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ABSTRACT

We propose a likelihood-free method for comparing two distributions given sam-
ples from each, with the goal of assessing the quality of generative models. The
proposed approach, PQMass, provides a statistically rigorous method for assessing
the performance of a single generative model or the comparison of multiple com-
peting models. PQMass divides the sample space into non-overlapping regions and
applies chi-squared tests to the number of data samples that fall within each region,
giving a 𝑝-value that measures the probability that the bin counts derived from two
sets of samples are drawn from the same multinomial distribution. PQMass does
not depend on assumptions regarding the density of the true distribution, nor does
it rely on training or fitting any auxiliary models. We evaluate PQMass on data of
various modalities and dimensions, demonstrating its effectiveness in assessing the
quality, novelty, and diversity of generated samples. We further show that PQMass
scales well to moderately high-dimensional data and thus obviates the need for
feature extraction in practical applications.

1 INTRODUCTION

Generative modeling – the task of inferring a distribution given a set of samples – is an important and
ubiquitous task in machine learning. Generative machine learning has witnessed the development
of a succession of methods for distribution approximation in high-dimensional spaces, including
variational autoencoders (VAEs, Kingma & Welling, 2014), generative adversarial networks (GANs,
Goodfellow et al., 2014), normalizing flows (Rezende & Mohamed, 2015), and score-based (diffusion)
generative models (Ho et al., 2020). With advancements in generative models, evaluating their
performance using rigorous, clearly defined metrics and criteria has become increasingly essential.

The ability to distinguish between true and modeled distributions has become increasingly crucial,
particularly in the context of AI safety across various applications. This is evident in concerns
regarding data privacy (e.g., Somepalli et al., 2023; Hitaj et al., 2017) and the proliferation of AI-
generated content across different domains of the internet (e.g., Knott et al., 2024). As AI systems
become more pervasive, accurately assessing the fidelity of generated distributions to their real-world
counterparts is essential for ensuring the integrity and safety of AI applications.

In scientific applications, recent years have seen an increased application of deep generative models.
For example, they have been used as expressive plug-and-play priors (e.g., Song et al., 2022; Chung
& Ye, 2022; Rozet & Louppe, 2023; Kawar et al., 2022; Dou & Song, 2024; Chung et al., 2023;
Feng et al., 2023; Dia et al., 2023; Drozdova et al., 2024; Xue et al., 2023; Remy et al., 2023; Flöss
et al., 2024; Feng et al., 2024), noise models for explicit likelihood inference (e.g., Legin et al.,
2023; Adam et al., 2023), and density estimators in conjunction with deep emulators for simulation-
based inference (e.g., Cranmer et al., 2020; Rezende & Mohamed, 2015; Papamakarios et al., 2021;
Price et al., 2018; Greenberg et al., 2019; Papamakarios et al., 2019). However, the adoption of
these methods in scientific data analysis demands rigorous accuracy in uncertainty quantification.
Specifically, it is crucial to verify that these generative models accurately represent the full distribution
of their training data.

When evaluating generative models, one is interested in three qualitative properties (Stein et al., 2023;
Jiralerspong et al., 2023): Fidelity refers to the quality and realism of outputs generated by a model,
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Figure 1: An illustration of the statistic computed by PQMass. Left: We start with two sets of samples
(𝑥𝑖)𝑛𝑖=1 , 𝑥𝑖 ∼ 𝑝 and (𝑦𝑖)𝑚𝑖=1 , 𝑦𝑖 ∼ 𝑞, shown as blue and red points, respectively. For a given region 𝑅 ⊆ 𝑋 ,
the fraction of samples in 𝑅 for each set of samples follows a binomial distribution: B(𝑛, 𝑝(𝑅)) for the blue
points and B(𝑚, 𝑞(𝑅)) for the blue samples. We can then test the hypothesis that the parameters of the two
binomial distributions are the same. Right: Given a partition of the space into non-overlapping regions {𝑅𝑖}𝑛𝑅𝑖=1,
for example, a Voronoi tessellation, the distribution of samples in the regions follows a multinomial distribution.
PQMass performs hypothesis tests on equality of the two multinomial distributions’ parameters to obtain a
p-value.

i.e., how indistinguishable generated samples are from real data. Diversity pertains to the range and
variety of outputs a model can produce. For example, a model that misses a mode in the training
data has lower diversity. Novelty refers to the ability of a model to generate new, previously unseen
samples that are not replicas of the training data yet are coherent and meaningful within the context
of the task. The trade-offs between these properties are complex and depend on the function class
(e.g., model architecture) used for the generative model, the learning objective, properties of the
data distribution, etc. (Stein et al., 2024). For example, samples from a model that simply copies
the training data will exhibit high fidelity and diversity but will lack novelty; on the other hand, an
excessively smooth model will generate novel, diverse samples but will lack fidelity.

Two classes of methods for comparing generative models to ground truth distributions exist: sample-
based methods, which compare generated samples to true samples, and likelihood-based methods,
which make use of the likelihood of the data under the model. It has been observed that likelihood-
based methods, such as negative log-likelihood (NLL) of test data, show too much variance to be
useful in practice and are ‘saturated’ on standard benchmarks, i.e., they do not correlate well with
sample fidelity, particularly in high-dimensional settings Theis et al. (2016); Nalisnick et al. (2019);
Nowozin et al. (2016); Yazici et al. (2020); Le Lan & Dinh (2021). On the other hand, most sample-
based methods cannot measure the combination of fidelity, diversity, and novelty. For example,
the Fréchet Inception Distance (FID; Heusel et al., 2017) and the Inception Score (IS; Salimans
et al., 2016; Sajjadi et al., 2018) measure fidelity and diversity, but not novelty, while precision
and recall (Salimans et al., 2018) measure only fidelity and diversity, respectively; the authenticity
score (Alaa et al., 2022) measures only novelty. Recently, the Feature Likelihood Divergence (FLD;
Jiralerspong et al., 2023) was proposed as a measure that captures fidelity, novelty, and diversity.
However, FLD essentially relies on the approximation of the underlying distribution by a Gaussian
mixture model and consequently requires feature extraction and compression in order to function in
high-dimensional settings.

In this work, we propose PQMass, a statistical framework for evaluating the quality of generative
models that measures the combination of fidelity, diversity, and novelty and scales well to moderately
high dimensions, without the need of dimensionality reduction. PQMass allows us to accurately
estimate the relative probability of a generative model given a test dataset by examining the probability
mass of the data over appropriately chosen regions. The main idea motivating PQMass is that given
a measurable subset of the sample space, the number of data points lying in the subset follows a
binomial distribution with a parameter equal to the region’s (unknown) true probability mass. By
extension, given a partition of the space into regions, the counts of points falling into the regions
follow a multinomial distribution. PQMass carefully defines partitions of the space into regions
defined by Voronoi cells, quantizes sets of samples from two distributions into these cells, and uses
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two-sample tests on parameters of the resulting multinomial distributions. This approach provides a
p-value that estimates the quality of a generative model (the probability of a model given the training
data). It also allows the comparison of various competing models by analyzing the ratio of their
probabilities.

PQMass satisfies the following desiderata:

(1) Since PQMass works with the integrals of the true and estimated probability density functions
over regions, it does not make any assumptions about the true underlying density field, e.g., its
smoothness or approximability by simple families.

(2) It is statistically principled, allowing us to directly upper-bound the answer to the question: ‘What
is the probability that two sets of samples were drawn from the same distribution?’

(3) PQMass is computationally efficient and scales well with the dimensionality of the data, allowing
us to directly evaluate generative models of high-dimensional data, such as images. However,
PQMass can also readily work in feature space if desired.

(4) PQMass is general and flexible, allowing the evaluation of generative models on any type of data
where a metric can be defined, including images, tabular data, and time series.

2 THEORY AND METHODS

Our problem statement is the following: We have two collections of i.i.d. samples (𝑥𝑖)𝑚𝑖=1 , 𝑥𝑖 ∼ 𝑝 and
(𝑦𝑖)𝑛𝑖=1 , 𝑦𝑖 ∼ 𝑞, where both 𝑝 and 𝑞 are probability distributions1 on R𝑑 . We are interested in testing
the statistical hypothesis that 𝑝 = 𝑞, that is, the two sets of samples came from the same distribution.

To achieve this, we will develop tests on well-understood distributions derived from 𝑝 and 𝑞 that
would upper-bound the probability that 𝑝 = 𝑞 and show that they almost surely distinguish two
nonequal distributions as the number of samples increases.

