%/ I A; —] (C AV/ A)
L, el B,
L= o S A 7ill - 7l
== &4%5 Gy | @mmy)) 1) - &/q
( ——— Y |
”_TT/%ZV — 27 — Tﬁ_T/%QV -
(85) | (c5) | (D5) | (ES)

Figure 3: Inferred knowledge beliefs of the considered inference methods. (A) Subject’s initial
view of World 0. (B-E) Inferred beliefs (probability that a field is known) for grid worlds O (top) and
5 (bottom). Panels (B, C, D) display trajectories when following the most probable actions of the
optimistic policy with uncertainty cost. Panel (B) shows the agnostic baseline, (C) the baseline based
on turnarounds, and (D) our proposed method. In (DO0), it infers that the fields on the left side must
have been partly unknown to the subject, as well as the two fields beneath the goal field, otherwise the
agent would have probably taken the path on the left. Panel (E) shows randomly sampled trajectories
from the probabilistic policy, where in (EQ), the inference method is certain that the subject could not
have known the field diagonally to the goal. (FO) shows the trajectory of subject “hgryw”, where the
probability of the left side and the fields beneath the goal incorrectly receive a high probability. In
(ES) the agent makes an additional detour due to the randomness in the policy, revealing that it did
not know the top path to the goal and the dead end.

World 7 was particularly challenging, as the path to the goal was straightforward, so that knowledge
had a very limited effect on behavior and behavioral variability leads to false beliefs.

To evaluate the efficiency gains resulting from reusing past results using the dynamic graph algorithm,
we ran inference on the trajectories of 50 simulated agents in world 1, using the A* algorithny’|instead
of D* lite. Generating 1,000 samples on world 0 took an average of 7.48 hours (SD 1.53 hours) with
A*, compared to 42 minutes (SD 5 minutes) with D* lite, representing an average time reduction
factor of 10.7 times. Details about the used hardware used for these experiments are provided in

Section[A.8]

4.2 Application to the parking problem

While exact planning in BAMDPs is usually intractable, the parking problem [[63]] is an exception
where the task structure allows for an exact solution. We use this task to evaluate our inference
method with approximate planning against the true optimal policy. In this task, a driver proceeds
along a sequence of parking spots, each potentially free or occupied, with parking costs decreasing
along the route. However, if the driver passes the last parking spot without having parked, they need
to park in the garage at a high cost. Importantly, the availability of each parking spot is unknown
until the driver reaches it, making this problem a BAMDP. A formal description of the task and the
exact solution are provided in Section[A.3]

We first evaluate how well the considered planning models approximate the exact policy. For
randomly sampled parking occupancies, we compute the policies for all models at each parking spot
(Fig.[5]A) and report their mean KL divergence from the exact optimal policy (Fig.[5B). Our proposed
model closely approximates the true optimal policy by reaching the lowest KL, with the exploration
bonus model as the next-best approximation. Next, we assess how the choice of the planning model

*https://pypi.org/project/astar/
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Figure 4: Evaluation of the knowledge inference approach. The graphs show the difference in log
likelihood of the true knowledge information between an agnostic model and the inference methods
for individual trajectories (depicted as dots) based on the marginal belief for each field. Positive values
indicate an improvement compared to the agnostic model. The black triangles represent medians.
For simulated data, our method clearly shows improvements over both the agnostic model and the
heuristic. Despite the high variability in the experimental data causing numerous false beliefs, our
method demonstrates overall improvements over the baseline. World 7 was particularly challenging
for the inference as the optimal path was straightforward and therefore uninformative.

affects inference performance. Since all policies in this task can be computed efficiently, we run
the knowledge inference procedure using each planning model to perform inference on trajectories
generated using the exact optimal policy. Inference results using our proposed approximate planning
model are shown in Fig. BIC. Similar to the grid world setting, we also compare against agnostic
beliefs (AGN) and a manually designed heuristic baseline (HEUR). This heuristic assigns free parking
spots ahead of chosen parking a 0.1 probability of being known, while other spots are known with
belief 0.5. Figure 5D shows the average KL divergences of the inferred knowledge beliefs between
the exact policy and other planning models. We find that both our proposed planning model and
the exploration bonus lead to inference accuracies very close to the exact planning model, since the
exploration bonus trades off garage cost and potential rewards of late parking similarly in this task.

