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Abstract

Supervised fine-tuning (SFT) on chain-of-thought data induces brittleness in lan-
guage models, improving reasoning capabilities while severely degrading general
performance. We provide the first mechanistic explanation for this trade-off through
three complementary techniques: crosscoders for mapping feature transformations,
Fisher Information-based identification of causal features, and gradient blocking
for intervention experiments. Our analysis reveals that SFT operates through
two distinct mechanisms—repurposing shared features for reasoning tasks and
suppressing base-only features. Fisher Information with Sparse Autoencoders
identifies the specific features responsible for reasoning, validated through fea-
ture steering that achieves 3.46% performance gains on base models. Crosscoder
analysis demonstrates that SFT repurposes existing reasoning capabilities in the
base model rather than creating new ones. Gradient blocking experiments prove
these mechanisms are separable: blocking shared features eliminates reasoning
entirely, while blocking base-only features preserves it, demonstrating that base
feature suppression is unnecessary for reasoning. This mechanistic understanding
provides the foundation for developing surgical training methods that preserve
general capabilities while enhancing reasoning.

1 Introduction

Supervised fine-tuning (SFT) on chain-of-thought data is the standard method for enhancing reasoning
in language models [8], yet it systematically induces brittleness: mathematical reasoning in Qwen3-
4B improves by 62%, but non-reasoning capabilities collapse by 47%. This trade-off persists across
model families, leaving practitioners reliant on solutions like KL regularization or RLVR whose
mechanisms remain opaque. We provide the first mechanistic explanation for SFT-induced brittleness.
Using crosscoders [[13]], Fisher Information-based feature identification, and a novel intervention
called gradient blocking, we discover that SFT operates through two distinct mechanisms: (1)
learning through repurposing existing shared features, and (2) suppression of base-only features—an
unnecessary side effect. Our contributions include:

1. Mechanistic characterization of SFT. Using crosscoders, we discover that SFT operates through
two distinct processes: repurposing shared features for reasoning, and suppressing base-only
features. This provides the first mechanistic explanation for SFT-induced brittleness.

2. Identification and localization of reasoning features. We develop a Fisher Information-based
method with Sparse Autoencoders that identifies reasoning features. Feature steering validates
these are causal, achieving 3.46% performance gains on the base models and outperforming exist-
ing feature identification methods. Crosscoder analysis reveals these features maintain their direc-
tion after finetuning, proving that SFT repurposes existing features rather than creating new ones.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Mechanistic Inter-
pretability Workshop.



3. Causal proof of mechanism separability via gradient blocking. We introduce gradient
blocking to selectively freeze feature subsets during training. Blocking shared features eliminates
reasoning entirely, proving their modification is necessary for learning. Blocking base-only
features preserves reasoning, suggesting their suppression is unnecessary for reasoning.

2 Methodology

Identifying Causal Reasoning Features. A mechanistic account of how SFT affects reasoning
requires identification of the specific, interpretable features that constitute this capability. We employ
SAEs [2] to decompose model activations h € R? into sparse feature representations, where f;(h)
denotes the activation of feature j. Following theoretical insights connecting Fisher Information
to feature importance [18]], we leverage the property that a feature’s squared activation provides a
tractable proxy for its causal influence (see Appendix [A.T)) to identify reasoning-specific features, and
seek features that are differentially activated during reasoning versus solution generation. Using the
OpenThoughts-114k dataset [S]], which delineates reasoning traces and final answers from Deepseek-
R1 [6]], we compute an importance ratio for each feature j:
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where Dieasoning and Dyoruion denote distributions of activations from reasoning and solution tokens,
respectively, with € = 10~® for numerical stability. Features exhibiting high importance ratios with
substantial absolute activation magnitudes on reasoning traces are selected as candidate reasoning
features.

Mapping Feature Transformations with Crosscoders. To characterize how different finetun-
ing paradigms transform the feature space, we employ crosscoders [[13] to perform systematic
model comparison. For any base model My, and a model Mgpemnea Obtained through a fine-
tuning paradigm (SFT, RLVR), a crosscoder learns a unified feature dictionary that simultane-
ously reconstructs activations from both models. Given activation pairs (Abase; Minetunea) from
corresponding positions in both models, the crosscoder computes shared feature activations:
f(z;) =ReLU gzme{bawﬁnetumd Wah™(z;) + be”CS where W™ € R9** are model-specific
encoders mapping activations to k features. The activations are reconstructed using separate de-
coders: h™(x;) = WL f(z;) + b, where W € R**4 are model-specific decoders. The fine-
tuning objective minimizes reconstruction error plus sparsity penalty weighted by decoder norms:
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To quantify feature transformations across finetuning paradigms, we compute the relative importance
of each feature through its decoder norms. We define a normalized ratio metric:
(Wi 12 — W™ ll2) / masx; (|| Waee,il|2) + 1