2.1 TESTING EQUALITY OF QUANTIZED DISTRIBUTIONS USING SAMPLES

Equality of distributions from equality of probabilities of regions. We begin with some elemen-
tary facts from probability and real analysis. Recall that two probability measures 𝑝 and 𝑞 are equal
if they assign the same mass to all measurable sets, i.e.,

𝑝(𝑅) = 𝑞(𝑅) ∀𝑅 ⊆ 𝑋 , 𝑅 measurable. (1)
Because 𝑝 and 𝑞 are Borel measures, it is equivalent to verify (1) only for open sets 𝑅, or a smaller
generating set, such as all polyhedra or products of intervals (see, e.g., Rudin, 1987).

Let R𝑑 = 𝑅1 ⊔ 𝑅2 ⊔ · · · ⊔ 𝑅𝑛𝑅 be a partition of R𝑑 into disjoint measurable regions. Define
𝜋 : R𝑑 → {1, 2, . . . , 𝑛𝑅} as the function that assigns to each point 𝑥 ∈ R𝑑 the index of the region
it belongs to, i.e., 𝑥 ∈ 𝑅𝜋 (𝑥 ) . If 𝑝 is a distribution on R𝑑 , then the pushforward measure 𝜋∗𝑝 is a
distribution on {1, 2, . . . , 𝑛𝑅}, with mass function 𝜋∗𝑝( 𝑗) = 𝑝(𝑅 𝑗 ). This distribution is a quantized
version of 𝑝, where samples are replaced by the index of the region into which they fall.

With this definition, (1) can be restated: 𝑝 = 𝑞 if and only if 𝜋∗𝑝 = 𝜋∗𝑞 for all partitions R𝑑 = 𝑅1⊔𝑅2,
or, more generally, R𝑑 = 𝑅1 ⊔ · · · ⊔ 𝑅𝑛𝑅 (note that 𝜋 implicitly depends on the partition). As we will
return to in §2.2, it is sometimes sufficient to consider restricted classes of partitions.

The main idea behind PQMass is that the probability that 𝑝 = 𝑞 is upper-bounded by the probability
that 𝜋∗𝑝 = 𝜋∗𝑞 for a given partition. Next, we will consider how to test the hypothesis that 𝜋∗𝑝 = 𝜋∗𝑞
using samples from 𝑝 and 𝑞 given a fixed partition. In §2.2 we discuss the choice of partition and
propose an effective method.

Estimating probability masses of regions by sampling. Fix a partition R𝑑 = 𝑅1 ⊔ 𝑅2 ⊔ · · · ⊔ 𝑅𝑛𝑅

and define 𝜋 as above. If 𝑥 ∼ 𝑝 is a random variable with distribution 𝑝, then 𝜋(𝑥) is a categorical
variable with distribution 𝜋∗𝑝, i.e., taking the value 𝑗 ∈ {1, 2, . . . , 𝑛𝑅} with probability 𝑝(𝑅 𝑗 ).
Suppose now that 𝑥1, . . . , 𝑥𝑚 ∼ 𝑝 are i.i.d. samples from 𝑝. We then have 𝜋∗ (𝑥𝑖) ∼ 𝜋∗𝑝 for all 𝑖.
Defining 𝑘

(
(𝑥𝑖)𝑚𝑖=1, 𝑅

)
=
∑𝑚

𝑖=1 1[𝑥𝑖 ∈ 𝑅], where 1 is the indicator function, as the number of samples

1We assume 𝑝 and 𝑞 are Borel measures, i.e., all open sets are measurable. This is true if they are absolutely
continuous with respect to Lebesgue measure or to the induced measure on an embedded submanifold.
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in a region 𝑅, we have that 𝑘
(
(𝑥𝑖)𝑚𝑖=1, 𝑅 𝑗

)
is a Binomial(𝑚, 𝑝(𝑅 𝑗 )) random variable. In particular,

the proportion of samples in 𝑅 𝑗 is an unbiased and strongly consistent estimator of 𝑝(𝑅 𝑗 ), since the
mean of 𝑘

(
(𝑥𝑖)𝑚𝑖=1, 𝑅 𝑗

)
/𝑚 is 𝑝(𝑅 𝑗 ) and the law of large numbers implies that this estimate converges

to 𝑝(𝑅 𝑗 ) almost surely as 𝑛 → ∞.

Generalizing, we have that the vector of counts in all the regions follows a multinomial distribution:

k
(
(𝑥𝑖)𝑚𝑖=1

)
:=

(
𝑘
(
(𝑥𝑖)𝑚𝑖=1, 𝑅1

)
, . . . , 𝑘

(
(𝑥𝑖)𝑚𝑖=1, 𝑅𝑛𝑅

) )
∼ Multinomial

(
𝑚,

(
𝑝(𝑅1), . . . , 𝑝(𝑅𝑛𝑅 )

) )
,

(2)
and the vector of empirical proportions of samples in the regions is an unbiased and strongly consistent
estimator of the vector of true probabilities (𝑝(𝑅1), . . . , 𝑝(𝑅𝑛𝑅 )).

Testing the equality of multinomial distributions. Suppose that (𝑥𝑖)𝑚𝑖=1 , 𝑥𝑖 ∼ 𝑝 and (𝑦𝑖)𝑛𝑖=1 , 𝑦𝑖 ∼
𝑞 are i.i.d. samples from 𝑝 and 𝑞 respectively. According to (2), the vectors of counts k

(
(𝑥𝑖)𝑚𝑖=1

)
and k

(
(𝑦𝑖)𝑛𝑖=1

)
follow multinomial distributions with parameters

(
𝑚,

(
𝑝(𝑅1), . . . , 𝑝(𝑅𝑛𝑅 )

) )
and(

𝑛,
(
𝑞(𝑅1), . . . , 𝑞(𝑅𝑛𝑅 )

) )
, respectively. Testing the statistical hypothesis that 𝜋∗𝑝 = 𝜋∗𝑞 is the same

as testing the hypothesis that the vectors
(
𝑝(𝑅1), . . . , 𝑝(𝑅𝑛𝑅 )

)
and

(
𝑞(𝑅1), . . . , 𝑞(𝑅𝑛𝑅 )

)
are equal.

Thus the problem is reduced to testing the equality of two multinomial distributions given samples
from each, which is a standard problem in statistics. We discuss how to approach this problem from a
frequentist perspective.

In the frequentist approach, there are multiple ways to measure whether two multinomial distributions
are the same (see, e.g., Anderson et al., 1974; Zelterman, 1987; Plunkett & Park, 2019; Bastian et al.,
2024). In this paper, we use the Pearson 𝜒2 test (Rao, 1948; 2002).

We start by defining the probability that a point randomly chosen from among the 𝑚 +𝑛 points (𝑥𝑖)𝑚𝑖=1,
(𝑦𝑖)𝑛𝑖=1 falls in region 𝑅 𝑗 :

𝑝 𝑗 :=
𝑘
(
(𝑥𝑖)𝑚𝑖=1, 𝑅 𝑗

)
+ 𝑘

(
(𝑦𝑖)𝑛𝑖=1, 𝑅 𝑗

)
𝑚 + 𝑛

.

If the 𝑚 + 𝑛 points were randomly partitioned into two subsets of sizes 𝑚 and 𝑛, then the expected
number of points in 𝑅 𝑗 within the two subsets would be

𝑁̂
(1)
𝑗

:= 𝑚𝑝 𝑗 , 𝑁̂
(2)
𝑗

:= 𝑛𝑝 𝑗 , (3)

respectively. This motivates the definition of the 𝜒2
PQM statistic using the definition of the Pearson

chi-squared:

𝜒2
PQM :=

𝑛𝑅∑︁
𝑗=1


(
𝑘
(
(𝑥𝑖)𝑚𝑖=1, 𝑅 𝑗

)
− 𝑁̂

(1)
𝑗

)2

𝑁̂
(1)
𝑗

+

(
𝑘
(
(𝑦𝑖)𝑛𝑖=1, 𝑅 𝑗

)
− 𝑁̂

(2)
𝑗

)2

𝑁̂
(2)
𝑗

 . (4)

It is known that, given any distributions, this statistic follows a 𝜒2 distribution with 𝑛𝑅 − 1 degrees of
freedom. Therefore, we can calculate the p-value of the test as

p-value(𝜒2
PQM) ≡

∫ +∞

𝜒2
PQM

𝜒2
𝑛𝑅−1 (𝑧) 𝑑𝑧. (5)

This p-value provides an estimate of the probability that the 𝜋∗𝑝 = 𝜋∗𝑞, i.e., that the distributions
quantized into the regions 𝑅 𝑗 coincide.