5 Conclusion and future work

In this paper, we have addressed the problem of inferring the knowledge of an observed agent that
acts under partial knowledge about the structure of the environment. We formulated the problem
as an approximate Bayesian inference task and proposed an approximate planning model that
allows for efficient evaluation within the inference procedure. We evaluated the method on both
artificially generated data and data obtained from an online experiment using two task domains. By
exploiting the incremental structure of the agents’ knowledge using D* lite, we achieved a significant
speedup compared to naively using the standard A* planning algorithm. While our approximate
planning model proved effective for modeling the exact policy, the benefit of uncertainty penalization
in modeling real human behavioral data still requires further investigation. The evaluation results
suggest that our inference approach can provide a reasonable belief about the agent’s world knowledge,
particularly where it strongly influences behavior. As a next step, our method could be applied to
analyze, for example, how subjects’ awareness depends on topological features when solving mazes
under time pressure. It could also be readily used to study spatial memory by examining which parts
of a larger maze participants recall based on its local structure.

Our approach comes with several limitations. Even if the approach is tailored to medium-sized
state spaces, the approach is unlikely to scale to very high dimensions in its current form. Further
scaling to larger state and belief spaces, and beyond binary knowledge representations, for example
by employing amortized inference or advanced sampling methods, would be an interesting direction
for future research. Currently, all unknown transitions are modeled with a single probability of
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Figure 5: Evaluation of the parking problem. (A) Choice probabilities for the considered planning
models. Hatched fields indicate initially known parking spots. (B) Mean KL divergences of planning
models from the exact optimal policy for generated problems. The black triangles indicate medians.
(C) Inferred knowledge beliefs based on simulated parking decisions using the exact planning model.
Crosses indicate the chosen spots. (D) Mean KL divergences between inferred beliefs using the exact
and other planning models for generated problems. Both inference with our proposed planning model
and exploration bonus lead to similar beliefs as inference under the exact model.

traversability, which simplifies inference but could be extended in future work to allow different
probabilities for different structures, such as corridors and junctions. Moreover, although the inference
approach already captures the correlated structure of beliefs, this structure remains mostly latent in
the data. Making this correlation structure accessible and enabling efficient recomputation when
given additional information (conditioning) would be beneficial. Also, investigating how additional
information sources, such as eye-tracking data [66]], could be used to increase the reliability of the
approach would be a valuable direction for future research. Furthermore, future work could aim to
consider planning in non-spatial domains, for example by using the PDDL formalism [[7].

A common challenge in behavioral experiments is that participants’ decisions often exhibit dependen-
cies across trials and depend on prior experience. Furthermore, human subjects have been shown
to learn about the structure of the experiment design [33}134]]. These factors could have introduced
additional noise and biases to the experimental data. Improving experimental design to reduce these
influences or explicitly modeling such influences hierarchically would increase the interpretability
of the results. Future work could also extend our approach to more naturalistic settings, including
stochastic environments, and explore incremental approaches for other types of planning [67]]. Ex-
ploring different forms of the experiment, such as augmented reality, might also prove helpful in this
regard.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The mentioned approach is introduced in the paper, evaluated, and the results
are discussed in the evaluation section.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section[3}
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: There are no theoretical results. A derivation of Eq. (I) is provided in
Section[Al

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The evaluation section contains information about the procedures of the
evaluation. In the appendix we give additional details about how the experiments were
conducted and the evaluation performed, and hyperparameters are provided. We additionally
provide the code and the data set used for evaluation.

Guidelines:

» The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Both the code and dataset are publicly available.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: They are provided in Section[A.§]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results for each individual trajectory, besides the median, are scattered in
the plots. For the runtime analysis, we provided the standard deviation along with the mean.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The information is provided in Section[A.§]
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: All participants were paid more than the minimum wage of both US and UK,
£11.44 (UK) and the study was approved by the local IRB. With the IRB conditions, all
data-related concerns were handled (e.g., minimal unidentifiable information, consent, ... ).
Societal impact and potential harmful consequences are discussed in the conclusion section.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Negative societal impacts are discussed in the conclusion section. Positive
impacts are described in the introduction but not in direct relation to society.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The code and dataset to be published do not pose any risks for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provided information about the D* and A* implementations we use in our
work.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The provided code and experimental data is documented.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]
Justification: Instructions with screenshots are provided in the appendix.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,

or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: There were no potential risks for the study participants and the study was
approved by the local IRB.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM is used only for writing, editing, or formatting purposes.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix

A.1 Derivation of the switch acceptance probability
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A.2 Further information on likelihood and planning model

The likelihood of the visited states D = {5',..., 57} given the knowledge values k decomposes as
T-1

PD={5". .} K=k =[] m@, ), (7)
t=1

where 7; : S X § — [0, 1] denotes the stochastic policy at time ¢, taking the form
w(s,5') o< exp (B(Cils,9) — Ci(s',9))) ®)

Here, C; : S X S — R is the function measuring the expected shortest path cost between two states
s; and s; at time ¢, formally defined as

C(Si,Sj) if (kf\/k;)/\(si,sj) €&,
Ci(si,85) = { C*(s4,55)/4q if (K VEE) A (54, 85) € e,
00 otherwise,

where k! is the knowledge value for state s; updated for time ¢, which is 1 if k; = 1 (the field was
initially known) or if s; € {8%,..., 571}, so the state has been visited before.

A naive computation of the policy for each sample and time step is computationally expensive. We
observe that within one trajectory between two time steps, the agent gains only knowledge of the
currently visited field s;. If the field is assumed to be initially known, i.e., k; = 1, the policy does
not change and we can directly reuse the planning results from the previous time step. Furthermore,
within the Gibbs sampling process, the knowledge value is switched only for one field s;. If the field
was part of the trajectory up to the current time step ¢, i.e., s; € {5, ..., 5}, the agent knows the
field at time ¢ in both the previous Gibbs sample and the current one. In this case, we can directly
reuse the planning result from the past iteration. Otherwise, in comparison to the past sample, only
the edges potentially connected to s; may change: For all s,,, € S with (s;, 5,,,) € EP, C (55, Sm)
potentially increases if there is no edge between s; and s,,, i.e., (s}, sm,) ¢ £, and may decrease
otherwise. By using a dynamic shortest path algorithm such as D* lite, we can update the planning
results from the past sample, updating the few affected edges. For the first sample, where we do not
have previous planning results, we can reuse the planning results from the respective past time step
(for iterations ¢ > 1) instead. With this, we only need to solve the full shortest path problem once,
for the first sample for ¢ = 1. The complete algorithm for computing the likelihood is provided in
Algorithm 2]

A.3 Complexity analysis

In the following, we compare the complexity of our proposed algorithm to exact inference as used in
Bayesian inverse planning. For exact inference, we must consider all 2"V combinations of values of K,
where N is the number of states. For each configuration, computing the agent’s policy and likelihood
results in a complexity of O(2% - Cplanning)- Planning in the belief space using value iteration has
complexity O(|S|? - |A|/e) = O(2%N - 4/¢), with e the precision of value iteration, since the belief
MDP has 2"V states. Additionally, planning has to be performed up to N times for each configuration,
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Algorithm 2 Likelihood computation

Output: Likelihood P(D | k), Planning results P forall 1,...,7 — 1

Input: Partial world model W, Knowledge values k, Trajectory D = {5',..., 37},
optional: Planning results of previous iteration PP*¥, Knowledge switching value k;

1: fortin{1,...,7—1} do

2:  Get state index i from trajectory state 3*

3:  ift > 1 and k[i] then

4 Plt] « P[t — 1]

5. elseif Pyey and j € {5',..., 5"} then

6: Plt] < Pprev[t]

7 else if Py, then

8: Update planning results Ppyey [t] with switch at j
9: elseif ¢ > 1 then
10: Update planning results P[t] with switch at
11:  else
12: Compute planning results P|t]
13:  endif

14:  Compute policy m; using Eq. (8) with P[¢]
15:  Compute likelihood of D[t + 1] using Eq.
16: end for

as the agent is assumed to replan along the trajectory (and then all fields have been visited, including
the goal). The results in a total complexity for inference of O(N - 23V /¢).

In contrast, our Gibbs-sampling-based approach scales linearly with the number of variables: we
sample each K; conditioned on all others, leading to a complexity of O(L-N -Cplam,—ng), where L is the
number of samples. Our planning approximation avoids the complete belief space and uses the shortest
path algorithm D* lite, which has worst-case complexity similar to Dijkstra, O(|€] + [V|log [V|) =
O(4-N+ Nlog N) = O(N log N). Similar to Bayesian inverse planning, planning needs to be done
N times per sample. Therefore, the total cost is only O(L - N - N - Nlog N) = O(L - N3 -log N).

