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ABSTRACT

Diffusion models have demonstrated powerful generative capabilities, but their
potential in statistical hypothesis testing remains underexplored. The score-based
paradigm of diffusion formulates the task as the problem of detecting positive
Fisher divergence between the noised null distribution and the noised, unknown
data distribution. Diffusion models were initially proposed for generation since
noising simplifies sampling, but they pose a conceptual puzzle in the context of hy-
pothesis testing: the null and alternative hypotheses become harder to distinguish
as the noise level increases. Therefore, aside from testing in Fisher divergence,
diffusion models may face serious limitations in addressing fundamental hypoth-
esis testing problems, such as testing in total variation distance. In this paper, we
set out to rigorously characterize the statistical limits of diffusion’s score-based
approach to testing. We derive the minimax rate of testing in Fisher divergence
against a broad alternative hypothesis consisting of densities which are compactly
supported and assumed only to be bounded below by a constant. Notably, we cap-
ture the sharp scaling with respect to the the noise level. We then turn to testing
in total variation, and since it is folklore that the problem is trivial without any
regularity conditions, we study Hölder-smooth alternatives. As established in the
literature, the Fisher divergence can be aggregated over noise levels to bound the
total variation distance; hence, separation in total variation implies separation in
aggregated Fisher divergence. After sharpening our Fisher divergence testing re-
sults to incorporate the available smoothness, we show that an aggregation of test
statistics furnishes a test which achieves the sharp minimax testing rate in total
variation. Hence, diffusion models are optimal for hypothesis testing.

1 INTRODUCTION

Recent advances in generative modeling have demonstrated the remarkable ability of diffusion mod-
els to capture complex probability distributions with high fidelity. These models operate on a simple
idea. Clean training data are incrementally corrupted through a noising mechanism with a gradu-
ally increasing noise scale (often a diffusion process (Sohl-Dickstein et al., 2015; Ho et al., 2020)).
At each step, a denoiser is learned to recover the current, noisy image from its noisier counterpart
obtained at the next step. After the completion of all forward steps, the fitted denoiser has been
learned to progressively denoise at each step; it is deployed on a fresh draw of pure noise to ulti-
mately convert it into a new sample which is drawn approximately from the original, ground truth
data-generating distribution. Central to this process is the estimation of the score function of the
forward process. Through score matching (Hyvärinen, 2005; Vincent, 2011; Song & Ermon, 2019),
diffusion models learn to approximate the true distribution of the data, enabling the generation of
realistic samples from an unknown target distribution.

Besides estimation, hypothesis testing is an equally fundamental problem in statistical inference.
Diffusion models are especially relevant for hypothesis testing from two angles. First, diffusion
models are particularly flexible and successfully recover fine-grained details necessary for high-
quality generation. This flexibility suggests the capacity to detect rare, subtle, and weak signals; big
gains in power might be had by employing diffusion-based testing methodology. In fact, an emerging
body of work has empirically shown better performance compared to testing methodology based
on earlier generative frameworks (such as generative adversarial networks (GANs) and variational

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

autoencoders (VAEs)) (Wyatt et al., 2022; Bandara et al., 2022; Pinaya et al., 2022; Wolleb et al.,
2022).

Second, with the widespread use of generative models, there are settings where the null hypothesis
itself is some pre-trained diffusion model. For example, consider the extremely topical problem of
detecting whether a given dataset of images has been generated from some specific AI model; this
can be formulated as a hypothesis testing problem with that AI model specifying the null hypoth-
esis. The problem is exceptionally important in the post-hoc regime where the model provider has
not implemented any kind of reliable watermarking scheme. The same hypothesis testing formula-
tion can address the problem of detecting distribution shift. A model provider may wish to update
their specific diffusion model if the target distribution of natural, authentic images has shifted (Heng
et al., 2024; Graham et al., 2023). Generative models have also been increasingly deployed in scien-
tific applications (Angelopoulos et al., 2023; Wang et al., 2023). Generative models are especially
attractive in domains where gold-standard experimental data is cost-prohibitive to collect.