2.2 CHOOSING AN EFFECTIVE PARTITION

The test described above depends on the choice of partition, with some choices of regions giving
more powerful test than others. For example, (5) is unlikely to give meaningful p-values if nearly all
the mass of both 𝑝 and 𝑞 is captured by one of the regions. Similarly, one could be ‘unlucky’ in the
choice of regions and obtain that 𝜋∗𝑝 happens to be very close to 𝜋∗𝑞, making the test uninformative
with a small number of points. Thus, one key element in PQMass is the choice of the regions 𝑅 𝑗 .
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Voronoi cells. Inspired by the Tests of Accuracy with Random Points (TARP; Lemos et al., 2023a)
framework for estimating posterior coverage, we propose to define the regions as Voronoi cells.

Recall that given a set of reference points 𝑧1, . . . , 𝑧𝑛𝑅 , the Voronoi cell corresponding to 𝑧 𝑗 is defined
as the set of points that is closer to 𝑧 𝑗 than to any other 𝑧 𝑗′ . To be precise, we can break ties according
to the index, yielding the following definition:

𝑥 ∈ 𝑅 𝑗 ⇐⇒ ∀ 𝑗 ′,
[
∥𝑥 − 𝑧 𝑗 ∥ < ∥𝑥 − 𝑥 𝑗′ ∥ or

[
∥𝑥 − 𝑧 𝑗 ∥ = ∥𝑥 − 𝑥 𝑗′ ∥ and 𝑗 < 𝑗 ′

] ]
. (6)

The sets 𝑅1, . . . , 𝑅𝑛𝑅 then partition R𝑑 into nonoverlapping regions, and the function 𝜋 that maps
points to the index of the containing region is defined by 𝜋(𝑥) = arg min 𝑗 ∥𝑥 − 𝑧 𝑗 ∥, breaking ties in
favour of the lower index (see Fig. 1, right).

While the definition (6) uses the 𝐿2 distance metric, one can define Voronoi cells using any metric
𝐷 : R𝑑 × R𝑑 → R. In Table 3 we compare this choice to that of using the 𝐿1 metric, as well as with
the choice of using a metric defined in a feature space.

Choice of centres. It remains to specify how to choose the reference points 𝑧 𝑗 . To ensure that the
regions approximately uniformly cover both distributions, we choose to sample the reference points
from a uniform mixture of the empirical distributions of samples from 𝑝 and 𝑞.

For the validity of the test in §2.1, the choice of the regions should be independent of the points used
to perform the test. Thus one can use a small subset of the available sample points as reference points
to construct a tessellation, then evaluate the 𝜒2

PQM statistic using the remaining points.

Algorithm. The full algorithmic instantiation of PQMass, given sets of points (𝑥𝑖)𝑚𝑖=1 and (𝑦𝑖)𝑛𝑖=1, a
choice of the number of regions 𝑛𝑅 > 1, and a distance metric 𝐷, can be summarized as follows:

1. Define reference points: Set 𝑧1, . . . , 𝑧𝑛𝑅 to a random sample from
⌊
𝑛𝑅
2
⌋

points from (𝑥𝑖)𝑚𝑖=1 and⌈
𝑛𝑅
2
⌉

points from (𝑦𝑖)𝑛𝑖=1. Remove the choice points from the collections (𝑥𝑖) and (𝑦𝑖).
2. Count points in Voronoi cells: Obtain the vectors of counts k

(
(𝑥𝑖)𝑚𝑖=1

)
and k

(
(𝑦𝑖)𝑛𝑖=1

)
with respect to the regions defined by reference points 𝑧 𝑗 , by computing bincounts of(
arg min 𝑗 𝐷 (𝑥𝑖 , 𝑧 𝑗 )

)𝑚
𝑖=1

and
(
arg min 𝑗 𝐷 (𝑦𝑖 , 𝑧 𝑗 )

)𝑛
𝑖=1

respectively.

3. Test to compare multinomials: Compute the 𝜒2
PQM and p-value via (4) and (5), respectively.

In practice, to obtain a useful metric, one can perform the test multiple times, with different sets of
reference points, to reduce the variance resulting from the choice of regions.

2.3 CONSISTENCY GUARANTEES: WHAT INFORMATION IS LOST BY PQMASS?

Here, we present results showing that the PQMass test is capable of distinguishing distinct distribu-
tions.

The first proposition shows that even with two regions, PQMass has nonzero probability of distin-
guishing two distributions.

Proposition 2.1. Suppose that 𝑝, 𝑞, 𝑟 are Lebesgue-absolutely continuous distributions on R𝑑 with
𝑝 ≠ 𝑞, that 𝑝 and 𝑞 have smooth densities, and that 𝑟 has full support. Then, for 𝑛𝑅 = 2 and
references points 𝑧1, 𝑧2 ∼ 𝑟 , the probability that 𝜋∗𝑝 ≠ 𝜋∗𝑞 is strictly positive and hence the PQMass
test is consistent as 𝑚, 𝑛 → ∞.

Proof. Because 𝑟 has full support, the distribution of the hyperplane separating the two Voronoi cells
defined with respect to samples from 𝑟 has positive density in the space of hyperplanes. Therefore, if
the test statistic were almost surely zero, then the measures of almost all half-spaces under 𝑝 and 𝑞

would coincide. By disintegration, this would imply that the marginals of 𝑝 and 𝑞 coincide on almost
all hyperplanes, i.e., the Radon transforms of 𝑝 and 𝑞 are equal. This implies equality of 𝑝 and 𝑞, a
contradiction. □

Similarly, as the number of references points 𝑛𝑅 grows to infinity, the probability that the test
distinguishes two distributions approaches one. This can be understood as a consequence of the fact
that the Voronoi cells ‘tessellate’ the space more finely as 𝑛𝑅 grows.
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Figure 2: Null test. We generate two sets of samples
from the same Gaussian mixture model in 100 dimen-
sions. We then measure the 𝜒2

PQM value of our test

(𝑛𝑅 = 100) and repeat this process 214 times, resam-
pling every time. We can see that the 𝜒2

PQM value is
distributed as a chi-squared distribution with 𝑛𝑅 − 1
degrees of freedom, as expected.

60 80 100 120 140 160
2 PQM

0.00

0.01

0.02

0.03

0.04

De
ns

ity

128
256
512
1024
2048
4096
8192
16384

2(99)

Table 1: Comparison of various sampling methods on a mixture model in 𝐷 = 2 and a funnel in 𝐷 = 10.
The results for PQMass are compared to the Wasserstein distance, the MMD with an RBF kernel, and the
Jensen-Shannon divergence.

Mixture Model (𝐷 = 2) Funnel (𝐷 = 10)

Model 𝜒2
PQM (𝑛𝑅 = 100) W2 RBF MMD JSD 𝜒2

PQM (𝑛𝑅 = 100) W2 RBF MMD

MCMC 1621.06 ± 82.40 8.94 0.0151 0.42 855.40 ± 49.60 17.41 0.0566
FAB 678.22 ± 88.43 5.77 0.0038 0.39 96.69 ± 13.52 22.08 0.0032
GGNS 109.32 ± 12.36 3.20 0.0011 0.35 472.99 ± 18.00 32.20 0.0358

Proposition 2.2. Let 𝑝, 𝑞, 𝑟 be as in the previous proposition. As 𝑛𝑅 → ∞, the probability that
𝜋∗𝑝 ≠ 𝜋∗𝑞 with respect to the choice of reference points 𝑧1, . . . , 𝑧𝑛𝑅 ∼ 𝑟 approaches 1.