A.4 Navigation experiment design and procedure

Using the Prolific platform, we recruited 52 participants from the US and UK who were fluent in
English. The experiment took between 6 and 10 minutes and each participant was paid £1.70 plus
a performance bonus of up to £1. The bonus was based on the reward earned during a randomly
chosen trial. The reward was set to 100 — Nyeps pence. Participants’ earnings were greater than
the minimum wage of £11.44/h (UK) and a total of £165.08 was spent on participant compensation.
To participate in our study, subjects had to read and accept our information and declaration on data
protection policy, allowing us to process and publish the behavioral data in anonymized form.

After presenting the introductory screens (Fig. [6)) to the participants, the actual experiment began. In
each trial of the experiment, subjects were shown a grid world, where only a subset of the fields was
visible. The remaining fields were hidden and therefore unknown to the participants. The starting
field and goal position were always initially visible (Fig.[7). The avatar could be controlled with the
keyboard in up to four directions (left, right, up, down) and could only move if there was no wall in
the chosen direction. There was a minimum interval between two successive movements of 300 ms.
As soon as the avatar entered an unknown field, it became visible along with the surrounding walls
and remained visible for the rest of the trial (Fig.[g).

Participants were instructed to reach the goal within a minimum number of steps to maximize their
reward and, consequently, their bonus payment. Before the actual experiment, participants completed
7 introductory mazes to familiarize themselves with the task at varying levels of complexity (Fig. [9).
These maps were not considered for bonus payments or for evaluation. The actual experiment
consisted of 8 mazes, which were presented in a random order. At the end of the experiment,
participants were asked to indicate their sex and age in a short survey and could leave a comment

(Fig. [T0).
Grid worlds 1-7 were manually designed by placing the start and goal positions at arbitrary locations,
drawing a path between them (of varying complexity, for example, the path of grid world 1 is very
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Imagine, you and your friends wake up in a room. You start to remember.
Parts of the map are smudged and not readable anymore though.
You were exploring the jungle and in an unattentive moment you have been captured by a group of evil monkeys!

Once you saw a room, your friend draws it on the map, so that you remember where you have been already.

The monkeys brought you into an old temple, stripped you off your food and left you in this room, unconciously.

The monkeys are already eating your food, so you have to hurry to get it back
Now you want to get back your food from the monkeys to survive. Luckily, you find a map of the temple.
Every time you change the room, the food amount decreases
Walls are shown in red, rooms are grey. A black flag represents the monkey's base, this is where your food is!

(a) Part 1 (b) Part 2
You can navigate through the temple by using your arrow keys. You will play multiple rounds, each time with a different map.
Your current position is marked by the yellow smiley, the base of the monkeys by a black flag. Afterwards, we will randomly select a round and pay you the reward
(amount of food left) that you achieved in this round
The reward (food) that is left is displayed on the right side of the screen. in pence as bonus payment (up to £ 1).
‘Once you arrived at the black flag, you will have the possibility to take a break. Let's start with a few test trials. These trials are not yet taken into account for your bonus payment.
Good luck!
(c) Part 3 (d) Part 4

Figure 6: Introduction displayed to the participants. The introduction gives a cover story to explain
the setup and goals. Participants were instructed how the avatar was controlled and details about the
bonus payment were given. Participants could go back and forth in the introduction for the case they
wanted to reread some passages.

reward:
100

I:

Ho

Figure 7: World 6 before movement. Only some fields of the world were visible right from the start,
always including the start and goal field. Visible, walkable fields were grey, walls were red. The goal
was marked by the black flag, the player’s position by the yellow smiley. In this example, the player
could walk to the right (known field), to the left, or down (unknown fields). Unknown fields were not
visible upfront but became visible as soon as the player visited them. The reward, displayed on the
right, was always 100 at the beginning of a level and reduced by 1 with each move.

éj:

]

complicated while for world 4 it is straightforward), and extending the path by dead-ends. We used
all the worlds we designed in the experiment, providing transparency about the performance of
our method by showing cases where beliefs are hard to identify (e.g., grid world 7 where the path
had low complexity). Moreover, the varying complexity prevents humans from learning about the
experiment’s structure, e.g., learning to prefer indirect paths (which probably still occurred to some
extent in the conducted experiment).

