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Abstract
Supervised fine-tuning (SFT) on chain-of-thought data induces brittleness in lan-1

guage models, improving reasoning capabilities while severely degrading general2

performance. We provide the first mechanistic explanation for this trade-off through3

three complementary techniques: crosscoders for mapping feature transformations,4

Fisher Information-based identification of causal features, and gradient blocking5

for intervention experiments. Our analysis reveals that SFT operates through6

two distinct mechanisms—repurposing shared features for reasoning tasks and7

suppressing base-only features. Fisher Information with Sparse Autoencoders8

identifies the specific features responsible for reasoning, validated through fea-9

ture steering that achieves 3.46% performance gains on base models. Crosscoder10

analysis demonstrates that SFT repurposes existing reasoning capabilities in the11

base model rather than creating new ones. Gradient blocking experiments prove12

these mechanisms are separable: blocking shared features eliminates reasoning13

entirely, while blocking base-only features preserves it, demonstrating that base14

feature suppression is unnecessary for reasoning. This mechanistic understanding15

provides the foundation for developing surgical training methods that preserve16

general capabilities while enhancing reasoning.17

1 Introduction18

Supervised fine-tuning (SFT) on chain-of-thought data is the standard method for enhancing reasoning19

in language models [8], yet it systematically induces brittleness: mathematical reasoning in Qwen3-20

4B improves by 62%, but non-reasoning capabilities collapse by 47%. This trade-off persists across21

model families, leaving practitioners reliant on solutions like KL regularization or RLVR whose22

mechanisms remain opaque. We provide the first mechanistic explanation for SFT-induced brittleness.23

Using crosscoders [13], Fisher Information-based feature identification, and a novel intervention24

called gradient blocking, we discover that SFT operates through two distinct mechanisms: (1)25

learning through repurposing existing shared features, and (2) suppression of base-only features—an26

unnecessary side effect. Our contributions include:27

1. Mechanistic characterization of SFT. Using crosscoders, we discover that SFT operates through28

two distinct processes: repurposing shared features for reasoning, and suppressing base-only29

features. This provides the first mechanistic explanation for SFT-induced brittleness.30

2. Identification and localization of reasoning features. We develop a Fisher Information-based31

method with Sparse Autoencoders that identifies reasoning features. Feature steering validates32

these are causal, achieving 3.46% performance gains on the base models and outperforming exist-33

ing feature identification methods. Crosscoder analysis reveals these features maintain their direc-34

tion after finetuning, proving that SFT repurposes existing features rather than creating new ones.35

3. Causal proof of mechanism separability via gradient blocking. We introduce gradient36

blocking to selectively freeze feature subsets during training. Blocking shared features eliminates37

reasoning entirely, proving their modification is necessary for learning. Blocking base-only38

features preserves reasoning, suggesting their suppression is unnecessary for reasoning.39

2 Methodology40

Identifying Causal Reasoning Features. A mechanistic account of how SFT affects reasoning41

requires identification of the specific, interpretable features that constitute this capability. We employ42

SAEs [2] to decompose model activations h ∈ Rd into sparse feature representations, where fj(h)43

denotes the activation of feature j. Following theoretical insights connecting Fisher Information44
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to feature importance [18], we leverage the property that a feature’s squared activation provides a45

tractable proxy for its causal influence (see Appendix A.1) to identify reasoning-specific features, and46

seek features that are differentially activated during reasoning versus solution generation. Using the47

OpenThoughts-114k dataset [5], which delineates reasoning traces and final answers from Deepseek-48

R1 [6], we compute an importance ratio for each feature j:49

ImportanceRatio(j) =
Eh∼Dreasoning [fj(h)

2]

max(Eh∼Dsolution [fj(h)
2], ϵ)

(1)

where Dreasoning and Dsolution denote distributions of activations from reasoning and solution tokens,50

respectively, with ϵ = 10−8 for numerical stability. Features exhibiting high importance ratios with51

substantial absolute activation magnitudes on reasoning traces are selected as candidate reasoning52

features.53

Mapping Feature Transformations with Crosscoders. To characterize how different finetun-54

ing paradigms transform the feature space, we employ crosscoders [13] to perform systematic55

model comparison. For any base model Mbase and a model Mfinetuned obtained through a fine-56

tuning paradigm (SFT, RLVR), a crosscoder learns a unified feature dictionary that simultane-57

ously reconstructs activations from both models. Given activation pairs (hbase, hfinetuned) from58

corresponding positions in both models, the crosscoder computes shared feature activations:59

f(xj) = ReLU
(∑

m∈{base,finetuned} W
m
ench

m(xj) + benc

)
where Wm

enc ∈ Rd×k are model-specific60

encoders mapping activations to k features. The activations are reconstructed using separate de-61

coders: ĥm(xj) = Wm
decf(xj) + bmdec where Wm

dec ∈ Rk×d are model-specific decoders. The fine-62

tuning objective minimizes reconstruction error plus sparsity penalty weighted by decoder norms:63