Proof. We abuse notation and use 𝑝 and 𝑞 interchangeably with their densities. Select any 𝑥0 such
that 𝑝(𝑥0) < 𝑞(𝑥0), which exists because 𝑝 ≠ 𝑞 and both 𝑝 and 𝑞 integrate to 1 over R𝑑 . By
continuity, there exists 𝛿 > 0 such that if ∥𝑥 − 𝑥0∥ < 𝛿, then 𝑝(𝑥) < 𝑞(𝑥).
Let 𝐵 be the open ball of radius 𝛿 about 𝑥0. By Theorem 3.1 of Gibbs & Chen (2020), the probability
that the diameter of the Voronoi cell (defined using reference points sampled i.i.d. from the full-
support distribution 𝑟) containing 𝑥0 is less than 𝛿 approaches 1 as 𝑛 → ∞. Any polytope of diameter
less than 𝛿 and containing 𝑥0 is contained in 𝐵; thus, the probability that at least one region 𝑅 𝑗 is
contained in 𝐵 approaches 1 as 𝑛 → ∞. Such a cell would have higher mass under 𝑞 than under 𝑝,
which implies the result. □

These results show that, at least for ‘well-behaved’ densities, no information is lost by the PQMass
statistic. They can likely be generalized further, which we leave for future work.

3 EXPERIMENTS

3.1 NULL TEST

We start by validating PQMass on a null test, by comparing two sets of samples that are known
to be equivalent. As our generative model, we use a Gaussian mixture model in 100 dimensions
with 20 components. We then repeat the following process 214 times: We generate a number of
samples (see legend) from the Gaussian mixture model and then measure the 𝜒2

PQM value of our test,
with 𝑛𝑅 = 100. We show the results in Fig. 2. We can see that the 𝜒2

PQM value is distributed as a
chi-squared distribution with 𝑛𝑅 − 1 degrees of freedom, as expected from §2.1. It can be seen in the
figure that in the limit that the number of samples goes to infinity, we recover a 𝜒2 distribution.

This test, while simple, is important, as it shows that the proposed method is not biased towards
rejecting the null hypothesis. We show further null tests for complex distributions in §A.

3.2 VALIDATION OF SAMPLING METHODS

In this section, we show how PQMass can be used to study the performance of sampling algorithms.
Other sample-based metrics commonly used to evaluate sampling methods include the Wasserstein
distance and maximum mean discrepancy (MMD, Gretton et al., 2012). While these sample-based
metrics are well-adapted to low-dimensional settings, they do not scale well to high-dimensional
settings, as they may be sensitive to outliers or to the choice of kernels.
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Figure 3: Various sample-based metrics as a function
of the dimensionality of the data. We use a mixture of
10 equally weighted Gaussians with varying numbers
of dimensions. For each, we calculate the value of both
metrics when comparing samples from the same dis-
tribution (blue) and from different distributions where
one of them is missing one mode (orange), repeating
the test various times. Sample-based metrics should
detect that a mode has been dropped.
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Figure 4: Computational cost of various sample-
based metrics vs data dimensionality. We show
the time required to calculate the value of each
metric for the experiment in Fig. 3, both as a
function of the dimensionality of the data (left)
and the number of samples (right).

PQMass is consistent with baseline metrics on simple tasks. First, we compare PQMass to
other sample-based metrics on a low-dimensional task where traditional sample-based metrics are
known to perform well. We use the two-dimensional Gaussian mixture model used in Midgley et al.
(2023), which has been used for benchmarking various sampling methods. We generate samples
using three representative methods: flow-annealed importance sampling bootstrap (FAB, Midgley
et al., 2023) a Markov chain Monte Carlo (Metropolis et al., 1953) algorithm as implemented in
emcee (Foreman-Mackey et al., 2013)2, and gradient-guided nested sampling (GGNS, Skilling,
2006; Lemos et al., 2023b). For each method, we generate 10, 000 samples and compare them
with 10, 000 samples from the true distribution. We calculate the 2-Wasserstein distance, the mean
maximum discrepancy with a radial basis function (RBF) kernel, and the Jensen-Shannon divergence
(after performing a step of kernel density estimation); and compare them to the 𝜒2

PQM value with
𝑛𝑅 = 100. For PQMass, we repeat this process 20 times, resampling the reference points, and report
the standard deviation. We show the results in Table 1. PQMass is in good agreement, and the 𝜒2

PQM
values correlate well with the other sample-based metrics, with further comparisons in §H.

Scaling to more complex distributions. We then repeat this experiment on a higher-dimensional
task: Neal’s 10-dimensional funnel distribution (Neal, 2003), another common sampling benchmark.
PQMass is again in good agreement with MMD, but not with the Wasserstein distance. We show
samples from each model in §C, which show that, visually, PQMass correctly identifies the best-
performing sampling methods.

PQMass detects mode-dropping in high dimension. Finally, we study the scaling of PQMass
with the dimensionality of the data. We use a uniform mixture of 10 Gaussians in R𝑑 , for varying 𝑑.
For each dimensionality, we generate 5, 000 samples and compare them with 5, 000 samples from
the same distribution. We calculate the 𝜒2

PQM value of our test, with 𝑛𝑅 = 100, as well as other
sample-based metrics. We then repeat the experiment, but comparing the true distribution with the
distribution with one mode dropped. We show the results in Fig. 3. While W2 and linear MMD
get increasingly noisier as the dimensionality increases, PQMass remains stable. Furthermore, the
computational cost of radial basis MMD scales far worse with dimensionality than PQMass (Fig. 4).
MMD with a linear kernel is the cheapest computationally, but, as shown in Fig. 3, it is too noisy to
be usable even in simple high-dimensional problems. We show results with larger number of modes
dropped in §F.1.

2Note that MCMC does not produce independent samples, as samples within the samples are correlated.
While we randomly subsample 0.01 of the total number of samples in each chain, there could still be spurious
correlations between these, affecting, the MCMC results. However, we find the MCMC results to be significantly
worse than competing methods in these experiments, far beyond the possible effects of spurius correlations.
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Figure 5: After each training epoch, we generate samples and
compute the 𝜒2

PQM value to assess their quality against samples
from the true distribution. We perform this experiment twice for
each model, and see that the 𝜒2

PQM values agree even though
unique samples were generated for each run. The diffusion model
can achieve 𝜒2

PQM closer to ideal (𝜒2
PQM equal to the number

of regions 𝑛𝑅 − 1, here 99). For this experiment, 𝜒2
𝑃𝑄𝑀

was
evaluated by retessellating and resampling the data sets.

Figure 6: Correlation of human error rate
in identifying real CIFAR-10 and FFHQ im-
ages with various sample-based metrics (re-
sults of prior methods taken from Jiraler-
spong et al. (2023)). Each point corresponds
to a single model. The result for PQMass is
the 𝜒2

PQM value averaged over 20 samples.
PQMass estimates the fidelity and diversity
of generative models well despite not rely-
ing on a feature representation, unlike FLD
and FID.

3.3 ASSESSING IMAGE GENERATIVE MODELS

Tracking training progress on small images. In this section, we track the value of 𝜒2
PQM between

model-generated and ground truth samples as we train two generative models, a variational autoen-
coder (VAE; Kingma & Welling, 2014) and a denoising diffusion model (Ho et al., 2020; Song et al.,
2021) (see §D for model details). We train on the MNIST3 train set and compare generated samples
with the MNIST test set. After each epoch of training, we generate 2000 samples and compare them
with 2000 test samples by computing 𝜒2

PQM with 𝑛𝑅 = 100. We execute this experiment over the first
100 training epochs to highlight the early stages of training for the models and repeat the experiment
twice. As shown in Fig. 5, as training progresses, the metric stabilizes, with fluctuations due to the
stochasticity of training and the unique samples generated at each epoch.

As shown in §E.1, the VAEs fail to capture correct structures of the images, while the diffusion-
generated images are more realistic. This is reflected in the low 𝜒2

PQM values for the diffusion model,
which plateau at around 𝜒2

PQM closer to ≈ 99, the ideal value.

We remark that this test was performed directly in pixel space, without dimensionality reduction or
feature extraction. Thus, at least for simple images, PQMass can serve as a userful metric for tracking
the quality of samples from a generative model over the course of training.

Measuring mode coverage. To verify that our method can measure the diversity of samples from
generative models, we retrain the variational autoencoder and diffusion model described above on
subsets of MNIST where all images of 𝑁 randomly chosen classes are missing, for varying 𝑁 . The
results, averaged over random runs and samples of classes, are shown in Fig. 7. As expected, the
value of 𝜒2

PQM increases as we drop more classes for both models.

