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ABSTRACT

We study multi-player general-sum Markov games with one of the players desig-
nated as the leader and the rest regarded as the followers. In particular, we focus
on the class of games where the followers are myopic, i.e., the followers aim to
maximize the instantaneous rewards. For such a game, our goal is to find the
Stackelberg-Nash equilibrium (SNE), which is a policy pair (π∗, ν∗) such that (i)
π∗ is the optimal policy for the leader when the followers always play their best
response, and (ii) ν∗ is the best response policy of the followers, which is a Nash
equilibrium of the followers’ game induced by π∗. We develop sample efficient
reinforcement learning (RL) algorithms for solving SNE under both the online
and offline settings. Respectively, our algorithms are optimistic and pessimistic
variants of least-squares value iteration and are readily able to incorporate func-
tion approximation tools for handling large state spaces. Furthermore, for the case
with linear function approximation, we prove that our algorithms achieve sublin-
ear regret and suboptimality under online and offline setups respectively. To our
best knowledge, we establish the first provably efficient RL algorithms for solving
SNE in general-sum Markov games with myopic followers.

1 INTRODUCTION

Reinforcement learning (RL) has achieved striking empirical successes in solving complicated real-
world sequential decision-making problems (Mnih et al., 2015; Duan et al., 2016; Silver et al., 2016;
2017; 2018; Agostinelli et al., 2019; Akkaya et al., 2019). Motivated by these successes, multi-agent
extensions of RL algorithms recently have gained great popularity in decision-making problems in-
volving multiple interacting agents (Busoniu et al., 2008; Hernandez-Leal et al., 2018; 2019; Oroo-
jlooyJadid & Hajinezhad, 2019; Zhang et al., 2019). Multi-agent RL is often modeled as a Markov
game (Littman, 1994) where, at each time step, each player (agent) takes an action simultaneously
at each state of the environment, observe her own immediate reward, and the environment evolves
into a next state. Here both the reward of each player and the state transition depend on the actions
of all players. From the perspective of each player, her goal is to find a policy that maximizes her
expected total reward in the presence of other agents.

In Markov games, depending on the structure of the reward functions, the relationship among the
players can be either collaborative, where each player has the same reward function, or competitive,
where the sum of the reward function is equal to zero, or mixed, which corresponds to a general-
sum game. While most of the existing theoretical results focus on the collaborative or two-player
competitive settings, the mixed setting is oftentimes more pertinent to real-world multi-agent appli-
cations.

Moreover, in addition to having diverse reward functions, the players might also have asymmetric
roles in the Markov game — the players might be divided into leaders and followers, where the
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leaders’ joint policy determines a general-sum game for the followers. Games with such a leader-
follower structure is popular in applications such as mechanism design (Conitzer & Sandholm, 2002;
Roughgarden, 2004; Garg & Narahari, 2005; Kang & Wu, 2014), security games (Tambe, 2011; Ko-
rzhyk et al., 2011), incentive design (Zheng et al., 1984; Ratliff et al., 2014; Chen et al., 2016; Ratliff
& Fiez, 2020), and model-based RL (Rajeswaran et al., 2020). Consider a simplified economic sys-
tem that consists of a government and a group of companies, where the companies purchase or sell
goods, and the government collects taxes from transactions. Such a problem can be viewed as a
multi-player general-sum game, where the government serves as the leader and the companies are
followers (Zheng et al., 2020). In particular, when the government sets a tax rate, the companies
form a general-sum game themselves, whose reward functions depend on the tax rate. Each com-
pany aims to maximize their own revenue, and thus ideally they achieve a Nash equilibrium (NE)
of the induced game. Whereas the goal of the government might be achieving the social welfare,
which can be measured via certain fairness metrics computed by the revenues of the companies.

In multi-player Markov games with such a leader-follower structure, the desired solution concept
is the Stackelberg-Nash equilibrium (SNE) (Başar & Olsder, 1998). In the setting where there is
a single leader, SNE corresponds to a pair of leader’s policy π∗ and followers’ joint policy ν∗ that
satisfies the following two properties: (i) when the leader adopts π∗, ν∗ is the best-response policy
of the followers, i.e., ν∗ is a Nash equilibrium of the followers’ subgame induced by π∗; and (ii) π∗
is the optimal policy of the leader assuming the followers always adopt the best response.

We are interested in finding an SNE in a multi-player Markov game when the reward functions and
Markov transition kernel are unknown. In particular, we focus on the setting with a single leader
and multiple myopic followers. That is, the followers at any step of the game do not take into
account the future rewards, but only the rewards in the current step. The formal definition of myopic
followers is given in §2.3. This setting is a natural formalization of many real-world problems such
as marketing and supply chain management. For example, in a market, the leader is an established
firm and the followers are entrants. The entrants are not sure whether the firm is going to exist in the
future, so they might just want to maximize instantaneous rewards. See Li & Sethi (2017); Kańska
& Wiszniewska-Matyszkiel (2021) and references therein for more examples. For such a game, we
are interested in the following question:

Can we develop sample efficient reinforcement learning methods that provably find
Stackelberg-Nash equilibria in general-sum Markov games with myopic followers?

To this end, we consider both online and offline RL settings, where in the former, we learn the
SNE in a trial-an-error fashion by interacting with the environment and generating data, and in the
latter, we learn the SNE from a given dataset that is collected a priori. For the online setting, as
the transition model is unknown, to achieve sample efficiency, the equilibrium-finding algorithm
also needs to take the exploration-exploitation tradeoff into consideration. Although the similar
challenge has been studied in zero-sum Markov game, it seems unclear how to incorporate popular
exploration mechanisms such as optimism in the face of uncertainty (Sutton & Barto, 2018) into
SNE finding. Meanwhile, under the offline setting, as the RL agent has no control of data collection,
it is ideal to design an RL algorithm with theoretical guarantees for an arbitrary dataset that might
not be sufficiently explorative.

Our contributions Our contributions are three-fold. First, for the episodic general-sum Markov
game with myopic followers, under the online and offline settings respectively, we propose opti-
mistic and pessimistic variants of the least-squares value iteration (LSVI) algorithm. In particular,
in a version of LSVI, we estimate the optimal action-value function of the leader via least-squares
regression and construct an estimate of the SNE by solving the SNE of the multi-matrix game for
each state, whose payoff matrices are given by the leader’s estimated action-value function and the
followers’ reward functions. Moreover, we add a UCB exploration bonus to the least-squares solu-
tion to achieve optimism in the online setting. Whereas in the offline setting, pessimism is achieved
by subtracting a penalty function constructed using the offline data, which is equal to the negative
bonus function. Moreover, these algorithms are readily able to incorporate function approximators
and we showcase the version with linear function approximation. Second, under the online setting,
we prove that our optimistic LSVI algorithm achieves a sublinear Õ(H2

√
d3K) regret, where K is

the number of episodes, H is the horizon, d is the dimension of the feature mapping, and Õ(·) omits
logarithmic terms. Finally, under the offline setting, we establish an upper bound on the suboptimal-
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ity of the proposed algorithm for an arbitrary dataset with K trajectories. Our upper bound yields
a sublinear Õ(H2

√
d3/K) rate as long as the dataset has sufficient coverage over the trajectory

induced by the desired SNE.

Related work. See Appendix A for details.

Notation. We denote by ‖ · ‖2 the `2-norm of a vector or the spectral norm of a matrix. We also
let ‖ · ‖op denote the matrix operator norm. Furthermore, for a positive definite matrix A, we denote
by ‖x‖A the weighted norm

√
x>Ax of a vector x. Also, we denote by ∆(A) the set of probability

distributions on a set A. For some positive integer K, [K] denotes the index set {1, 2, · · · ,K}.

2 PRELIMINARIES

In this section, we introduce the formulation of the general-sum simultaneous-move Markov games,
Stackelberg-Nash equilibrium, and the linear structure we use in this paper.

2.1 GENERAL-SUM SIMULTANEOUS-MOVE MARKOV GAMES

In this setting, two levels of hierarchy in decision making are considered: one leader l and N
followers {fi}i∈[N ]. Specifically, we define an episodic version of general-sum simultaneous-
moves Markov game by the tuple (S,Al,Af = {Afi}i∈[N ], H, rl, rf = {rfi}i∈[N ],P), where
S is the state space, Al and Af are the sets of actions of the leader and the followers respec-
tively, H is the number of steps in each episode, rl = {rl,h : S × Al × Af → [−1, 1]}Hh=1 and
rfi = {rfi,h : S × Al × Af → [−1, 1]}Hh=1 are reward functions of the leader and the followers
respectively, and P = {Ph : S × Al × Af × S → [0, 1]}Hh=1 is a collection of transition kernels.
Here Al ×Af = Al ×Af1 × · · · × AfN . Throughout this paper, we also let ? be some element in
{l, f1, · · · , fN}. Moreover, for any (h, x, a) ∈ [H]× S ×Al and b = {bi ∈ Afi}i∈[N ], we use the
shorthands r?,h(x, a, b) = r?,h(x, a, b1, · · · , bN ) and Ph(· |x, a, b) = Ph(· |x, a, b1, · · · , bN ).

Policy and Value Function. A stochastic policy π = {πh : S → ∆(Al)}Hh=1 of the leader is a
set of probability distributions over actions given the state. Meanwhile, a stochastic joint policy of
the followers is defined by ν = {νfi}i∈[N ], where νfi = {νfi,h : S → ∆(Afi)}Hh=1. We use the
notation πh(a |x) and νfi,h(bi |x) to denote the probability of taking action a ∈ Al or bi ∈ Afi for
state x at step h under policy π, νfi respectively. Throughout this paper, for any ν = {νfi}i∈[N ] and
b = {bi}i∈[N ], we use the shorthand νh(b |x) = νf1,h(b1 |x)× · · · × νfN ,h(bN |x).

Given policies (π, ν = {νfi}i∈[N ]), the action-value (Q) and state-value (V) functions for the leader
and followers are defined by

Qπ,ν?,h(x, a, b) = Eπ,ν,h,x,a,b
[ H∑
t=h

r?,h(xt, at, bt)

]
, V π,ν?,h (x) = Ea∼πh(· | x),b∼νh(· | x)Q

π,ν
?,h(x, a, b), (2.1)

where the expectation Eπ,ν,h,x,a,b is taken over state-action pairs induced by the policies (π, ν =
{νfi}i∈[N ]) and the transition probability, when initializing the process with the triplet (s, a, b =
{bi}i∈[N ]) at step h. For notational simplicity, when h, x, a, b are clear from the context, we omit
h, x, a, b from Eπ,ν,h,x,a,b. By the definition in (2.1), we have the Bellman equation

V π,ν?,h = 〈Qπ,ν?,h , πh × νh〉Al×Af , Qπ,ν?,h = r?,h + PhV π,ν?,h+1, ∀? ∈ {l, f1, · · · , fN}, (2.2)

where πh × νh represents πh × νf1,h × · · · × νfN ,h. Here Ph is the operator which is defined by

(Phf)(x, a, b) = E[f(x′) |x′ ∼ Ph(x′ |x, a, b)] (2.3)

for any function f : S → R and (x, a, b) ∈ S ×Al ×Af .

2.2 STACKELBERG-NASH EQUILIBRIUM

Given a leader policy π, a Nash equilibrium (Nash, 2016) of the followers is a joint policy ν∗ =
{ν∗fi}i∈[N ], such that for any x ∈ S and (i, h) ∈ [N ]× [H]

V π,ν
∗

fi,h
(x) ≥ V

π,νfi ,ν
∗
f−i

fi,h
(x), ∀νfi . (2.4)
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Here −i represents all indices in [N ] except i. For each leader policy π, we denote the set of best-
response policies of the followers by BR(π), which is defined by

BR(π) = {ν | ν is the NE of the followers given the leader policy π}. (2.5)

Given the best-response set BR(π), we denote ν∗(π) the best-case responses, which break ties in
favor of the leader. This is also known as optimistic tie-breaking (Breton et al., 1988; Bucarey et al.,
2019a). We will discuss pessimistic tie-breaking (Conitzer & Sandholm, 2006) in §I. Specifically,
we define ν∗(π) by

ν∗(π) = {ν ∈ BR(π) |V π,νl,h (x) ≥ V π,ν
′

l,h (x),∀x ∈ S, h ∈ [H], ν′ ∈ BR(π)}. (2.6)

The Stackelberg-Nash equilibrium for the leader is the “best response to the best response”. In other
words, we want to find a leader’s policy π that maximizes her value function under the assumption
that the followers always adopt ν∗(π), i.e.,

SNEl = {π |V π,ν
∗(π)

l,h (x) ≥ V π
′,ν∗(π′)

l,h (x),∀x ∈ S, h ∈ [H], π′} (2.7)

A Stackelberg-Nash equilibrium of the general-sum game is a policy pair (π∗, ν∗ = {ν∗fi}i∈[N ])

such that ν∗ ∈ ν∗(π∗) and π∗ ∈ SNEl.

Our goal is to find the Stackelberg equilibrium: the leader’s optimal strategy, under the assumption
that the followers always play their best response (Nash equilibrium) to the leader. Equivalently, we
need to solve the following optimization problem:

max
π,ν

V π,νl,1 (x) s.t. ν ∈ BR(π). (2.8)

We study this challenging bilevel optimization problem in both the online setting (Section 3) and the
offline setting (Section 4) respectively.

2.3 LINEAR MARKOV GAMES WITH MYOPIC FOLLOWERS

Linear Markov Games. We study the linear Markov games (Xie et al., 2020), where the transition
dynamics are linear in a feature map.
Assumption 2.1 (Linear Markov Games). Markov game (S,Al,Af = {Afi}i∈[N ], H, rl, rf =

{rfi}i∈[N ],P) is a linear Markov game if there exists a feature map φ : S × Al × Af → Rd such
that

Ph(· |x, a, b) = 〈φ(x, a, b), µh(·)〉

for any (x, a, b) ∈ S×Al×Af and h ∈ [H]. Here µh = (µ
(1)
h , µ

(2)
h , · · · , µ(d)

h ) are d unknown signed
measures over S. Without loss of generality, we assume that ‖φ(·, ·, ·)‖2 ≤ 1 and ‖µh(S)‖ ≤

√
d

for all h ∈ [H].

The linear Markov game above is an extension of linear MDP studied in Jin et al. (2020b) for the
single-agent RL. Specifically, when the followers play fixed and known policies, the linear Markov
games reduce to the linear MDP. We also remark that Chen et al. (2021b) recently study another
variant of linear Markov games. These two variants are incomparable in the sense that one does not
imply the other.

Myopic Followers. Throughout this paper, we make the following assumption.
Assumption 2.2 (Myopic followers). We assume that the followers are myopic. Specifically, the
followers at any step of the game do not consider the future rewards, but only the instantaneous
rewards. Formally, given a leader’s policy π, the NE of the myopic followers is defined by the joint
policy ν∗ = {ν∗fi}i∈[N ], such that for any x ∈ S and (i, h) ∈ [N ]× [H]

rπ,ν
∗

fi,h
(x) ≥ r

π,νfi ,ν
∗
f−i

fi,h
(x), ∀νfi . (2.9)

In other words, at each state x, the followers play a normal form game where the payoff matrices are
determined only by the immediate reward functions and the leader’s policy. Then, with slight abuse
of notation, the best response set of the leader’s policy π is

BR(π) = {ν | ν is the NE of the myopic followers given the leader policy π}. (2.10)
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And the best-case response ν∗(π) and Stackelberg-Nash equilibria SNEl follow the definitions in
(2.6) and (2.7).

