
Simple steps are all you need: Frank-Wolfe
and generalized self-concordant functions

Alejandro Carderera ∗ Mathieu Besançon † Sebastian Pokutta ‡

Abstract

Generalized self-concordance is a key property present in the objective
function of many important learning problems. We establish the convergence
rate of a simple Frank-Wolfe variant that uses the open-loop step size strategy
𝛾𝑡 = 2/(𝑡 + 2), obtaining a O(1/𝑡) convergence rate for this class of functions
in terms of primal gap and Frank-Wolfe gap, where 𝑡 is the iteration count.
This avoids the use of second-order information or the need to estimate
local smoothness parameters of previous work. We also show improved
convergence rates for various common cases, e.g., when the feasible region
under consideration is uniformly convex or polyhedral.

1 Introduction

Constrained convex optimization is the cornerstone of many machine learning problems. We
consider such problems, formulated as:

min
x∈X

𝑓 (x), (1.1)

where 𝑓 : ℝ𝑛 → ℝ ∪ {+∞} is a generalized self-concordant function and X ⊆ ℝ𝑛 is a
compact convex set. When computing projections onto the feasible regions as required in,
e.g., projected gradient descent, is prohibitive, Frank-Wolfe (FW) (Frank & Wolfe, 1956)
algorithms (a.k.a. Conditional Gradients (CG) (Levitin & Polyak, 1966)) are the algorithms of
choice, relying on Linear Minimization Oracles (LMO) at each iteration to solve Problem (1.1).
The analysis of their convergence often relies on the assumption that the gradient is Lipschitz-
continuous. This assumption does not necessarily hold for generalized self-concordant
functions, an important class of functions for which the growth can be unbounded.

1.1 Related work

In the classical analysis of Newton’s method, when the Hessian of 𝑓 is assumed to be
Lipschitz continuous and the function is strongly convex, one arrives at a convergence rate
for the algorithm that depends on the Euclidean structure of ℝ𝑛, despite the fact that the
algorithm is affine-invariant. This motivated the introduction of self-concordant functions
in Nesterov & Nemirovskii (1994), functions for which the third derivative is bounded by
the second-order derivative, with which one can obtain an affine-invariant convergence rate
for the aforementioned algorithm. More importantly, many of the barrier functions used
in interior-point methods are self-concordant, which extended the use of polynomial-time
interior-point methods to many settings of interest.

∗Georgia Institute of Technology. E-mail: alejandro.carderera@gatech.edu
†Zuse Institute Berlin. E-mail: besancon@zib.de
‡Zuse Institute Berlin and Technische Universität Berlin. E-mail: pokutta@math.tu-berlin.de

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

mailto:alejandro.carderera@gatech.edu
mailto:besancon@zib.de
mailto:pokutta@math.tu-berlin.de

Self-concordant functions have received strong interest in recent years due to the attractive
properties that they allow to prove for many statistical estimation settings (Marteau-Ferey
et al., 2019; Ostrovskii & Bach, 2021). The original definition of self-concordance has been
expanded and generalized since its inception, as many objective functions of interest have
self-concordant-like properties without satisfying the strict definition of self-concordance. For
example, the logistic loss function used in logistic regression is not strictly self-concordant,
but it fits into a class of pseudo-self-concordant functions, which allows one to obtain similar
properties and bounds as those obtained for self-concordant functions (Bach, 2010). This
was also the case in Ostrovskii & Bach (2021) and Tran-Dinh et al. (2015), in which more
general properties of these pseudo-self-concordant functions were established. This was fully
formalized in Sun & Tran-Dinh (2019), in which the concept of generalized self-concordant
functions was introduced, along with key bounds, properties, and variants of Newton methods
for the unconstrained setting which make use of this property.

Most algorithms that aim to solve Problem (1.1) assume access to second-order information,
as this often allows the algorithms to make monotonous progress, remain inside the domain
of 𝑓 , and often, converge quadratically when close enough to the optimum. Recently, several
lines of work have focused on using Frank-Wolfe algorithm variants to solve these types of
problems in the projection-free setting, for example constructing second-order approxima-
tions to a self-concordant 𝑓 using first and second-order information, and minimizing these
approximations over X using the Frank-Wolfe algorithm (Liu et al., 2020). Other approaches,
such as the ones presented in Dvurechensky et al. (2020a) (later extended in Dvurechensky
et al. (2020b)), apply the Frank-Wolfe algorithm to a generalized self-concordant 𝑓 , using
first and second-order information about the function to guarantee that the step sizes are
so that the iterates do not leave the domain of 𝑓 , and monotonous progress is made. An
additional Frank-Wolfe variant in that work, in the spirit of Garber & Hazan (2016), utilizes
first and second order information about 𝑓 , along with a Local Linear Optimization Oracle
for X, to obtain a linear convergence rate in primal gap over polytopes given in inequality
description. The authors in Dvurechensky et al. (2020b) also present an additional Frank-
Wolfe variant which does not use second-order information, and uses the backtracking line
search of Pedregosa et al. (2020) to estimate local smoothness parameters at a given iterate.
Other specialized Frank-Wolfe algorithms have been developed for specific problems involv-
ing generalized self-concordant functions, such as the Frank-Wolfe variant developed for
marginal inference with concave maximization (Krishnan et al., 2015), the variant developed
in Zhao & Freund (2020) for 𝜃-homogeneous barrier functions, or the application for phase
retrieval in Odor et al. (2016), where the Frank-Wolfe algorithm is shown to converge on a
self-concordant non-Lipschitz smooth objective.

1.2 Contribution

The contributions of this paper are detailed below and summarized in Table 1.

Simple FW for generalized self-concordant functions. We show that a small variation of
the original Frank-Wolfe algorithm (Frank & Wolfe, 1956) with an open-loop step size of the
form 𝛾𝑡 = 2/(𝑡+2), where 𝑡 is the iteration count is all that is needed to achieve a convergence
rate of O(1/𝑡) in primal gap; this also answers an open question posed in Dvurechensky
et al. (2020b). Our variation ensures monotonous progress while employing an open-loop
strategy which, together with the iterates being convex combinations, ensures that we do not
leave the domain of 𝑓 . In contrast to other methods that depend on either a line search or
second-order information, our variant uses only a linear minimization oracle, zeroth-order
and first-order information and a domain oracle for 𝑓 (x). The assumption of the latter
oracle is very mild and was also implicitly assumed in several of the algorithms presented in
Dvurechensky et al. (2020b). As such, our iterations are much cheaper than those in previous
work, while essentially achieving the same convergence rates for Problem (1.1).

Moreover, our variant relying on the open-loop step size 𝛾𝑡 = 2/(𝑡 +2) allows us to establish a
O(1/𝑡) convergence rate for the Frank-Wolfe gap, is agnostic, i.e., does not need to estimate
local smoothness parameters, and is parameter-free, leading to convergence rates and oracle
complexities that are independent of any tuning parameters.