PQMass correlates with human judgments. Next, we consider the assessment of pretrained mod-
els on larger image datasets. We perform an experiment inspired by Stein et al. (2023); Jiralerspong
et al. (2023), focusing on the CIFAR-104 and FFHQ256 (Karras et al., 2019) datasets. Following
Stein et al. (2023), we first use the human error rate as a measure of the fidelity of the generative
models. We compare generated samples from each of the models to the test data for both datasets.
We repeat the comparison 20 times, each time varying the reference points. We show the results
in Fig. 6. We find that our chi-squared values visibly correlate with the human error rate, indicating
that PQMass can effectively measure the fidelity and diversity of generative models.

3http://yann.lecun.com/exdb/mnist/
4https://www.cs.toronto.edu/~kriz/cifar.html
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Figure 7: We show the results for PQMass validating
generative models trained on MNIST on the Y-axis, and
the number of dropped modes on the X-axis, for a varia-
tional autoencoder in blue, and a diffusion model in red.
We can see that the 𝜒2

PQM value increases as we drop

more modes, as expected. For this experiment, 𝜒2
𝑃𝑄𝑀

was evaluated by retessellating and resampling the data
sets.

Table 2: We compare ImageNet train data noised with Gaussian noise of different variances, to ImageNet test
data. We also ran FLD for the same samples using the DinoV2 feature extractor. For PQMass, these experiments
were done by retessellating and resampling the sets for evaluating 𝜒2

𝑃𝑄𝑀
.As compared to FLD, PQMass is

more sensitive to the noise despite not using a feature extractor.
Noise 𝜎2 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.15 0.20 0.50 1.00

𝜒2
PQM Avg 95.55 107.63 116.63 131.55 151.67 181.00 212.25 227.44 265.38 300.99 352.49 766.00 1252.45 2818.56 4495.07

FLD 9.29 8.40 9.15 9.27 9.53 10.16 10.54 10.87 10.96 11.34 11.93 15.84 21.79 42.78 42.54

We note again that these experiments were performed in pixel space. One key strength of PQMass
is its scaling to high-dimensional problems: methods such as FID and FLD fail in high dimensions
without the use of a feature extractor to reduce the dimensionality of the data, while PQMass continues
to give meaningful results, at a much lower computational cost and without introducing potential
biases through feature extraction. This ability is important because pretrained feature extractors do
not exist for many modalities of data that appear in important scientific applications.

However, PQMass can also work in feature space: Table 3 shows a comparison of PQMass applied in
pixel space and using InceptionV3features (Szegedy et al., 2016), showing that results are similar in
both spaces.

PQMass effectively detects small noise. Next, we consider the detection of additive noise on
ImageNet (Deng et al., 2009). We first run PQMass on a subset of the training data with added
Gaussian noise of different variance, comparing it to the test data (see §E.2 for visualization). We
repeat the experiment by replacing PQMass with FLD using the DinoV2 (Oquab et al., 2024) feature
extractor. The results of both experiments are shown in Table 2. PQMass is more sensitive to the
noise, especially in the high noise regime, demonstrating that PQMass not only scales well in high
dimensions (see F.4 for further demonstrations of the scalability of PQMass to high-dimensional
settings), but also provides a measure of distribution shift caused by increasing noise added to the
data.

Using PQMass to measure novelty and memorization. While PQMass can measure the fidelity
and diversity of model-generated samples, it does not directly measure their novelty. One approach
for detecting memorization or overfitting would be to follow Jiralerspong et al. (2023) in looking at
the generalization gap for PQMass, i.e., how this metric differs between comparing the generated
samples to the training data and comparing the generated samples to the validation data. However, we
propose a way to detect overfitting from 𝜒2

PQM on the training data directly. Indeed, we know that a
value that is too low is indicative of overfitting. For a large number of regions 𝑛𝑅 (i.e., 𝑛𝑅 − 1 degrees
of freedom), we know the chi-square distribution is approximately Gaussian (Fig. 2). Therefore, we
can use the asymmetry of this distribution to get a p-value that penalizes suspiciously low values of
𝜒2

PQM, by considering the mirror reflection of the chi-square value around the maximum:

p-valueoverfit (𝜒2
PQM) ≡

∫ 2𝑛𝑅−𝜒2
PQM

−∞
𝜒2
𝑛𝑅−1 (𝑧)𝑑𝑧. (7)

To study the effectiveness of this metric, we repeat the ‘copycat’ experiment of (Jiralerspong et al.,
2023): We generate samples using one of the well-performing CIFAR-10 models used above
(PFGMPP, Xu et al., 2023) and repeat our test, replacing varying fractions of the generated samples
with samples from the training data. We then calculate 𝜒2

PQM, first comparing the generated samples
to the training data and then to the validation data.

We show the results for in Fig. 8. The top left panel shows that the gap between 𝜒2
PQM when comparing

to the training data and when comparing to the validation data increases with the number of samples
we replace. The top right panel shows the two-sided p-value, which decreases as the number of
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Figure 8: Novelty. PQMass (Y-axis) when a fraction of
the generated samples are replaced by samples taken
from the training set (X-axis). We repeat the compari-
son 20 times, each time changing the reference points,
and report the standard deviation. We show the value
of 𝜒2

PQM in the top left panel, for the test (red) and
train (blue), and the p-value for the training data on
the top right. We see that, as memorization increases,
the gap between the train and test 𝜒2

PQM increases, and
the p-value goes down. The bottom pannels compare
p-valueoverfit (𝜒2

PQM) with the 𝐶𝑇 score and the per-
centage of authentic samples authpct, two metrics
thats measure novelty.
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copied samples increases. These results show that both generalization gap and two-sided p-value can
be used to detect memorization in generative models. The bottom two panels show the effectiveness
of the p-value in (7) in capturing memorization and its agreement with an established metric, the
authenticity score authpct (Alaa et al., 2022).

Experiments in the Appendix demonstrate the effectiveness of PQMass for other data modalities,
including higher-dimensional images from scientific applications (§F.4), time series (§F.2),
tabular data (§F.3) and protein sequences (§F.5).

4 LIMITATIONS

While PQMass performs well on various tasks, it is important to consider its limitations.

First, PQMass has been shown to work in the limit of high number of samples. The statistics, however,
will be too noisy for practical use if the number of samples is small. Similarly, the choice of the
number of regions is important: while our ablation study (§B) shows that the results are quite robust
to various choices, in the limits 𝑛𝑅 = 1 and 𝑛𝑅 → 𝑁 (where 𝑁 is the number of samples) the method
will fail.

Second, PQMass could fail for a fixed choice of reference points defining a tessellation that fails to
discriminate two distributions well. For this reason, repeating the experiment for various randomly
chosen tessellations is recommended, as this effectively marginalizes the choice of tessellation (as we
have done in this work). Fortunately, this is feasible, as the computational cost of PQMass is low.

Third, PQMass does require i.i.d. samples. Therefore, if a generative model produces correlated
samples, the PQMass formalism cannot be used.

Finally, PQMass is only as good as the distance metric used, as shown in §G. For some modalities (for
example, natural language), it is nontrivial to select a meaningful distance metric between samples.

5 CONCLUSION

In this paper, we have introduced a new method for quantifying the probability that two sets of
samples are drawn from the same probability distribution. PQMass is based on comparing the
probability mass of the two sets of samples in a set of non-overlapping regions. It relies only on the
calculation of distances between points and, therefore, can be applied to high-dimensional problems.
It does not require training or fitting any models. Furthermore, it does not require any assumptions
about the underlying distribution and, therefore, can be applied to any type of data as long as one has
access to true samples. We have shown that PQMass can be used to evaluate sampling methods and
track the performance of generative models as they train.

We have shown the performance of PQMass on a variety of synthetic tasks, as well as on comparing
sampling methods, comparing generative models of images, and detecting hidden signals in time
series. Given the versatility (further shown in the additional experiments in §F) and low computational
cost of PQMass, it can serve as a valuable tool for evaluating the quality and performance of generative
models and sampling methods.
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Figure 9: Null tests, similar to the one shown in Fig. 2, but for two different distributions: Samples from MNIST
(left) and a VAE trained on MNIST (right). The main result of our paper holds for samples from any distribution
as long as we are comparing two sets of independent samples from the same distribution. Note that, on MNIST,
the fit is not perfect due to the limited number of data points.