L =
∑

m ∥hm − ĥm∥2 + λ
∑

i fi(xj)
∑

m ∥Wm
dec,i∥2.64

To quantify feature transformations across finetuning paradigms, we compute the relative importance65

of each feature through its decoder norms. We define a normalized ratio metric:66

NormRatio(j) =
(∥W base

dec,j∥2 − ∥W finetuned
dec,j ∥2)/maxi(∥Wdec,i∥2) + 1

2
(2)

where the normalization ensures comparability across features. This ratio maps to [0, 1], with values67

near 0 indicating features primarily reconstructing the finetuned model’s activations, values near 0.568

indicating features contributing equally to both models, and values near 1 indicating features primarily69

reconstructing the base model’s activations. Based on empirical distribution analysis across multiple70

finetuning paradigms, we partition the feature space into three categories: Base-only features71

(NormRatio > 0.6) exhibit high decoder norm in Mbase relative to Mfinetuned, indicating features72

that are suppressed or diminished during finetuning. Shared features (0.4 ≤ NormRatio ≤ 0.6)73

maintain comparable decoder norms across both models, representing features preserved during74

finetuning. Finetuning-specific features (NormRatio < 0.4) show high decoder norm in Mfinetuned75

relative to Mbase, corresponding to features that emerge or amplify during finetuning. This crosscoder76

framework enables systematic comparison of how different finetuning paradigms mechanistically77

transform the feature space.78

Causal Validation with Gradient Blocking. To establish causal relationships between feature79

transformations and model capabilities, we introduce gradient blocking, a training-time intervention80

that selectively prevents modification of specified feature subsets during finetuning. Given a target81

feature subset S ⊆ {1, ..., k} identified from the crosscoder analysis (e.g., all shared features), we82

initiate a new finetuning procedure from Mbase where features in S remain frozen. For each forward83

pass with activation x ∈ Rd, we decompose the activation using the base model’s SAE weights. Let84

W base
enc,S ∈ Rd×|S| and W base

dec,S ∈ R|S|×d denote the encoder and decoder weights corresponding to85

subset S. We compute the protected component as x̂S = W base
dec,S · ReLU((W base

enc,S)
Tx).86

The modified forward pass applies stop-gradient to prevent backpropagation through the protected87

component: xnew = sg[x̂S ] + (x− x̂S). where sg[·] denotes the stop-gradient operation that sets88
∂sg[y]
∂y = 0. This ensures gradients flow only through the unprotected component (x− x̂S), preventing89

direct optimization of features in S. By comparing model performance across different blocking90

configurations, we determine which feature transformations are causally necessary for capability91

acquisition.92

3 Experiments and Results93

3.1 Experimental Setup94

Unless otherwise specified, all experiments finetune Qwen3-4B-Base [25] on a 47,000-example math95

dataset constructed by combining low-difficulty problems from DeepScaler [15] and high-difficulty96
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problems (levels 3–5) from SimpleRL [26]. We compare the base model against variants finetuned97

with several paradigms. For Supervised Finetuning (SFT), chain-of-thought traces are generated by a98

teacher model and filtered with rejection sampling; we test both within-family teachers (Qwen3-14B,99

Qwen3-32B,Qwen3-235B) and a cross-family teacher (gpt-oss-20B). We also evaluate Reinforce-100

ment Learning with Verifiable Rewards (RLVR), where rewards are based on ground-truth final an-101

swers, and SFT with a KL-divergence penalty (λ = 0.1) against the base model’s output distribution.102

To measure capability gains and robustness degradation, we evaluate all models on a suite of103

benchmarks [9]. These are grouped into four categories: (1) Math Reasoning (AIME, MATH500,104

OlympiadBench), (2) Other Reasoning (LiveCodeBench, GPQA-Diamond, ACPBench, HeadQA),105

(3) General Reasoning & Commonsense QA (CommonsenseQA, LogiQA, OpenBookQA, PIQA,106

RACE, SciQ, SocialIQa), and (4) Non-Reasoning (IFEval, MC-TACO). Our detailed list of bench-107

marks is in Appendix C.2, and our scoring metrics are in Appendix C.3.108

3.2 Results109

RQ1: Does SFT cause brittleness in reasoning models? Our experiments confirm that SFT110

systematically induces brittleness. Table 1 demonstrates this fundamental trade-off on Qwen3-4B-111

Base. Standard SFT with a Qwen-14B teacher increases Math Reasoning performance from 26.1%112

to 42.2% (+62% relative gain). However, this improvement coincides with a severe degradation in113

Non-Reasoning capabilities, which decline from 58.1% to 31.0% (-47% relative loss). This pattern114

persists across various model sizes and families (Appendix D.1). Alternative paradigms show this115

trade-off is not inevitable. RLVR maintains Non-Reasoning performance at 60.6%, while SFT116

with KL regularization achieves the best overall balance. These divergent outcomes motivate our117

investigation into the underlying mechanistic differences.118

Table 1: Performance comparison across training paradigms on Qwen3-4B-Base demonstrates the reasoning-
robustness trade-off.