2

Algorithm Convergence Reference 1st-order / RequirementsPrimal gap FW gap LS free?

FW-GSC O(1/𝜀) [1, Alg.2] ✗ / ✓ SOO
LBTFW-GSC O(1/𝜀) [1, Alg.3] ✓ / ✗ ZOO, DO
MBTFW-GSC O(1/𝜀) [1, Alg.5] ✗ / ✓ ZOO, SOO, DO
FW-LLOO O(log 1/𝜀) [1, Alg.7] ✗ / ✓ polyh. X, LLOO, SOO
ASFW-GSC O(log 1/𝜀) [1, Alg.8] ✗ / ✓ polyh. X, SOO
M-FW O(1/𝜀) O(1/𝜀) This work ✓ / ✓ ZOO,DO
B-AFW O(log 1/𝜀) O(log 1/𝜀) This work ✓ / ✗ polyh. X, ZOO,DO

Table 1: Number of iterations needed to achieve an 𝜀-optimal solution for Problem 1.1. We
denote Dvurechensky et al. (2020b) by [1], line search by LS, local linear optimization oracle
by LLOO, and the assumption that X is polyhedral by polyh. X. The oracles listed under
Requirements are the additional oracles needed, other than the FOO and the LMO.

Faster rates in common special cases. We also obtain improved convergence rates when
the optimum is contained in the interior of X ∩ dom(𝑓), or when the set X is uniformly or
strongly convex, using the backtracking line search of Pedregosa et al. (2020). We also show
that the Away-Step Frank-Wolfe algorithm (Lacoste-Julien & Jaggi, 2015; Wolfe, 1970) can
use the aforementioned line search to achieve linear rates over polytopes. For clarity we want
to stress that any linear rate over polytopes has to depend also on the ambient dimension of
the polytope; this applies to our linear rates and those in Table 1 established elsewhere (see
Diakonikolas et al. (2020)). In contrast the O(1/𝜀) rates are dimension-independent.

Numerical experiments. We provide numerical experiments that showcase the perfor-
mance of the algorithms on generalized self-concordant objectives to complement the theo-
retical results. In particular, they highlight that the simple step size strategy we propose is
competitive with and sometimes outperforms other variants on many instances.

After publication of our initial draft, in a revision of their original work, Dvurechensky et al.
(2020b) added an analysis of the Away-Step Frank-Wolfe algorithm which is complementary
to ours (considering a slightly different setup and regimes) and was conducted independently;
we have updated the tables to include these additional results.

1.3 Preliminaries and Notation

We denote the domain of 𝑓 as dom(𝑓) def
= {x ∈ ℝ𝑛, 𝑓 (x) < +∞} and the (potentially non-

unique) minimizer of Problem (1.1) by x∗. Moreover, we denote the primal gap and the
Frank-Wolfe gap at x ∈ X ∩dom(𝑓) as ℎ(x) def

= 𝑓 (x) − 𝑓 (x∗) and 𝑔(x) def
= maxv∈X ⟨∇ 𝑓 (x), x − v⟩,

respectively. We use ∥·∥, ∥·∥𝐻 , and ⟨·, ·⟩ to denote the Euclidean norm, the matrix norm
induced by a symmetric positive definite matrix 𝐻 ∈ ℝ𝑛×𝑛, and the Euclidean inner product,
respectively. We denote the diameter of X as 𝐷 def

= maxx,y∈X ∥x − y∥. Given a non-empty set
X ⊂ ℝ𝑛 we refer to its boundary as Bd(X) and to its interior as Int (X). We use Δ𝑛 to denote
the probability simplex of dimension 𝑛. Given a compact convex set C ⊆ dom(𝑓) we denote
𝐿C
𝑓
= max

u∈C,d∈ℝ𝑛
∥d∥2∇2 𝑓 (u) /∥d∥22 and 𝜇C

𝑓
= min

u∈C,d∈ℝ𝑛
∥d∥2∇2 𝑓 (u) /∥d∥22. We assume access to:

1. Domain Oracle (DO): Given x ∈ X, return true if x ∈ dom(𝑓), false otherwise.
2. Zeroth-Order Oracle (ZOO): Given x ∈ dom(𝑓), return 𝑓 (x).
3. First-Order Oracle (FOO): Given x ∈ dom(𝑓), return ∇ 𝑓 (x).
4. Linear Minimization Oracle (LMO): Given d ∈ ℝ𝑛, return argminx∈X ⟨x,d⟩.

The FOO and LMO oracles are standard in the FW literature. The ZOO oracle is often
implicitly assumed to be included with the FOO oracle; we make this explicit here for clarity.
Finally, the DO oracle is motivated by the properties of generalized self-concordant functions.
It is reasonable to assume the availability of the DO oracle: following the definition of
the function codomain, one could simply evaluate 𝑓 at x and assert 𝑓 (x) < +∞, thereby
combining the DO and ZOO oracles into one oracle. However, in many cases testing the
membership of x ∈ dom(𝑓) is computationally less demanding than the function evaluation.

3

Remark 1.1. Requiring access to a zeroth-order and domain oracle are mild assumptions,
that were also implicitly assumed in one of the three FW-variants presented in Dvurechensky
et al. (2020b) when computing the step size according to the strategy from Pedregosa et al.
(2020); see Line 3 in Algorithm 6 in the Appendix. The remaining two variants ensure that
x ∈ dom(𝑓) by using second-order information about 𝑓 , which we explicitly do not rely on.

The following example motivates the use of Frank-Wolfe algorithms in the context of general-
ized self-concordant functions. We present more examples in the computational results.
Example 1.2 (Intersection of a convex set with a polytope). Consider Problem (1.1) where
X = P ∩ C, P is a polytope over which we can minimize a linear function efficiently, and C is
a convex compact set for which one can easily build a barrier function.

-1.5

0.0

1.5
3.0

4.5

4.
5

6.07.5

x∗
P

C

(a) Plot of 𝑓 (x).

2.0

4.0

6.0

8.0

x∗

P

C

(b) Plot of 𝑓 (x) + 𝜇′ΦC (x).

-0.5

0.0

0.5

1.0

2.0

4.06.0
8.0

x∗
P

C

(c) Plot of 𝑓 (x) + 𝜇ΦC (x).
Figure 1: Minimizing 𝑓 (x) over P ∩ C, versus minimizing the sum of 𝑓 (x) and ΦC (x) over P
for two different penalty values 𝜇′ and 𝜇 such that 𝜇′ ≫ 𝜇.