A.5 Parking problem
The parking problem can be formally defined as a graph BAMDP (V', £, C),

* hyperstates V' = V x ® consisting of states (nodes) V and knowledge states @,

e states V = {1,..., M} U{L, G}, where M is the number of parking spots, L the terminal
state and goal, and G the garage state,
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(a) View at the beginning (b) View after navigating through parts of the world

(v

Figure 8: Example of visibility and reward changes upon movement. At the beginning of the
level, before moving, only some fields of the world were visible and the reward was set to 100. The
start and goal fields were always visible right from the beginning. When moving through the world,
unknown fields that have been explored remained visible throughout the whole trial. The reward is
reduced by 1 with each move. The reward of 76 in (b) corresponds to 24 moves having been made.

©'v

reward:
im %

IEED reward:

ol 99
|

Figure 9: Different world complexities. Worlds could implement straight passages to the goal (/eft)
or passages that consisted of multiple turns (right). The two shown worlds both had their starting
points at the bottom left corner, the block above was not visible from the beginning. They were part of
the test worlds with the purpose of familiarizing the participants with the concept of the experiment.

Please answer all questions carefully before clicking the button at the bottom to finish.
What is your age? - select an option -- v |

What is your sex? | - select an option -- v |

Do you have anything you would like to note? Y

| Finish survey |

Figure 10: Survey at the end of the experiment. The survey consisted of questions about the
participants and gave the possibility to leave additional comments. Selectable options for age were
<25,25-34, 35-44, 45-54 and 55+. Selectable options for gender were female, male, and other. Both
questions also had the option prefer not to answer.
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Figure 11: Evaluation of the planning models on human data for World 0 (extended plot)

* knowledge states ® = P({1,..., M}), indicating the “known” parking spots, where the
occupancy is known. Here, P denotes the power set operator.
e transitions £ = Econtinue U Epark U Egarage » With
o Econtinue = {(,2+ 1), fori=1,..., M — 1} U{(M, G)} the actions to continue to
the next parking spots,
o Epark = {(¢, L), fori =1,...,M — 1, if parking 7 is free} the actions to park,
o Egarage = {(G, L)} the action to park at the garage,

0 if (5i7 Sj) € Econtinues

* the cost function C(s;, ;) = sit l (51,51) € Epan
M+1 lf(Sl,Sj) Eggaragea
00 otherwise.

For the parking problem, all “continue” transitions are always known, while the “parking” transitions
are only known if the respective parking spot s; is known, i.e., k; = 1. In contrast to the formulation
of Bertsekas [65]], we assume that the agent has initial knowledge about some of the parking spots,
which we aim to infer.

A.6 Additional results

In the following we provide additional evaluation results.

A.6.1 Grid world tasks

For the grid world tasks, we present the following additional evaluation results:

* Additional plots showing the trajectories of the considered policies analogous to Fig. 2| for
worlds 1-7 are shown in Fig. [T4]

* An extended plot for the quantitative evaluation of the planning models (from Fig. ) is
shown in Fig. [IT]

* Additional results of our proposed inference approach for additional worlds and subjects are
provided in Fig.[I5] Examples were picked to give an overview of the trajectory variabilities
encountered in the experiment.

* To evaluate the influence of the prior, we conducted an ablation and performed inference
using a uniform prior. The results were qualitatively very similar (see Fig. [I2)), but the
relative improvements between the baseline and our method were on average half as large
(average factor 1.991). This suggests that while the prior has some influence, it is not
essential for the effectiveness of our method.

In addition, we performed statistical tests to investigate whether the differences observed in the
evaluation were significant:

First, we considered the evaluation of the inference method. To choose a suitable test, we first checked
the assumptions of normality for the datapoints of each world and method combination using the
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Figure 12: Ablation study of inference on human navigation data with a uniform prior. Ours*
denotes our inference method with a uniform prior. In comparison to the results in Fig.[4] our method
performs qualitatively very similarly, but the relative improvements between the baseline and our
method were on average half as large (average factor 1.991).