NormRatio(j) = dec,y dec,) 5 2)

where the normalization ensures comparability across features. This ratio maps to [0, 1], with values
near 0 indicating features primarily reconstructing the finetuned model’s activations, values near 0.5
indicating features contributing equally to both models, and values near 1 indicating features primarily
reconstructing the base model’s activations. Based on empirical distribution analysis across multiple
finetuning paradigms, we partition the feature space into three categories: Base-only features
(NormRatio > 0.6) exhibit high decoder norm in My, relative to Mipeuned, indicating features
that are suppressed or diminished during finetuning. Shared features (0.4 < NormRatio < 0.6)
maintain comparable decoder norms across both models, representing features preserved during
finetuning. Finetuning-specific features (NormRatio < 0.4) show high decoder norm in Mipetuned
relative to Myqse, corresponding to features that emerge or amplify during finetuning. This crosscoder
framework enables systematic comparison of how different finetuning paradigms mechanistically
transform the feature space.

Causal Validation with Gradient Blocking. To establish causal relationships between feature
transformations and model capabilities, we introduce gradient blocking, a training-time intervention
that selectively prevents modification of specified feature subsets during finetuning. Given a target
feature subset S C {1, ..., k} identified from the crosscoder analysis (e.g., all shared features), we



initiate a new finetuning procedure from My, Where features in S remain frozen. For each forward
pass with activation z € R%, we decompose the activation using the base model’s SAE weights. Let
whae, € R™I5] and Wbase € RIS1*4 denote the encoder and decoder weights correspondmg to

subset S. We compute the protected component as Tg = W('j’:jes ReLU((W';“C“’S) x).

&

The modified forward pass applies stop-gradient to prevent backpropagation through the protected
comﬁ)onent Tnew = Sg[Es]| + (v — &s). where sg[-] denotes the stop-gradient operation that sets

9selyl — (), This ensures gradients flow only through the unprotected component (z — &), preventing
dlrect optimization of features in .S. By comparing model performance across different blocking
configurations, we determine which feature transformations are causally necessary for capability
acquisition.

3 Experiments and Results

3.1 Experimental Setup

Unless otherwise specified, all experiments finetune Qwen3-4B-Base [25] on a 47,000-example math
dataset constructed by combining low-difficulty problems from DeepScaler [[15] and high-difficulty
problems (levels 3-5) from SimpleRL [26]. We compare the base model against variants finetuned
with several paradigms. For Supervised Finetuning (SFT), chain-of-thought traces are generated by a
teacher model and filtered with rejection sampling; we test both within-family teachers (Qwen3-14B,
Qwen3-32B,Qwen3-235B) and a cross-family teacher (gpt-oss-20B). We also evaluate Reinforce-
ment Learning with Verifiable Rewards (RLVR), where rewards are based on ground-truth final an-
swers, and SFT with a KL-divergence penalty (A = 0.1) against the base model’s output distribution.

To measure capability gains and robustness degradation, we evaluate all models on a suite of
benchmarks [9]. These are grouped into four categories: (1) Math Reasoning (AIME, MATHS500,
OlympiadBench), (2) Other Reasoning (LiveCodeBench, GPQA-Diamond, ACPBench, HeadQA),
(3) General Reasoning & Commonsense QA (CommonsenseQA, LogiQA, OpenBookQA, PIQA,
RACE, SciQ, SociallQa), and (4) Non-Reasoning (IFEval, MC-TACO). Our detailed list of bench-
marks is in Appendix [C.2] and our scoring metrics are in Appendix [C.3]

3.2 Results

RQ1: Does SFT cause brittleness in reasoning models? Our experiments confirm that SFT
systematically induces brittleness. Table [I|demonstrates this fundamental trade-off on Qwen3-4B-
Base. Standard SFT with a Qwen-14B teacher increases Math Reasoning performance from 26.1%
to 42.2% (+62% relative gain). However, this improvement coincides with a severe degradation in
Non-Reasoning capabilities, which decline from 58.1% to 31.0% (-47% relative loss). This pattern
persists across various model sizes and families (Appendix[D.T). Alternative paradigms show this
trade-off is not inevitable. RLVR maintains Non-Reasoning performance at 60.6%, while SFT
with KL regularization achieves the best overall balance. These divergent outcomes motivate our
investigation into the underlying mechanistic differences.