Training Method Math Reasoning Other Reasoning General Reasoning Non-Reasoning

Base Model 26.1% 14.5% 43.4% 58.1%
SFT (14B Teacher) 42.2% 32.4% 38.9% 31.0%
RLVR 29.8% 16.9% 43.5% 60.6%
SFT + KL Reg 37.5% 34.0% 50.6% 46.2%

RQ2: How does SFT mechanistically transform features? Crosscoder analysis reveals that SFT119

transforms the model’s feature space through two distinct mechanisms (Figure 1). The crosscoder120

characterizes transformations through decoder norm ratios and directional alignment. The dominant121

pattern is preservation: 95% of features are Shared, maintaining norm ratios between 0.4 and122

0.6 with cosine similarities near 1.0 between their base and finetuned decoder directions. These123

features preserve their core semantic function. The vast majority of representational capacity remains124

structurally intact, with new capabilities emerging through modified activation patterns of existing125

features rather than fundamental reorganization. The remaining 5% of features undergo more extreme126

transformations. Base-only features (norm ratio > 0.6) experience active suppression, often exhibiting127

negative cosine similarity, which indicates a geometric inversion of their function. In contrast, SFT-128

only features (norm ratio < 0.4) emerge or are amplified. This indicates SFT learns primarily by129

modifying the activation patterns of existing features.130

Figure 1: Qwen3-4B-Base SFT: Cosine sim-
ilarity vs NormRatio. Red dots indicate top
50 reasoning features, which concentrate in
the 0.35-0.4 norm ratio range.

RQ3: How can we identify and locate reasoning fea-131

tures within the SFT transformation? Our Fisher132

Information-based method successfully identifies features133

that are causally responsible for reasoning. Causal vali-134

dation experiments on Llama-3.1-8B confirm the efficacy135

of our method, with feature steering improving reasoning136

performance by 3.46%, outperforming the ReasonScore137

baseline [3] (see Appendix B for full results). The critical138

finding, shown in Figure 1, is that these top 50 causal rea-139

soning features (red dots) are not distributed randomly but140

are located almost exclusively within the range of norm ra-141

tios between 0.35 and 0.4 in our Qwen experiments. This142

demonstrates that SFT imparts reasoning capabilities by143

repurposing a specific subset of features that were less prominent in the base model but are amplified144

for the finetuned task. The identified features correspond to interpretable patterns, such as (1) Uncer-145

tainty Quantification (‘perhaps‘, ‘might‘), (2) Reasoning Transitions (‘therefore‘, ‘thus‘), and (3)146

Problem Decomposition (‘let’s think‘).147
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RQ4: What transformations preserve robustness across paradigms? Comparative analysis148

reveals systematic relationships between transformation patterns and robustness. Figure 2 illustrates149

these distinct signatures. RLVR exhibits a preservationist strategy, with a sharp unimodal distribution150

centered at norm ratio 0.5. This preservation correlates with its superior 60.6% non-reasoning151

performance. KL-regularized SFT displays a more constrained pattern with more shared features152

than standard SFT, explaining its balanced performance. Teacher model selection also significantly153

influences these transformations, as shown in Figure 3. Crosscoder analysis reveals that finetuning154

with within-family teachers (e.g., Qwen-14B, Qwen-32B) results in a high degree of shared features.155

In contrast, cross-family finetuning (with gpt-oss-20B) creates a larger population of SFT-only156

features and exhibits worse robustness. The consistent finding is that methods constraining shared157

feature modifications better preserve general capabilities.158

Figure 2: Norm ratio distributions of Qwen-3-4B across training paradigms. (Left) Standard SFT with 14B
teacher shows broad transformation. (Center) RLVR demonstrates preservationist behavior with sharp peak at
0.5. (Right) SFT with KL reg and 14B teacher preserves more shared features than SFT.

Figure 3: Teacher model family effects on feature transformations. (Left) Within-family teachers (Qwen-14B
and Qwen-32B) show high feature sharing. (Right) Cross-family comparison (Qwen-14B vs. gpt-oss-20B)
reveals more SFT-specific features with gpt-oss-20B.