Solving a linear optimization problem over X may be extremely expensive. In light of this,
we can incorporate C into the problem through the use of a barrier penalty in the objective
function, minimizing instead 𝑓 (x) + 𝜇ΦC (x) where ΦC (x) is a log-barrier function for C and 𝜇
is a parameter controlling the penalization. This reformulation is illustrated in Figure 1. Note
that if the original objective function is generalized self-concordant, so is the new objective
function (see Proposition 1 in Sun & Tran-Dinh (2019)). We assume that computing the
gradient of 𝑓 (x) + 𝜇ΦC (x) is roughly as expensive as computing the gradient for 𝑓 (x) and
solving an LP over P is inexpensive relative to solving an LP over P ∩ C. The 𝜇 parameter
can be driven down to 0 after a solution converges in a warm-starting procedure similar to
interior-point methods, ensuring convergence to the true optimum.

An additional advantage of this transformation of the problem is the solution structure.
Running Frank-Wolfe on the set P ∩ C could potentially select a large number of extremal
points from Bd(C) if C is non-polyhedral. In contrast, P has a finite number of vertices, a
small subset of which will be selected throughout the optimization procedure. The same
solution as that of the original problem can thus be constructed as a convex combination of a
small number of vertices of P, improving sparsity and interpretability in many applications.

The following definition formalizes the setting of Problem (1.1).
Definition 1.3 (Generalized self-concordant function). Let 𝑓 ∈ 𝐶3 (dom(𝑓)) be a closed
convex function with dom(𝑓) ⊆ ℝ𝑛 open. Then 𝑓 is (𝑀, 𝜈) generalized self-concordant if:

| 〈D3 𝑓 (x) [w]u,u〉 | ≤ 𝑀 ∥u∥2∇2 𝑓 (x) ∥w∥𝜈−2
∇2 𝑓 (x) ∥w∥3−𝜈2 ,

for any x ∈ dom(𝑓) and u,w ∈ ℝ𝑛, where D3 𝑓 (x) [w] = lim
𝛼→0

𝛼−1 (∇2 𝑓 (x + 𝛼w) − ∇2 𝑓 (x)).
2 Frank-Wolfe Convergence Guarantees

We establish convergence rates for a Frank-Wolfe variant with an open-loop step size strategy
on generalized self-concordant functions. The Monotonous Frank-Wolfe (M-FW) algorithm
presented in Algorithm 1 is a simple, but powerful modification of the standard Frank-Wolfe
algorithm, with the only difference that before taking a step, we verify if x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡) ∈
dom(𝑓), and if so, we check whether moving to the next iterate provides primal progress.
Note, that the open-loop step size rule 2/(𝑡 + 2) does not guarantee monotonous primal

4

progress for the vanilla Frank-Wolfe algorithm in general. If either of these two checks fails,
we do not move: the algorithm sets x𝑡+1 = x𝑡 in Line 6 of Algorithm 1.

Algorithm 1 Monotonous Frank-Wolfe (M-FW)

Input: Point x0 ∈ X ∩ dom(𝑓), function 𝑓
Output: Iterates x1, . . . ∈ X
1: for 𝑡 = 0 to . . . do
2: v𝑡 ← argminv∈X ⟨∇ 𝑓 (x𝑡), v⟩
3: 𝛾𝑡 ← 2/(𝑡 + 2)
4: x𝑡+1 ← x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡)
5: if x𝑡+1 ∉ dom(𝑓) or 𝑓 (x𝑡+1) > 𝑓 (x𝑡) then
6: x𝑡+1 ← x𝑡

As customary, we assume short-circuit
evaluation of the logical conditions in
Algorithm 1, i.e., if the first condition in
Line 5 is true, then the second condition
is not even checked, and the algorithm
directly goes to Line 6. This minor mod-
ification of the vanilla Frank-Wolfe algo-
rithm enables us to use the monotonic-
ity of the iterates in the proofs to come,
at the expense of at most one extra func-
tion evaluation per iteration. Note that
if we set x𝑡+1 = x𝑡 , we do not need to

call the FOO or LMO oracle at iteration 𝑡 + 1, as we can simply reuse ∇ 𝑓 (x𝑡) and v𝑡 . This
effectively means that between successive iterations in which we search for an acceptable
value of 𝛾𝑡 , we only need to call the zeroth-order and domain oracle.
Remark 2.1. In practice, one can search for a suitable step size logarithmically, that is,
halving the value of 𝛾𝑡 if either x𝑡+1 ∉ dom(𝑓) or 𝑓 (x𝑡+1) > 𝑓 (x𝑡). This would lead to a
step size that is at most a factor of 2 smaller than the non-zero step size that would have
been eventually accepted by the Monotonous Frank-Wolfe (M-FW) algorithm in Algorithm 1.
Moreover, this strategy would allow us to obtain convergence rates that are very similar to
those of the Monotonous Frank-Wolfe (M-FW) algorithm, with the exception of a factor of 2.
The motivation and implications of this variant are detailed in Appendix A. For simplicity, we
focus on the step size presented in Algorithm 1 in the main body of the paper.

In order to establish the main convergence results for the algorithm, we lower bound the
progress per iteration with the help of Proposition 2.2.
Proposition 2.2. (C.f., (Sun & Tran-Dinh, 2019, Proposition 10)) Given a (𝑀, 𝜈) generalized
self-concordant function, then for 𝜈 ≥ 2, we have that:

𝑓 (y) − 𝑓 (x) − ⟨∇ 𝑓 (x), y − x⟩ ≤ 𝜔𝜈 (𝑑𝜈 (x − y)) ∥y − x∥2∇2 𝑓 (x) , (2.1)

where the inequality holds if and only if 𝑑𝜈 (x, y) < 1 for 𝜈 > 2, and we have that,

𝑑𝜈 (x, y) def
=

{
𝑀 ∥y − x∥ if 𝜈 = 2
(𝜈2 − 1)𝑀 ∥y − x∥3−𝜈 ∥y − x∥𝜈−2

∇2 𝑓 (x) if 𝜈 > 2,

where:

𝜔𝜈 (𝜏) def
=

𝑒𝜏−𝜏−1
𝜏2 if 𝜈 = 2

−𝜏−ln(1−𝜏)
𝜏2 if 𝜈 = 3

(1−𝜏)ln(1−𝜏)+𝜏
𝜏2 if 𝜈 = 4(

𝜈−2
4−𝜈

)
1
𝜏

[
𝜈−2

2(3−𝜈)𝜏
(
(1 − 𝜏) 2(3−𝜈)

2−𝜈 − 1
)
− 1

]
otherwise.