Leader-Controller Linear Markov Games. A special case of the Markov games with myopic
followers is leader-controller Markov games (Filar & Vrieze, 2012; Bucarey et al., 2019a), where
the future state only depends on the current state and the leader’s action. Such a setting is also
well-motivated. One can consider the game where the leader is the government that dictates prices
and the followers are companies. This is a leader-controller Markov game because the future state
(price) is determined by the current state (price) and the leader (government). Formally, it holds that
Ph(· |x, a, b) = Ph(· |x, a) for any (x, a, b) ∈ S ×Al ×Af and h ∈ [H]. Hence, with slight abuse
of notation, it is naturally to make the following assumption.
Assumption 2.3 (Leader-Controller Linear Markov Games). Markov game (S,Al,Af =
{Afi}i∈[N ], H, rl, rf = {rfi}i∈[N ],P) is a leader-controller linear Markov games if we assume
the existence of a feature φ : S ×Al → Rd such that

Ph(· |x, a, b) = 〈φ(s, a), µh(·)〉, (2.11)

for any (s, a, b) ∈ A×Al ×Af , where ‖φ(·, ·)‖2 ≤ 1 and ‖µh(S)‖ ≤
√
d for all h ∈ [H].

Notably, Markov games with myopic followers subsume leader-controller Markov games as a spe-
cial case. Specifically, since the followers’ policies cannot affect the following state, then the NE
defined in (2.4) is the same as (2.9), which further implies that the best-response set defined in (2.5)
is the same as (2.10).

3 MAIN RESULTS FOR THE ONLINE SETTING

In this section, we study the online setting, where a central controller controls one leader l and
N followers {fi}i∈[N ]. Our goal is to learn a Stackelberg-Nash equilibrium. In what follows, we
formally describe the setup and learning objectives, and then present our algorithm and provide
theoretic guarantees.

3.1 SETUP AND LEARNING OBJECTIVE

We consider the setting where the reward functions rl and rf = {rfi}i∈[N ] are revealed to the learner
before the game. This is reasonable since in practice the reward functions are usually artificially
designed. Moreover, we focus on the episodic setting. Specifically, a Markov game is played for K
episodes, each of which consists ofH timesteps. At the beginning of the k-th episode, the leader and
followers determine their policies (πk, νk = {νkfi}i∈[N ]), and a fixed initial state xk1 = x1 is chosen.
Here we assume the fixed initial state just for ease of presentation, and our subsequent results can
be generalized to the setting where xk1 is picked from a fixed distribution. Then the game proceeds
as follows. At each step h ∈ [H], the leader and the followers observe state xkh ∈ S and pick their
own actions akh ∼ πkh(· |xkh) and bkh = {bki,h ∼ νkfi,h(· |xkh)}i∈[N ]. Subsequently, the environment
transitions to the next state xkh+1 ∼ Ph(· |xkh, akh, bkh). Each episode terminates after H timesteps.

Learning Objective. Let (πk, νk = {νkfi}i∈[N ]) denote the policies executed by the algorithm
in the k-th episode. By the definition of the bilevel optimization problem in (2.8), we expect that
νk ∈ BR(πk) and that V π

∗,ν∗

l,1 (xk1)− V π
k,νk

l,1 (xk1) is small for any k ∈ [K]. Hence, we evaluate the
suboptimality of our algorithm by the regret, which is defined as

Regret(K) =

K∑
k=1

V π
∗,ν∗

l,1 (xk1)− V π
k,νk

l,1 (xk1). (3.1)

The goal is to design algorithms with regret that is sublinear in K, and polynomial in d,H . Here K
is the number of episodes, d is the dimension of the feature map φ, and H is the episode horizon.

3.2 ALGORITHM

We now present our algorithm, Optimistic Value Iteration to Find Stackelberg-Nash Equilibrium
(OVI-SNE), which is given in Algorithm 1.
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Algorithm 1 Optimistic Value Iteration to Find Stackelberg-Nash Equilibria
1: Initialize Vl,H+1(·) = Vf,H+1(·) = 0.
2: for k = 1, 2, · · · ,K do
3: Receive initial state xk1 .
4: for step h = H,H − 1, · · · , 1 do
5: Λkh ←

∑k−1
τ=1 φ(xτh, a

τ
h, b

τ
h)φ(xτh, a

τ
h, b

τ
h)> + I .

6: wkh ← (Λkh)−1
∑k−1
τ=1 φ(xτh, a

τ
h, b

τ
h) · V kh+1(xτh+1).

7: Γkh(·, ·, ·)← β · (φ(·, ·, ·)>(Λkh)−1φ(·, ·, ·))1/2.
8: Qkh(·, ·, ·)← rl,h(·, ·, ·) + ΠH−h{φ(·, ·, ·)>wkh + Γkh(·, ·, ·)}.
9: (πkh(· |x), {νkfi,h(· |x)}i∈[N ])← ε-SNE(Qkh(x, ·, ·), {rfi,h(x, ·, ·)}i∈[N ]), ∀x. (Alg. 2)

10: V kh (x)← Ea∼πkh(· | x),b1∼νkf1,h(· | x),··· ,bN∼νkfN ,h(· | x)Q
k
h(x, a, b1, · · · , bN ), ∀x.

11: end for
12: for h = 1, 2, ·, H do
13: Sample akh ∼ πkh(· |xkh), bk1,h ∼ νkf1,h(· |xkh), · · · , bkN,h ∼ νkfN ,h(· |xkh).
14: Leader takes action akh; Followers take actions bkh = {bki,h}i∈[N ].
15: Observe next state xkh+1.
16: end for
17: end for

Algorithm 2 ε-SNE
1: Input: Qkh, x, and parameter ε.
2: Select Q̃ from Qkh,ε satisfying ‖Q̃−Qkh‖∞ ≤ ε.
3: For the input state x, let (πkh(· |x), {νkfi,h(· |x)}i∈[N ]) be the Stackelberg-Nash equilibrium for

the matrix game with payoff matrices (Q̃(x, ·, ·), {rfi,h(x, ·, ·)}i∈[N ]).
4: Output: (πkh(· |x), {νkfi,h(· |x)}i∈[N ]).

At a high level, in each episode, our algorithm first construct the policies for all players through
backward induction with respect to the timestep h (Line 4-11), and then execute the policies to play
the game (Line 12-16).

In detail, at h-th step of k-th episode, OVI-SNE estimates leader’s Q-function based on the (k − 1)
historical trajectories. Inspired by previous optimistic least square value iteration (LSVI) algorithms
(Jin et al., 2020b), for any h ∈ [H], we estimate the linear coefficients by solving the following ridge
regression problem:

wkh ← argmin
w∈Rd

k−1∑
τ=1

[V kh+1(xτh+1)− φ(xτh, a
τ
h, b

τ
h)>w]2 + ‖w‖22,

where V kh+1(·) = 〈Qkh+1(·, ·, ·), πkh+1(· | ·)× νkh+1(· | ·)〉Al×Af .

(3.2)

By solving the ridge regression problem in (3.2), we have

wkh = (Λkh)−1
(k−1∑
τ=1

φ(xτh, a
τ
h, b

τ
h) · V kh+1(xτh+1)

)
,

where Λkh =

k−1∑
τ=1

φ(xτh, a
τ
h, b

τ
h)φ(xτh, a

τ
h, b

τ
h)> + I.

(3.3)

To encourage exploration, we additionally adds a bonus function to estimate the leader’s Q-function:

Qkh(·, ·, ·)← rl,h(·, ·, ·) + ΠH−h{φ(·, ·, ·)>wkh + Γkh(·, ·, ·)},

where Γkh(·, ·, ·) = β ·
√
φ(·, ·, ·)>(Λkh)−1φ(·, ·, ·).

(3.4)
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Here Γkh : S × Al → R is a bonus function and β > 0 is a parameter which will be specified later.
This form of bonus function is common in the literature of linear bandits (Lattimore & Szepesvári,
2020) and linear MDPs (Jin et al., 2020b).

Then, we construct policies for the leader and followers by the subroutine ε-SNE (Algorithm 2).
Specifically, let Qkh be the class of functions Q : S ×Al ×Af → R that takes form

Q(·, ·, ·) = rl,h(·, ·, ·) + ΠH−h
{
φ(·, ·, ·)>w + β ·

(
φ(·, ·, ·)>Λ−1φ(·, ·, ·)

)1/2}
, (3.5)

where the parameters (w,Λ) ∈ Rd × Rd×d satisfy ‖w‖ ≤ H
√
dk and λmin(Λ) ≥ 1. Moreover, let

Qkh,ε be a fixed ε-covering ofQkh with respect to the `∞ norm. By Lemma D.10, we have Qkh ∈ Qkh,
which allows us to pick a Q̃ ∈ Qkh,ε such that ‖Q̃−Qkh‖∞ ≤ ε and calculate policies by

(πkh(· |x), {νkfi,h(· |x)}i∈[N ])← SNE(Q̃(x, ·, ·), {rfi,h(x, ·, ·)}i∈[N ]), ∀x. (3.6)

When there is only one follower, (3.6) requires finding a Stackelberg equilibrium in the matrix game.
Such a problem can be transformed to a linear programming (LP) problem (Conitzer & Sandholm,
2006; Von Stengel & Zamir, 2010), and thus can be solved efficiently. For the multi-follower case
(i.e., N ≥ 2), however, solving such a matrix game in general is hard (Conitzer & Sandholm, 2006;
Basilico et al., 2017a;b; Coniglio et al., 2020). Given this computational hardness, we focus on the
sample complexity and explicitly assume access to the following computational oracle:
Assumption 3.1. We assume access to an oracle that implements Line 3 of Algorithm 2.

Finally, the leader and the followers play the game according to the obtained policies.
Remark 3.2. Due to some technical challenge, the subroutine ε-SNE is necessary. See §B.1 for
more explanations.

3.3 THEORETICAL RESULTS

Our main theoretical result is the following bound on the regret incurred by Algorithm 1. Recall that
the regret is defined in (3.1) and T = KH is the total number of timesteps.
Theorem 3.3. Under Assumptions 2.1, 2.2, and 3.1, there exists an absolute constant C > 0 such
that, for any fixed p ∈ (0, 1), by setting β = C ·dH

√
ιwith ι = log(2dT/p) in Line 7 of Algorithm 1

and ε = 1
KH in Algorithm 2, then we have νk ∈ BR(πk) for any k ∈ [K]. Meanwhile, with

probability at least 1− p, the regret incurred by OVI-SNE satisfies that

Regret(K) ≤ O(
√
d3H3Tι2).

The proof is deferred to Appendix D. We will discuss the Stackelberg equilibria learning, optimality
of the bound, and unknown reward setting in Appendix B.2.

4 MAIN RESULTS FOR THE OFFLINE SETTING

In this section, we study the offline setting, where the central controller aims to find a Stackelberg-
Nash equilibrium by an offline dataset. Below we describe the setup and learning objective, followed
by our algorithm and theoretical results.

4.1 SETUP AND LEARNING OBJECTIVE

We study the offline setting, where the learner has access to the reward functions (rl, rf = {rfi}Ni=1)

and a dataset D = {(xτh, aτh, bτh = {bτi,h}Ni=1)}K,Hτ,h=1, which is collected a priori by some experi-
menter. Then we make a minimal assumption for the offline dataset.
Assumption 4.1 (Compliance of Dataset). We assume that the dataset D is compliant with the
underlying Markov game (S,Al,Af , H, rl, rf ,P), that is, for any x′ ∈ S at step h ∈ [H] of each
trajectory τ ∈ [K],

PD(xτh+1 = x′ | {xjh, a
j
h, b

j
h, x

j
h+1}

τ−1
j=1 ∪ {x

τ
h, a

τ
h, b

τ
h}) = P (xh+1 = x′ |xh = xτh, ah = aτh, bh = bτh).

Here the probability on the left-hand side is with respect to the joint distribution over dataset D and
the probability on the right-hand side is with respect to the underlying Markov game.
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Assumption 4.1 is adopted from Jin et al. (2020c), which indicates the Markov property of the dataset
D and that xτh+1 is generated by the underlying Markov game conditioned on (xτh, a

τ
h, b

τ
h). As a

special case, Assumption 4.1 holds when the experimenter follows fixed behavior policies. More
generally, Assumption 4.1 allows the experimenter to choose actions aτh and bτh arbitrarily, even in
an adaptive or adversarial manner. In particular, we can assume that aτh and bτh are interdependent
across each trajectory τ ∈ [K]. For instance, the experimenter can sequentially improve the behavior
policy using any online algorithm for Markov games.

Learning Objective. Similar to the online setting, we define the following performance metric

SubOpt(π, ν, x) = V π
∗,ν∗

l,1 (x)− V π,νl,1 (x), (4.1)

which evaluates the suboptimality of policies (π, ν = {νfi}Ni=1) given the initial state x ∈ S.

4.2 ALGORITHM

As is known to us, the key challenge of online setting is the the tradeoff between exploration and
exploration. In the online setting. by following the “optimism in the face of uncertainty” principle
(Sutton & Barto, 2018), we use bonus functions to incentivize exploration and thus achieve sample-
efficient. This intrinsic challenge of online setting disappears in the offline setting because we do
not need exploration any more. But another challenge arises: we only have access to the limited
data. To tackle this challenge, we need add some penalty functions to achieve robustness against the
uncertainty due to the finite data. This is also known as pessimism (Yu et al., 2020; Jin et al., 2020c;
Liu et al., 2020b; Buckman et al., 2020; Kidambi et al., 2020; Kumar et al., 2020; Rashidinejad
et al., 2021). Here we simply flip the sign of bonus functions defined in (3.4) to serve as penalty
functions. See Algorithm 3 for details.

4.3 THEORETICAL RESULTS

Suppose that (π̂ = {π̂h}Hh=1, ν̂ = {ν̂fi = {νfi,h}Hh=1}Ni=1) are the output policies of Algorithm 3.
Then we evaluate the performance of (π̂, ν̂) by establishing an upper bound for the optimality gap
defined in (4.1).

Theorem 4.2. Under Assumptions 2.1, 2.2, 3.1, and 4.1, there exists an absolute constant C > 0

such that, for any fixed p ∈ (0, 1), by setting β′ = C ·dH
√

log(2dHK/p) in Line 6 of Algorithm 3
and ε = d

KH in Algorithm 2, then it holds that ν̂ ∈ BR(π̂). Meanwhile, with probability at least
1− p, we have

SubOpt(π̂, ν̂, x) ≤ 3β′
H∑
h=1

Eπ∗,ν∗,x
[(
φ(sh, ah, bh)>(Λh)−1φ(sh, ah, bh)

)1/2]
, (4.2)

where Eπ∗,ν∗,x is taken with respect to the trajectory incurred by (π∗, ν∗) in the underlying Markov
game when initializing the progress at x. Here Λh is defined in Line 4 of Algorithm 3.

The proof of Theorem 4.2 is deferred to §G. To illustrate our theory more, we will provide more
comments on Theorem 4.2 in §C.2.

5 CONCLUSION

In this paper, we investigate the question of can we sample efficiently find SNE in general-sum
Markov games with myopic followers and linear function approximation. To the best of our knowl-
edge, in both online and offline settings, we develop the first sample efficient reinforcement learning
algorithms for solving SNE. We believe our work opens up many interesting directions for future
work. For example, we can ask the following questions: Can we find SNE in general-sum Markov
games without the myopic followers assumption? Can we design more computationally efficient al-
gorithms for solving SNE in general-sum Markov games? Can we find SNE in general-sum Markov
games with general function approximation?
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András Antos, Rémi Munos, and Csaba Szepesvári. Fitted q-iteration in continuous action-space
mdps. 2007.
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Strong Stackelberg Equilibrium in Discounted Stochastic Games. PhD thesis, INRIA, 2019a.

9



Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Vı́ctor Bucarey, Alain Jean-Marie, Eugenio Della Vecchia, and Fernando Ordóñez. On the value
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A RELATED WORK

In the sequel, we discuss the related works.