RQ5: Can we selectively control these mechanisms? Gradient blocking experiments establish159

the causal necessity of different feature transformations for reasoning acquisition. Table 2 shows that160

blocking Shared features completely eliminates mathematical reasoning capability, proving their161

modification is essential. Conversely, blocking Base-only features maintains reasoning performance162

(42.6%), demonstrating that their suppression is an unnecessary side effect, not a requirement for163

learning reasoning. Despite this separability, perfect control remains elusive. Blocking base-only164

features does not restore non-reasoning capabilities (29.6% vs. base 58.1%). This is due to two factors:165

(1) gradient leakage, where models adapt to modify even protected features under optimization166

pressure (see visualizations in Appendix E), and (2) brittleness is also caused by the repurposing167

of Shared features, not just the suppression of Base-only features.168

Table 2: Gradient blocking results demonstrate mechanistic separability. Modification of Shared features is
necessary for reasoning; suppression of Base-only features is not.

Blocked Subset Math Avg. Other Reasoning General Reasoning Non-Reasoning

None (Control) 42.2% 32.4% 38.9% 31.0%
Shared (95%) 0.0% 6.2% 26.1% 42.9%
Base-only (1.5%) 42.6% 32.5% 40.6% 29.6%
SFT-only (3.5%) 42.8% 31.8% 40.9% 31.2%

4 Conclusion and Future Work169

We have demonstrated that SFT-induced brittleness stems from two mechanistically separable pro-170

cesses: necessary repurposing of shared features for reasoning and unnecessary suppression of171

base-only features. This mechanistic understanding explains why alternative paradigms like RLVR172

achieve better robustnes. Future work should exploit this separability to develop surgical training173

methods that selectively modify reasoning-relevant features while preserving base capabilities.174
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A Theoretical Foundations for Feature Identification288

A.1 Fisher Information as a Proxy for Causal Feature Influence289

In Section 2, our feature identification method relies on the insight that a feature’s squared activation290

can serve as a proxy for its causal importance. This appendix provides the theoretical justification for291

this connection, showing that under the condition of a well-trained SAE, the second moment of a292

feature’s activation is approximately proportional to the trace of the Fisher Information Matrix (FIM)293

of its decoder weights.294

Theorem A.1 (Approximate Fisher Information from SAE Features). Let a sparse autoencoder (SAE)295

be defined by its reconstruction x̂ = f(x)Wdec, where x ∈ RD is the input activation, f(x) ∈ RK296

are the sparse feature activations, and Wdec ∈ RK×D are the decoder weights. The reconstruction297

loss is given by L(x) = 1
2∥x̂− x∥2. If the SAE is well-trained such that the reconstruction error is298

small with high probability, then for each feature j, the trace of the FIM with respect to its decoder299

weights θj,· is approximately proportional to the second moment of that feature’s activation:300

Tr(I(θj,·)) ≈ c2Ex∼D[fj(x)
2] (3)

Proof. We establish this result by analyzing the gradient structure of the SAE’s reconstruction loss.301

Step 1: Gradient of Decoder Weights. By definition, the reconstruction loss is L(x) =302
1
2∥f(x)Wdec − x∥2. We compute the gradient with respect to the j-th row of the decoder ma-303

trix, denoted θj,· ∈ RD:304

∇θj,·L(x) = ∇θj,·

1

2
∥f(x)Wdec − x∥2 (4)

By the chain rule for vector derivatives, we have:305

∇θj,·L(x) = (f(x)Wdec − x) · ∇θj,·(f(x)Wdec) (5)
Since the term f(x)Wdec is linear in θj,· with coefficient fj(x) (the activation of the j-th feature),306

the gradient of the term is simply fj(x) · ID, where ID is the D-dimensional identity matrix. This307

simplifies to:308

∇θj,·L(x) = fj(x)(x̂− x) (6)

Step 2: Expected Squared Gradient Norm. Next, we compute the squared ℓ2-norm of this309

gradient vector and take its expectation over the data distribution D:310

∥∇θj,·L(x)∥2 = ∥fj(x)(x̂− x)∥2 = fj(x)
2∥x̂− x∥2 (7)

Ex∼D[∥∇θj,·L(x)∥2] = Ex∼D[fj(x)
2∥x̂− x∥2] (8)

Step 3: Analysis in the Small Error Regime. For a well-trained SAE, the reconstruction error is311

small. We can formalize this by assuming there exist small constants c > 0 and δ > 0 such that the312

squared reconstruction error is bounded with high probability:313

P (∥x̂− x∥2 < c2) > 1− δ (9)
Under this condition, the expectation is dominated by the high-probability case where ∥x̂−x∥2 ≈ c2,314

and the contribution from the low-probability (< δ) failure case is negligible. This allows the315

approximation:316

Ex∼D[fj(x)
2∥x̂− x∥2] ≈ Ex∼D[fj(x)