Shapiro-Wilk test [68] with p = 0.05. We found that only a subset of the data (4/16) followed a
normal distribution. Given that the t-test requires normality assumptions to be met, we applied the
Wilcoxon signed-rank test [69]. This non-parametric test does not assume normality and can be used
to assess the differences between the central values of the baseline and our method for each world.
We applied a False Discovery Rate (FDR) correction using the Benjamini-Hochberg method [70] to
control for multiple comparisons. Given that all worlds have individual belief spaces and represent
different tasks, we consider them separately. The corrected p-values (q-values) of the Wilcoxon
signed-rank test are shown in Table|1| For simulated data, for each world, significant differences
between our method and the baseline were found. For the human experiment data, differences were
significant for five of the eight worlds.

world simulated data real human data
q-value significant q-value significant
0 0.0000007368 Yes 0.09551332 No
1 0.0000000013 Yes 0.00000003 Yes
2 0.0000000172 Yes 0.05887162 No
3 0.0000000248 Yes 0.04011417 Yes
4 0.0000000016 Yes 0.00000008 Yes
5 0.0000000013 Yes 0.00214453 Yes
6 0.0000000013 Yes 0.62287947 No
7 0.0000110184 Yes 0.00325433 Yes

Table 1: Adjusted p-values and significance results on inference log likelihood differences between
our approach and the baseline using the Wilcoxon signed-rank test.

For the planning models, we applied the same procedure. Again, the Shapiro-Wilk test only indicated
normality for 19% of the planning model-world combinations. We therefore proceeded with the
Wilcoxon signed-rank test to check for significant differences between our proposed model and other
planning models. The resulting adjusted p-values (q-values) are shown in Table 2] The differences of
all combinations were significant, except for the exploration bonus model in world 0, and the purely
optimistic model in world 7.

A.6.2 Parking problem

For the parking problem, we provide a figure comparing the log-likelihoods of the true knowledge
values under the inferred beliefs relative to agnostic beliefs in Fig. [I3] One can observe that
inference using exact inference leads to similar likelihoods as when using the exploration bonus
or our approximate method. We conclude that for the parking problem, these planning methods
approximate the exact solution accurately.

A.7 Planning model: Exploration bonus

For the exploration bonus model, we designed the following MDP: Transitions were only considered
from known fields; from unknown fields all transition probabilities were set to zero. Entering a
non-visible field led to an exploration reward of 1, reaching the goal to a reward of 10. The policy
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world fully informed exploration bonus optimistic
q-value significant q-value significant q-value significant
0 0.0000127346 Yes 0.5892034940 No 0.0006017581 Yes
1 0.0000000290 Yes 0.0431046667 Yes 0.0006887471 Yes
2 0.0000000017 Yes 0.0003253850 Yes 0.5847222927 No
3 0.0000000017 Yes 0.0000000469 Yes 0.0000000028 Yes
4 0.0000000648 Yes 0.0000295632 Yes 0.0007460520 Yes
5 0.0000000023 Yes 0.0000076167 Yes 0.0000000529 Yes
6 0.0000000017 Yes 0.0092637150 Yes 0.0097015615 Yes
7 0.0185740168 Yes 0.2507408261 No 0.0018645117 Yes

Table 2: Adjusted p-values and significance results of planning log likelihood differences using the
Wilcoxon signed-rank test.
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Figure 13: Additional results for the parking problem. Knowledge likelihoods under inferred
beliefs when using different planning models for the inference method, relative to agnostic beliefs.

was formulated as a softmax over the Q function [26]],

o) e (1005, 5) ).

The Q function was computed using tabular value iteration [26]]. For the value iteration, a maximum
horizon of 100 steps was considered and it was previously stopped if the infimum norm of the
Q function difference between two consecutive iterations was smaller than 0.01. The softmax
temperature was set to 0.1.

For the parking problem, however, for each unoccupied state, the goal is directly accessible. With
the previously described exploration bonus formulation, the agent would greedily follow transitions
to the goal. Therefore, for this problem, we chose a different approximation: We plan similarly
to our approximation, with the difference that instead of scaling the cost for uncertain decisions,
agents incur a negative cost (reward) if they transition to an unknown field. This formulation makes
agents “explore” unknown parking spots for a while, but park their car as soon as the high garage cost
exceeds potential rewards through exploring new parking spots. This makes the exploration bonus
strategy very similar to our approximation and the optimal policy for the parking problem, explaining
the similar performance observed in the evaluation.