RL for solving NE in Markov games Our work adds to the vast body of existing literature on
RL for finding Nash equilibria in Markov games. In particular, there is a line of works that gener-
alizes single-agent RL algorithms to Markov games under either the generative model (Azar et al.,
2013) or offline settings with well-explored datasets (Littman, 2001; Greenwald et al., 2003; Hu &
Wellman, 2003; Lagoudakis & Parr, 2012; Hansen et al., 2013; Perolat et al., 2015; Jia et al., 2019;
Sidford et al., 2020; Cui & Yang, 2020; Fan et al., 2020; Daskalakis et al., 2021; Zhao et al., 2021).
These works all aim to find the Nash equilibrium and their algorithms are generalizations of single-
agent RL algorithms. In particular, Littman (2001; 1994); Greenwald et al. (2003); Hu & Wellman
(2003) generalize Q-learning (Watkins & Dayan, 1992) to Markov games and establish asymptotic
convergence guarantees. Jia et al. (2019); Sidford et al. (2020); Zhang et al. (2020a); Cui & Yang
(2020) propose variants of Q-learning or value iteration (Shapley, 1953) algorithms under the gen-
erative model setting. Moreover, Perolat et al. (2015); Fan et al. (2020) study the sample efficiency
of fitted value iteration (Munos & Szepesvári, 2008) for zero-sum Markov games under the offline
setting. They assume the behavior policy is explorative in the sense that the concentrability coeffi-
cients (Munos & Szepesvári, 2008) are uniformly bounded. Under similar assumptions, Daskalakis
et al. (2021); Zhao et al. (2021) study the sample complexity of policy gradient (Sutton et al., 1999)
under the well-explored offline setting. Moreover, under the online setting, there is a recent line of
research that proposes provably efficient RL algorithms for zero-sum Markov games. See, e.g., Wei
et al. (2017); Bai et al. (2020); Bai & Jin (2020); Liu et al. (2020a); Tian et al. (2020); Xie et al.
(2020); Chen et al. (2021b) and the references therein. These works propose optimism-based algo-
rithms and establish sublinear regret guarantees for finding NE. Among these works, our work is
particularly related to Xie et al. (2020); Chen et al. (2021b), whose algorithms also incorporate the
linear function approximation. Compared with these aforementioned works, we focus on solving
the Stackelberg-Nash equilibrium, which involves a bilevel structure and is fundamentally different
from the Nash equilibrium. Thus, our work is not directly comparable.

Learning Stackelberg games As for solving Stackelberg-Nash equilibrium, most of the existing
results focus on the normal form game, which is equivalent to our Markov game with H = 1.
Letchford et al. (2009); Blum et al. (2014); Peng et al. (2019) study learning Stackelberg equilibrium
with a best response oracle. In addition, Fiez et al. (2019) study the local convergence of first-
order methods for finding Stackelberg equilibria in general-sum games with differentiable reward
functions, and Ghadimi & Wang (2018); Chen et al. (2021a); Hong et al. (2020) analyze the global
convergence of first-order methods for achieving global optimality of bilevel optimization. A more
related work is Bai et al. (2021), which studies the matrix Stackelberg game with bandit feedback.
This work also studies an RL extension where the leader has a finite action set and the follower is
faced with an MDP specified by the leader’s action. In comparison, we assume the leader knows
the reward functions and the main challenge lies in the unknown transitions. Thus, our setting
is different from that in Bai et al. (2021). Furthermore, a more relevant work is (Bucarey et al.,
2019b), which establishes the Bellman equation and value iteration algorithm for solving SNE in
Markov games. In comparison, we establish modifications of least-squares value iteration that are
tailored to online and offline settings.

Learning general-sum Markov games Liu et al. (2020a) present the first result of finding cor-
related equilibrium (CE) and coarse correlated equilibrium (CCE) in general-sum Markov games.
However, their centralized algorithms suffer from the curse of many agents, that is, their sample
complexity scales exponentially in the number of agents. Recently, Song et al. (2021); Mao & Başar
(2021); Jin et al. (2021) successfully escape the curse of many agents thanks to the decentralized
structure of V-learning algorithm (Bai et al., 2020).

Related single-agent RL methods Broadly speaking, our work is also related to the recent line
of works that achieve sample efficiency in single-agent RL under the online setting. See, e.g., (Azar
et al., 2017; Jin et al., 2018; Yang & Wang, 2019; Zanette & Brunskill, 2019; Jin et al., 2020b; Zhou
et al., 2020; Ayoub et al., 2020; Yang & Wang, 2020; Zanette et al., 2020b;a; Zhang et al., 2020c;b;
Agarwal et al., 2020) and the references therein. In particular, following the optimism in the face
of uncertainty principle, these works achieve near-optimal regret under either tabular or function
approximation settings. Meanwhile, for offline RL with an arbitrary dataset, various recent works
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propose to utilize pessimism for achieving robustness. See, e.g., (Yu et al., 2020; Kidambi et al.,
2020; Kumar et al., 2020; Jin et al., 2020c; Liu et al., 2020b; Buckman et al., 2020; Rashidinejad
et al., 2021) and the references therein. These aforementioned works all focus on the single-agent
setting and we prove that optimism and pessimism also play an indispensable role in achieving
sample efficiency in finding SNE.

B MISSING PARTS IN SECTION 3

B.1 EXPLANATION OF ε-SUBROUTINE

Now we explain the motivation for using the subroutine ε-SNE to construct policies instead of solv-
ing the matrix games with payoff matrices (Qkh(x, ·, ·), {rfi,h(x, ·, ·)}i∈[N ]) directly. By the defini-
tion of Qkh in (3.4), we know Qkh relies on the previous data via the estimated value function V kh+1

and feature maps {φ(xτh, a
τ
h, b

τ
h)}k−1

τ=1. Similar to the analysis for linear MDPs (Jin et al., 2020b),
we need to use a covering argument to establish uniform concentration bounds for all value V kh+1.
Jin et al. (2020b) directly constructs an ε-net for the value functions and establishes a polynomial
log-covering number for this ε-net. This analysis, however, relies on that the policies executed by
the players are greedy (deterministic), which is not valid for our setting. To overcome this technical
issue, we construct an ε-net for Q-functions and solve an approximate matrix game. Fortunately, by
choosing a small enough ε, we can handle the errors caused by this approximation. See §D for more
details. Moreover, as shown in Xie et al. (2020), this subroutine can be implemented efficiently
without explicitly computing the exponentially large ε-net.

B.2 MORE DISCUSSIONS ON THOEREM 3.3

Learning Stackelberg Equilibria. When there is only one follower, Stackelberg-Nash equilib-
rium reduces to the Stackelberg equilibrium (Simaan & Cruz, 1973; Conitzer & Sandholm, 2006;
Bai et al., 2021). Thus, we partly answer the open problem in Bai et al. (2021) on how to learn
Stackelberg equilibria in general-sum Markov games (with myopic followers).

Optimality of the Bound. Assuming that the action of the follower won’t affect the transition
kernel and reward function, the linear Markov games reduces to the linear MDP (Jin et al., 2020b).
Meanwhile, the lower bound established in Azar et al. (2017); Jin et al. (2018) for tabular MDPs
and the lower bound established in Lattimore & Szepesvári (2020) for linear bandits directly imply
a lower bound Ω(dH

√
T ) for the linear MDPs, which further yields a lower bound Ω(dH

√
T ) for

our setting. Ignoring the logarithmic factors, there is only a gap of
√
dH between this lower bound

and our upper bound. We also point out that, by using the “Bernstein-type” bonus (Azar et al., 2017;
Jin et al., 2018; Zhou et al., 2020), we can improve our upper bound by a factor of

√
H . Here we do

not apply this technique for the clarity of the analysis.

Unknown Reward Setting. To relax the assumption that the reward is known, we consider the
case where the reward functions are unknown. At a high level, we first conduct a reward-free
exploration algorithm (Algorithm 4 in §E), a variant of Reward-Free RL-Explore algorithm in Jin
et al. (2020a), to obtain estimated reward functions {r̂l, r̂f1 , · · · r̂fN }. As asserted before, we can use
Algorithm 1 to find the SNE with respect to the known estimated reward functions {r̂l, r̂f1 , · · · r̂fN }.
Hence, we can obtain the approximate SNE if the value functions of estimated value functions are
good approximation of the true value functions. See §E for the detailed algorithm and theoretical
guarantees.
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C MISSING PARTS IN SECTION 4

C.1 ALGORITHM

Algorithm 3 Pessimistic Value Iteration to Find Stackelberg-Nash Equilibria

1: Input: D = {xτh, aτh, bτh = {bτi,h}i∈[N ]}K,Hτ,h=1 and reward functions {rl, rf = {rfi}i∈[N ]}.
2: Initialize V̂H+1(·) = 0.
3: for step h = H,H − 1, · · · , 1 do
4: Λh ←

∑K
τ=1 φ(xτh, a

τ
h, b

τ
h)φ(xτh, a

τ
h, b

τ
h)> + I .

5: wh ← (Λh)−1
∑K
τ=1 φ(xτh, a

τ
h, b

τ
h) · V̂h+1(xτh+1).

6: Γh(·, ·, ·)← β′ · (φ(·, ·, ·)>(Λh)−1φ(·, ·, ·))1/2.
7: Q̂h(·, ·, ·)← rl,h(·, ·, ·) + ΠH−h{φ(·, ·, ·)>wh − Γh(·, ·, ·)}.
8: (π̂h(· |x), {ν̂fi,h(· |x)}i∈[N ])← ε-SNE(Q̂h(x, ·, ·), {rfi,h(x, ·, ·)}i∈[N ]), ∀x. (Alg. 2)
9: V̂h(x)← Ea∼π̂h(· | x),b1∼ν̂f1,h(· | x),··· ,bN∼ν̂fN ,h(· | x)Q̂h(x, a, b1, · · · , bN ), ∀x.

10: end for
11: Output: (π̂ = {π̂h}Hh=1, ν̂ = {ν̂fi = {νfi,h}Hh=1}Ni=1).

C.2 MORE COMMENTS ON THEOREM 4.2

Minimal Assumption Requirement: Theorem 4.2 only relies on the compliance of the dataset
with linear Markov games. Compared with existing literature on offline RL (Bertsekas & Tsitsiklis,
1996; Antos et al., 2007; 2008; Munos & Szepesvári, 2008; Farahmand et al., 2010; 2016; Scherrer
et al., 2015; Liu et al., 2018; Chen & Jiang, 2019; Fan et al., 2020; Xie & Jiang, 2020), we impose
no restrictions on the coverage of the dataset. Meanwhile, we need no assumption on the affinity
between (π̂, ν̂) and the behavior policies that induce the dataset, which is often employed as a
regularizer (Fujimoto et al., 2019; Laroche et al., 2019; Jaques et al., 2019; Wu et al., 2019; Kumar
et al., 2019; Wang et al., 2020; Siegel et al., 2020; Nair et al., 2020; Liu et al., 2020b).

Dataset with Sufficient Coverage: In what follows, we specialize Theorem 4.2 to the setting where
we assume the dataset with good “coverage”. Note that Λh is determined by the offline dataset D
and acts as a fixed matrix in the expectation, that is, the expectation in (4.2) is only taken with the
trajectory induced by (π∗, ν∗). As proofed in the following theorem, when the trajectory induced
by (π∗, ν∗) is “covered” by the dataset D sufficiently well, we can establish that the suboptimality
incurred by Algorithm 3 diminishes at rate of Õ(1/

√
K).

Corollary C.1. Suppose it holds with probability at least 1− p/2 that

Λh � I + c ·K · Eπ∗,ν∗,x[φ(sh, ah, bh)φ(sh, ah, bh)>]

for all (x, h) ∈ S × [H]. Here c > 0 is an absolute constant and Eπ∗,ν∗,x is taken with respect to
the trajectory incurred by (π∗, ν∗) in the underlying Markov game when initializing the progress at
x. Under Assumptions 2.1, 2.2, 3.1 and 4.1, there exists an absolute constant C > 0 such that, for
any fixed p ∈ (0, 1), by setting β′ = C · dH

√
log(4dHK/p) in Line 6 of Algorithm 3 and ε = d

KH
in Algorithm 2, then it holds with probability at least 1− p that

SubOpt(π̂, ν̂, x) ≤ C̄ · d3/2H2
√

log(4dHK/p)/K

for all x ∈ S. Here C̄ is another absolute constant that only depends on c and C.

Proof. See §H for a detailed proof.

Note that, unlike the previous literature (Antos et al., 2007; Munos & Szepesvári, 2008; Farahmand
et al., 2010; 2016; Scherrer et al., 2015; Liu et al., 2018; Chen & Jiang, 2019; Fan et al., 2020; Xie
& Jiang, 2020) which relies on the “uniform coverage” assumption, Corollary C.1 only assumes that
the dataset has a good coverage of the trajectory incurred by the policies (π∗, ν∗).

18



Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Optimality of the Bound: Fix x ∈ S . Assuming rl = rfi for any i ∈ [N ], we know
(π∗, ν∗) = argmaxπ,ν V

π,ν
l,1 (x). Then the information-theoretic lower bound for offline single-

agent RL (e.g., Theorem 4.7 in Jin et al. (2020c)) can imply the information-theoretic lower bound
Ω(
∑H
h=1 Eπ∗,ν∗,x[(φ(sh, ah, bh)>(Λh)−1φ(sh, ah, bh))1/2]) for our setting. In particular, our up-

per bound established in Theorem 4.2 matches this lower bound up to β′ and absolute constants and
thus implies that our algorithm is nearly minimax optimal.

D PROOF OF THEOREM 3.3

Proof of Theorem 3.3. By the myopic followers assumption, we have the following lemma.

Lemma D.1. For any k ∈ [K], we have νk ∈ BR(πk). Here BR(·) is defined in (2.10).

Proof. Combing the definition of (πk, νk) in Line 9 of Algorithm 1 and the definition of the best
response set in the Markov games with myopic followers in (2.10), we conclude the proof.

Then we establish an upper bound for the regret defined in (3.1). Recall the regret takes the following
form

Regret(K) =

K∑
k=1

V π
∗,ν∗

l,1 (xk1)− V π
k,νk

l,1 (xk1). (D.1)

To facilitate our analysis, for any (k, h) ∈ [K]× [H] we define the model prediction error by

δkh = rl,h + PhV kh+1 −Qkh. (D.2)

Moreover, for any (k, h) ∈ [K]× [H], we define ζ1
k,h and ζ2

k,h as

ζ1
k,h = [V kh (xkh)− V π

k,νk

l,h (xkh)]− [Qkh(xkh, a
k
h, b

k
h)−Qπ

k,νk

l,h (xkh, a
k
h, b

k
h)],

ζ2
k,h = [(PhV kh+1)(xkh, a

k
h, b

k
h)− (PhV π

k,νk

l,h+1 )(xkh, a
k
h, b

k
h)]− [V kh+1(xkh+1)− V π

k,νk

l,h+1 (xkh+1)].
(D.3)

Recall that (πk, νk = {νkfi}i∈[N ]) are the policies executed by the leader and the followers in the
k-th episode, which generate a trajectory {xkh, akh, bkh = {bki,h}i∈[N ]}h∈[H]. Thus, we know that ζ1

k,h

and ζ2
k,h characterize the randomness of choosing actions akh ∼ πkh(· |xkh) and bkh ∼ νkh(· |xkh) and

the randomness of drawing the next state xkh+1 ∼ Ph(· |xkh, akh, bkh), respectively.

To establish an upper bound for (D.1), we introduce the following lemma, which decomposes this
term into three parts using the notations defined above.

Lemma D.2 (Regret Decomposition). We can decompose (D.1) as follows.