The inequality shown in Equation (2.1) is very similar to the one that we would obtain
if the gradient of 𝑓 were Lipschitz continuous, however, while the Lipschitz continuity of
the gradient leads to an inequality that holds globally for all x, y ∈ dom(𝑓), the inequality
in Equation (2.1) only holds for 𝑑𝜈 (x, y) < 1. Moreover, there are two other important
differences, the norm used in Equation (2.1) is now the norm defined by the Hessian at x𝑡
instead of the ℓ2 norm, and the term multiplying the norm is 𝜔𝜈 (𝑑𝜈 (x, y)) instead of 1/2. We
deal with the latter issue by bounding 𝜔𝜈 (𝑑𝜈 (x, y)) with a constant that depends on 𝜈 for any
x, y ∈ dom(𝑓) such that 𝑑𝜈 (x, y) ≤ 1/2, as shown in Remark 2.3.
Remark 2.3. As d𝜔𝜈 (𝜏)/d 𝜏 > 0 for 𝜏 < 1 and 𝜈 ≥ 2, then 𝜔𝜈 (𝜏) ≤ 𝜔𝜈 (1/2) for 𝜏 ≤ 1/2.

Due to the fact that we use a simple step size 𝛾𝑡 = 2/(𝑡 + 2), that we make monotonous
progress, and we ensure that the iterates are inside dom(𝑓), careful accounting allows us to
bound the number of iterations until 𝑑𝜈 (x𝑡 , x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡)) ≤ 1/2. Before formalizing the
convergence rate we first review a lemma that we will need in the proof.

5

Lemma 2.4. (C.f., (Sun & Tran-Dinh, 2019, Proposition 7)) Let 𝑓 be a generalized self-
concordant function with 𝜈 > 2. If 𝑑𝜈 (x, y) < 1 and x ∈ dom(𝑓) then y ∈ dom(𝑓). For the case
𝜈 = 2 we have that dom(𝑓) = ℝ𝑛.

Putting all these things together allows us to obtain a convergence rate for Algorithm 1.
Theorem 2.5. Suppose X is a compact convex set and 𝑓 is a (𝑀, 𝜈) generalized self-concordant
function with 𝜈 ≥ 2. Then the Monotonous Frank-Wolfe algorithm (Algorithm 1) satisfies:

ℎ(x𝑡) ≤ 4(𝑇𝜈 + 1)
𝑡 + 1

max
{
ℎ(x0), 𝐿L0

𝑓
𝐷2𝜔𝜈 (1/2)

}
. (2.2)

for 𝑡 ≥ 𝑇𝜈, where 𝐿L0
𝑓

= max
u∈L0 ,d∈ℝ𝑛

∥d∥2∇2 𝑓 (u) /∥d∥22 and 𝑇𝜈 is defined as:

𝑇𝜈
def
=

{⌈4𝑀𝐷⌉ − 2 if 𝜈 = 2⌈
2𝑀𝐷 (𝐿L0

𝑓
)𝜈/2−1 (𝜈 − 2)

⌉
− 2 otherwise.

(2.3)

Otherwise it holds that ℎ(x𝑡) ≤ ℎ(x0) for 𝑡 < 𝑇𝜈.

Proof. Consider the compact set L0
def
= {x ∈ dom(𝑓) ∩ X | 𝑓 (x) ≤ 𝑓 (x0)}. As the algorithm

makes monotonous progress and moves towards points such that x𝑡 ∈ X, then x𝑡 ∈ L0 for
𝑡 ≥ 0. As the smoothness parameter of 𝑓 is bounded over L0, we have from the properties of
smooth functions that the bound ∥d∥2∇2 𝑓 (x𝑡) /∥d∥

2 ≤ 𝐿L0
𝑓

holds for any d ∈ ℝ𝑛. Particularizing

for d = x𝑡 − v𝑡 and noting that ∥x𝑡 − v𝑡 ∥ ≤ 𝐷 leads to ∥x𝑡 − v𝑡 ∥2∇2 𝑓 (x𝑡) ≤ 𝐿
L0
𝑓
𝐷2. We then

define 𝑇𝜈 as in Equation (2.3). Note that for 𝑡 ≥ 𝑇𝜈 we have that 𝑑 (x𝑡 , x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡)) ≤ 1/2,
and so as x𝑡 ∈ dom(𝑓) we will have x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡) ∈ dom(𝑓), by application of Lemma 2.4.
This means that the non-zero step size 𝛾𝑡 will ensure that x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡) ∈ dom(𝑓) in Line 5
of Algorithm 1. Moreover, it allows us to use the bound between points x𝑡 and x𝑡 +𝛾𝑡 (v𝑡 − x𝑡)
in Proposition 2.2, which holds for 𝑑 (x𝑡 , x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡)) < 1. With this we can estimate the
primal progress we can guarantee for 𝑡 ≥ 𝑇𝜈 if we move from x𝑡 to x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡):

ℎ(x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡)) ≤ ℎ(x𝑡) − 𝛾𝑡𝑔(x𝑡) + 𝛾2
𝑡 𝜔𝜈 (𝑑𝜈 (x𝑡 , x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡))) ∥v𝑡 − x𝑡 ∥2∇2 𝑓 (x𝑡)

≤ ℎ(x𝑡) (1 − 𝛾𝑡) + 𝛾2
𝑡 𝐿
L0
𝑓
𝐷2𝜔𝜈 (1/2),

where the second inequality follows from the upper bound on the primal gap via the
Frank-Wolfe gap 𝑔(x𝑡), the application of Remark 2.3 as for 𝑡 ≥ 𝑇𝜈 we have that 𝑑𝜈 (x𝑡 , x𝑡 +
𝛾𝑡 (v𝑡 − x𝑡)) ≤ 1/2, and from the fact that x𝑡 ∈ L0 for all 𝑡 ≥ 0. With the previous chain of
inequalities we can bound the primal progress for 𝑡 ≥ 𝑇𝜈 as

ℎ(x𝑡) − ℎ(x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡)) ≥ 𝛾𝑡ℎ(x𝑡) − 𝛾2
𝑡 𝐿
L0
𝑓
𝐷2𝜔𝜈 (1/2). (2.4)

From these facts we can prove the convergence rate shown in Equation (2.2) by induction.
The base case 𝑡 = 𝑇𝜈 holds trivially by the fact that using monotonicity we have that
ℎ(x𝑇𝜈) ≤ ℎ(x0). Assuming the claim is true for some 𝑡 ≥ 𝑇𝜈 we distinguish two cases.
Case 𝛾𝑡ℎ(x𝑡) − 𝛾2

𝑡 𝐿
L0
𝑓
𝐷2𝜔𝜈 (1/2) > 0: Focusing on the first case, we can plug the previous

inequality into Equation (2.4) to find that 𝛾𝑡 guarantees primal progress, that is, ℎ(x𝑡) >
ℎ(x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡)) with the step size 𝛾𝑡 , and so we know that we will not go into Line 6
of Algorithm 1, and we have that ℎ(x𝑡+1) = ℎ(x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡)). Thus using the induction
hypothesis and plugging in the expression for 𝛾𝑡 = 2/(𝑡 + 2) into Equation (2.4) we have:

ℎ(x𝑡+1) ≤ 4 max
{
ℎ(x0), 𝐿L0

𝑓
𝐷2𝜔𝜈 (1/2)

} ((𝑇𝜈 + 1)𝑡
(𝑡 + 1) (𝑡 + 2) +

1
(𝑡 + 2)2

)
≤ 4(𝑇𝜈 + 1)

𝑡 + 2
max

{
ℎ(x0), 𝐿L0

𝑓
𝐷2𝜔𝜈 (1/2)

}
,

where we use that (𝑇𝜈 + 1)𝑡/(𝑡 + 1) + 1/(𝑡 + 2) ≤ 𝑇𝜈 + 1 for all 𝑡 ≥ 0 and any 𝑡 ≥ 𝑇𝜈.
Case 𝛾𝑡ℎ(x𝑡) − 𝛾2

𝑡 𝐿
L0
𝑓
𝐷2𝜔𝜈 (1/2) ≤ 0: In this case, we cannot guarantee that the step size

𝛾𝑡 provides primal progress by plugging into Equation (2.4), and so we cannot guarantee if a
step size of 𝛾𝑡 will be accepted and we will have x𝑡+1 = x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡), or we will simply

6

have x𝑡+1 = x𝑡 , that is, we may go into Line 6 of Algorithm 1. Nevertheless, if we reorganize
the expression 𝛾𝑡ℎ(x𝑡) − 𝛾2

𝑡 𝐿
L0
𝑓
𝐷2𝜔𝜈 (1/2) ≤ 0, by monotonicity we will have that:

ℎ(x𝑡+1) ≤ ℎ(x𝑡) ≤ 2
𝑡 + 2

𝐿L0
𝑓
𝐷2𝜔𝜈 (1/2) ≤ 4(𝑇𝜈 + 1)

𝑡 + 2
max

{
ℎ(x0), 𝐿L0

𝑓
𝐷2𝜔𝜈 (1/2)

}
.

Where the last inequality holds as 2 ≤ 4(𝑇𝜈 + 1) for any 𝑇𝜈 ≥ 0. □

Remark 2.6. In the case where 𝜈 = 2 we can easily bound the primal gap ℎ(x1), as in this
setting dom(𝑓) = ℝ𝑛, which leads to ℎ(x1) ≤ 𝐿X𝑓 𝐷2 from Equation (2.4), regardless of if we
set x1 = x0 or x1 = v0. Moreover, as the upper bound on the Bregman divergence holds for
𝜈 = 2 regardless of the value of 𝑑2 (x, y), we can modify the proof of Theorem 2.5 to obtain a
convergence rate of the form ℎ(x𝑡) ≤ 2/(𝑡 + 1)𝐿X

𝑓
𝐷2𝑤2 (𝑀𝐷) for 𝑡 ≥ 1, which is reminiscient

of the O(𝐿X
𝑓
𝐷2/𝑡) rate of the original Frank-Wolfe algorithm for the smooth and convex case.

Note that in the proof of Theorem 2.5 we explicitly use the progress bound from generalized
self-concordance as opposed to the progress bound that arises from 𝐿L0

𝑓
-smoothness, as there

is no straightforward way to bound the number of iterations until the latter progress bound
holds indefinitely for all x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡), while there is a straightforward criterion on 𝛾𝑡 that
allows us to ensure that the former holds from some point onward (see Remark A.1 in the
Appendix for more details). Furthermore, with this simple step size we can also prove a
convergence rate for the Frank-Wolfe gap, as shown in Theorem 2.7 (see Theorem A.2 in the
Appendix for the proof).
Theorem 2.7. Suppose X is a compact convex set and 𝑓 is a (𝑀, 𝜈) generalized self-concordant
function with 𝜈 ≥ 2. Then if the Monotonous Frank-Wolfe algorithm (Algorithm 1) is run for
𝑇 ≥ 𝑇𝜈 + 6 iterations, we will have that min1≤𝑡≤𝑇 𝑔(x𝑡) ≤ O(1/𝑇).
Remark 2.8. Note that the Monotonous Frank-Wolfe algorithm (Algorithm 1) performs at
most one ZOO, FOO, DO, and LMO oracle call per iteration. This means that Theorems 2.5
and 2.7 effectively bound the number of ZOO, FOO, DO, and LMO oracle calls needed to
achieve a target primal gap or Frank-Wolfe gap accuracy 𝜀 as a function of 𝑇𝜈 and 𝜀; note that
𝑇𝜈 is independent of 𝜀. This is an important difference with respect to existing bounds, as
the existing Frank-Wolfe-style first-order algorithms for generalized self-concordant functions
in the literature that utilize various types of line searches may perform more than one ZOO
or DO call per iteration in the line search. This means that the convergence bounds in terms
of iteration count of these algorithms are only informative when considering the number of
FOO and LMO calls that are needed to reach a target accuracy in primal gap, and do not
directly provide any information regarding the number of ZOO or DO calls that are needed.
In order to bound the latter two quantities one typically needs additional technical tools. For
example, for the backtracking line search of Pedregosa et al. (2020), one can use Theorem
1 in Appendix C of Pedregosa et al. (2020), or a slightly modified version of Lemma 4 in
Nesterov (2013), to find a bound for the number of ZOO or DO calls that are needed to find
an 𝜀-optimal solution. Note that these bounds depend on user-defined initialization or tuning
parameters provided by the user.

In Table 2 we provide a detailed complexity comparison between the Monotonous Frank-
Wolfe (M-FW) algorithm (Algorithm 1), and other comparable algorithms in the literature.

Algorithm SOO calls FOO calls ZOO calls LMO calls DO calls

FW-GSC [1, Alg.2] O(1/𝜀) O(1/𝜀) O(1/𝜀)
LBTFW-GSC‡ [1, Alg.3] O(1/𝜀) O(1/𝜀) O(1/𝜀) O(1/𝜀)
MBTFW-GSC‡ [1, Alg.5] O(1/𝜀) O(1/𝜀) O(1/𝜀) O(1/𝜀) O(1/𝜀)
M-FW† [This work] O(1/𝜀) O(1/𝜀) O(1/𝜀) O(1/𝜀)

Table 2: Complexity comparison: Number of iterations needed to reach a solution with
ℎ(x) below 𝜀 for Problem 1.1. We denote Dvurechensky et al. (2020b) using [1]. We use the
superscript † to indicate that the same complexities hold for reaching an 𝜀-optimal solution in
𝑔(x). The superscript ‡ is used to indicate that constants in the convergence bounds depend
on user-defined inputs; the other algorithms are parameter-free.