Model Default (𝑛𝑅 = 100) 𝑛𝑅 = 50 𝑛𝑅 = 200 L1 Distance InceptionV3

ACGAN-Mod 12407 ± 10 10410 ± 808 14125 ± 995 12336 ± 944 7891 ± 1009
LOGAN 713 ± 72 408 ± 69 1180 ± 95 728 ± 108 5750 ± 535
BigGAN-Deep 268 ± 30 135 ± 16 498 ± 36 238 ± 32 615 ± 74
iDDPM-DDIM 238 ± 22 143 ± 17 470 ± 41 244 ± 31 533 ± 78
MHGAN 234 ± 39 123 ± 19 470 ± 48 194 ± 18 628 ± 64
StyleGAN-XL 230 ± 13 119 ± 15 477 ± 23 203 ± 23 199 ± 19
StyleGAN2-ada 207 ± 26 128 ± 25 417 ± 48 197 ± 23 259 ± 30
PFGMPP 177 ± 22 108 ± 18 335 ± 28 175 ± 16 239 ± 28

Table 3: Ablation study for CIFAR-10. We repeat the experiment of §3.3, varying the number of reference
points, as well as changing the distance metric to L1. We show the results for the frequentist version of PQMass,
sorted in order of decreasing 𝜒2

PQM for the default version. We find that the results are robust to the choice of the
number of reference points and the distance metric. Any observed differences are within the standard deviation
of the experiment.

A NULL TESTS

The main result of this paper, shown in §2, was shown in practice in §3.1 for a high-dimensional
mixture of Gaussians. In this section, we show that it works in even more complex and high-
dimensional distributions. First, we test it on the MNIST data: Using the MNIST observations
themselves as samples from some underlying probability distribution. We put together the MNIST
train and test data, leading to 70, 000 images. We then split them into two subsets of 35, 000 images
each. To repeat the null test of §3.1, we need independent samples at every iteration (note that this is
different from the error bars reported in the rest of the experiments, which just arise from repeating
with random tessellations, but always the same samples). Therefore, for each iteration, we take 1, 000
images from each dataset, and perform the PQM test with 𝑛𝑅 = 100, leading to 35 data points. We
plot their histogram in the left panel of Fig. 9. While noisy, due to the very few data points, we see
that the histogram does follow a chi-squared distribution with 𝑛𝑅 − 1 degrees of freedom, as expected.

For our second experiment, we use one of the MNIST generative models described in §3.3. In this
case, we can generate as many samples as we want. Because we are comparing the generative model
to itself, the similarity of the generated samples to the MNIST train or test data is irrelevant for this
particular test.

B ABLATION STUDY

In this section, we study the effect of varying the two hyperparameters of our experiment: The number
of reference points 𝑛𝑅, and the distance metric (which in all experiments in the main text is L2). We
repeat the experiment on CIFAR10 described in §3.3, varying the number of reference points, as well
as changing the distance metric to L1. We also show the results when using the Inception-v3 feature
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Figure 10: Samples from our the various sampling methods introduced in §3.2, and their corresponding PQMass
values.

extractor (Szegedy et al., 2016), as done in previous work such as Jiralerspong et al. (2023). We find
that the order of the models is robust to the choice of the number of reference points and the distance
metric, as well as to the use of a feature extractor. Any observed differences are within the standard
deviation of the experiment. We show the results in Table 3.

C SAMPLES FOR VALIDATION

In §3.2, we used PQMass to compare samples from various sampling algorithms to true distribution
samples. Fig. 10 shows the samples from each algorithm and the underlying distribution. The
two distributions (gaussian mixture model and funnel) are often used for benchmarking sampling
algorithms because of the high multimodality of the former and the complex shape of the latter. For
the Gaussian mixture model (top), we see that MCMC is missing a mode, while the FAB samples are
too noisy; for Neal’s funnel (bottom), we see that FAB’s samples look indistinguishable from true
samples, while GGNS look similar but more spread out, while MCMC fails to model this distribution.
In both cases, the results from 𝜒2

PQM correlate well with the similarity to true samples we can see by
eye.

D GENERATIVE MODEL HYPERPARAMETERS

We detail the hyperparameters used for the image generative models trained in the main text. The
MNIST VAE was trained with a ReLU-activated MLP encoder with layer structure (28 × 28) →
512 → 256 → 20, and the decoder architecture was symmetric. The model was trained using the
Adam optimizer with the learning rate initially set to 0.001, decaying by a factor of 0.9 every 50 steps.
For the denoising diffusion model, we used the package score_models5. Our model utilizes the
NCSN++ architecture with variance-preserving noising process and is trained with batch size 256
and learning rate 0.001 (with exponential moving average decay of 0.999. Neither model deviates
from standard practices and we expect similar results to hold when assessing training progress of
other generative models.

E VISUAL INSPECTION OF SAMPLES

E.1 MNIST TRAINING PROGRESS

In the first part of §3.3, we trained four generative models, two (identical) VAEs, and two (identical)
diffusion models on the MNIST dataset for 100 epochs. In Figure 5, we show the evolution of the

5https://github.com/AlexandreAdam/torch_score_models
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𝜒2
PQM values as a training progresses. Here, in Figure 11, we display one sample from run 1 of each

generative model as a function of the training epoch to provide a qualitative understanding of the
sensitivity of PQMass.

Epoch 2 Epoch_4 Epoch 6 Epoch 8 Epoch 10 Epoch 15

Epoch 20 Epoch 30 Epoch 40 Epoch 60 Epoch 80 Epoch 100

Diffusion Model
Epoch 2 Epoch_4 Epoch 6 Epoch 8 Epoch 10 Epoch 15

Epoch 20 Epoch 30 Epoch 40 Epoch 60 Epoch 80 Epoch 100

Variational Autoencoder

Figure 11: Samples from the run 1 diffusion model (left) as well as from the run 1 VAE model (right) as a
function of training epoch.

E.2 ADDING NOISE TO IMAGENET

In §3.3, we evaluate PQMass’s and FLD’s ability to detect the addition of Gaussian noise with
increasing variance compared to the test set from the low to high noise regime. As shown in Table 2,
PQMass is more sensitive to noise corruption than FLD. We display an example showcasing the
impact of each noise level on the sample in Figure 12 to offer an intuitive understanding of the
sensitivity of each metric.

Figure 12: A sample from the ImageNet dataset shown with Gaussian noise of increasing variance added,
significantly altering the image in the high noise regime.

F ADDITIONAL EXPERIMENTS

F.1 GAUSSIAN MIXTURE MODEL

To evaluate our method’s ability to detect the diversity of generated samples, we reuse the Gaussian
Mixture Model from §3.1, but this time we systematically remove samples from 𝑁 modes, for varying
𝑁 . For each 𝑁 , we generate 5,000 samples and run our test 20 times with 𝑛𝑅 = 100, using different
random reference points in each trial. The results are shown in Fig. 13. As expected, the 𝜒2

PQM value
increases as more modes are dropped, demonstrating that PQMass can effectively detect when a
generative model fails to capture all modes, indicating reduced sample diversity.

F.2 TIME SERIES

For our next experiment, we show the flexibility of PQMass by applying it to a different data modality:
time series data. For this, we design an experiment where we observe a noisy time series of fixed
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Figure 13: Gaussian Mixture Model. We show the
results for PQMass on the Y axis, and the number of
dropped modes on the X axis. We repeat the compari-
son 20 times, each time changing the reference points,
and report the standard deviation. We can see that the
𝜒2

PQM value increases as we drop more modes, as ex-

pected. For this experiment, 𝜒2
𝑃𝑄𝑀

was evaluated by
retessellating and regenerating new data sets.
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Figure 14: Time Series. We show the results for PQ-
Mass on the Y-axis and the amplitude of the signal on
the X-axis. We repeat the comparison 5000 times, each
time generating a new time series with 𝐴 = 0, and a
new time series with 𝐴 ≠ 0. We can see that the 𝜒2

PQM
value increases as 𝐴 grows, as expected. We also show
the values of 𝜒2

PQM corresponding to the 3𝜎 and 5𝜎
significance levels of detection as black dashed lines.
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length and aim to determine whether an underlying signal is hidden within the noise. The time series
is generated as follows:

𝑦(𝑡) = 𝐴 · cos(𝑡) + 𝜂(𝑡), (8)

where 𝐴 is the amplitude of the signal and 𝜂(𝑡) is i.i.d. Gaussian noise with zero mean and unit
variance. If 𝐴 = 0, then the time series is just noise. If 𝐴 ≠ 0, then there is a signal hiding in the
noise. For each observation, we generate 100 data points between 𝑡 = 0 and 𝑡 = 10. We then repeat
the following process 5000 times: We generate a time series with 𝐴 = 0 and a time series with 𝐴 ≠ 0.
We then compare the two time series using PQMass, with 𝑛𝑅 = 100. We show the results in Fig. 14
for varying values of 𝐴. We can see that the 𝜒2

PQM value increases as 𝐴 grows, as expected. The plot
also the values of 𝜒2

PQM corresponding to the 3𝜎 and 5𝜎 significance levels of detection. We see
that, for this experiment, we can detect the signal with 5𝜎 significance for 𝐴 ≈ 0.12, a signal that is
invisible to the naked eye. We show an example of a time series with this amplitude, compared to one
without signal in Fig. 15.