Regret(K) =

K∑
k=1

H∑
h=1

Eπ∗,ν∗ [〈Qkh(xkh, ·, ·), π∗h(· |xkh)× ν∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉]︸ ︷︷ ︸
(l.1): Computational Error

+

K∑
k=1

H∑
h=1

(
Eπ∗,ν∗ [δkh(xh, ah, bh)]− δkh(xkh, a

k
h, b

k
h)
)

︸ ︷︷ ︸
(l.2): Statistical Error

+

K∑
k=1

H∑
h=1

(ζ1
k,h + ζ2

k,h)︸ ︷︷ ︸
(l.3): Randomness

,

where 〈Qkh(xkh, ·, ·), π∗h(· |xkh) × ν∗h(· |xkh) − πkh(· |xkh) × νkh(· |xkh)〉 =
〈Qkh(xkh, ·, ·, · · · , ·), π∗h(· |xkh) × ν∗f1,h(· |xkh) × · · · ν∗fN ,h(· |xkh) − πkh(· |xkh) × νkf1,h(· |xkh) ×
· · · νkfN ,h(· |xkh)〉Al×Af .

Proof. See §D.1 for a detailed proof.
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Remark D.3. Similar regret decomposition results also appear in the single-agent RL literature (Cai
et al., 2020; Efroni et al., 2020; Yang et al., 2020), and they can be regarded as the special case of
Lemma D.2. Moreover, our regret decomposition lemma is independent of the myopic followers
assumption, and thus, can be applied to more general settings.

Lemma D.2 states that the regret has three sources: (i) computational error, which represents the
convergence of the algorithm with the known model, (ii) statistical error, that is, the error caused by
the inaccurate estimation of the model, and (iii) randomness, as aforementioned, which comes from
executing random policies and interaction with random environment.

Returning to the main proof, we only need to characterize these three types of errors, respectively.
We first characterize the computational error by the following lemma.

Lemma D.4 (Optimization Error). It holds that

K∑
k=1

H∑
h=1

Eπ∗,ν∗ [〈Qkh(xkh, ·, ·), π∗h(· |xkh)× ν∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉] ≤ εKH.

Proof. See §D.2 for a detailed proof.

Then, we establish an upper bound for the statistical error. Due to the uncertainty that arises from
only observing limited data, the model prediction errors can be possibly large for the triple (x, a, b)
that are less visited or even unseen. Fortunately, however, we have the following lemma which
characterizes the model prediction errors defined in (D.2).

Lemma D.5 (Optimism). It holds with probability at least 1− p/2 that

−2 min{H,Γkh(x, a, b)} ≤ δkh(x, a, b) ≤ 0

for any (k, h) ∈ [K]× [H] and (x, a, b) ∈ S ×Al ×Af .

Proof. See §D.3 a detailed proof.

Lemma D.5 states that δkh(x, a, b) ≤ 0 for any (x, a, b) ∈ S × A ×A. Combining the definition of
model prediction error in (D.2), we obtain

Qkh(x, a, b) ≥ rl,h(x, a, b) + (PhV kh+1)(x, a, b),

which further implies that the estimated Q-function Qk?,h is “optimistic in the face of uncertainty”.
Moreover, Lemma D.5 implies that −δkh(x, a, b) ≤ 2 min{H,Γkh(x, a, b)}. Thus we only need to
establish an upper bound for 2

∑K
k=1

∑H
h=1 min{H,Γkh(xkh, a

k
h, b

k
h)}, which is the total price paid

for the optimism. As shown in the following lemma, we can derive an upper bound for this term by
the elliptical potential lemma (Abbasi-Yadkori et al., 2011).

Lemma D.6. For the bonus function Γkh defined in Line 7 of Algorithm 1, it holds that

2

K∑
k=1

H∑
h=1

min{H,Γkh(xkh, a
k
h, b

k
h)} ≤ O(

√
d3H3Tι2).

Here p ∈ (0, 1) and ι = log(2dT/p) are defined in Theorem 3.3.

Proof. See §D.4 for a detailed proof.

It remains to analyze the randomness, which is the purpose of the following lemma.

Lemma D.7. For the ζ1
k,h and ζ2

k,h defined in Lemma D.2 and any p ∈ (0, 1), it holds with proba-
bility at least 1− p/2 that

K∑
k=1

H∑
h=1

(ζ1
k,h + ζ2

k,h) ≤
√

16KH3 · log(4/p).
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Proof. See §D.5 for a detailed proof.

Putting above lemmas together, we obtain

Regret(K) ≤ O(
√
d3H3Tι2) (D.4)

with probability at least 1− p, which concludes the proof of Theorem 3.3.

D.1 PROOF OF LEMMA D.2

First, we establish a more general regret decomposition lemma, which immediately implies Lemma
D.2.
Lemma D.8 (General Decomposition for One Episode). Fix k ∈ [K]. Suppose (πk, νk =
{νkfi}i∈[N ]) are the policies executed by the leader l and the followers {fi}i∈[N ] in the k-th episode.
Moreover, suppose that Qk?,h and V k?,h = 〈Qk?,h, πkh × νkh〉 are the estimated Q-function and
value function for any ? ∈ {l, f1, · · · , fN} at h-th step of k-th episode. Then, for any policies
(π, ν = {νfi}i∈[N ]) and ? ∈ {l, f1, · · · , fN}, we have

V π,ν?,1 (xk1)− V π
k,νk

?,1 (xk1)

=

H∑
h=1

Eπ,ν [〈Qk?,h(xkh, ·, ·), πh(· |xkh)× νh(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉]︸ ︷︷ ︸
Computational Error

+

H∑
h=1

(
Eπ,ν [δk?,h(xh, ah, bh)]− δk?,h(xkh, a

k
h, b

k
h)
)

︸ ︷︷ ︸
Statistical Error

+

H∑
h=1

(ζ1
?,k,h + ζ2

?,k,h)︸ ︷︷ ︸
Randomness

,

where 〈Qk?,h, πkh × νkh〉 = 〈Qk?,h, πkh × νkf1,h × · · · × ν
k
fN ,h
〉Al×Af and 〈Qkh(xkh, ·, ·), π∗h(· |xkh) ×

ν∗h(· |xkh) − πkh(· |xkh) × νkh(· |xkh)〉 = 〈Qkh(xkh, ·, ·, · · · , ·), π∗h(· |xkh) × ν∗f1,h(· |xkh) ×
· · · ν∗fN ,h(· |xkh) − πkh(· |xkh) × νkf1,h(· |xkh) × · · · νkfN ,h(· |xkh)〉Al×Af . Here δk?,h is the model pre-
diction error defined by

δk?,h = r?,h + PhV k?,h+1 −Qk?,h, (D.5)

and ζ1
?,k,h and ζ2

?,k,h are defined by

ζ1
?,k,h = [V k?,h(x

k
h)− V π

k,νk

?,h (xkh)]− [Qk?,h(x
k
h, a

k
h, b

k
h)−Qπ

k,νk

?,h (xkh, a
k
h, b

k
h)],

ζ2
?,k,h = [(PhV k?,h+1)(x

k
h, a

k
h, b

k
h)− (PhV π

k,νk

?,h+1 )(xkh, a
k
h, b

k
h)]− [V k?,h+1(x

k
h+1)− V π

k,νk

?,h+1 (xkh+1)].
(D.6)

Proof of Lemma D.8. To facilitate our analysis, for any ν = {νfi}i∈[N ] and (h, x) ∈ [H] × S, we
denote νf1,h(· |x) × · · · νfN ,h(· |x) by νh(· |x). Moreover, we define two operators Jh and Jk,h
respectively by

(Jhf)(x) = 〈f(x, ·, ·), πh(· |x)× νh(· |x)〉,
(Jk,hf)(x) = 〈f(x, ·, ·), πkh(· |x)× νkh(· |x)〉

(D.7)

for any h ∈ [H] and any function f : S ×Al ×Af → R. Also, we define

ξk?,h(x) = (JhQk?,f )(x)− (Jk,hQk?,f )(x)

= 〈Qk?,h(x, ·, ·), πh(· |x)× νh(· |x)− πkh(· |x)× νkh(· |x)〉 (D.8)

for any (h, x) ∈ [H]× S and ? ∈ {l, f1, · · · , fN}.
Under the above notations, we decompose the regret at the k-th episode into the following two terms,

V π,ν?,1 (xk1)− V π
k,νk

1 (xk1) = V π,ν?,1 (xk1)− V k?,1(xk1)︸ ︷︷ ︸
(i)

+V k?,1(xk1)− V π
k,νk

1 (xk1)︸ ︷︷ ︸
(ii)

. (D.9)
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Then we characterize these two terms respectively.

Term (i). By the Bellman equation in (2.2) and the definition of the operator Jh in (D.7), we have
V π,ν?,h = JhQπ,ν?,h . Similar, by the definition of V k?,h and the definition of the operator Jk,h in (D.7),
we have V k?,h = Jk,hQk?,h. Hence, for any h ∈ [H], we have

V π,ν?,h − V
k
?,h = JhQπ,ν?,h − Jk,hQk?,h = (JhQπ,ν?,h − JhQk?,h) + (JhQk?,h − Jk,hQk?,h)

= Jh(Qπ,ν?,h −Q
k
?,h) + ξk?,h, (D.10)

where the last inequality is obtained by the fact that Jh is a linear operator and the definition of ξk?,h
in (D.8). Meanwhile, by the Bellman equation in (2.2) and the definition of the prediction error δk?,h
in (D.2), we obtain

Qπ,ν?,h −Q
k
?,h = (r?,h + PhV π,ν?,h+1)− (r?,h + PhV k?,h+1 − δk?,h)

= Ph(V π,ν?,h+1 − V
k
?,h+1) + δk?,h. (D.11)

Putting (D.10) and (D.11) together, we further obtain

V π,ν?,h − V
k
?,h = JhPh(V π,ν?,h+1 − V

k
?,h+1) + Jhδk?,h + ξk?,h (D.12)

for any h ∈ [H] and ? ∈ {l, f1, · · · , fN}. By recursively applying (D.12) for all h ∈ [H], we have

V π,ν?,1 − V k?,1 =
( H∏
h=1

JhPh
)

(V π,ν?,H+1 − V
πk,νk

?,H+1) +

H∑
h=1

( h∑
i=1

JiPi
)
Jhδk?,h +

H∑
h=1

( h∑
i=1

JiPi
)
ξk?,h

=

H∑
h=1

( h∑
i=1

JiPi
)
Jhδk?,h +

H∑
h=1

( h∑
i=1

JiPi
)
ξk?,h, (D.13)

where the last equality follows from the fact that V π,ν?,H+1 = V π
k,νk

?,H+1 = 0. Thus, by utilizing the
definition of ξk?,h in (D.8), we further obtain

V π,ν?,1 (xk1)− V k?,1(xk1) = Eπ,ν
[ H∑
h=1

〈Qk?,h(xkh, ·, ·), πh(· |xkh)× νh(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉
]

+ Eπ,ν
[ H∑
h=1

δk?,h(xh, ah, bh)

]
(D.14)

for any k ∈ [K] and ? ∈ {l, f1, · · · , fN}.

Term (ii). Recall that we denote {bkfi,h}i∈[N ] by bkh for any h ∈ [H]. Then, for any h ∈ [H] and
? ∈ {l, f1, · · · , fN}, by the definition of model prediction error in (D.5), we have

δk?,h(xkh, a
k
h, b

k
h) = rk?,h(xkh, a

k
h, b

k
h) + (PhV k?,h+1)(xkh, a

k
h, b

k
h)−Qk?,h(xkh, a

k
h, b

k
h)

= [rk?,h(xkh, a
k
h, b

k
h) + (PhV k?,h+1)(xkh, a

k
h, b

k
h)−Qπ

k,νk

?,h (xkh, a
k
h, b

k
h)]

+ [Qπ
k,νk

?,h (xkh, a
k
h, b

k
h)−Qk?,h(xkh, a

k
h, b

k
h)]

= (PhV k?,h+1 − PhV π
k,νk

?,h+1 )(xkh, a
k
h, b

k
h) + (Qπ

k,νk

?,h −Qk?,h)(xkh, a
k
h, b

k
h) (D.15)

where the last equation is obtained by the Bellman equation in (2.2). Thus, by (D.15), we have

V k?,h(xkh)− V π
k,νk

?,h (xkh)

= V k?,h(xkh)− V π
k,νk

?,h (xkh) + (Qπ
k,νk

?,h −Qk?,h)(xkh, a
k
h, b

k
h)

+ (PhV k?,h+1 − PhV π
k,νk

?,h+1 )(xkh, a
k
h, b

k
h)− δk?,h(xkh, a

k
h, b

k
h)

= V k?,h(xkh)− V π
k,νk

?,h (xkh)− (Qk?,h −Q
πk,νk

?,h )(xkh, a
k
h, b

k
h)

+
(
Ph(V k?,h+1 − V

πk,νk

?,h+1 )
)
(xkh, a

k
h, b

k
h)− (V k?,h+1 − V

πk,νk

?,h+1 )(xkh)

+ (V k?,h+1 − V
πk,νk

?,h+1 )(xkh)− δk?,h(xkh, a
k
h, b

k
h) (D.16)
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for any h ∈ [H] and ? ∈ {l, f1, · · · , fN}. By the definitions of ζ1
?,k,h and ζ2

?,k,h in (D.6), (D.16) can
be written as

V k?,h(xkh)− V π
k,νk

?,h (xkh) = [V k?,h+1(xkh)− V π
k,νk

?,h+1 (xkh)] + ζ1
?,k,h + ζ2

?,k,h − δk?,h(xkh, a
k
h, b

k
h).

(D.17)

For any ? ∈ {l, f1, · · · , fN}, recursively expanding (D.17) across h ∈ [H] yields

V k?,1(xk1)− V π
k,νk

?,1 (xk1)

= V k?,H+1(xkH+1)− V π
k,νk

?,H+1(xkH+1) +

H∑
h=1

(ζ1
?,k,h + ζ2

?,k,h)−
H∑
h=1

δk?,h(xkh, a
k
h, b

k
h)

=

H∑
h=1

(ζ1
?,k,h + ζ2

?,k,h)−
H∑
h=1

δk?,h(xkh, a
k
h, b

k
h), (D.18)

where the last equality follows from the fact that V k?,H+1(xkH+1) = V π
k,νk

?,H+1(xkH+1) = 0.

Plugging (D.14) and (D.18) into (D.9), we obtain

V π,ν?,1 (xk1)− V π
k,νk

?,1 (xk1)

=

H∑
h=1

Eπ,ν [〈Qk?,h(xkh, ·, ·), πh(· |xkh)× νh(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉]︸ ︷︷ ︸
Computational Error

+

H∑
h=1

(
Eπ,ν [δk?,h(xh, ah, bh)]− δk?,h(xkh, a

k
h, b

k
h)
)

︸ ︷︷ ︸
Statistical Error

+

H∑
h=1

(ζ1
?,k,h + ζ2

?,k,h)︸ ︷︷ ︸
Randomness

for any (π, ν) and ? ∈ {l, f1, · · · , fN}. Therefore, we conclude the proof of Lemma D.2.

Proof of Lemma D.2. For any k ∈ [K], applying Lemma D.8 with (π, ν) = (π∗, ν∗), we obtain

V π
∗,ν∗

l,1 (xk1)− V π
k,νk

l,1 (xk1)

=

H∑
h=1

Eπ∗,ν∗ [〈Qkh(xkh, ·, ·), π∗h(· |xkh)× ν∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉]

+

H∑
h=1

(
Eπ∗,ν∗ [δkh(xh, ah, bh)]− δkh(xkh, a

k
h, b

k
h)
)

+

H∑
h=1

(ζ1
k,h + ζ2

k,h).

Taking summation over k ∈ [K], we decompose (D.1) as desired, which concludes the proof of
Lemma D.2.

D.2 PROOF OF LEMMA D.4

Proof of Lemma D.4. By the myopic followers assumption, we have that, for the matrix game with
payoff matrices (Q̃(xkh, ·, ·), {rkfi,h(xkh, ·, ·)}i∈[N ]), ν∗h(· |xkh) belongs to the best response set of
π∗h(· |xkh). Moreover, we define ν̃∗h(· |xkh) as the policy belongs to the best response set of π∗h(· |xkh)
and breaks ties in favor of the leader.