2 · c2] = c2Ex∼D[fj(x)
2] (10)

Step 4: Connection to Fisher Information. The Fisher Information Matrix (FIM) for the parameter317

vector θj,· is defined as the expectation of the outer product of the gradient of the log-likelihood. For318

our mean squared error loss, this is:319

I(θj,·) = Ex∼D[∇θj,·L(x)∇θj,·L(x)⊤] (11)
The trace of the FIM measures the total sensitivity of the loss to changes in the parameter θj,·, and is320

precisely the expected squared gradient norm:321

Tr(I(θj,·)) = Ex∼D[∥∇θj,·L(x)∥2] (12)
Combining our results, we arrive at the final approximation:322

Tr(I(θj,·)) ≈ c2Ex∼D[fj(x)
2] (13)

323
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Interpretation. The proof above establishes that the expected squared activation E[fj(x)2] serves324

as a natural and computationally efficient proxy for the trace of the Fisher Information Matrix of a325

feature’s decoder. Since the trace of the FIM measures the model’s overall output sensitivity to a326

feature’s parameters, features with higher average squared activations are those to which the model’s327

reconstruction is most sensitive. This justifies our use of the Importance Ratio (Eq. 1) to identify328

features that are most causally influential specifically within the context of reasoning traces.329

B Feature Identification and Steering Validation (Llama-3.1-8B)330

To validate our feature identification methodology before applying it to our primary Qwen experi-331

ments, we conducted a series of analyses and interventions on the Llama-3.1-8B model family.332

B.1 Statistical Separation of Reasoning Features333

To evaluate the quality of identified reasoning features, we define a statistic ρ(x) that measures the334

fraction of tokens in a sequence x where at least one identified reasoning feature is active.335

ρ(x) =
1

T

T∑
t=1

I[∃j ∈ Sreasoning : fj(ht) > 0] (14)

As shown in Figure 6, the ρ statistic reveals that SFT creates highly specialized reasoning features336

that are well-separated from solution tokens (the SFT model’s solution trace distribution peaks at337

ρ = 0), while base models have more diffuse, overlapping representations.338

Figure 4: Base Model (Llama-3.1-8B): Shows over-
lapping distributions for reasoning (red) and solution
(blue) traces.

Figure 5: SFT Model (Llama-3.1-8B-R1-Distill):
Shows highly separated distributions, indicating spe-
cialized features.

Figure 6: Distribution of the ρ statistic for Base and SFT models.

B.2 Visualization of Identified Reasoning Features339

Our Fisher Information method successfully identifies features that activate on specific reasoning340

patterns and metacognitive tokens. Figures 7 and 8 show two examples of such interpretable features.341

B.3 Causal Validation via Feature Steering342

To validate the causal importance of identified features, we conduct steering experiments where343

each feature is individually amplified to 2x its maximum activation value. Table 3 demonstrates the344

superiority of our method over the baseline ReasonScore approach [3] on the Llama-3.1-8B-R1-Distill345

model. Our method improves performance by 1.99% on average, whereas ReasonScore only achieves346

0.87%.347

B.4 Steering on Base Models to Elicit Latent Capabilities348

Table 4 presents results from steering our identified features on the Llama-3.1-8B base model.349

Steering base models produces greater improvements (up to 3.46% average gain), suggesting they350
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Figure 7: Feature 51214 (Llama-3.1-8B-R1-Distill):
Activates strongly on uncertainty markers like per-
haps.

Figure 8: Feature 26222 (Llama-3.1-8B-R1-Distill):
Captures problem decomposition patterns like Let’s
think...

Table 3: Performance comparison on Llama-3.1-8B-R1-Distill: Top 7 features from each method (steered to 2×
max activation)

Method Feature AIME MATH-500 GPQA Average

R
ea

so
nS

co
re

BASE 53.33% 90.20% 47.98% 63.84%
SAE-26222 53.33% 90.80% 50.00% 64.71%
SAE-41015 50.00% 90.60% 46.46% 62.35%
SAE-3466 46.67% 90.00% 49.49% 62.05%

SAE-47523 33.33% 91.80% 50.00% 58.38%
SAE-29957 36.67% 88.60% 48.99% 58.09%
SAE-51214 26.67% 76.80% 39.90% 47.79%
SAE-4858 23.33% 80.40% 39.39% 47.71%

Max-base 0.00% 1.60% 2.02% 0.87%
Avg-base -11.90% -2.17% -1.00% -5.02%

O
ur

M
et

ho
d

BASE 53.33% 90.20% 47.98% 63.84%
SAE-11308 56.67% 90.80% 50.00% 65.82%
SAE-24051 46.67% 90.20% 52.53% 63.13%
SAE-62507 50.00% 90.40% 47.47% 62.62%
SAE-59151 43.33% 92.40% 49.49% 61.74%
SAE-34241 46.67% 90.20% 45.96% 60.94%
SAE-20877 40.00% 90.00% 52.53% 60.84%
SAE-8266 40.00% 89.60% 51.01% 60.20%