This experiment demonstrates the versatility of PQMass. Because we make no assumptions about
the underlying distribution, we can apply PQMass to any type of data as long as we have access to
samples. Detecting signals in noisy time series is a common problem in multiple disciplines, such
as astronomy (Zackay et al., 2021; Aigrain & Foreman-Mackey, 2023), finance (Chan, 2004; Sezer
et al., 2020), and anomaly detection (Ren et al., 2019; Shaukat et al., 2021). Existing methods rely
on assumptions about the underlying distribution. PQMass, on the other hand, can detect that the
observed signal is not consistent with samples of random noise with no assumptions on the generative
process. We leave the application of PQMass to these domains for future work.

F.3 TABULAR DATA EXPERIMENT

To show the versatility of our method on different types of data, we applied PQMass to the generation
of tabular data. We used CTGAN Xu et al. (2019) as our generative model, trained on data from the
Adult Census Dataset 6. We convert categorical entries into a one-hot encoding for distance metrics
between entries and compute distances between the encodings. We show the value of 𝜒2

PQM in Fig. 16.
We see that 𝜒2

PQM goes down as training progresses, until eventually plateauing, as expected.

6https://archive.ics.uci.edu/dataset/2/adult
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Figure 15: Examples of time series with 𝐴 = 0 (left), and with 𝐴 ≈ 0.12 (right). PQMass can detect the signal
with 5𝜎 significance, a signal that is invisible to the naked eye (at least, to those of the authors).

Figure 16: 𝜒2
PQM for generative model on tabular data, as training progresses.

F.4 ASTROPHYSICS EXPERIMENTS

As an example of PQMass applied to a scientific problem, we test the method on a problem from
astrophysics. We trained a score-based model (SBM) on 256x256 real galaxy images from the Probes
dataset, which is a compendium of 3163 high-quality local late-type galaxies Stone & Courteau
(2019). Since there has been increasing interest in the use of SBMs as high-dimensional priors for
inference problems, the question of the accuracy (in the statistical sense) of the trained SBM is very
important. Using the PQMass metric, we were able to establish the probability that the generated
samples come from the same underlying distribution as the training samples. On 256x256 images,
PQMass runs in less than one hour for 1000 evaluations on a single Nvidia A100 GPU (about 3s
for every 𝜒2 evaluation). When we compare a random split of the probes dataset with itself, the
𝜒2

PQM values are distributed according to the expected 𝜒2 distribution while we can reproduce a
curve similar to the one presented in Fig. 5 as a function of training iteration. The results are shown
in Fig. 17.

Next, another scientific application of interest is using SBMs to model noise likelihoods as described
in Legin et al. (2023). In this case, the accuracy of the learned generative model is of paramount
importance. Here, we used the case of pixel darks (images of pure noise) from the Near Infrared
Imager and Slitless Spectrograph (NIRISS) aboard the James Webb Space Telescope (JWST) as the
noise to be modeled. This instrument has Gaussian noise as well as multiple sources of non-Gaussian
additive noise, including dead pixels, faint and saturating cosmic rays, bleeding, a zero bias, blotches,
and 1/ 𝑓 noise. The lattermost source of noise is especially difficult to completely correct for using
traditional methods (Albert et al., 2023), effectively reducing the usable information of scientific
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Figure 17: On the top left, a real galaxy image from the probes dataset. On the top right, an image generated
using a score-based model. The bottom left plots show the distribution of 𝜒2

𝑃𝑄𝑀
for 10 and 100 regions, which

as expected follow the correct chi-squared distribution. The botton right plots show the same distributions for
the generated images. We see that the chi-squared is close to the expected one, meaning the generated images
are nearly indistinguishable from real ones. For these experiments, 𝜒2

𝑃𝑄𝑀
was evaluated by retessellating and

resampling the data sets.

images, especially for low signal-to-noise ratios. As an additional experiment, we have trained a
SBM on 4000 of the full set of 6960 real 2048x256 pixel darks. We show examples of the ground
truth images and generated images in Fig. 18 as well as two PQMass comparisons, one between two
sets of the ground truth and another between the generated images and the ground truth. While the
𝜒2

PQM metric can clearly show that half of the real dark samples are in distribution with the other
half (bottom left plot in Fig. 18) using 10 regions, it can also detect that the generated samples are
not in distribution with real dark samples, despite their visually evident resemblance. Upon further
investigation, this can be confirmed by the realization that the correct placement of hot pixels has not
yet been fully learned by the generative model.

We now compare PQMass against other standard metrics in the fields, Feature Likelihood Divergence
(FLD, Jiralerspong et al. (2023)) and Fréchet Inception Distance (FID, Heusel et al. (2017)). We
utilize two astrophysics datasets introduced earlier—Probes and JWST—and introduce a third dataset,
SKIRT TNG (Bottrell et al. (2024)), which consists of simulated galaxy data. We use the SBM trained
by Missael Barco et al. (2024). We compare samples generated from the respective SBM against the
validation set, the ground truth. Additionally, we conduct a null test where, for each dataset, we split
the validation set into two subsets to test whether the metrics can detect that the subsets come from
the same distribution. We highlight the dimensionality of each dataset, with JWST being the highest
dimensional experiment.

We showcase our results in Table 4, where we use 10 regions for all experiments. In the null test,
PQMass is consistently able to detect that they come from the same underlying distribution; however,
FLD struggles, returning negative values indicating a measure of duplicates in the two datasets, which
we know to not be true. FID struggles with Probes and SKIRT TNG but can showcase that for the
JWST example, it is in distribution. Furthermore, when comparing samples generated from the SBM
to the validation test, PQMass can detect that the samples come from the same distribution for Probes
and SKIRT TNG, which we know to be correct. It can also capture the out-of-distribution nature
of the JWST samples, which is correct. However, the same cannot be said for FLD or FID. For
Probes and SKIRT TNG, FLD and FID claim the samples are out of distribution, and for JWST,
FLD claims that the samples are in distribution, whereas FID correctly claims that the samples are
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Figure 18: Example of a true dark image (top) and generated dark (middle). The bottom left plot shows the
distribution of 𝜒2

𝑃𝑄𝑀
for 10 regions when comparing half of the 6960 ground truth darks with the other half,

while the bottom right compares 2000 generated dark samples from the SBM with the full set of the real darks.
The two sets are clearly out of distribution, as the generative model has not learned the true distribution of
hot pixels, despite the evident similarity by eye between the ground truth and generated samples. For these
experiments, 𝜒2

𝑃𝑄𝑀
was evaluated by retessellating and resampling the data sets.

Table 4: Comparison of PQMass, FLD, and FID metrics across various astrophysical datasets. PQMass is
configured with 10 regions, yielding an expected score of approximately 9 for in-distribution comparisons. For
PQMass, scores significantly above 9 indicate out-of-distribution samples. All PQMass experiments were done
by retessellating and resampling the sets for evaluating 𝜒2

𝑃𝑄𝑀
. For FLD and FID, lower scores generally suggest

more similar distributions. "Samples vs Ground Truth" compares generated samples to the original dataset,
while "Ground Truth vs Ground Truth" compares two subsets of the original data to assess metric consistency.

Dataset Dimensionality Num of Samples PQMass FLD FID

Probes (Samples vs Ground Truth) 3x256x256 1000 vs 2059 10.97 52.13 594.94
Probes (Ground Truth vs Ground Truth) 3x256x256 1029 vs 1030 9.42 −21.72 84.64
SKIRT TNG (Samples vs Ground Truth) 3x64x64 1500 vs 2549 9.84 24.29 613.74
SKIRT TNG (Ground Truth vs Ground Truth) 3x64x64 1230 vs 1229 9.83 −4.09 12.14
JWST (Samples vs Ground Truth) 1x256x2048 3480 vs 3480 131.70 11.08 128.59
JWST (Ground Truth vs Ground Truth) 1x256x2048 2000 vs 6969 7.88 −3.06 1.07

out of distribution. Here, we showcase that PQMass can detect if the two datasets are in or out of
distribution consistently where other standard metrics in the field either fail or are highly inconsistent.