Recall that (πkh(· |xkh), νkh(· |xkh) = {νkfi,h(· |xkh)}i∈[N ]) is the Stackelberg-Nash equilibrium of
the matrix game with payoff matrices (Q̃(xkh, ·, ·, ·), {rkfi,h(xkh, ·, ·, ·)}i∈[N ]), which implies that
πkh(· |xkh) is the “best response to the best response”, which further implies that

〈Q̃(xkh, ·, ·), π∗h(· |xkh)× ν̃∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉 ≤ 0 (D.19)
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for any (k, h) ∈ [K]× [H]. Thus, for any (k, h) ∈ [K]× [H], we have

〈Qkh(xkh, ·, ·), π∗h(· |xkh)× ν∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉
= 〈Q̃(xkh, ·, ·), π∗h(· |xkh)× ν∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉

+ 〈Qkh(xkh, ·, ·)− Q̃(xkh, ·, ·), π∗h(· |xkh)× ν∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉 (D.20)

≤ 〈Q̃(xkh, ·, ·), π∗h(· |xkh)× ν̃∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉
+ 〈Qkh(xkh, ·, ·)− Q̃(xkh, ·, ·), π∗h(· |xkh)× ν∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉

≤ ε, (D.21)

where the first inequality follows from the definition of ν̃kh(· |xkh) and the last inequality uses (D.19)
and the fact that ‖Qkh − Q̃‖∞ ≤ ε. By taking summation over (k, h) ∈ [K]× [H], we conclude the
proof of Lemma D.4.

D.3 PROOF OF LEMMA D.5

Proof of Lemma D.5. Recall that the estimated Q-function Qkh defined in Line 8 of Algorithm 1
takes the following form:

Qkh(·, ·, ·)← rl,h(·, ·, ·) + ΠH−h{φ(·, ·, ·)>wkh + Γkh(·, ·, ·)},

where wkh = (Λkh)−1
(k−1∑
τ=1

φ(xτh, a
τ
h, b

τ
h) · V kh+1(xτh+1)

)
.

(D.22)

Here Λkh and Γkh are defined in Lines 5 and 7 of Algorithm 1, respectively. Meanwhile, by Assump-
tion 2.1, we have

(PhV kh+1)(x, a, b) = φ(x, a, b)>〈µh, V kh+1〉
= φ(x, a, b)>(Λkh)−1Λkh〈µh, V kh+1〉 (D.23)

for any (k, h, x, a, b) ∈ [K] × [H] × S × Al × Af . Here 〈µh, V kh+1〉 =
∫
S V

k
h+1(x′)dµh(x′).

Together with the definition of Λkh in Line 5 of Algorithm 1, we further obtain

(PhV kh+1)(x, a, b) = φ(x, a, b)>(Λkh)−1
(k−1∑
τ=1

φ(xτh, a
τ
h, b

τ
h)φ(xτh, a

τ
h, b

τ
h)>〈µh, V kh+1〉+ 〈µh, V kh+1〉

)
= φ(x, a, b)>(Λkh)−1

(k−1∑
τ=1

φ(xτh, a
τ
h, b

τ
h) · (PhV kh+1)(xτh, a

τ
h, b

τ
h) + 〈µh, V kh+1〉

)
,

(D.24)
for any (k, h, x, a, b) ∈ [K]× [H]×S×Al×Af . Here the last equality uses (D.23). Putting (D.22)
and (D.24) together, we have

φ(x, a, b)>wkh − (PhV kh+1)(x, a, b)

= φ(x, a, b)>(Λkh)−1
(k−1∑
τ=1

φ(xτh, a
τ
h, b

τ
h) ·

(
V kh+1(xτh+1)− (PhV kh+1)(xτh, a

τ
h, b

τ
h)
))

︸ ︷︷ ︸
(i)

(D.25)

− φ(x, a, b)>(Λkh)−1〈µh, V kh+1〉︸ ︷︷ ︸
(ii)

for any (k, h, x, a, b) ∈ [K]×[H]×S×Al×Af . Then we upper bound these two terms respectively.

Term (i). By Cauchy-Schwarz inequality, we have

|(i)| ≤ ‖φ(x, a, b)‖(Λkh)−1 ·
∥∥∥ k−1∑
τ=1

φ(xτh, a
τ
h, b

τ
h) ·

(
V kh+1(xτh+1)− (PhV kh+1)(xτh, a

τ
h, b

τ
h)
)∥∥∥

(Λkh)−1

(D.26)
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for any (k, h, x, a) ∈ [K] × [H] × S × Al. Under the event E defined in Lemma D.9, we further
have

|(i)| ≤ C ′dH
√

log(2dT/p) · ‖φ(x, a)‖(Λkh)−1 (D.27)

for any (k, h, x, a) ∈ [K]× [H]× S ×Al.

Term (ii). Similarly, by Cauchy-Schwarz inequality, we obtain

|(ii)| ≤ ‖φ(x, a, b)‖(Λkh)−1 · ‖〈µh, V kh+1〉‖(Λkh)−1

≤ ‖φ(x, a, b)‖(Λkh)−1 · ‖〈µh, V kh+1〉‖2 ≤
√
dH · ‖φ(x, a, b)‖(Λkh)−1 (D.28)

for any (k, h, x, a, b) ∈ [K]× [H]×S ×Al×Af . Here the second inequality follows from the fact
that Λkh � I and the last inequality is obtained by

‖〈µh, V kh+1〉‖2 ≤ ‖µh(S)‖2 · ‖V kh+1‖∞ ≤
√
dH.

Here we use the fact that ‖V kh+1‖∞ ≤ H and Assumption 2.1, which assumes ‖µh(S)‖2 ≤
√
d.

Plugging (D.27) and (D.28) into (D.25), we obtain that

|φ(x, a, b)>wkh − (PhV kh+1)(x, a, b)| ≤ CdH
√

log(2dT/p) · ‖φ(x, a, b)‖(Λkh)−1 (D.29)

for any (k, h, x, a, b) ∈ [K]× [H]×S ×Al ×Af under the event E . Here C > 0 is a constant. By
setting

β = CdH
√

log(2dT/p) (D.30)

in Line 7 of Algorithm 1, (D.29) gives

|φ(x, a, b)>wkh − (PhV kh+1)(x, a, b)| ≤ Γkh(x, a, b) (D.31)

for any (k, h, x, a, b) ∈ [K]× [H]×S ×Al ×Af under the event E . Meanwhile, by the truncation
in Line 8 of Algorithm 1 and the fact that rl,h ∈ [−1, 1], we have Qkh ∈ [−(H −h+ 1), H −h+ 1],
which further implies that

V kh ∈ [−(H − h+ 1), H − h+ 1] (D.32)

for any (k, h) ∈ [K]× [H]. Hence, by (D.31), we have

φ(x, a, b)>wkh + Γkh(x, a, b) ≥ (PhV kh+1)(x, a, b) ≥ H − h (D.33)

for any (k, h, x, a, b) ∈ [K] × [H] × S × Al × Af under the event E , where the last inequality is
obtained by (D.32). Thus, for the model prediction error defined in (D.2), we have

−δkh(x, a, b) = Qkh(x, a, b)− rl,h(x, a, b)− PhV kh+1(x, a, b)

≤ φ(x, a, b)>wkh + Γkh(x, a, b)− PhV kh+1(x, a, b)

≤ 2Γkh(x, a, b) (D.34)

for any (k, h, x, a, b) ∈ [K] × [H] × S × Al × Af under the event E . Moreover, by the definition
of the model prediction error, we have −δkh(·, ·, ·) ≤ 2H . Together with (D.34), we have

−δkh(x, a, b) ≤ 2 min{H,Γkh(x, a, b)} (D.35)

for any (k, h, x, a, b) ∈ [K] × [H] × S × Al ×Af under the event E . On the other hand, by (3.4),
we have

δkh(x, a, b) = rl,h(x, a, b) + PhV kh+1(x, a, b)−Qkh(x, a, b)

≤ PhV kh+1(x, a, b)−min{φ(x, a, b)>wkh + Γkh(x, a, b), H − h}
= max{PhV kh+1(x, a, b)− φ(x, a, b)>wkh − Γkh(x, a, b),PhV kh+1(x, a, b)− (H − h)}
≤ 0 (D.36)

for any (k, h, x, a, b) ∈ [K]× [H]×S×Al×Af under the event E . Here the last inequality follows
from (D.31) and the fact that V kh+1 ≤ H − h. Combining (D.35) and (D.36), we conclude the proof
of Lemma D.5.
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Lemma D.9. For any p ∈ (0, 1], the event E that, for any (k, h) ∈ [K]× [H],

∥∥∥ k−1∑
τ=1

φ(xτh, a
τ
h, b

τ
h) ·

(
V kh+1(xτh+1)− (PhV kh+1)(xτh, a

τ
h, b

τ
h)
)∥∥∥

(Λkh)−1
≤ C ′dH

√
log(2dT/p)

happens with probability at least 1− p/2, where C ′ > 0 is an absolute constant.

Proof of Lemma D.9. Fix (k, h) ∈ [K] × [H]. By Lemma D.10, we have wkh+1 ≤ H
√
dk, which

implies that Qkh+1 ∈ Qkh+1,ε. Here Qkh+1,ε is defined in (3.5). Moreover, as shown in Algo-
rithm 2, we find a Q̃ in the ε-net Qkh+1,ε such that ‖Qkh+1 − Q̃‖∞ ≤ ε. For any x ∈ S, let
(π̃(· |x), ν̃ = {νfi}Ni=1) be the Stackelberg-Nash equilibrium of the matrix game with payoff matri-
ces (Q̃(x, ·, ·), {rfi,h+1(x, ·, ·)}Ni=1). Moreover, we define Ṽ (x) = Ea∼π̂(· | x),b∼ν̂(· | x)[Q̃(x, a, b)]
for any x ∈ S. Then, we have

∥∥∥ k−1∑
τ=1

φ(xτh, a
τ
h, b

τ
h) ·

(
V kh+1(xτh+1)− (PhV kh+1)(xτh, a

τ
h, b

τ
h)
)∥∥∥

(Λkh)−1

≤
∥∥∥ k−1∑
τ=1

φ(xτh, a
τ
h, b

τ
h) ·

(
Ṽ (xτh+1)− (PhṼ )(xτh, a

τ
h, b

τ
h)
)∥∥∥

(Λkh)−1︸ ︷︷ ︸
(i)

(D.37)

+
∥∥∥ k−1∑
τ=1

φ(xτh, a
τ
h, b

τ
h) ·

(
[V kh+1(xτh+1)− Ṽ (xτh+1)]−

(
Ph(V kh+1 − Ṽ )

)
(xτh, a

τ
h, b

τ
h)
)∥∥∥

(Λkh)−1︸ ︷︷ ︸
(ii)

.

By Lemma J.2 and a union bound argument, it holds for any Q̃ ∈ Qkh+1,ε with probability at least
1− p/2 that

|(i)| ≤ 4H2
(d

2
log(k + 1) + log

2Nε
p

)
, (D.38)

where Nε is the covering number of Qh+1,ε. Meanwhile, by applying Lemma J.4 with L = H
√
dk

and λ = 1, (D.38) gives that

|(i)| ≤ C ′dH
√

log(dT/p), (D.39)

with probability at least 1 − p/2. Here C ′ is a constant. Meanwhile, by the definition of V kh+1 in
Line 10 of Algorithm 1, we have V kh+1(x) = Ea∼π̂(· | x),b∼ν̂(· | x)[Q

k
h+1(x, a, b)], which yields that

|V kh+1(x)− Ṽ (x)| =
∣∣Ea∼π̂(· | x),b∼ν̂(· | x)[Q

k
h+1(x, a, b)− Q̃(x, a, b)]

∣∣
≤ Ea∼π̂(· | x),b∼ν̂(· | x)|Qkh+1(x, a, b)− Q̃(x, a, b)| ≤ ε

for any x ∈ S, which further implies that

|(ii)| ≤ ε ·
k−1∑
τ=1

‖φ(xτh, a
τ
h, b

τ
h)‖(Λkh)−1 ≤ εk, (D.40)

where the last inequality follows from the fact that ‖φ(·, ·, ·)‖(Λkh)−1 ≤ ‖φ(·, ·, ·)‖2 ≤ 1 for any
(k, h) ∈ [K]× [H]. Plugging (D.39) and (D.40) into (D.37), together with the fact that ε = 1/KH ,
we conclude the proof of Lemma D.9.

Lemma D.10 (Bounded Weight of Value Functions). For all (k, h) ∈ [K] × [H], the linear coeffi-
cient wkh defined in (3.3) satisfies ‖wkh‖ ≤ H

√
kd.
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Proof of Lemma D.10. By the definition of wkh in (3.3) and triangle inequality, we have

‖wkh‖ =
∥∥∥(Λkh)−1

(k−1∑
τ=1

φ(xτh, a
τ
h, b

τ
h) · V kh+1(xτh+1)

)∥∥∥
≤
k−1∑
τ=1

‖(Λkh)−1φ(xτh, a
τ
h, b

τ
h) · V kh+1(xτh+1)‖. (D.41)

Together with the fact that |V kh (·)| ≤ H for any (k, h) ∈ [K]× [H], (D.41) gives

‖wkh‖ ≤ H ·
k−1∑
τ=1

‖(Λkh)−1φ(xτh, a
τ
h, b

τ
h)‖

≤ H ·
k−1∑
τ=1

‖(Λkh)−1/2‖ · ‖φ(xτh, a
τ
h, b

τ
h)‖(Λkh)−1

≤ H ·
k−1∑
τ=1

‖φ(xτh, a
τ
h, b

τ
h)‖(Λkh)−1 , (D.42)

where the second inequality uses Cauchy-Schwarz inequality and the last inequality follows from
the fact that Λkh � I for any (k, h) ∈ [K]× [H]. Then, by Cauchy-Schwarz inequality, we obtain

k−1∑
τ=1

‖φ(xτh, a
τ
h, b

τ
h)‖(Λkh)−1 ≤

√
k ·
(k−1∑
τ=1

φ(xτh, a
τ
h, b

τ
h)>(Λkh)−1φ(xτh, a

τ
h, b

τ
h)
)1/2

=
√
k ·
(k−1∑
τ=1

Tr
(
φ(xτh, a

τ
h, b

τ
h)>(Λkh)−1φ(xτh, a

τ
h, b

τ
h)
))1/2

=
√
k ·
(

Tr
(
(Λkh)−1

k−1∑
τ=1

φ(xτh, a
τ
h, b

τ
h)φ(xτh, a

τ
h, b

τ
h)>
))1/2

. (D.43)

Meanwhile, recall that Λkh =
∑k−1
τ=1 φ(xτh, a

τ
h, b

τ
h)φ(xτh, a

τ
h, b

τ
h)> + I , we have

Tr
(

(Λkh)−1
k−1∑
τ=1

φ(xτh, a
τ
h, b

τ
h)φ(xτh, a

τ
h, b

τ
h)>
)
≤ Tr(I) = d. (D.44)

Plugging (D.43) and (D.44) into (D.42), we conclude the proof of Lemma D.10.