Max-base 3.34% 2.20% 4.55% 1.99%
Avg-base -5.24% 0.49% 1.42% -1.11%

possess substantial latent reasoning capabilities. Feature SAE-91744 also triggers long CoT (6,072.5351

average tokens), demonstrating the power of mechanistic manipulation to unlock hidden capabilities.352

C Experimental Details for Qwen Experiments353

C.1 Training Datasets354

Our primary training dataset is a curated set of 47,000 high-quality mathematics problems. This355

dataset was constructed by combining two complementary sources to ensure a wide range of difficulty:356

low-difficulty problems were drawn from the DeepScaler dataset [15], and high-difficulty problems357

(levels 3–5) were extracted from SimpleRL [26]. To generate the initial pool of chain-of-thought358

(CoT) traces for these problems, we prompted each problem into the Qwen3-32B-Instruct model [25]359

and used reject sampling to ensure a high-quality baseline. For the SFT experiments themselves, the360

final training data for each run was generated by its specified teacher model (e.g., the Qwen3-14B361
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Table 4: Performance of top 10 Fisher Information features on Llama-3.1-8B base model (steered to 2× max
activation)

Rank Feature AIME MATH GPQA Avg Avg Tok Med Tok Total Tok

1 SAE-110472 3.33% 11.80% 22.22% 12.45% 1,823 50 332,486
2 SAE-130848 6.67% 10.00% 19.70% 12.12% 2,134 71.2 382,722
3 SAE-76805 3.33% 10.60% 21.21% 11.71% 1,552.3 50 333,026
4 SAE-65678 3.33% 9.20% 22.22% 11.58% 1,326.5 27.3 255,863
5 SAE-6831 0.00% 11.60% 20.20% 10.60% 1,120.3 48.7 231,298
6 SAE-91744 6.67% 6.60% 17.17% 10.15% 6,072.5 3,965.7 1,385,705
7 SAE-23593 0.00% 10.00% 20.20% 10.07% 1,608.2 73.7 301,978
8 SAE-90323 3.33% 9.00% 17.68% 10.00% 1,336.3 36.3 292,200
9 SAE-46706 0.00% 8.00% 20.20% 9.40% 2,888.1 45.3 712,091

10 SAE-6831b 3.33% 7.20% 17.68% 9.40% 3,251.9 97.2 743,196

BASE 0.00% 10.80% 16.16% 8.99% 1,509.6 47 244,565

Max improvement 6.67% 1.00% 6.06% 3.46% — — —

teacher generated the traces for the Qwen3-14B SFT model) and subsequently filtered using rejection362

sampling.363

To further explore the effect of training data distribution in supplementary analyses, we also utilized364

a larger and more comprehensive dataset collected from General-Reasoner [16], which contains365

232K examples across a wider range of reasoning and non-reasoning tasks (e.g., Math, Chemistry,366

Business).367

C.2 Evaluation Benchmarks368

In our experiments, we evaluated all models across a wide range of benchmarks, grouped into four369

distinct categories to explicitly measure the trade-off between specialized reasoning and general370

capabilities.371

Math Reasoning Datasets This category includes datasets composed of mathematical problems372

that typically require a multi-step mathematical reasoning process to solve:373

• MATH500 [8]: A curated subset of 500 problems sampled from the broader MATH dataset,374

covering topics like algebra, combinatorics, geometry, and number theory.375

• AIME: Problems drawn from the American Invitational Mathematics Examination (AIME)376

for the years 2024 and 2025, each comprising challenging short-answer questions.377

• OlympiadBench [7]: Problems sourced from international mathematics olympiads (e.g.,378

IMO and regional contests). We used only the math queries in English.379

Other Reasoning Datasets This category includes datasets focused on general reasoning across a380

wider range of subjects, including science, coding, and planning:381

• LiveCodeBench [10]: A continuously updated, contamination-free coding benchmark. We382

used its second version.383

• GPQA-Diamond [20]: A graduate-level question-answering dataset containing multiple-384

choice questions in biology, physics, and chemistry. We followed its diamond split.385

• ACPBench [11]: Contains atomic reasoning tasks across 13 classical planning domains. We386

only used the multiple-choice problems.387

• HeadQA [23]: Multiple-choice QA from healthcare-specialist certification exams.388