A.8 Hyperparameters and hardware
Throughout the experiments, we used the following hyperparameters:

* Total number of samples for the inference: 1000
* Number of samples rejected for burnin phase: 100
* Parameter for the Ising model (spatial prior): 5 = 0.2

e Cost for transitions from/to known fields: 1
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* Belief of traversability for unknown fields: ¢ = 0.5
* Softmax temperature for our proposed planning model: 1
* Softmax temperature for the optimistic planning model: 0.8

* Computing resources used: Intel® Xeon® Platinum 9242 Processor (1 core per trajectory)
For the parking problem, we used the following hyperparameters:

* Number of parkings: 10

* Probability of a parking being free: 0.3

* Probability of knowing a parking spot: 0.3

* Belief of traversability for unknown fields: ¢ = 0.3

The hyperparameters of sample sizes were selected such that the results did not vary anymore. Costs
and temperatures were set to standard values, e.g., the cost for known transitions was set to 1 as
in the work by Chandra et al. [39], and the cost for unknown transitions to twice as much, and the
resulting trajectories were checked for plausibility. A low cost makes the agent more optimistic
when acting under uncertainty (preferring unknown fields, potentially yielding shorter paths), while
increasing the cost makes the agent more risk-averse, preferring known paths that might be longer.
The hyperparameter of the prior was selected manually to produce moderately connected knowledge
regions (neither fully fragmented nor overly clustered). The same hyperparameters were used both
for generating the ground-truth knowledge values in the experiment (the fields initially displayed to
the participants) and for inference. The temperature of OPT was set slightly smaller as for OUR,
since the uncertainty cost leads to higher total costs, which would decrease stochasticity otherwise.
For the grid world experiments, the parameter of the spatial prior was selected manually to produce
moderately connected knowledge regions (neither fully fragmented nor overly clustered). The same
hyperparameters were used both for generating the ground-truth knowledge values in the experiment
(the fields initially displayed to the participants) and for inference.
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Figure 14: Models for planning under uncertainty for Worlds 1 - 7




Simulated agent, World 1 Subject 2pj5n, World 1 Subject g87cq, World 1 Subject xldqx, World 1

R | — — !
s, A= 7
—) L
e
| ; =] N
S | ) =
(= | ﬂ, = 0 ~
= —
o — © Vi
0
Simulated agent, World 2 Subject 3guvd, World 2 Subject d7brf, World 2 1
=i (7 Ve
= F ) o A
— 7 — L i :
2
q? (CJ =) = (CJ §
= - S NI S
(L ) ) ; v
i ?ﬁ_l L ?ﬁ_l I jS==b) L ‘%_I o

Simulated agent, World 3 Subject 4thtl, World 3 Subject 3guvd, World 3 Subject 8cz3n, World 3

o= ) =1 E=
Ve 1S==57T"] U Ce===m|

)

(Ezzz==m]

=1l [
(=)

=3

—

e
5
(=
I

==
IS
)
I @'—“‘U-~“
e
).
==
| ZHmmmmm——— ]
(umouy)d -

)

Simulated agent, World 4 Subject 1rfly, World 4 Subject 1gdrn, World 4 Subject 2pjsn, World 4

2 Z ) Z

)

(8 ) i\
(@ «
IKN
N
N
)
S E
N
|
| 2Aammmm——— |
(umouyy)d -

7
L | - o
Simulated agent, World 5 Subject zyed0, World 5 Subject 1gdrn, World 5 Subject 3vzuv, World 5 P
V. Iz T T T T
=z 7 P
= : : gl le=a) el =) = =)
{ e: ) e: ) )
il Pl 7R N il =l 7R N il
= L& @I &;ﬁ'j GI== L;% Gmmay | @) o
‘ igml= (J :
S
o im W 772 o L=y M rc===2) 7 o L=y Il r===2) I o 2 777
5 ) ) B _
i i J i o
Simulated agent, World 6 Subject 8todt, World 6 Subject 5zcfh, World 6 Subject cm5dc, World 6
i i | P !
1) — le——) o) lG——) —
| =0 | = | = | =]
— f—. = =1 |2
fi — [ — | [ —|
5
K"W\ i ) ,{’fj\L‘VW 3] LL::)\ H '/(,L 1774 )] o ) er i )y A(j“ 7z
¢ im - ¢ Y J - ¢ i -
il . . =z N .. . il - -
i | | i U] | | i | | B,
Simulated agent, World 7 Subject 2pj5n, World 7 Subject 04swS5, World 7 Subject b23zd, World 7 1
f f | 1_j
v ® v © £ S-o =
2 3 2 8 === G ) 2
3
Qo
I il I ! I L 3
= ~
7 7
0

Figure 15: Additional results of our inference approach showing the variability of subjects’ behavior
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