D.4 PROOF OF LEMMA D.6

Proof of Lemma D.6. Recall the definition of Γkh in Line 7 of Algorithm 1, we have

2

K∑
k=1

H∑
h=1

min{H,Γkh(xkh, a
k
h, b

k
h)} = 2β ·

K∑
k=1

H∑
h=1

min{H/β, ‖φ(xkh, a
k
h, b

k
h)‖(Λkh)−1}

≤ 2β ·
K∑
k=1

H∑
h=1

min{1, ‖φ(xkh, a
k
h, b

k
h)‖(Λkh)−1}. (D.45)

Here the last inequality uses the fact that β = CdH
√

log(2dT/p), where C > 1 is a constant. By
Cauchy-Schwarz inequality, we further obtain that

K∑
k=1

H∑
h=1

min{1, ‖φ(xkh, a
k
h, b

k
h)‖(Λkh)−1} ≤

H∑
h=1

(
K ·

K∑
k=1

min{1, ‖φ(xkh, a
k
h, b

k
h)‖2(Λkh)−1}

)
≤

H∑
h=1

√
K ·

(
2 log

(det(ΛK+1
h )

det(Λ1
h)

))1/2

, (D.46)
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where the last inequality follows from Lemma J.1. Moreover, Assumption 2.1 gives that

‖φ(x, a, b)‖2 ≤ 1

for any (k, h, x, a, b) ∈ [K]× [H]× S ×A, which further implies that

ΛK+1
h =

K∑
k=1

φ(xkh, a
k
h, b

k
h)φ(xkh, a

k
h, b

k
h)> + I � (K + 1) · I (D.47)

for any h ∈ [H]. Combining (D.47) and the fact that Λ1
h = I , we obtain

2 log
(det(ΛK+1

h )

det(Λ1
h)

)
≤ 2d · log(K + 1) ≤ 4d · log(K). (D.48)

Combining (D.45), (D.46), (D.47) and (D.48), it holds that

2

K∑
k=1

H∑
h=1

min{H,Γkh(xkh, a
k
h, b

k
h)} ≤ 2β

√
dHT · log(K) ≤ O(

√
d3H3Tι2),

where ι = log(2dT/p). Therefore, we conclude the proof of Lemma D.6.

D.5 PROOF OF LEMMA D.7

Proof of Lemma D.7. First, we show that {ζ1
k,h, ζ

2
k,h}(k,h)∈[K]×[H] can be written as a bounded mar-

tingale difference with respect to a filtration. Similar to Cai et al. (2020), we construct the following
filtration. For any (k, h) ∈ [K]× [H], we define σ-algebras F1

k,h and F2
k,h as follows:

F2
k,h = σ

(
{xτi , aτi , bτ1,i, · · · , bτN,i}(τ,i)∈[k−1]×[h] ∪ {xki , aki , bk1,i, · · · , bkN,i}i∈[h]

)
,

F2
k,h = σ

(
{xτi , aτi , bτ1,i, · · · , bτN,i}(τ,i)∈[k−1]×[h] ∪ {xki , aki , bk1,i, · · · , bkN,i}i∈[h] ∪ {xkh+1}

)
,

(D.49)
where xH+1 is a null state for any k ∈ [K]. Here σ(·) denotes the σ-algebra generated by a finite
set. Moreover, for any (k, h,m) ∈ [K]× [H]× [2], we define the timestep index t(k, h,m) as

t(k, h,m) = (k − 1) · 2H + (h− 1) · 2 +m. (D.50)

By the definitions of σ-algebras in (D.49), we haveFmk,h ⊂ Fm
′

k′,h′ for any t(k, h,m) ≤ t(k′,m′, h′),
which implies that the σ-algebra sequence {Fmk,h}(k,h,m)∈[K]×[H]×[2] is a filtration. Moreover, by
the definitions of {ζ1

k,h, ζ
2
k,h}(k,h)∈[K]×[H] in (D.3), we have

ζ1
k,h ∈ F1

k,h, ζ2
k,h ∈ F2

k,h, E[ζ1
k,h | F2

k,h−1] = 0, E[ζ2
k,h | F1

k,h] = 0 (D.51)

for any (k, h) ∈ [K]× [H]. Here we identify F2
k,0 with F2

k−1,H for any k ≥ 2 and define F1,0,2 be
the empty set. Hence, we can define the martingale

Mm
k,h =

{ ∑
k′,h′,m′

ζm
′

k′,h′ : t(k′, h′,m′) ≤ t(k, h,m)
}
. (D.52)

Such a martingale is adaptive to the filtration {Fmk,h}(k,h,m)∈[K]×[H]×[2]. In particular, we have

M2
K,H =

K∑
k=1

H∑
h=1

(ζ1
k,h + ζ2

k,h). (D.53)

Moreover, note the fact that V kh , Q
k
h, V

πk,νk

l,h , Qπ
k,νk

l,h ∈ [−H,H], we further obtain |ζmk,h| ≤ 2H ,
for any (k, h,m) ∈ [K]× [H]× [2]. Finally, by applying the Azuma-Hoeffding inequality toM2

K,H
defined in (D.53), we have

K∑
k=1

H∑
h=1

(ζ1
k,h + ζ2

k,h) ≤
√

16H3K · log(4/p)

with probability at least 1− p/2, which concludes the proof of Lemma D.7.
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E UNKNOWN REWARD SETTING

We focus on the tabular case for simplicity, and the extension to linear case is left as future work.
We assume that S = |S|, Al = |Al| and Af = |Af | = |Af1 × · · · × AfN |. For simplicity, we use
the shorthand V π,ν? = V π,ν?,1 (x1), where x1 ∈ S is the fixed initial state.

E.1 ALGORITHM

We present the pseudocode of Reward-Free Explore algorithm (Jin et al., 2020a) below.

Algorithm 4 Reward-Free Explore
1: Input: iteration number K0 and K.
2: Let policy class Φ = ∅.
3: for (x, h) ∈ S × [H] do
4: rh′(x

′, a′, b′)← 1 [x′ = x and h′ = h] for all (x′, a′, b′, h′) ∈ S ×Al ×Af × [H].
5: Φ(x,h) ← EULER (r,K0). 1

6: πh(· |x)← Uniform(Al) and νh(· |x)← Uniform(Af ) for all (π, ν) ∈ Φ(x,h).
7: Ψ← Ψ ∪ Φ(x,h).
8: end for
9: for k = 1, · · · ,K do

10: Sample policy (π, ν) ∼ Uniform(Ψ).
11: Play the game M using policy π and ν, and observe the trajectory {xkh, akh, bkh}h∈[H] and

rewards {r?,h(xkh, a
k
h, b

k
h)}h∈[H].

12: end for
13: Calculate the empirical reward as

r̂?,h(x, a, b) =

∑K
k=1 r?,h(x, a, b) · 1[xkh = x, akh = a, xkh+1 = x′]∑K

k=1 1[xkh = x, akh = a, xkh+1 = x′]
.

Lemma E.1. Fix ε, p > 0. If we set K0 ≥ Ω(H7S4Al/ε) and K ≥ Ω(H3S2AlAf/ε
2) in Al-

gorithm 4, then we have the empirical rewards {r̂l, r̂f1 , · · · r̂fN } and corresponding value functions
(V̂l, V̂f1 , · · · , V̂fN ) satisfying that

sup
π,ν
|V̂ π,ν? − V π,ν? | ≤ ε

with probability at least 1− p. Here Ω(·) hides some logarithmic factors.

Proof. This lemma is a simple extension of Lemma D.1 in Bai et al. (2021). They focus on the
MDP setting and we consider the more complex Markov games. For completeness, we present the
detailed proof in §E.2.

Lemma E.1 states that we can obtain estimated reward functions and the associated value functions
is an ε-approximation of the true value functions, which further implies that the SNE with respect to
the estimated reward functions is a good approximation of the SNE in the original problem. We also
remark that if we consider the Markov games with only one follower and aim to find the Stackelberg
equilibria, we can provide a more refined analysis. See §F for more details.

E.2 PROOF OF LEMMA E.1

Before our proof, we present a useful lemma.
Lemma E.2. We define the set of δ-significant states as

Sδh = {s : max
π,ν

Pπ,νh (x) ≥ δ}, (E.1)

2Here EULER is a single-agent RL algorithm proposed in Zanette & Brunskill (2019).
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where Pπ,νh (x) is the probability of visiting x at h-th step under policies (π, ν). Then, We have

max
π,ν

Pπ,νh (x)
1
K0

∑
(π,ν)∈Φ(x,h) Pπ,νh (x)

≤ 2

for any s ∈ Sδh. Here Pπh(x, a) is the probability of visiting (x, a) at h-th step under policy π.

Proof. See the proof of Theorem 3.3 in Jin et al. (2020a) for more details.

Now, we are ready to proof Lemma E.1.

Proof of Lemma E.1. For any (π, ν), we denote Pπ,νh (x, a, b) as the probability of visiting (x, a, b)
at h-th step under policies (π, ν). Under this notion, by Lemma E.2 and the fact that all policies in
Φ(x,h) are uniform at (x, h), we have

max
π,a,b

Pπ,νh (x, a, b)
1
K0

∑
π∈Φ(x,h) Pπ,νh (x, a, b)

≤ 2AlAf ,

where |Al| = Al and Af = |Af | = |Af1 × · · · × AfN |. Thus, for any δ-significant (x, h), we have

max
π,ν,a,b

Pπ,νh (x, a, b)
1

K0SH

∑
(π,ν)∈∪{Φ(x,h)}(x,h) P

π,ν
h (x, a, b)

≤ 2SAlAfH.

Then the data obtained from Algorithm 4 is sampled i.i.d. from some distribution ζh, such that

max
π,ν,a,b

Pπ,νh (x, a, b)

ζh(x, a, b)
≤ 2SAlAfH. (E.2)

for any s ∈ Sδh. Back to our proof, we have

|V̂ π,ν? − V π,ν? | =
∣∣∣∣ H∑
h=1

∑
x,a,b

Pπ,νh (x, a, b) ·
(
r̂?,h(x, a, b)− r?,h(x, a, b)

)∣∣∣∣
=

∣∣∣∣ H∑
h=1

∑
x,a,b

Pπ,νh (x, a, b) ·
(
r̂?,h(x, a, b)− r?,h(x, a, b)

)∣∣∣∣
≤
∣∣∣∣ H∑
h=1

∑
x/∈Sδh,a,b

Pπ,νh (x, a, b) ·
(
r̂?,h(x, a, b)− r?,h(x, a, b)

)∣∣∣∣︸ ︷︷ ︸
(i)

+

∣∣∣∣ H∑
h=1

∑
x∈Sδh,a,b

Pπ,νh (x, a, b) ·
(
r̂?,h(x, a, b)− r?,h(x, a, b)

)∣∣∣∣︸ ︷︷ ︸
(ii)

. (E.3)

Clearly,

(i) ≤
H∑
h=1

∑
x/∈Sδh,a,b

Pπ,νh (s, a, b) =

H∑
h=1

∑
x/∈Sδh

Pπh(x) ≤ HSδ ≤ ε/2, (E.4)

where the second inequality uses the definition of δ-significant set in (E.1) and the last inequality is
implied by the fact that δ = ε/2H2S. Meanwhile, we have

(ii) ≤
H∑
h=1

∣∣∣∣ ∑
x∈Sδh,a,b

Pπ,νh (x, a, b) ·
(
r̂?,h(x, a, b)− r?,h(x, a, b)

)∣∣∣∣
≤

H∑
h=1

( ∑
x∈Sδh,a,b

Pπ,νh (x, a, b) ·
(
r̂?,h(x, a, b)− r?,h(x, a, b)

)2)1/2

︸ ︷︷ ︸
∆h

. (E.5)
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Note that Pπ,νh (x, a, b) = Pπ,νh (x) · πh(a |x) · νh(b |x), together with Cauchy-Schwarz inequality,
we further have

∆h ≤ max
π′:S→Al,ν′:S→Af

( ∑
x∈Sδh,a,b

Pπh(x) ·
(
r̂?,h(x, a, b)− r?,h(x, a, b)

)2
1[a = π′(s), b = ν′(s)]

))1/2

≤ max
π′:S→Al,ν′:S→Af

( ∑
x∈Sδh,a,b

Pπh(x) ·
(
r̂?,h(x, a, b)− r?,h(x, a, b)

)2
1[a = π′(s), b = ν′(s)]

))1/2

≤ max
π′:S→Al,ν′:S→Af

(2SAlAfH)
1/2

×
( ∑
x∈Sδh,a,b

ζh(x, a, b) ·
(
r̂?,h(x, a, b)− r?,h(x, a, b)

)2
1[a = π′(s), b = ν′(s)]

))1/2

,

(E.6)

where the last inequality follows from (E.2). Meanwhile, by Hoeffding inequality and a union bound
for the reward estimations we have( ∑

x∈Sδh,a,b

ζh(x, a, b) ·
(
r̂?,h(x, a, b)− r?,h(x, a, b)

)2
1[a = π′(s), b = ν′(s)]

))1/2

≤
( ∑
x∈Sδh,a,b

ζh(x, a, b) · Õ
( 1

Nh(s, a, b)

)
1[a = π′(s), b = ν′(s)]

))1/2

. (E.7)

Choose δ = ε/2H2S. Together with (E.2), we have ζh(s, a, b) ≥ ε/4H3S2AlAf for any s ∈ Sδh.
Hence, we have K ≥ Ω(H3S2AlAf/ε) ≥ Ω(1/mins,a,b ζh(s, a, b)). Applying multiplicative
Chernoff bound for the counter Nh(s, a, b) ∼ Bin(K, ζh(s, a, b)), we have( ∑

x∈Sδh,a,b

ζh(x, a, b) · Õ
( 1

Nh(s, a, b)

)
1[a = π′(s), b = ν′(s)]

))1/2

≤
( ∑
x∈Sδh,a,b

ζh(x, a, b) · Õ
( 1

Kζh(s, a, b)

)
1[a = π′(s), b = ν′(s)]

))1/2

= Õ
(√ S

K

)
. (E.8)

Plugging (E.6), (E.7), and (E.7) into (E.5), we have

(ii) ≤ Õ
(√H3S2AlAf

K

)
≤ ε/2, (E.9)

where the last inequality follows form our choice that K ≥ Ω(H3S2AlAf/ε
2). Combining (E.3),

(E.4) and (E.9), we have |V̂ π,ν? −V π,ν? | ≤ ε for any (π, ν), which concludes the proof of Lemma E.1.

F LEARNING STACKELBERG EQUILIBRIA

In this section, we analyze the sample-efficiency of learning Stackelberg equilibria in two-player
tabular Markov games without the known reward assumption.

For simplicity, we use the shorthands f = f1 and V π,ν? = V π,ν?,1 (x1), where x1 ∈ S is the fixed
initial state. Meanwhile, for any ε > 0, we define the ε-approximate value of best-case response by

V πε = max
ν∈BRε(π)

V π,νl ,

BRε(π) = {ν : V π,νf ≥ max
ν′

V π,ν
′

f − ε}.
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By the above definitions, we can immediately obtain that BR(π) ⊆ BRε(π), which further implies
V πε ≥ V

π,ν∗(π)
l . Then we can define the gap

gapε = max
π∈Πε

[V πε − V
π,ν∗(π)
l ], (F.1)

Πε = {π : V πε ≥ V π
∗,ν∗ − ε}.

F.1 ALGORITHM

As stated before, we first conduct a Reward-Free Explore algorithm (Algorithm 4) to obtain the
estimated rewards (r̂l, r̂f ). We also define (V̂l, V̂f ) as the corresponding value functions. Then we
use Algorithm 1 to solve the SNE with respect to the known reward functions (r̂l, r̂f ). Specifically,
we consider the following optimization problem of finding approximation Stackelberg equilibria
with respect to the empirical rewards (r̂l, r̂f ).

argmax
π

V̂3ε/4(π) = argmax
π

V̂
π,ν(π)
l ,

ν(π) = argmax
ν∈B̂R3ε/4(π)

V̂ π,νl ,

B̂R3ε/4(π) =
{
ν : V̂ π,νf ≥ max

ν
V̂ π,νf − 3ε/4

}
.

(F.2)

Since (r̂l, r̂f ) are known to us, we can use Algorithm 1 to obtain the solution (π̂, ν̂ = ν(π̂)), which
is our approximate solution. See Algorithm 5 for more details.