7

We note that the LBTFW-GSC algorithm from Dvurechensky et al. (2020b) is in essence the
Frank-Wolfe algorithm with a modified version of the backtracking line search of Pedregosa
et al. (2020). In the next section, we provide improved convergence guarantees for various
cases of interest for this algorithm, which we refer to as the Frank-Wolfe algorithm with
Backtrack (B-FW) for simplicity.

2.1 Improved convergence guarantees

Algorithm 2 Frank-Wolfe with Backtrack of Pe-
dregosa et al. (2020) (B-FW)

Input: x0 ∈ X ∩ dom(𝑓), function 𝑓 , estimate 𝐿−1
Output: Iterates x1, . . . ∈ X
1: for 𝑡 = 0 to . . . do
2: v𝑡 ← argminv∈X ⟨∇ 𝑓 (x𝑡), v⟩
3: 𝛾𝑡 , 𝐿𝑡 ← Backtrack(𝑓 , x𝑡 , v𝑡 − x𝑡 , 𝐿𝑡−1, 1)
4: x𝑡+1 ← x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡)

We will now establish improved con-
vergence rates for various special cases.
We first focus on the assumption
that x∗ ∈ Int (X ∩ dom(𝑓)), obtain-
ing improved rates when we use the
FW algorithm coupled with the adap-
tive step size strategy from Pedregosa
et al. (2020) (see Algorithm 6 in Ap-
pendix).This assumption is reasonable
if for example Bd(X) ⊈ dom(𝑓), and
Int (X) ⊆ dom(𝑓). That is to say, we

will have that x∗ ∈ Int (X ∩ dom(𝑓)) if for example we use logarithmic barrier functions to
encode a set of constraint, and we have that dom(𝑓) is a proper subset of X. In this case the
optimum is guaranteed to be in Int (X ∩ dom(𝑓)).
The analysis in this case is reminiscent of the one in the seminal work of Guélat & Marcotte
(1986), and is presented in Appendix A.2. Note that we can upper bound the value of 𝐿𝑡
for 𝑡 ≥ 0 by �̃� def

= max{𝜏𝐿L0
𝑓
, 𝐿−1}, where 𝜏 > 1 is the backtracking parameter and 𝐿−1 is the

initial smoothness estimate in Algorithm 6 .

Theorem 2.9. Let 𝑓 be a (𝑀, 𝜈) generalized self-concordant function with 𝜈 ≥ 2 and let
dom(𝑓) not contain straight lines. Furthermore, we denote by 𝑟 > 0 the largest value such that
B(x∗, 𝑟) ⊆ X ∩dom(𝑓). Then the Frank-Wolfe algorithm with Backtrack (Algorithm 2) achieves

a convergence rate for 𝑡 ≥ 1 of ℎ(x𝑡) ≤ ℎ(x0)
(
1 − 𝜇L0

𝑓
/(2�̃�) (𝑟/𝐷)2

) 𝑡
.

The assumption that dom(𝑓) does not contain straight lines in Theorem 2.9 is related to the
Hessian being positive definite over dom(𝑓) (see the proof in the Appendix in Theorem A.5).
Note that this is a very mild assumption as we can simply modify the function with a
very small ℓ2 regularizer, as e.g., in Nesterov (2012). Next, we recall the definition of
uniformly convex sets, used in Kerdreux et al. (2021), which will allow us to obtain improved
convergence rates for the FW algorithm over uniformly convex feasible regions.

Definition 2.10 ((𝜅, 𝑞)-uniformly convex set). Given two positive numbers 𝜅 and 𝑞, we
say the set X ⊆ ℝ𝑛 is (𝜅, 𝑞)-uniformly convex with respect to a norm ∥·∥ if for any x, y ∈ X,
0 ≤ 𝛾 ≤ 1, and z ∈ ℝ𝑛 with ∥z∥ = 1 we have that y + 𝛾(x − y) + 𝛾(1 − 𝛾) · 𝜅 ∥x − y∥𝑞 z ∈ X.

Theorem 2.11. SupposeX is a compact (𝜅, 𝑞)-uniformly convex set and 𝑓 is a (𝑀, 𝜈) generalized
self-concordant function with 𝜈 ≥ 2. Furthermore, assume that minx∈X ∥∇ 𝑓 (x)∥ ≥ 𝐶 > 0. Then
the Frank-Wolfe algorithm with Backtrack (Algorithm 2) achieves a convergence rate of:

ℎ𝑡 ≤

ℎ(x0)

(
1 − 1

2 min
{
1, 𝜅𝐶

�̃�

}) 𝑡
if 𝑞 = 2

ℎ (x0)
2𝑡 if 𝑞 > 2, 1 ≤ 𝑡 ≤ 𝑡0
�̃�𝑞/(𝑞−2) /(𝜅𝐶)2/(𝑞−2)

(1+(𝑞−2) (𝑡−𝑡0)/(2𝑞))𝑞/(𝑞−2) = O
(
𝑡−𝑞/(𝑞−2)) if 𝑞 > 2, 𝑡 > 𝑡0,

for 𝑡 ≥ 1, where 𝑡0 = max{1, ⌊log1/2 ((�̃�𝑞/(𝜅𝐶)2)1/(𝑞−2)ℎ(x0)⌋}.

However, in the general case, we cannot assume that the norm of the gradient is bounded
away from zero over X. We deal with the general case in Theorem 2.12

Theorem 2.12. SupposeX is a compact (𝜅, 𝑞)-uniformly convex set and 𝑓 is a (𝑀, 𝜈) generalized
self-concordant function with 𝜈 ≥ 2 for which the domain does not contain straight lines. Then

8

the Frank-Wolfe algorithm with Backtrack (Algorithm 2) results in a convergence rate:

ℎ𝑡 ≤

ℎ (x0)

2𝑡 if 1 ≤ 𝑡 ≤ 𝑡0
(�̃�𝑞/(𝜅2𝜇

L0
𝑓
))1/(𝑞−1)

(1+(𝑞−1) (𝑡−𝑡0)/(2𝑞))𝑞/(𝑞−1) = O
(
𝑡−𝑞/(𝑞−1)) if 𝑡 > 𝑡0,

for 𝑡 ≥ 1, where 𝑡0 = max{1, ⌊log1/2 ((�̃�𝑞/(𝜅2𝜇L0
𝑓
))1/(𝑞−1)/ℎ(x0))⌋}.

In Table 3 in Appendix A.2 we summarize the oracle complexity results shown in this paper
for the B-FW algorithm when minimizing over a (𝜅, 𝑞)-uniformly convex set. Note that this
algorithm is referred to as LBTFW-GSC in Dvurechensky et al. (2020b).