General Reasoning & Commonsense QA Datasets This category evaluates a model’s general389

logical reasoning and commonsense understanding:390
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• CommonsenseQA [22]: A multiple-choice question answering dataset requiring common-391

sense knowledge.392

• LogiQA [14]: A dataset for logical reasoning sourced from civil service exams.393

• OpenBookQA [17]: A question-answering dataset modeled after open book exams for394

elementary school science facts.395

• PIQA [1]: A commonsense reasoning dataset focused on physical interaction.396

• RACE (High) [12]: A reading comprehension dataset from English exams for high school397

students.398

• SciQ [24]: A science question-answering dataset with crowdsourced science exam questions.399

• SocialIQa [21]: A benchmark for testing social commonsense intelligence.400

Non-reasoning Datasets This category includes datasets that primarily test instruction adherence401

or factual recall, which do not typically require a multi-step reasoning process:402

• IFEval [28]: Contains over 500 prompts with embedded, verifiable instructions to evaluate403

strict instruction following.404

• MC-TACO [27]: A multiple-choice benchmark designed to evaluate temporal common-405

sense.406

C.3 Evaluation Protocol and Metrics407

We used LLM-Harness [4] to evaluate models on OlympiadBench, ACPBench, HeadQA, and408

MC-TACO. We used Eval-Chemy [19] for MATH500, AIME24, AIME25, GPQA-Diamond, Live-409

CodeBench, and IFEval. The remaining benchmarks were evaluated using standard accuracy scripts.410

For generative reasoning tasks (MATH500, AIME24, AIME25, GPQA-Diamond, and Live-411

CodeBench), we used nucleus sampling with a temperature of 0.6 and a top-p value of 0.95. For all412

other benchmarks, we used greedy sampling. In all experiments, we report accuracy as the primary413

performance metric.414

Specific scoring details are as follows: for AIME24 and AIME25, we report the average accuracy415

over 10 samples. For GPQA-Diamond, LiveCodeBench, and MATH500, the score is the average416

accuracy over 3 samples. For LiveCodeBench, we used version 2 and its overall accuracy metric. For417

ACPBench, we used only the multiple-choice questions and report the average score across all 10418

tasks. For IFEval, we report the strict instruction accuracy score.419

D Comprehensive Performance and Brittleness Analysis (Qwen)420

D.1 Brittleness Across Model Sizes and Families421

The brittleness phenomenon generalizes consistently across different model scales and architectures.422

Table 5 demonstrates that all tested configurations exhibit the same pattern of reasoning improvement423

coupled with non-reasoning degradation under standard SFT.

Table 5: Brittleness patterns persist across model sizes and families under standard SFT.

Model Size Math Base Math SFT Non-R Base Non-R SFT

Qwen3 1.5B 18.3% 31.2% (+70%) 48.2% 28.1% (-42%)
Qwen3 4B 26.1% 42.2% (+62%) 58.1% 31.0% (-47%)
Qwen3 7B 34.5% 48.9% (+42%) 63.4% 35.2% (-44%)
Llama-3.1 8B 29.8% 44.6% (+50%) 61.3% 33.8% (-45%)

424

D.2 Full Performance Tables425

Tables 6 through 9 provide a comprehensive breakdown of performance across all benchmarks and426

experimental configurations.427
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Table 6: Full Results: Math Reasoning Performance (%)
Model AIME (2024) AIME (2025) MATH-500 OlympiadBench Average
Base 10.0 6.67 68.2 19.4 26.07
SFT 14B 33.0 28.0 80.2 27.7 42.23
SFT 14B Early Stop 25.0 21.67 74.0 21.3 35.49
SFT 14B KL Reg 23.33 23.33 78.8 24.6 37.52
SFT Crosscoder Base 31.67 27.67 80.8 30.1 42.56
SFT Crosscoder Shared 0.0 0.0 0.0 0.0 0.00
SFT Crosscoder Shared Base 0.0 0.0 0.0 0.0 0.00
SFT Crosscoder Cosine 29.67 24.33 81.0 28.7 40.93
SFT GRPO 11.67 9.0 74.2 24.3 29.79
OSS 20B 15.67 15.0 73.6 25.9 32.54
OSS 120B 14.33 15.33 71.6 27.0 32.07
Crosscoder SFT Only 33.0 25.33 83.0 29.8 42.78
Deepseek R1 24.0 23.33 78.2 29.8 38.83