Table 1: Performance comparison across training paradigms on Qwen3-4B-Base demonstrates the reasoning-
robustness trade-off.

Training Method Math Reasoning  Other Reasoning  General R ing  Non-R ing
Base Model 26.1% 14.5% 43.4% 58.1%
SFT (14B Teacher) 42.2% 32.4% 38.9% 31.0%
RLVR 29.8% 16.9% 43.5% 60.6%
SFT + KL Reg 37.5% 34.0% 50.6% 46.2%

RQ2: How does SFT mechanistically transform features? Crosscoder analysis reveals that SFT
transforms the model’s feature space through two distinct mechanisms (Figure[I)). The crosscoder
characterizes transformations through decoder norm ratios and directional alignment. The dominant
pattern is preservation: 95% of features are Shared, maintaining norm ratios between 0.4 and
0.6 with cosine similarities near 1.0 between their base and finetuned decoder directions. These
features preserve their core semantic function. The vast majority of representational capacity remains
structurally intact, with new capabilities emerging through modified activation patterns of existing



features rather than fundamental reorganization. The remaining 5% of features undergo more extreme
transformations. Base-only features (norm ratio > 0.6) experience active suppression, often exhibiting
negative cosine similarity, which indicates a geometric inversion of their function. In contrast, SFT-
only features (norm ratio < 0.4) emerge or are amplified. This indicates SFT learns primarily by
modifying the activation patterns of existing features.

RQ3: How can we identify and locate reasoning fea-
tures within the SFT transformation? Our Fisher SFT NormRato istogram
Information-based method successfully identifies features
that are causally responsible for reasoning. Causal vali-
dation experiments on Llama-3.1-8B confirm the efficacy
of our method, with feature steering improving reasoning
performance by 3.46%, outperforming the ReasonScore
baseline [3] (see Appendix [B]for full results). The critical
finding, shown in Figure/[I] is that these top 50 causal rea- P
soning features (red dots) are not distributed randomly but oo Do

Cosine Similarity (Base vs SFT)
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ratios between 0.35 and 0.4 in our Qwen experiments. gjgyre 1: Qwen3-4B-Base SFT: Cosine sim-
This demonstrates that SFT imparts reasoning capabili- jjarity vs NormRatio. Red dots indicate top
ties by repurposing a specific subset of features that were 50 reasoning features, which concentrate in
less prominent in the base model but are amplified for the 0.35-0.4 norm ratio range.

the finetuned task. The identified features correspond to

interpretable patterns, such as (1) Uncertainty Quantification (‘perhaps‘, ‘might‘), (2) Reasoning
Transitions (‘therefore®, ‘thus‘), and (3) Problem Decomposition (‘let’s think*).

RQ4: What transformations preserve robustness across paradigms? Comparative analysis
reveals systematic relationships between transformation patterns and robustness. Figure [2]illustrates
these distinct signatures. RLVR exhibits a preservationist strategy, with a sharp unimodal distribution
centered at norm ratio 0.5. This preservation correlates with its superior 60.6% non-reasoning
performance. KL-regularized SFT displays a more constrained pattern with more shared features
than standard SFT, explaining its balanced performance. Teacher model selection also significantly
influences these transformations, as shown in Figure 3] Crosscoder analysis reveals that finetuning
with within-family teachers (e.g., Qwen-14B, Qwen-32B) results in a high degree of shared features.
In contrast, cross-family finetuning (with gpt-oss-20B) creates a larger population of SFT-only
features and exhibits worse robustness. The consistent finding is that methods constraining shared
feature modifications better preserve general capabilities.
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Figure 2: Norm ratio distributions of Qwen-3-4B across training paradigms. (Left) Standard SFT with 14B
teacher shows broad transformation. (Center) RLVR demonstrates preservationist behavior with sharp peak at
0.5. (Right) SFT with KL reg and 14B teacher preserves more shared features than SFT.

RQS5: Can we selectively control these mechanisms? Gradient blocking experiments establish
the causal necessity of different feature transformations for reasoning acquisition. Table 2]shows that
blocking Shared features completely eliminates mathematical reasoning capability, proving their
modification is essential. Conversely, blocking Base-only features maintains reasoning performance
(42.6%), demonstrating that their suppression is an unnecessary side effect, not a requirement for
learning reasoning. Despite this separability, perfect control remains elusive. Blocking base-only
features does not restore non-reasoning capabilities (29.6% vs. base 58.1%). This is due to two factors:
(1) gradient leakage, where models adapt to modify even protected features under optimization
pressure (see visualizations in Appendix [E), and (2) brittleness is also caused by the repurposing
of Shared features, not just the suppression of Base-only features.
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Figure 3: Teacher model family effects on feature transformations. (Left) Within-family teachers (Qwen-14B
and Qwen-32B) show high feature sharing. (Right) Cross-family comparison (Qwen-14B vs. gpt-0ss-20B)
reveals more SFT-specific features with gpt-oss-20B.