Remark 2.13. Contrary to previous claims, there is no obstacle for the Away-step Frank-Wolfe
(AFW) algorithm (Guélat & Marcotte, 1986; Lacoste-Julien & Jaggi, 2015) together with
the step size strategy in Algorithm 6 to obtain a linear convergence rate in primal and
Frank-Wolfe gap when X is a polytope and 𝑓 is generalized self-concordant. This is not
surprising, as 𝑓 is strongly convex and smooth over L0 if dom(𝑓) does not contain straight
lines, and monotonicity ensures the feasibility of the iterates. We leave the analysis for this
case to Appendix B, and the formal convergence statement to Theorem B.2 and B.3.

In Table 4 in Appendix B we provide a complexity comparison between the B-AFW algorithm,
which can be found in Algorithm 7 in the appendix, and other comparable algorithms in the
literature. Note that these complexities assume that X is polyhedral.

3 Computational experiments

We showcase the performance of the M-FW algorithm, the second-order step size and the
LLOO algorithm from Dvurechensky et al. (2020b) (denoted by GSC-FW and LLOO in the
figures) and the Frank-Wolfe and the Away-Step Frank-Wolfe algorithm with the backtracking
stepsize of Pedregosa et al. (2020), denoted by B-FW and B-AFW respectively. All experiments
are carried out in Julia using the FrankWolfe.jl package (Besançon et al., 2021), and
the examples considered extend the ones presented in Dvurechensky et al. (2020b) and Liu
et al. (2020). The code can be found in the fw-generalized-selfconcordant repository.
We also use the vanilla FW algorithm denoted by FW, which is simply Algorithm 1 without
Lines 5 and 6 using the traditional 𝛾𝑡 = 2/(𝑡 + 2) open-loop step size rule. Note that there
are no formal convergence guarantees for this algorithm when applied to Problem (1.1).
Details and remarks on the data and the experimental setup are provided in Appendix C.
All figures show the evolution of the ℎ(x𝑡) and 𝑔(x𝑡) against 𝑡 and time with a log-log scale.
As in Dvurechensky et al. (2020b) we implemented the LLOO based variant only for the
portfolio optimization instance Δ𝑛; for the other examples, the oracle implementation was
not implemented due to the need to estimate non-trivial parameters.

As can be seen in all experiments, the Monotonous Frank-Wolfe algorithm is very competitive,
outperforming previously proposed variants in both in progress per iteration and time. The
only other algorithm that is sometimes faster is the Away-Step Frank-Wolfe variant as detailed
in Remark 2.13, which however depends on an active set, and can induce up to a quadratic
overhead, making iterations progressively more expensive; this can also be observed in our
experiments as the advantage in time is much less pronounced than in iterations.

Portfolio optimization. We consider 𝑓 (x) = −∑𝑝

𝑡=1 log(⟨r𝑡 , x⟩), where 𝑝 denotes the number
of periods and X = Δ𝑛. The results are shown in Figure 2.

Signal recovery with KL divergence. We apply the aforementioned algorithms to the
recovery of a sparse signal from a noisy linear image using the Kullback-Leibler divergence,
expressed as 𝑓 (x) = 𝐷 (𝑊x, y) = ∑𝑁

𝑖=1

{
⟨w𝑖 , x⟩ log

(
⟨w𝑖 ,x⟩
𝑦𝑖

)
− ⟨w𝑖 , x⟩ + 𝑦𝑖

}
, where w𝑖 is the 𝑖th

row of a matrix 𝑊 . In order to promote sparsity and enforce nonnegativity of the solution,
we use the unit simplex of radius 𝑅 as the feasible set X = {x ∈ ℝ𝑑+ , ∥x∥1 ≤ 𝑅}. The results
are shown in Figure 3. We used the same 𝑀 = 1 choice for the second-order method as in
Dvurechensky et al. (2020b) for comparison; its admissibility is unknown (see Remark C.1).

9

https://github.com/ZIB-IOL/fw-generalized-selfconcordant

Logistic regression. We consider a logistic regression task with a design matrix with
rows a𝑖 ∈ ℝ𝑛 with 1 ≤ 𝑖 ≤ 𝑁 and a vector y ∈ {−1, 1}𝑁 and formulate the problem
with elastic net regularization, in a similar fashion as is done in Liu et al. (2020), with
𝑓 (x) = 1/𝑁 ∑𝑁

𝑖=1 log(1 + exp(−𝑦𝑖 ⟨x, a𝑖⟩)) + 𝜇/2 ∥x∥2, where 𝜇 is a regularization parameter
and X is the ℓ1 ball of radius 𝜌. The results can be seen in Figure 4 and Appendix C.

Birkhoff polytope. All previously considered applications have in common a feasible region
possessing computationally inexpensive LMOs (probability/unit simplex and ℓ1 norm ball).
Additionally, each vertex returned from the LMO is highly sparse with at most one non-zero
element. To complement the results, we consider a convex quadratic optimization problem
over the Birkhoff polytope, where the LMO call uses the Hungarian method and is not as
inexpensive as in the other examples. The results are shown in Figure 5.

100 101 102 103

Iteration

10−10

10−6

10−2

ℎ
(x
C)

10−1 101 103

Time [s]
100 101 102 103

Iteration

10−5

10−3

10−1

101

6
(x
C)

10−1 101 103

Time [s]

M-FW

FW

B-FW

B-AFW

GSC-FW

LLOO

Figure 2: Portfolio Optimization: LLOO and GSC-FW perform similarly to FW on a per-iteration
basis but the iterations are computationally more expensive. B-AFW is the fastest method
both in terms iteration and runtime, followed by M-FW which is the only other method to
terminate with the specified dual gap tolerance.

100 101 102 103

Iteration

10−3

100

103

ℎ
(x
C)

10−1 101 103

Time [s]
100 101 102 103

Iteration

101

103

105

6
(x
C)

10−1 101 103

Time [s]

M-FW

FW

B-FW

B-AFW

GSC-FW

Figure 3: Signal Recovery: B-AFW significantly outperforms all other methods. FW and B-FW
perform similarly in dual gap progress and converge slower than M-FW. In terms of primal
gap progress, M-FW and FW perform similarly and outperform B-FW.

100 102 104

Iteration

10−11

10−8

10−5

10−2

ℎ
(x
C)

10−1 101 103

Time [s]
100 102 104

Iteration

10−6

10−4

10−2

100

6
(x
C)

M-FW

FW

B-FW

B-AFW

GSC-FW

10−1 101 103

Time [s]

Figure 4: Logistic Regression: This instance shows that although simple in essence, M-FW
can outperform other methods including B-AFW in terms of convergence. The primal and
dual gaps for B-FW and GSC-FW converge at similar rates against iteration count.