Algorithm 5 Reward-Free Explore then Commit
1: Input: Accuracy coefficient ε > 0.
2: Run the Reward-Free Explore algorithm (Algorithm 4) with K0 ≥ Ω(H7S4Al/ε) and K ≥

Ω(H3S2AlAf/ε
2), and obtain empirical rewards (r̂l, r̂f ).

3: Use Algorithm 1 as an oracle to solve the problem defined in (F.2) and obtain the solution
(π̂, ν̂ = ν(π)).

4: Output: (π̂, ν̂).

F.2 THEORETICAL RESULTS

The performance of Algorithm 5 is guaranteed by the following theorem.
Theorem F.1. Suppose Algorithm 5 outputs (π̂, ν̂). Then it holds with probability at least 1−p that

V
π̂,ν∗(π̂)
l ≥ V π

∗,ν∗

l − gapε − ε, V π̂,ν̂f ≥ V π̂,ν
∗(π̂)

f − ε.

Proof. Similar analysis also appears in Bai et al. (2021). As stated before, however, their setting is
different with ours. For completeness, we provide a detailed proof here. First, we show that

BRε/2(π) ⊆ B̂R3ε/4(π) ⊆ BRε(π). (F.3)

By choosing a large absolute constant in K, together with Lemma E.1, it holds for any ? ∈ {l, f}
that

sup
π,ν
|V̂ π,ν? − V π,ν? | ≤ ε/8. (F.4)

Meanwhile, for the empirical rewards (r̂l, r̂f ), we define the best response of leader’s policy π as
ν̂∗(π). Under this notation, for any ν ∈ B̂R3ε/4(π), we have

V
π,ν∗(π)
f − V π,νf

= (V
π,ν∗(π)
f − V̂ π,ν

∗(π)
f )︸ ︷︷ ︸

(i)

+ (V̂
π,ν∗(π)
f − V̂ π,ν̂

∗(π)
f )︸ ︷︷ ︸

(ii)

+ (V̂
π,ν̂∗(π)
f − V̂ π,νf )︸ ︷︷ ︸

(iii)

+ (V̂ π,νfi
− V π,νf )︸ ︷︷ ︸

(iv)

≤ ε/8 + 0 + 3ε/4 + ε/8 ≤ ε. (F.5)
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where (i) ≤ ε/8 and (iv) ≤ ε/8 is implied by the uniform convergence in (F.4), (ii) ≤ 0 uses the
definition of ν̂∗(π), and (iii) ≤ 0 follows from the fact that ν ∈ B̂R3ε/4(π).

Similarly, for any ν ∈ BRε/2(π), we can show that

V̂
π,ν̂∗(π)
f − V̂ π,νf

= (V̂
π,ν̂∗(π)
f − V π,ν̂

∗(π)
f ) + (V

π,ν̂∗(π)
f − V π,ν

∗(π)
f ) + (V

π,ν∗(π)
f − V π,νf ) + (V π,νf − V̂ π,νf )

≤ ε/8 + 0 + ε/2 + ε/8 = 3ε/4. (F.6)

Combining (F.5) and (F.6), we obtain BRε/2(π) ⊆ B̂R3ε/4(π) ⊆ BRε(π) as desired.

Back to our proof, by the fact that π̂ maximizes V̂ π3ε/4 = maxν∈B̂R3ε/4(π) V̂l(π, ν), we have

max
ν∈B̂R3ε/4(π̂)

V̂ π̂,νl = V̂ π̂3ε/4 ≥ V̂
π
3ε/4 = max

ν∈B̂R3ε/4(π)
V π,νl ≥ max

ν∈BRε/2(π)
V̂ π,νl , (F.7)

for any π. Here the last inequality uses the fact BRε/2(π) ⊆ B̂R3ε/4(π) in (F.3). Together with the
uniform convergence in (F.4), (F.7) yields

max
ν∈B̂R3ε/4(π̂)

V π̂,νl ≥ min
ν∈BRε/2(π)

V π,νl − ε/8 ≥ V πε/2 − ε. (F.8)

Meanwhile, by the fact B̂R3ε/4(π) ⊆ BRε(π) in (F.4), we have

V π̂ε = min
ν∈BRε(π̂)

V π̂,νl ≥ min
ν∈B̂R3ε/4(π̂)

V π̂,νl . (F.9)

Combining (F.8) and (F.9), we have

V π̂ε ≥ max
π

V πε/2 − ε ≥ max
π

V
π,ν∗(π)
l − ε, (F.10)

which implies that π̂ ∈ Πε. Furthermore, (F.10) is equivalent to

V
π̂,ν∗(π̂)
l ≥ V π

∗,ν∗

l − [V π̂ε − V
π̂,ν∗(π̂)
l ]− ε ≥ V π

∗,ν∗

l − gapε − ε,
where the equality uses the definition of gapε in (F.1). as desired. Meanwhile, by the facts that
ν̂ ∈ B̂R3ε/4(π̂) and B̂R3ε/4(π̂) ⊆ BRε(π̂), we have

V π̂,ν̂f ≥ V π̂,ν
∗(π̂)

f − ε.

Therefore, we conclude the proof of Theorem F.1.

G PROOF OF THEOREM 4.2

To facilitate our analysis, we first define the prediction error

δh = rl,h + Q̂h − PhV̂h (G.1)

for any h ∈ [H]. Then we show the proof of Theorem 4.2.

Proof of Theorem 4.2. Similar to Lemma D.1, we have the following lemma.
Lemma G.1. It holds that ν̂ ∈ BR(π̂). Here BR(·) is defined in (2.10).

Proof. This is implied by the definitions of (π̂, ν̂) and the assumption that the followers are myopic.

Recall that the definition of optimality gap defined in (4.1) takes the following form

SubOpt(π̂, ν̂, x) = V π
∗,ν∗

l,1 (x)− V π̂,ν̂l,1 (x). (G.2)

In that follows, we decompose it by the following lemma.

33



Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Lemma G.2. For the V̂1 defined in Line 10 of Algorithm 3 and any (π, ν), it holds that

V π,νl,1 (x)− V̂1(x) = Eπ,ν
[ H∑
h=1

〈Q̂h(xh, ·, ·), πh(· |xh)× νh(· |xh)− π̂h(· |xh)× ν̂h(· |xh)〉
]

+ Eπ,ν
[ H∑
h=1

δh(xh, ah, bh)

]
.

Proof. This proof is the same as the proof of (D.14), and we omit it to avoid repetition.

Applying Lemma G.2 with (π, ν) = (π∗, ν∗), we have

V π
∗,ν∗

l,1 (x)− V̂1(x) = Eπ∗,ν∗
[ H∑
h=1

〈Q̂h(xh, ·, ·), π∗h(· |xh)× ν∗h(· |xh)− π̂h(· |xh)× ν̂h(· |xh)〉
]

+ Eπ∗,ν∗
[ H∑
h=1

δh(xh, ah, bh)

]
. (G.3)

Similarly, applying Lemma G.2 with (π, ν) = (π̂, ν̂) gives that

V̂1(x)− V π̂,ν̂l,1 (x) = −Eπ̂,ν̂
[ H∑
h=1

δh(xh, ah, bh)

]
. (G.4)

Combining (G.3) and (G.4), we obtain

V π
∗,ν∗

l,1 (x)− V π̂,ν̂l,1 (x) = Eπ∗,ν∗
[ H∑
h=1

〈Q̂h(xh, ·, ·), π∗h(· |xh)× ν∗h(· |xh)− π̂h(· |xh)× ν̂h(· |xh)〉
]

+ Eπ∗,ν∗
[ H∑
h=1

δh(xh, ah, bh)

]
− Eπ̂,ν̂

[ H∑
h=1

δh(xh, ah, bh)

]
. (G.5)

As stated in §D, these two terms characterize the optimization error and the statistical error, respec-
tively. Similar to Lemmas D.4 and D.5, we introduce the following two lemmas to analyze these
two errors.
Lemma G.3. It holds that

Eπ∗,ν∗
[ H∑
h=1

〈Q̂h(xh, ·, ·), π∗h(· |xh)× ν∗h(· |xh)− π̂h(· |xh)× ν̂h(· |xh)〉
]
≤ εH.

Proof. This proof is similar to the proof of Lemma D.4, and we omit it to avoid repetition.

Lemma G.4. It holds with probability at least 1− p/2 that

0 ≤ δh(x, a, b) ≤ 2Γh(x, a, b)

for any h ∈ [H] and (x, a, b) ∈ S ×Al ×Af .

Proof. See §G.1 for a detailed proof.

Combining (G.5) and Lemmas G.3 and G.4, we further obtain that

V π
∗,ν∗

l,1 (x)− V π̂,ν̂l,1 (x) ≤ εH + 2Eπ∗,ν∗,x
[ H∑
h=1

Γh(xh, ah, bh)

]

≤ 3β′
H∑
h=1

Eπ∗,ν∗,x
[(
φ(sh, ah, bh)>(Λh)−1φ(sh, ah, bh)

)1/2]
, (G.6)

where the last inequality is obtained by the definition of Γh in Line 6 of Algorithm 3 and the fact
that ε = d/KH . Therefore, we conclude the proof of Theorem 4.2.
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G.1 PROOF OF LEMMA G.4

Proof of Lemma G.4. Similar to (D.31), it holds with probability at least 1− p/2 that

|φ(x, a, b)>wh − (PhV̂h+1)(x, a, b)| ≤ Γh(x, a, b) (G.7)

for any h ∈ [H]. The only exception is that we use Lemma J.3 instead of the classical concentration
lemma (Lemma J.2) for the self-normalized process. Here we omit the detailed proof to avoid
repetition.

By (G.7) and the fact that V̂h+1(·) ≤ H − h, we obtain

φ(x, a, b)>wh − Γh(x, a, b) ≤ (PhV̂h+1)(x, a, b) ≤ H − h. (G.8)

Thus, we have Q̂h ≥ φ>wh − Γh, which further implies that

δh(x, a, b) = rl,h(x, a, b) + PhV̂h+1(x, a, b)− Q̂h(x, a, b)

≤ PhV̂h+1(x, a, b)− φ(x, a, b)>wh + Γh(x, a, b)

≤ 2Γh(x, a, b), (G.9)

where the last inequality uses (G.7). Meanwhile, it holds that

δh(x, a, b) = rl,h(x, a, b) + PhV̂h+1(x, a, b)− Q̂h(x, a, b)

≥ PhV̂h+1(x, a, b)−max{φ(x, a, b)>wh − Γkh(x, a, b),−(H − h)}
= min{PhV kh+1(x, a, b)− φ(x, a, b)>wkh + Γkh(x, a, b),PhV kh+1(x, a, b) + (H − h)}
≥ 0, (G.10)

where the last inequality follows from (G.7). Combining (G.9) and (G.10), we conclude the proof
of Lemma G.4.

H PROOF OF COROLLARY C.1

Proof of Corollary C.1. The proof is an extension of Corollary 4.5 in Jin et al. (2020c). For nota-
tional simplicity, we define

Σh(x) = Eπ∗,ν∗,x[φ(sh, ah, bh)φ(sh, ah, bh)>]

for all x ∈ S and h ∈ [H]. With this notation and Cauchy-Schwarz inequality, we have

Eπ∗,ν∗,x
[√

φ(sh, ah, bh)>Λ−1
h φ(sh, ah.bh)

]
= Eπ∗,ν∗,x

[√
Tr
(
φ(sh, ah, bh)>Λ−1

h φ(sh, ah, bh)
)]

= Eπ∗,ν∗,x
[√

Tr
(
φ(sh, ah.bh)φ(sh, ah, bh)>Λ−1

h

)]
= Eπ∗,ν∗

[√
Tr
(
Σh(x)Λ−1

h

)]
. (H.1)

Plugging (H.1) into Theorem 4.2, together with the assumption that Λh � I + c · K ·
Eπ∗,ν∗,x[φ(sh, ah, bh)φ(sh, ah, bh)>] with probability at least 1−p/2 and a union bound argument,
we further with probability at least 1− p have

SubOpt(π̂, ν̂, x) ≤ 3β′
H∑
h=1

Eπ∗,ν∗
[√

Tr
(

Σh(x)
(
I + c ·K · Σh(x)

)−1
)]

= 3β′
H∑
h=1

√√√√ d∑
j=1

λh,j(x)

1 + cKλh,j(x)
(H.2)

for all x ∈ S. Here {λh,j(x)}dj=1 are the eigenvalues of Σh(x). Meanwhile, by Jensen’s inequality,
we obtain

‖Σh(x)‖op ≤ Eπ∗,ν∗,x[‖φ(sh, ah, bh)φ(sh, ah, bh)>‖op] ≤ 1, (H.3)
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where the last inequality follows from the fact that ‖φ(·, ·, ·)‖2 ≤ 1. Combining (H.2) and (H.3), it
holds with probability at least 1− p that

SubOpt(π̂, ν̂, x) ≤ 3β′
H∑
h=1

√√√√ d∑
j=1

1

1 + cK

≤ C̄ · d3/2H2
√

log(4dHK/p)/K,

where C̄ = 3C/
√
c, which concludes the proof of Corollary C.1.

I RESULTS WITH PESSIMISTIC TIE-BREAKING

I.1 STACKELBERG-NASH EQUILIBRIA IN PESSIMISTIC TIE-BREAKING SETUP

For any leader policy π, we can define

ν†(π) = {ν ∈ BR(π) |V π,νl,h (x) ≤ V π,ν
′

l,h (x),∀x ∈ S, h ∈ [H], ν′ ∈ BR(π)}, (I.1)

where BR(π) is the best-response set defined in (2.10). That is, ν†(π) is the worst-case response in
the set BR(π). Then we define the Stackelberg-Nash equilibria by

SNE†l = {π |V π,ν
∗(π)

l,h (x) ≥ V π
′,ν†(π′)

l,h (x),∀x ∈ S, h ∈ [H], π′}. (I.2)

We point out that finding the Stackelberg-Nash equilibria in the pessimistic tie-breaking setting is
harder. Specifically, compared with optimistic tie-breaking setting (cf. (2.8)), we need to solve a
more complicated constrained max-min optimization problem:

max
π

min
ν
V π,νl,1 (x) s.t. ν ∈ BR(π).

Under this more challenging setting, we focus on the leader-controller linear Markov games setting
(Assumption 2.3). Similar to Theorems 3.3 and 4.2, we can have the following two theorems in the
online and offline settings.

I.2 MAIN RESULTS FOR THE ONLINE SETTING

Theorem I.1. Under Assumptions 2.1, 2.3, and 3.1, there exists an absolute constant C > 0 such
that, for any fixed p ∈ (0, 1), by setting β = C ·dH

√
ιwith ι = log(2dT/p) in Line 7 of Algorithm 6

and ε = 1
KH in Algorithm 7, then have νk = ν†(πk) for any k ∈ [K]. Meanwhile, with probability

at least 1− p, the regret incurred by Algorithm 6 satisfies that

Regret(K) =

K∑
k=1

V π
∗,ν∗

l,1 (xk1)− V π
k,νk

l,1 (xk1) ≤ O(
√
d3H3Tι2).

Proof. See §I.4 for a detailed proof.

Misspecification. When the transitions do not ideally satisfy the leader-controller assumption, we
can potentially consider cases that transitions satisfy, for instance, |Ph(· |x, a, b)−Ph(· |x, a)‖∞ ≤
% for any (h, x, a, b) ∈ [H] × S × Al × Af , Here % is the misspecification error. We can still
follow the above method to tackle the misspecified cases. However, because of the misspecification
error cumulated during T steps, an extra term O(%T ) will appear in the final result. In particular,
When % is small, that is the Markov games have approximately leader-controller transitions, the
extra termO(%T ) should be small, which further indicates that we can find SNEs efficiently in some
misspecified general-sum Markov games.
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Algorithm 6 Optimistic Value Iteration to Find Stackelberg-Nash Equilibria (pessimistic tie-
breaking version)

1: Initialize Vl,H+1(·) = Vf,H+1(·) = 0.
2: for k = 1, 2, · · · ,K do
3: Receive initial state xk1 .
4: for step h = H,H − 1, · · · , 1 do
5: Λkh ←

∑k−1
τ=1 φ(xτh, a

τ
h)φ(xτh, a

τ
h)> + I .