Table 7: Full Results: Other Reasoning Performance (%)
Model GPQA-Diamond LiveCodeBench ACPBench (Avg) HeadQA Average
Base 22.05 4.50 0.0 31.5 14.51
SFT 14B 41.75 12.33 44.3 31.1 32.37
SFT 14B Early Stop 39.23 11.15 37.9 31.8 30.02
SFT 14B KL Reg 41.75 14.48 47.1 32.7 34.01
SFT Crosscoder Base 41.58 11.55 43.9 32.9 32.48
SFT Crosscoder Shared 3.87 0.0 0.0 20.8 6.17
SFT Crosscoder Shared Base 5.56 0.0 0.0 20.8 6.59
SFT Crosscoder Cosine 42.59 15.07 40.0 32.1 32.44
SFT GRPO 24.58 11.15 0.0 31.8 16.88
OSS 20B 24.75 11.94 39.6 30.6 26.73
OSS 120B 34.85 9.0 46.8 31.3 30.49
Crosscoder SFT Only 40.91 10.96 43.2 32.0 31.77
Deepseek R1 33.50 10.18 48.9 31.0 30.92

Table 8: Full Results: General Reasoning & Commonsense QA Performance (%)
Model CommonsenseQA LogiQA OpenBookQA PIQA RACE (High) SciQ SocialIQa Average
Base 20.1 29.2 23.8 75.0 35.5 79.0 40.9 43.36
SFT 14B 19.7 28.6 23.2 74.3 36.6 50.9 39.8 38.87
SFT 14B Early Stop 19.6 28.3 25.2 75.4 36.6 59.0 40.5 40.66
SFT 14B KL Reg 61.9 26.1 26.4 75.1 38.1 84.4 41.9 50.56
SFT Crosscoder Base 19.6 29.5 24.4 74.8 38.0 57.9 40.5 40.61
SFT Crosscoder Shared 19.6 19.5 15.4 53.4 20.8 19.7 34.2 26.09
SFT Crosscoder Shared Base 19.9 19.5 17.8 53.5 22.2 20.4 33.8 26.73
SFT Crosscoder Cosine 21.1 30.0 24.2 74.3 37.1 58.2 40.2 40.73
SFT GRPO 20.2 28.1 24.8 74.9 35.8 79.9 41.1 43.54
OSS 20B 19.5 26.0 21.0 71.3 35.9 50.3 38.9 37.56
OSS 120B 19.6 27.5 22.0 74.0 37.8 48.5 39.4 38.40
Crosscoder SFT Only 19.6 27.2 25.2 74.6 39.6 58.6 41.5 40.90
Deepseek R1 19.6 26.6 23.6 74.9 36.4 48.3 39.5 38.47

E Gradient Blocking Analysis (Qwen)428

E.1 Visualization of Feature Dynamics Under Blocking429

Crosscoder analysis of gradient-blocked models reveals complex adaptation patterns when feature430

subsets are frozen during training. Figure 13 illustrates how models respond to different blocking431

configurations. In each panel, we train a new SFT model with a specific feature subset blocked, then432

train a new crosscoder to compare this blocked model against the original base model.433

The concentration of features at a norm ratio near 0.5 in blocked configurations confirms that gradient434

blocking successfully prevents the direct modification of most protected features. However, the435

presence of features deviating from this central cluster indicates leakage, where the model finds436

alternative pathways to modify ostensibly protected representations under optimization pressure.437
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Table 9: Full Results: Non-Reasoning Performance (%)

Model IFEval MC-TACO Average
Base 50.2 66.0 58.10
SFT 14B 28.09 33.9 31.00
SFT 14B Early Stop 25.10 33.9 29.50
SFT 14B KL Reg 26.14 66.2 46.17
SFT Crosscoder Base 25.36 33.9 29.63
SFT Crosscoder Shared 19.77 66.1 42.94
SFT Crosscoder Shared Base 24.58 66.1 45.34
SFT Crosscoder Cosine 27.96 33.9 30.93
SFT GRPO 55.27 66.0 60.64
OSS 20B 40.70 33.9 37.30
OSS 120B 40.05 33.9 36.98
Crosscoder SFT Only 28.5 33.9 31.20
Deepseek R1 24.0 33.9 28.95

Figure 9: Standard SFT vs. Base crosscoder plot. Fea-
tures are colored based on the norm ratio categories
used for selecting blocking subsets: Base-only (yel-
low), Shared (blue), and SFT-only (green).

Figure 10: SFT with Base-only features blocked.
Most protected features correctly appear as Shared
(norm ratio ≈ 0.5). However, some protected features
leak, becoming Base-only or SFT-only despite the
intervention.

Figure 11: SFT with SFT-only features blocked.
Similar to base feature blocking, we observe leakage.
The model compensates by creating a larger popula-
tion of SFT-only features from the unblocked set.

Figure 12: SFT with Shared features blocked. Most
features are correctly frozen and appear as Shared.
The model overcompensates by creating highly spe-
cialized SFT-only features from the small unblocked
set.

Figure 13: Crosscoder analysis of gradient-blocked models. Each plot compares a model trained with a specific
blocking strategy against the original base model, revealing patterns of protection, leakage, and compensation.
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