Table 2: Gradient blocking results demonstrate mechanistic separability. Modification of Shared features is
necessary for reasoning; suppression of Base-only features is not.

Blocked Subset Math Avg.  Other Reasoning  General Reasoning  Non-Reasoning

None (Control) 42.2% 32.4% 38.9% 31.0%
Shared (95%) 0.0% 6.2% 26.1% 42.9%
Base-only (1.5%) 42.6% 32.5% 40.6% 29.6%
SFT-only (3.5%) 42.8% 31.8% 40.9% 31.2%

4 Conclusion and Future Work

We have demonstrated that SFT-induced brittleness stems from two mechanistically separable pro-
cesses: necessary repurposing of shared features for reasoning and unnecessary suppression of
base-only features. This mechanistic understanding explains why alternative paradigms like RLVR
achieve better robustnes. Future work should exploit this separability to develop surgical training
methods that selectively modify reasoning-relevant features while preserving base capabilities.
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A Theoretical Foundations for Feature Identification

A.1 Fisher Information as a Proxy for Causal Feature Influence

In Section 2] our feature identification method relies on the insight that a feature’s squared activation
can serve as a proxy for its causal importance. This appendix provides the theoretical justification for
this connection, showing that under the condition of a well-trained SAE, the second moment of a
feature’s activation is approximately proportional to the trace of the Fisher Information Matrix (FIM)
of its decoder weights.

Theorem A.1 (Approximate Fisher Information from SAE Features). Let a sparse autoencoder (SAE)
be defined by its reconstruction & = f(x)W ge, where x € RP is the input activation, f(z) € RE
are the sparse feature activations, and W g, € REXD gre the decoder weights. The reconstruction
loss is given by L(z) = 1||& — x||%. If the SAE is well-trained such that the reconstruction error is
small with high probability, then for each feature j, the trace of the FIM with respect to its decoder
weights 8; . is approximately proportional to the second moment of that feature’s activation:

Tr(1(0;.)) ~ Eanplf;(x)? 3)

Proof. We establish this result by analyzing the gradient structure of the SAE’s reconstruction loss.

Step 1: Gradient of Decoder Weights. By definition, the reconstruction loss is L(z) =
111 f(2)Wgee — z||>. We compute the gradient with respect to the j-th row of the decoder ma-

trix, denoted 0. € RP:

1
V97£(1’) = Vej,- §||f(x)wdec - ‘TH2 4)
By the chain rule for vector derivatives, we have:
Veg‘c(x) = (f(l')Wdec - l‘) : V9j,. (f(x)wdec) (5)

Since the term f(2) W is linear in ;. with coefficient f;(z) (the activation of the j-th feature),
the gradient of the term is simply f;(z) - Ip, where Ip is the D-dimensional identity matrix. This
simplifies to:

Vo, L(z) = fj(x)(& —x) (6)

Step 2: Expected Squared Gradient Norm. Next, we compute the squared ¢5-norm of this
gradient vector and take its expectation over the data distribution D:

Ve, L(2)I? = 1 £;(2)(@ — 2)|* = fi()?[l& — 2| ©)
Eo~pl| Ve, L(2)|IP) = Eonp[f;(2)?[|E — z]?] ®

Step 3: Analysis in the Small Error Regime. For a well-trained SAE, the reconstruction error is
small. We can formalize this by assuming there exist small constants ¢ > 0 and § > 0 such that the
squared reconstruction error is bounded with high probability:

P(|lzd —z|*<c?)>1-06 )
Under this condition, the expectation is dominated by the high-probability case where ||# — z||? ~ 2,
and the contribution from the low-probability (< J) failure case is negligible. This allows the
approximation:

Eonplfi(@)?[1# — 2l|”] & Eonp[f(2)? - €] = *Eonp[f;(2)?] (10)

Step 4: Connection to Fisher Information. The Fisher Information Matrix (FIM) for the parameter
vector §; . is defined as the expectation of the outer product of the gradient of the log-likelihood. For
our mean squared error loss, this is:

1(0;.) = Exnp[Ve, L(x)Ve, L(z)"] (11)

The trace of the FIM measures the total sensitivity of the loss to changes in the parameter 6; ., and is
precisely the expected squared gradient norm:

Tr(1(0;.)) = Eonpll| Vo, L(2)]|°] (12)

Combining our results, we arrive at the final approximation:
Tr(1(0;,.)) ~ Euon(fi(2)?] (13)
O



Interpretation. The proof above establishes that the expected squared activation E[f;(x)?] serves
as a natural and computationally efficient proxy for the trace of the Fisher Information Matrix of a
feature’s decoder. Since the trace of the FIM measures the model’s overall output sensitivity to a
feature’s parameters, features with higher average squared activations are those to which the model’s
reconstruction is most sensitive. This justifies our use of the Importance Ratio (Eq.[I) to identify
features that are most causally influential specifically within the context of reasoning traces.

B Feature Identification and Steering Validation (Llama-3.1-8B)

To validate our feature identification methodology before applying it to our primary Qwen experi-
ments, we conducted a series of analyses and interventions on the Llama-3.1-8B model family.

B.1 Statistical Separation of Reasoning Features

To evaluate the quality of identified reasoning features, we define a statistic p(z) that measures the
fraction of tokens in a sequence = where at least one identified reasoning feature is active.

T
1 .
p(.]?) = T ;HE] € Sreasoning : f](ht) > 0] (14)
As shown in Figure[f] the p statistic reveals that SFT creates highly specialized reasoning features
that are well-separated from solution tokens (the SFT model’s solution trace distribution peaks at
p = 0), while base models have more diffuse, overlapping representations.

p Distribution for 10 Selected Features p Distribution for 10 Selected Features

mmm Solution Set = Solution Set

5 W= Reasoning Set 60 W= Reasoning Set

—=- 95th percentile threshold = 0.369 ===~ 95th percentile threshold = 0.010

10 0.0 01 0.2 03 04 05 06 07 08

0.0 .
p (Fraction of Tokens with Any Selected Feature Active)

0.2 0.4 06
p (Fraction of Tokens with Any Selected Feature Active)

Figure 4: Base Model (Llama-3.1-8B): Shows over-  Figure 5: SFT Model (Llama-3.1-8B-R1-Distill):
lapping distributions for reasoning (red) and solution Shows highly separated distributions, indicating spe-
(blue) traces. cialized features.

Figure 6: Distribution of the p statistic for Base and SFT models.

B.2 Visualization of Identified Reasoning Features

Our Fisher Information method successfully identifies features that activate on specific reasoning
patterns and metacognitive tokens. Figures [7]and [§] show two examples of such interpretable features.

B.3 Causal Validation via Feature Steering

To validate the causal importance of identified features, we conduct steering experiments where
each feature is individually amplified to 2x its maximum activation value. Table [3|demonstrates the
superiority of our method over the baseline ReasonScore approach [3]] on the Llama-3.1-8B-R1-Distill
model. Our method improves performance by 1.99% on average, whereas ReasonScore only achieves
0.87%.

B.4 Steering on Base Models to Elicit Latent Capabilities

Table [] presents results from steering our identified features on the Llama-3.1-8B base model.
Steering base models produces greater improvements (up to 3.46% average gain), suggesting they
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Method Feature AIME MATH-500 GPQA Average
BASE 53.33% 90.20% 47.98%  63.84%

SAE-26222  53.33% 90.80% 50.00% 64.71%

e SAE-41015  50.00% 90.60% 46.46%  62.35%
Sa SAE-3466  46.67% 90.00% 49.49%  62.05%
g SAE-47523  33.33% 91.80% 50.00%  58.38%
§ SAE-29957  36.67% 88.60% 48.99%  58.09%
= SAE-51214  26.67% 76.80% 39.90%  47.79%
SAE-4858  23.33% 80.40% 39.39%  47.71%

Max-base 0.00% 1.60% 2.02% 0.87%

Avg-base -11.90% -2.17% -1.00%  -5.02%

BASE 53.33% 90.20% 47.98%  63.84%

SAE-11308  56.67% 90.80% 50.00%  65.82%

= SAE-24051 46.67% 90.20% 52.53%  63.13%
% SAE-62507  50.00% 90.40% 4747%  62.62%
= SAE-59151 43.33% 92.40% 49.49%  61.74%
= SAE-34241 46.67% 90.20% 45.96%  60.94%
= SAE-20877  40.00% 90.00% 52.53%  60.84%
SAE-8266  40.00% 89.60% 51.01%  60.20%

Max-base 3.34% 2.20% 4.55% 1.99%

Avg-base -5.24% 0.49% 1.42% -1.11%

possess substantial latent reasoning capabilities. Feature SAE-91744 also triggers long CoT (6,072.5
average tokens), demonstrating the power of mechanistic manipulation to unlock hidden capabilities.