6: wkh ← (Λkh)−1
∑k−1
τ=1 φ(xτh, a

τ
h) · V kh+1(xτh+1).

7: Γkh(·, ·, ·)← β · (φ(·, ·)>(Λkh)−1φ(·, ·))1/2.
8: Qkh(·, ·, ·)← rl,h(·, ·, ·) + ΠH−h{φ(·, ·)>wkh + Γkh(·, ·)}.
9: (πkh(· |x), {νkfi,h(· |x)}i∈[N ])← ε-SNE(Qkh(x, ·, ·), {rfi,h(x, ·, ·)}i∈[N ]), ∀x. (Alg. 7)

10: V kh (x)← Ea∼πkh(· | x),b1∼νkf1,h(· | x),··· ,bN∼νkfN ,h(· | x)Q
k
h(x, a, b1, · · · , bN ), ∀x.

11: end for
12: for h = 1, 2, ·, H do
13: Sample akh ∼ πkh(· |xkh), bk1,h ∼ νkf1,h(· |xkh), · · · , bkN,h ∼ νkfN ,h(· |xkh).
14: Leader takes action akh; Followers take actions bkh = {bki,h}i∈[N ].
15: Observe next state xkh+1.
16: end for
17: end for

Algorithm 7 ε-SNE (pessimistic tie-breaking version)
1: Input: Qkh, x, and parameter ε.
2: Select Q̃ from Qkh,ε satisfying ‖Q̃−Qkh‖∞ ≤ ε.
3: For the input state x, let (πkh(· |x), {νkfi,h(· |x)}i∈[N ]) be the Stackelberg-Nash equilibrium for

the matrix game with payoff matrices (Q̃(x, ·, ·), {rfi,h(x, ·, ·)}i∈[N ]) in the pessimistic tie-
breaking setting.

4: Output: (πkh(· |x), {νkfi,h(· |x)}i∈[N ]).

I.3 MAIN RESULTS FOR THE OFFLINE SETTING

Theorem I.2. Under Assumptions 2.1, 2.3, 3.1, and 4.1, there exists an absolute constant C > 0

such that, for any fixed p ∈ (0, 1), by setting β′ = C ·dH
√

log(2dHK/p) in Line 6 of Algorithm 8
and ε = d

KH in Algorithm 7, then we have ν̂ = ν†(π̂). Meanwhile, with probability at least 1 − p,
we have

SubOpt(π̂, ν̂, x) = V π
∗,ν∗

l,1 (x)− V π̂,ν̂l,1 (x) ≤ 3β′
H∑
h=1

Eπ∗,x
[(
φ(sh, ah)>(Λh)−1φ(sh, ah)

)1/2]
,

where Eπ∗,x is taken with respect to the trajectory incurred by π∗ in the underlying leader-controller
Markov game when initializing the progress at x. Here Λh is defined in Line 4 of Algorithm 8.

Proof. Combining the proofs of Theorems 4.2 and I.1, we can conclude the proof of Theorem I.2.
To avoid repetition, we omit the detailed proof here.

Optimality of the Bound: Assuming the dummy followers, that is, the actions taken by
the followers won’t affect the reward functions and transition kernels, the Markov games re-
duces to the linear MDP (Jin et al., 2020b). Together with the information-theoretic lower
bound Ω(

∑H
h=1 Eπ∗,x[(φ(sh, ah)>(Λh)−1φ(sh, ah))1/2]) established in Jin et al. (2020c) for lin-

ear MDPs, we immediately obtain the same lower bound for our setting. In particular, our upper
bound established in Theorem I.2 matches this lower bound up to β′ and absolute constants and thus
implies that our algorithm is nearly minimax optimal.
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Algorithm 8 Pessimistic Value Iteration to Find Stackelberg-Nash Equilibria (pessimistic tie-
breaking version)

1: Input: D = {xτh, aτh, bτh = {bτi,h}i∈[N ]}K,Hτ,h=1 and reward functions {rl, rf = {rfi}i∈[N ]}.
2: Initialize V̂H+1(·) = 0.
3: for step h = H,H − 1, · · · , 1 do
4: Λh ←

∑K
τ=1 φ(xτh, a

τ
h)φ(xτh, a

τ
h)> + I .

5: wh ← (Λh)−1
∑K
τ=1 φ(xτh, a

τ
h) · V̂h+1(xτh+1).

6: Γh(·, ·)← β′ · (φ(·, ·)>(Λh)−1φ(·, ·))1/2.
7: Q̂h(·, ·, ·)← rl,h(·, ·, ·) + ΠH−h{φ(·, ·)>wh − Γh(·, ·)}.
8: (π̂h(· |x), {ν̂fi,h(· |x)}i∈[N ])← ε-SNE(Q̂h(x, ·, ·), {rfi,h(x, ·, ·)}i∈[N ]), ∀x. (Alg. 7)
9: V̂h(x)← Ea∼π̂h(· | x),b1∼ν̂f1,h(· | x),··· ,bN∼ν̂fN ,h(· | x)Q̂h(x, a, b1, · · · , bN ), ∀x.

10: end for
11: Output: (π̂ = {π̂h}Hh=1, ν̂ = {ν̂fi = {νfi,h}Hh=1}Ni=1).

I.4 PROOF OF THEOREM I.1

Proof of Theorem I.1. For leader-controller Markov games, we have a stronger version of Lemma
D.1.
Lemma I.3. For any k ∈ [K], we have νk = ν†(πk). Here ν†(·) is defined in (I.1).

Proof. Fix k ∈ [K], by the definition of the best response in (2.5), we have

BR(πk) = {ν = {νfi}i∈[N ] | ν is the NE of the followers given the leader policy πk}

= {ν = {νfi}i∈[N ] | ν is the NE of {V π
k,ν

fi,h
(x)}i∈[N ], ∀h ∈ [H] and x ∈ S}

= {ν = {νfi}i∈[N ] | ν is the NE of {rπ
k,ν
fi,h

(x)}i∈[N ], ∀h ∈ [H] and x ∈ S}, (I.3)

where rπ
k,ν
fi,h

(x) = 〈rfi,h(x, ·, ·, · · · , ·), πkh(· |x)× νf1,h(· |x)× · · · × νfN ,h(· |x)〉Al×Af . Here the
last inequality uses Bellman equality (2.2) and the leader-controller assumption. Moreover, by the
definition of ν†(πk) defined in (2.6), we have that

ν†h(πk) = {ν†fi,h(πk)}i∈[N ] ∈ argmin
ν∈BR(πk)

V π
k,ν

l,h (x) = argmin
ν∈BR(πk)

rπ
k,ν
l,h (x), (I.4)

where rπ
k,ν
l,h (x) = 〈rl,h(x, ·, ·, · · · , ·), πkh(· |x) × νf1,h(· |x) × · · · × νfN ,h(· |x)〉Al×Af . Here the

last equality uses the single-controller assumption.

Recall that, in the subroutine ε-SNE (Algorithm 2), we pick the function Q̃ ∈ Qkh,ε such that ‖Qkh−
Q̃‖∞ ≤ ε and solve the matrix game defined in (3.6). Here Qkh,ε is the class of functions Q :
S ×Al ×Af → R that takes form

Q(·, ·, ·) = rl,h(·, ·, ·) + ΠH−h
{
φ(·, ·)>w + β ·

(
φ(·, ·)>Λ−1φ(·, ·)

)1/2}
, (I.5)

where ‖w‖2 ≤ H
√
dk and λmin(Λ) ≥ 1. Thus, given the leader policy πk, the best response of the

followers for the matrix game defined in (3.6) takes the form

BR′(πk) = {ν | ν is the NE of {〈rfi,h(x, ·, ·), πkh(· |x)× νh(· |x)〉}i∈[N ],∀h ∈ [H] and x ∈ S}
= BR(πk) (I.6)

where 〈rfi,h(x, ·, ·), πkh(· |x) × νh(· |x)〉 is the shorthand of 〈rfi,h(x, ·, ·, · · · , ·), πkh(· |x) ×
νf1,h(· |x)× · · · × νfN ,h(· |x)〉Al×Af . Here the last equality uses (I.3). Similarly, by the definition
of Qkh,ε in (I.5), we can obtain that

argmin
νh

〈Q̃(x, ·, ·), πkh(· |x)× νh(· |x)〉 = argmin
νh

〈rl,h(x, ·, ·), πkh(· |x)× νh(· |x)〉, (I.7)
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where 〈rl,h(x, ·, ·), πkh(· |x) × νh(· |x)〉 is the abbreviation of 〈rfi,h(x, ·, ·, · · · , ·), πkh(· |x) ×
νf1,h(· |x)×· · ·×νfN ,h(· |x)〉Al×Af Together with (I.4) and (I.6), we have that, for the matrix game
with payoff matrices (Q̃(xkh, ·, ·), {rkfi,h(xkh, ·, ·)}i∈[N ]), the policy νkh(· |xkh) = {νkfi,h(· |xkh)}i∈[N ]

is also the best response of πkh(· |xkh) and breaks ties against favor of the leader. Therefore, we have
νk = ν†(πk) for any k ∈ [K], which concludes the proof of Lemma I.3.

Then we only need to bound the quantity
∑K
k=1

∑K
k=1 V

π∗,ν∗

l,1 (xk1)− V π
k,νk

l,1 (xk1). By Lemma D.2,
we have

Regret(K) =

K∑
k=1

H∑
h=1

Eπ∗,ν∗ [〈Qkh(xkh, ·, ·), π∗h(· |xkh)× ν∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉]︸ ︷︷ ︸
(l.1): Computational Error

+

K∑
k=1

H∑
h=1

(
Eπ∗,ν∗ [δkh(xh, ah, bh)]− δkh(xkh, a

k
h, b

k
h)
)

︸ ︷︷ ︸
(l.2): Statistical Error

+

K∑
k=1

H∑
h=1

(ζ1
k,h + ζ2

k,h)︸ ︷︷ ︸
(l.3): Randomness

,

where 〈Qkh(xkh, ·, ·), π∗h(· |xkh) × ν∗h(· |xkh) − πkh(· |xkh) × νkh(· |xkh)〉 =
〈Qkh(xkh, ·, ·, · · · , ·), π∗h(· |xkh) × ν∗f1,h(· |xkh) × · · · ν∗fN ,h(· |xkh) − πkh(· |xkh) × νkf1,h(· |xkh) ×
· · · νkfN ,h(· |xkh)〉Al×Af .

By the same argument of Lemma I.3, we have that, for the matrix game with pay-
off matrices (Q̃(xkh, ·, ·), {rkfi,h(xkh, ·, ·)}i∈[N ]), ν∗h(· |xkh) belongs to the best response set of
π∗h(· |xkh) and breaks ties against favor of the leader. Recall that (πkh(· |xkh), νkh(· |xkh) =
{νkfi,h(· |xkh)}i∈[N ]) is the Stackelberg-Nash equilibrium of the matrix game with payoff matri-
ces (Q̃(xkh, ·, ·, ·), {rkfi,h(xkh, ·, ·, ·)}i∈[N ]) in the pessimistic tie-breaking setting, which implies that
πkh(· |xkh) is the “worst response to the best response”, which further implies that

〈Q̃(xkh, ·, ·), π∗h(· |xkh)× ν∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉 ≤ 0 (I.8)

for any (k, h) ∈ [K]× [H]. Thus, for any (k, h) ∈ [K]× [H], we have

〈Qkh(xkh, ·, ·), π∗h(· |xkh)× ν∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉
= 〈Q̃(xkh, ·, ·), π∗h(· |xkh)× ν∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉

+ 〈Qkh(xkh, ·, ·)− Q̃(xkh, ·, ·), π∗h(· |xkh)× ν∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉
≤ ε, (I.9)

where the last inequality uses (D.19) and the fact that ‖Qkh − Q̃‖∞ ≤ ε. By taking summation over
(k, h) ∈ [K] × [H], we bound the computational error as desired. Moreover, we can characterize
statistical error by Lemmas D.5 and D.6. The remaining randomness term can be bounded by
Lemma D.7. Putting these together, we have Regret(K) ≤ O(

√
d3H3Tι2), which concludes the

proof of Theorem I.1.

J SUPPORTING LEMMAS

Lemma J.1 (Elliptical Potential Lemma (Dani et al., 2008; Abbasi-Yadkori et al., 2011; Jin et al.,
2020b; Cai et al., 2020)). Let {φt}∞t=1 be an Rd-valued sequence. Meanwhile, let Λ0 ∈ Rd×d be a
positive-definite matrix and Λt = Λ0 +

∑t−1
j=1 φjφ

>
j . It holds for any t ∈ Z+ that

t∑
j=1

min{1, ‖φj‖2Λ−1
j

} ≤ 2 log

(
det(Λt+1)

det(Λ1)

)
.

Proof. See Lemma 11 of Abbasi-Yadkori et al. (2011) for a detailed proof.

39



Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Lemma J.2 (Concentration of Self-Normalized Process (Abbasi-Yadkori et al., 2011)). Let
{F̃t}∞t=0 be a filtration and {ηt}∞t=1 be an R-valued stochastic process such that ηt is F̃t-measurable
for any t ≥ 0. We also assume that, for any t ≥ 0, conditioning on F̃t, ηt is a zero-mean and
σ-sub-Gaussian random variable, that is,

E[ηt | F̃t] = 0, E[eληt | F̃t] ≤ eλ
2σ2/2 (J.1)

for any λ ∈ R. Let {Xt}∞t=1 be an Rd-valued stochastic process such that Xt is F̃t-measurable for
any t ≥ 0. Also, let Y ∈ Rd×d be a deterministic and positive-definite matrix. For any t ≥ 0, we
define

Y t = Y +

t∑
s=1

XsX
>
s , St =

t∑
s=1

ηs ·Xs.

For any δ > 0 and t ≥ 0., it holds with probability at least 1− δ that

‖St‖2Y −1
t

≤ 2σ2 · log

(
det(Y t)

1/2 det(Y )−1/2

δ

)
.

Proof. See Theorem 1 of Abbasi-Yadkori et al. (2011) for a detailed proof.

Lemma J.3. For any fixed h ∈ [H], let V : S → [0, H] be any fixed value function. Under
Assumption 4.1, for any fixed δ > 0, we have

PD

(∥∥∥ K∑
k=1

φ(xτh, a
τ
h, b

τ
h) ·

(
V (xτh+1)− PhV (xτh, a

τ
h, b

τ
h)
)∥∥∥

Λ−1
h

> H2 ·
(
2 log(1/δ) + d · log(1 +K)

))
≤ δ.

Proof. See Lemma B.2 of Jin et al. (2020c) for a detailed proof.

Lemma J.4 (Covering). Let Qh be the class of value functions Q : S × Al × Af → R that takes
the form

Q(·, ·, ·) = rl,h(·, ·, ·) + ΠH−h{(φ(·, ·, ·)>w + β ·
(
φ(·, ·, ·)>Λ−1φ(·, ·, ·)

)1/2},
which are parameterized by (w,Λ) ∈ Rd ×Rd×d such that ‖w‖ ≤ L and λmin(Λ) ≥ λ. We assume
that β is fixed and satisfy that β ∈ [0, B], and the feature map φ : S × A → Rd satisfies that
‖φ(·, ·)‖2 ≤ 1. We have that, for any L,B, ε > 0, there exists an ε-covering of Qh with respect to
the `∞ norm such that the covering number Nε satisfies

logNε ≤ d · log(1 + 4L/ε) + d2 · log
(
1 + 8B2

√
d/(ε2λ)

)
.

Proof. See Jin et al. (2020b) for a detailed proof.
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