100 102 104

Iteration

10−11

10−7

10−3

101

ℎ
(x
C)

10−1 101

Time [s]
100 102 104

Iteration

10−6

10−4

10−2

100

6
(x
C)

10−1 101

Time [s]

M-FW

FW

B-FW

B-AFW

GSC-FW

Figure 5: Birkhoff Polytope: B-AFW is the fastest-converging method for all measures.
However, the dual gap reaches a plateau due to numerical issues above the termination
threshold, unlike M-FW which reaches the dual gap tolerance. GSC-FW is run for 1000 iterations
only given the longer runtime. Its slow progress is likely due to numerical instabilities in the
Hessian computation which do not occur in first-order methods.

10

Acknowledgements

Research reported in this paper was partially supported through the Research Campus
Modal funded by the German Federal Ministry of Education and Research (fund numbers
05M14ZAM,05M20ZBM) and the Deutsche Forschungsgemeinschaft (DFG) through the DFG
Cluster of Excellence MATH+. We would like to thank the anonymous reviewers for their
suggestions and comments.

References

Bach, F. Self-concordant analysis for logistic regression. Electronic Journal of Statistics, 4:
384–414, 2010.

Besançon, M., Carderera, A., and Pokutta, S. FrankWolfe.jl: a high-performance and
flexible toolbox for Frank-Wolfe algorithms and conditional gradients. arXiv preprint
arXiv:2104.06675, 2021.

Carderera, A., Besançon, M., and Pokutta, S. Frank-Wolfe for Generalized Self-Concordant
Functions - Problem Instances, May 2021. URL https://doi.org/10.5281/zenodo.
4836009.

Csiszar, I. Why least squares and maximum entropy? An axiomatic approach to inference for
linear inverse problems. The annals of statistics, 19(4):2032–2066, 1991.

Diakonikolas, J., Carderera, A., and Pokutta, S. Locally accelerated conditional gradients. In
Proceedings of the 23th International Conference on Artificial Intelligence and Statistics, pp.
1737–1747. PMLR, 2020.

Dvurechensky, P., Ostroukhov, P., Safin, K., Shtern, S., and Staudigl, M. Self-concordant
analysis of Frank-Wolfe algorithms. In Proceedings of the 37th International Conference on
Machine Learning, pp. 2814–2824. PMLR, 2020a.

Dvurechensky, P., Safin, K., Shtern, S., and Staudigl, M. Generalized self-concordant analysis
of Frank-Wolfe algorithms. arXiv preprint arXiv:2010.01009, 2020b.

Frank, M. and Wolfe, P. An algorithm for quadratic programming. Naval research logistics
quarterly, 3(1-2):95–110, 1956.

Garber, D. and Hazan, E. A linearly convergent variant of the conditional gradient algorithm
under strong convexity, with applications to online and stochastic optimization. SIAM
Journal on Optimization, 26(3):1493–1528, 2016.

Guélat, J. and Marcotte, P. Some comments on Wolfe’s ‘away step’. Mathematical Program-
ming, 35(1):110–119, 1986.

Jaggi, M. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Proceedings
of the 30th International Conference on Machine Learning, pp. 427–435. PMLR, 2013.

Kerdreux, T., d’Aspremont, A., and Pokutta, S. Restarting Frank-Wolfe. In Proceedings of the
22nd International Conference on Artificial Intelligence and Statistics, pp. 1275–1283. PMLR,
2019.

Kerdreux, T., d’Aspremont, A., and Pokutta, S. Projection-free optimization on uniformly
convex sets. In Proceedings of the 24th International Conference on Artificial Intelligence and
Statistics, pp. 19–27. PMLR, 2021.

Krishnan, R. G., Lacoste-Julien, S., and Sontag, D. Barrier Frank-Wolfe for Marginal Inference.
In Proceedings of the 28th Conference in Neural Information Processing Systems. PMLR, 2015.

Lacoste-Julien, S. and Jaggi, M. On the global linear convergence of Frank-Wolfe optimization
variants. In Proceedings of the 29th Conference on Neural Information Processing Systems,
pp. 566–575. PMLR, 2015.

11

https://doi.org/10.5281/zenodo.4836009
https://doi.org/10.5281/zenodo.4836009

Levitin, E. S. and Polyak, B. T. Constrained minimization methods. USSR Computational
Mathematics and Mathematical Physics, 6(5):1–50, 1966.

Liu, D., Cevher, V., and Tran-Dinh, Q. A Newton Frank-Wolfe method for constrained
self-concordant minimization. arXiv preprint arXiv:2002.07003, 2020.

Marron, J. S., Todd, M. J., and Ahn, J. Distance-weighted discrimination. Journal of the
American Statistical Association, 102(480):1267–1271, 2007.

Marteau-Ferey, U., Ostrovskii, D., Bach, F., and Rudi, A. Beyond least-squares: Fast rates for
regularized empirical risk minimization through self-concordance. In Proceedings of the
32nd Conference on Learning Theory, pp. 2294–2340. PMLR, 2019.

Nesterov, Y. How to make the gradients small. Optima. Mathematical Optimization Society
Newsletter, (88):10–11, 2012.

Nesterov, Y. Gradient methods for minimizing composite functions. Mathematical Program-
ming, 140(1):125–161, 2013.

Nesterov, Y. Lectures on convex optimization, volume 137. Springer, 2018.

Nesterov, Y. and Nemirovskii, A. Interior-point polynomial algorithms in convex programming.
SIAM, 1994.

Odor, G., Li, Y.-H., Yurtsever, A., Hsieh, Y.-P., Tran-Dinh, Q., El Halabi, M., and Cevher, V.
Frank-wolfe works for non-lipschitz continuous gradient objectives: scalable poisson phase
retrieval. In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 6230–6234. Ieee, 2016.

Ostrovskii, D. M. and Bach, F. Finite-sample analysis of M-estimators using self-concordance.
Electronic Journal of Statistics, 15(1):326–391, 2021.

Pedregosa, F., Negiar, G., Askari, A., and Jaggi, M. Linearly convergent Frank–Wolfe with
backtracking line-search. In Proceedings of the 23rd International Conference on Artificial
Intelligence and Statistics. PMLR, 2020.

Sun, T. and Tran-Dinh, Q. Generalized self-concordant functions: a recipe for Newton-type
methods. Mathematical Programming, 178(1):145–213, 2019.

Temlyakov, V. Greedy approximation in convex optimization. Constructive Approximation, 41
(2):269–296, 2015.

Tran-Dinh, Q., Li, Y.-H., and Cevher, V. Composite convex minimization involving self-
concordant-like cost functions. In Modelling, Computation and Optimization in Information
Systems and Management Sciences, pp. 155–168. Springer, 2015.

Wolfe, P. Convergence theory in nonlinear programming. In Integer and Nonlinear Program-
ming, pp. 1–36. North-Holland, Amsterdam, 1970.

Zhao, R. and Freund, R. M. Analysis of the Frank-Wolfe method for logarithmically-
homogeneous barriers, with an extension. arXiv preprint arXiv:2010.08999, 2020.

12