C Experimental Details for Qwen Experiments

C.1 Training Datasets

Our primary training dataset is a curated set of 47,000 high-quality mathematics problems. This
dataset was constructed by combining two complementary sources to ensure a wide range of difficulty:
low-difficulty problems were drawn from the DeepScaler dataset [15]], and high-difficulty problems
(levels 3-5) were extracted from SimpleRL [26]. To generate the initial pool of chain-of-thought
(CoT) traces for these problems, we prompted each problem into the Qwen3-32B-Instruct model [25]]
and used reject sampling to ensure a high-quality baseline. For the SFT experiments themselves, the
final training data for each run was generated by its specified teacher model (e.g., the Qwen3-14B
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Table 4: Performance of top 10 Fisher Information features on Llama-3.1-8B base model (steered to 2x max
activation)

Rank Feature AIME MATH GPQA Avg Avg Tok Med Tok Total Tok
1 SAE-110472 3.33% 11.80% 22.22% 12.45% 1,823 50 332,486
2 SAE-130848 6.67% 10.00% 19.70% 12.12% 2,134 71.2 382,722
3 SAE-76805 333% 10.60% 2121% 11.71% 1,552.3 50 333,026
4 SAE-65678 333%  920% 22.22% 11.58%  1,326.5 27.3 255,863
5 SAE-6831 0.00% 11.60% 20.20% 10.60%  1,120.3 48.7 231,298
6 SAE-91744 6.67%  6.60% 17.17% 10.15%  6,072.5 3,965.7 1,385,705
7 SAE-23593 0.00% 10.00% 20.20% 10.07%  1,608.2 73.7 301,978
8 SAE-90323 333% 9.00% 17.68% 10.00%  1,336.3 36.3 292,200
9 SAE-46706 0.00%  8.00% 20.20%  9.40% 2,888.1 453 712,091
10 SAE-6831b 333%  720% 17.68%  9.40% 3,251.9 97.2 743,196

BASE 0.00% 10.80% 16.16%  8.99% 1,509.6 47 244,565

Max improvement 6.67% 1.00% 6.06% 3.46% — — —

teacher generated the traces for the Qwen3-14B SFT model) and subsequently filtered using rejection
sampling.
To further explore the effect of training data distribution in supplementary analyses, we also utilized
a larger and more comprehensive dataset collected from General-Reasoner [16], which contains
232K examples across a wider range of reasoning and non-reasoning tasks (e.g., Math, Chemistry,
Business).

C.2 Evaluation Benchmarks

In our experiments, we evaluated all models across a wide range of benchmarks, grouped into four
distinct categories to explicitly measure the trade-off between specialized reasoning and general
capabilities.

Math Reasoning Datasets This category includes datasets composed of mathematical problems
that typically require a multi-step mathematical reasoning process to solve:

* MATHSO00 [8]: A curated subset of 500 problems sampled from the broader MATH dataset,
covering topics like algebra, combinatorics, geometry, and number theory.

¢ AIME: Problems drawn from the American Invitational Mathematics Examination (AIME)
for the years 2024 and 2025, each comprising challenging short-answer questions.

* OlympiadBench [[7]: Problems sourced from international mathematics olympiads (e.g.,
IMO and regional contests). We used only the math queries in English.

Other Reasoning Datasets This category includes datasets focused on general reasoning across a
wider range of subjects, including science, coding, and planning:

* LiveCodeBench [10]: A continuously updated, contamination-free coding benchmark. We
used its second version.

* GPQA-Diamond [20]: A graduate-level question-answering dataset containing multiple-
choice questions in biology, physics, and chemistry. We followed its diamond split.

* ACPBench [11]: Contains atomic reasoning tasks across 13 classical planning domains. We
only used the multiple-choice problems.

HeadQA [23]: Multiple-choice QA from healthcare-specialist certification exams.

General Reasoning & Commonsense QA Datasets This category evaluates a model’s general
logical reasoning and commonsense understanding:
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* CommonsenseQA [22]: A multiple-choice question answering dataset requiring common-
sense knowledge.

* LogiQA [14]: A dataset for logical reasoning sourced from civil service exams.

* OpenBookQA [17]: A question-answering dataset modeled after open book exams for
elementary school science facts.

* PIQA [1]: A commonsense reasoning dataset focused on physical interaction.

* RACE (High) [12]: A reading comprehension dataset from English exams for high school
students.

* SciQ [24]: A science question-answering dataset with crowdsourced science exam questions.
* SociallQa [21]: A benchmark for testing social commonsense intelligence.