F.5 EXPERIMENT ON PROTEIN SEQUENCES

As another experiment on a real dataset with a different structure, we showcase the ability of PQMass
to detect differences in datasets of protein sequences. As our example, we use the ESM Metagenomic
Atlas dataset (Lin et al., 2023)7. We perform two comparisons: In the first one, we randomly split the
dataset into two, and repeat the null test shown in §3.1 and §A. As our distance metric, we use the
Levenshtein, or edit distance (i.e. the number of edits needed to turn one sequence into the other).
The result is shown in the blue histogram of Fig. 19. This shows not only that our method can also
work in this data format, but also that it can work with a different distance metric.

7https://esmatlas.com
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Figure 19: Experiment with protein sequences. In blue, we compare two randomly chosen subsets of the ESM
metagenomic Atlas dataset. In orange, we compare high PTM to low PTM sequences. PQMass can clearly
detect that the random splits are samples from the same distribution, while the high and low PQM proteins
correspond to two different datasets. This experiment was done by retessellating and resampling the sets for
evaluating 𝜒2

𝑃𝑄𝑀
.

Secondly, we split the dataset into two: One with Protein post-translational modification (PTM)
higher than 0.5, and one with PTM lower than 0.5. This is equivalent to splitting the dataset into
one of high confidence proteins, and one of low confidence. We then repeat the null test. The result
is shown in the orange histogram of Fig. 19. We can clearly see that PQMass can detect that these
two datasets come from different distributions. This is a non-trivial result, that by comparing edit
distances in sequence space, we can detect that the high PTM and low PTM sequences belong to
different distributions.

G PQMASS IN DIFFERENT METRICS

The PQMass test is performed using only distances between sample points, thus one may choose
any distance metric, or kernel (representation) function, to perform the test. The choice of metric
may affect what features PQMass is most sensitive to. In Fig. 20 we show how PQMass performs
on a toy problem using various distance metrics. A Gaussian mixture model with 20 components
is created in 100 dimensions, for each component the means are drawn from a uniform distribution
with range (−10, 10) in all dimensions, the covariance matrices are constructed with eigenvectors
aligned randomly and eigenvalues drawn from a log-uniform distribution with range (−1, 1). The
weight for each component is also drawn from a log-uniform distribution with range (−1, 1). For
each test, we draw two sets of 212 samples from the GMM as input to PQMass. The null test takes
these inputs as-is, for the “scale” out-of-distribution test the samples are scaled by 1.08, and for the
“rotated” out-of-distribution test the samples are rotated by approximately 0.08 radians on a random
axis (scale and rotation chosen arbitrarily for figure quality). To generate the histograms in the figure,
the tests are re-run 214 times each.

All metrics in Fig. 20 correctly fail to reject the null test (left subplot), as should be expected.

The only “failure mode” for PQMass is to not reject the null when the two distributions are different
because the metric is degenerate (i.e., is really a pseudometric). This occurs in the centre subplot,
where correlation and cosine metrics fail to reject the null because they are not sensitive to rescaling.
In the right subplot, where we use a small rotation as the perturbation, the correlation and cosine are,
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Figure 20: Comparison of PQMass applied with various metrics. The metrics are described in detail in the
scipy.cdist documentation; the first three correspond to standard 𝐿1, 𝐿2, and 𝐿inf . 𝜒2 distributions are
presented in each figure. Left: null test to show any metric will return a null result in the null case. Middle:
out-of-distribution example where samples are scaled by a small amount. Right: out-of-distribution example
where samples are rotated by a small amount.
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Figure 21: Comparison of the performance of various distance metrics to detect the addition of Gaussian noise
with increasing variance noise to ImageNet data. Left: Null test with no noise added, where all metrics correctly
identify the data as in-distribution. Right: Gaussian noise with progressively larger variance added to one of
the sets affects 𝜒2

𝑃𝑄𝑀
differently depending on the metric used. For this experiment, 𝜒2

𝑃𝑄𝑀
was evaluated by

retessellating and resampling the datasets.

in fact, the most sensitive to this change, demonstrating how a choice of metric impacts the sensitivity
to differences in the two samples.

We also repeat the experiment described in 3.3, where we evaluate the impact of various distance
metrics on PQMass as Gaussian noise with increasing variance is added to the ImageNet dataset. In
Figure Fig. 21, we show that when no noise is added (null test), all distance metrics will correctly
detect that the images are in distribution (left subplot). We also show that as we add noise, different
metrics showcase different sensitivity and thus affect 𝜒2

𝑃𝑄𝑀
differently. In both tests (and indeed

all our tests) the Euclidean distance – the one used in the main experiments – is among the most
discriminating.

H COMPARISON OF PQMASS TO OTHER TWO-SAMPLE TESTS

Here, we compare PQMass to other two-sample tests. One such class of tests is described in Schilling
(1986), which proposes a nonparametric approach to determine whether two multivariate samples of
points are drawn from the same underlying distribution. In the proposed class of tests, the statistic
used is calculated as the fraction of nearest-neighbor comparisons where both the point and its nearest
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Metric Expected Result Actual Result p-value

𝑇𝑘,𝑛 49.4900 52.4000 0.5596
𝑈𝑘,𝑛,𝑤 1.1300 1.1245 0.7055

Table 5: Two multivariate two-sample tests from Schilling (1986) (unweighted and weighted) applied to two
sets of 50 samples from N(0, I) and N(0.5, I). We wish to assess whether these tests can detect that the two
samples are out of distribution. For each test, we display the expected in-distribution value and the obtained
result, as well as the corresponding p-value. In both cases, the results are statistically very close to the expected
values, indicating no detection that the two distributions are out of distribution.

0 5 10 15 20 25 30 35 40

χ2
PQM

0.00

0.02

0.04

0.06

0.08

0.10

F
re

q
u

en
cy

0.0 0.2 0.4 0.6 0.8 1.0

p-value

0

1

2

3

4

5

Figure 22: Comparison of 50 samples from N(0, I) to 50 samples from N(0.5, I), with PQMass. Unlike the
multivariate two-sample test shown in 5, PQMass can confidently detect that the two sets of samples are indeed
not from the same distribution, showcasing that PQMass is more sensitive than the multivariate two-sample tests
presented in the main text.

neighbor are from the same sample. Here, we consider two specific variations: an unweighted version,
denoted 𝑇𝑘,𝑛, which evaluates the proportion of nearest neighbors that are similar, and a weighted
version, denoted 𝑈𝑘,𝑛,𝑤 , where distances are assigned decreasing weights with increasing distance.

We show that PQMass can outperform this methodology by comparing the performance of the
unweighted and weighted nearest-neighbor two-sample tests against PQMass. Specifically, we
consider two distributions, N(0, I) and N(0.5, I), where 0 = (0, 0) and 0.5 = (0.5, 0.5) are 2-
dimensional mean vectors and I denotes the 2𝑥2 identity matrix. Samples from these distributions
should be identified as out-of-distribution relative to each other. Using 50 samples from each
distribution, we evaluate 𝑇𝑘,𝑛 and 𝑈𝑘,𝑛,𝑤 in Table 5. For the unweighted test statistics, the expected
value is 𝑇𝑘,𝑛 = 49.4900, and the observed value is 𝑇𝑘,𝑛 = 52.4000, with a p-value of p-value𝑇𝑘,𝑛 =

0.5596. These results indicate that the unweighted two-sample test fails to reject the null hypothesis
and incorrectly suggests the distributions are in-distribution. For the weighted two-sample test, the
expected 𝑈𝑘,𝑛,𝑤 = 1.1300, the observed value is 𝑈𝑘,𝑛,𝑤 = 1.1245, and the p-value is p-value𝑈𝑘,𝑛,𝑤

= 0.7055. Again, the results do not indicate a significant difference between the distributions. In
contrast, as shown in Figure 22, when running with PQMass using 10 regions (due to limited samples),
the resulting 𝜒2

𝑃𝑄𝑀
as well as the p-value𝑃𝑄𝑀 , confidently indicate the data does not come from the

same underlying distribution.
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