Non-reasoning Datasets This category includes datasets that primarily test instruction adherence
or factual recall, which do not typically require a multi-step reasoning process:

» TFEval [28]: Contains over 500 prompts with embedded, verifiable instructions to evaluate
strict instruction following.

* MC-TACO [27]]: A multiple-choice benchmark designed to evaluate temporal common-
sense.

C.3 Evaluation Protocol and Metrics

We used LLM-Harness [4] to evaluate models on OlympiadBench, ACPBench, HeadQA, and
MC-TACO. We used Eval-Chemy [19] for MATH500, AIME24, AIME25, GPQA-Diamond, Live-
CodeBench, and IFEval. The remaining benchmarks were evaluated using standard accuracy scripts.

For generative reasoning tasks (MATH500, AIME24, AIME25, GPQA-Diamond, and Live-
CodeBench), we used nucleus sampling with a temperature of 0.6 and a top-p value of 0.95. For all
other benchmarks, we used greedy sampling. In all experiments, we report accuracy as the primary
performance metric.

Specific scoring details are as follows: for AIME24 and AIME25, we report the average accuracy
over 10 samples. For GPQA-Diamond, LiveCodeBench, and MATHS00, the score is the average
accuracy over 3 samples. For LiveCodeBench, we used version 2 and its overall accuracy metric. For
ACPBench, we used only the multiple-choice questions and report the average score across all 10
tasks. For IFEval, we report the strict instruction accuracy score.

D Comprehensive Performance and Brittleness Analysis (Qwen)

D.1 Brittleness Across Model Sizes and Families

The brittleness phenomenon generalizes consistently across different model scales and architectures.
Table [5]demonstrates that all tested configurations exhibit the same pattern of reasoning improvement
coupled with non-reasoning degradation under standard SFT.

Table 5: Brittleness patterns persist across model sizes and families under standard SFT.

Model Size  Math Base Math SFT Non-R Base Non-R SFT

Qwen3 1.5B 18.3% 31.2% (+70%) 48.2% 28.1% (-42%)
Qwen3 4B 26.1% 42.2% (+62%) 58.1% 31.0% (-47%)
Qwen3 7B 34.5% 48.9% (+42%) 63.4% 35.2% (-44%)
Llama-3.1 8B 29.8% 44.6% (+50%) 61.3% 33.8% (-45%)

D.2 Full Performance Tables

Tables [6] through [0] provide a comprehensive breakdown of performance across all benchmarks and
experimental configurations.
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Table 6: Full Results: Math Reasoning Performance (%)

26.07
42.23
35.49
37.52
42.56
0.00
0.00
40.93
29.79
32.54
32.07
42.78
38.83

HeadQA  Average

14.51
32.37
30.02
34.01
32.48
6.17
6.59
32.44
16.88
26.73
30.49
31.77

Model AIME (2024) AIME (2025) MATH-500 OlympiadBench Average
Base 10.0 6.67 68.2 19.4
SFT 14B 33.0 28.0 80.2 27.7
SFT 14B Early Stop 25.0 21.67 74.0 21.3
SFT 14B KL Reg 23.33 23.33 78.8 24.6
SFT Crosscoder Base 31.67 27.67 80.8 30.1
SFT Crosscoder Shared 0.0 0.0 0.0 0.0
SFT Crosscoder Shared Base 0.0 0.0 0.0 0.0
SFT Crosscoder Cosine 29.67 24.33 81.0 28.7
SFT GRPO 11.67 9.0 74.2 24.3
OSS 20B 15.67 15.0 73.6 259
0SS 120B 14.33 15.33 71.6 27.0
Crosscoder SFT Only 33.0 25.33 83.0 29.8
Deepseek R1 24.0 23.33 78.2 29.8
Table 7: Full Results: Other Reasoning Performance (%)
Model GPQA-Diamond LiveCodeBench ACPBench (Avg)
Base 22.05 4.50 0.0 31.5
SFT 14B 41.75 12.33 44.3 31.1
SFT 14B Early Stop 39.23 11.15 37.9 31.8
SFT 14B KL Reg 41.75 14.48 47.1 32.7
SFT Crosscoder Base 41.58 11.55 439 32.9
SFT Crosscoder Shared 3.87 0.0 0.0 20.8
SFT Crosscoder Shared Base 5.56 0.0 0.0 20.8
SFT Crosscoder Cosine 42.59 15.07 40.0 32.1
SFT GRPO 24.58 11.15 0.0 31.8
0SS 20B 24.75 11.94 39.6 30.6
0SS 120B 34.85 9.0 46.8 31.3
Crosscoder SFT Only 4091 10.96 432 32.0
Deepseek R1 33.50 10.18 48.9 31.0

Table 8: Full Results: General Reasoning & Commonsense QA Performance (%)

Model CommonsenseQA LogiQA OpenBookQA PIQA RACE (High)
Base 20.1 29.2 23.8 75.0 35.5
SFT 14B 19.7 28.6 232 74.3 36.6
SFT 14B Early Stop 19.6 28.3 252 75.4 36.6
SFT 14B KL Reg 61.9 26.1 26.4 75.1 38.1
SFT Crosscoder Base 19.6 29.5 244 74.8 38.0
SFT Crosscoder Shared 19.6 19.5 154 534 20.8
SFT Crosscoder Shared Base 19.9 19.5 17.8 53.5 222
SFT Crosscoder Cosine 21.1 30.0 24.2 74.3 37.1
SFT GRPO 20.2 28.1 24.8 74.9 35.8
OSS 20B 19.5 26.0 21.0 71.3 359
OSS 120B 19.6 275 22.0 74.0 37.8
Crosscoder SFT Only 19.6 27.2 252 74.6 39.6
Deepseek R1 19.6 26.6 23.6 74.9 36.4

E Gradient Blocking Analysis (Qwen)

E.1 Visualization of Feature Dynamics Under Blocking

SciQ
79.0
50.9
59.0
84.4
57.9
19.7
20.4
58.2
79.9
50.3
485
58.6
48.3

SociallQa

40.9
39.8
40.5
41.9
40.5
342
33.8
40.2
41.1
38.9
39.4
41.5
39.5

30.92

Average

43.36
38.87
40.66
50.56
40.61
26.09
26.73
40.73
43.54
37.56
38.40
40.90
38.47

Crosscoder analysis of gradient-blocked models reveals complex adaptation patterns when feature
subsets are frozen during training. Figure|13|illustrates how models respond to different blocking
configurations. In each panel, we train a new SFT model with a specific feature subset blocked, then
train a new crosscoder to compare this blocked model against the original base model.

The concentration of features at a norm ratio near 0.5 in blocked configurations confirms that gradient
blocking successfully prevents the direct modification of most protected features. However, the
presence of features deviating from this central cluster indicates leakage, where the model finds
alternative pathways to modify ostensibly protected representations under optimization pressure.
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Table 9: Full Results: Non-Reasoning Performance (%)

Model

Base

SFT 14B

SFT 14B Early Stop
SFT 14B KL Reg

SFT Crosscoder Base
SFT Crosscoder Shared
SFT Crosscoder Shared Base
SFT Crosscoder Cosine
SFT GRPO

OSS 20B

OSS 120B

Crosscoder SFT Only
Deepseek R1

Baseline (14B- Protection Strategy Selection Map

e vs Instruct)

ine Similarity (Bas

Cosi

Figure 9: Standard SFT vs. Base crosscoder plot. Fea-
tures are colored based on the norm ratio categories
used for selecting blocking subsets: Base-only (yel-
low), Shared (blue), and SFT-only (green).

Feature Distribution: Sftonly Think (Sft Only Strategy)
during training

e vs Instruct)

ne Similarity (Bas:

Cosi

Figure 11: SFT with SFT-only features blocked.
Similar to base feature blocking, we observe leakage.
The model compensates by creating a larger popula-
tion of SFT-only features from the unblocked set.

IFEval MC-TACO Average
50.2 66.0 58.10
28.09 339 31.00
25.10 339 29.50
26.14 66.2 46.17
25.36 339 29.63
19.77 66.1 42.94
24.58 66.1 45.34
27.96 33.9 30.93
55.27 66.0 60.64
40.70 339 37.30
40.05 339 36.98
28.5 33.9 31.20
24.0 339 28.95

Feature Distribution: Base Think (Base Features Strategy)

Gradients flowing (80,662)
o Gradients blocked (1,258)

Figure 10: SFT with Base-only features blocked.
Most protected features correctly appear as Shared
(norm ratio =~ 0.5). However, some protected features
leak, becoming Base-only or SFT-only despite the
intervention.

Feature Distrib

ures Strategy)

Figure 12: SFT with Shared features blocked. Most
features are correctly frozen and appear as Shared.
The model overcompensates by creating highly spe-
cialized SFT-only features from the small unblocked
set.

Figure 13: Crosscoder analysis of gradient-blocked models. Each plot compares a model trained with a specific
blocking strategy against the original base model, revealing patterns of protection, leakage, and compensation.
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