Research efforts in diffusion models have largely been concentrated in practical, engineering aspects
for the purposes of generation; essentially, the estimation problem has received most of the attention.
The hypothesis testing context has been much less studied, and so even basic theoretical questions
remain open. In this work, we address questions concerning statistical optimality in the context of
applying diffusion models for hypothesis testing. Our focus is exclusively on the statistical aspect,
and we leave computational and algorithmic considerations for future work.

1.1 BACKGROUND ON DIFFUSION MODELS

Before formulating the testing problem and the diffusion-based approach we are going to study, we
first review some background on diffusion models. Consider a probability density function f on R
representing the unknown target distribution from which we wish to produce a sample1. Diffusion
models approach this generation problem by considering a forward process and a reverse process,
which are solutions to some specified stochastic differential equations (SDEs). Consider a generic
SDE which implicitly defines the forward process {Xt}t≥0 as its solution,

dXt = g(Xt, t) dt+ σ(t) dWt, X0 ∼ f (1)

where g : R×[0,∞) → R is the drift, σ : [0,∞) → [0,∞) is the diffusion coefficient, and {Wt}t≥0

is the standard Wiener process in R. The practitioner chooses g and σ as part of their model design.
For a fixed T > 0, the reverse process is defined as Yt := XT−t for 0 ≤ t ≤ T . Under some mild
conditions, it is known (Anderson, 1982) that {Yt}0≤t≤T solves the following SDE,

dYt =
(
−g(Yt, T − t) + σ2(T − t)s(Yt, T − t)

)
dt+ σ(T − t) dWt, Y0 ∼ p(·, T ) (2)

where p(·, t) denotes the density of the marginal distribution of Xt, and the function s(x, t) :=
∂x log p(x, t) is referred to as the score function of the density p(·, t).
These probabilistic facts have algorithmic utility. For various choices of g and σ in (1), the distri-
bution p(·, T ) is close to some known distribution for large T even though the initialization f is not
known. For example, if g(x, t) = −x and σ(t) =

√
2, then p(·, T ) is close to N(0, 1) (this is re-

ferred to as the variance preserving SDE (Song et al., 2021)). Therefore, the practitioner can plug in
an estimator of the score ŝ(x, t) (constructed from available training data drawn from f ) into (2) and
solve the reverse SDE by using a known initialization rather than the unknown p(·, T ) to obtain an
approximate reverse process {Ŷt}0≤t≤T . Since the true reverse process satisfies YT ∼ f , it is hoped
that ŶT has a distribution which approximates f well. The sources of error are the approximation of
the initialization and of the score function. The former should be negligible since p(·, T ) is close to
a known distribution by design. The real challenge is to estimate the score function well (Oko et al.,
2023; Dou et al., 2024; Zhang et al., 2024). For a detailed review of diffusion models and recent
advances, we refer the reader to (Chen et al., 2024; Tang & Zhao, 2024; Yang et al., 2023).

1To maintain focus on the mathematical essence, we will work in the one-dimension setting so as not to get
distracted by tedious, notational burdens in the multidimensional setting. In principle, the paper’s results can
be straightforwardly generalized without conceptual difficulty to the setting where the dimension is fixed and
greater than one.
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1.2 HYPOTHESIS TESTING

The diffusion model framework focuses on the score function as the central statistical object. For
the generation problem, estimation of the score function at each noise level t is the chief task. For
hypothesis testing, detecting deviations with respect to the Fisher divergence at each level t becomes
the task at hand. To elaborate, consider independent and identically distributed data µ1, ..., µn ∼ f
from an unknown distribution f . Further consider testing the null hypothesis H0 : f = f0, where f0
is some known, reference distribution. The score-based paradigm of diffusion models casts the null
hypothesis equivalently as H0 : Ft(f || f0) = 0. Here, t > 0 and Ft denotes the Fisher divergence

Ft(f || f0) :=
∫ ∞

−∞
|s(x, t)− s0(x, t)|2 p0(x, t) dx, (3)

where p0(x, t) is the law of Xt in the forward process {Xt}t≥0 with initialization f0 in (1) and
s0(x, t) = ∂x log p0(x, t) is its score function. The formulation in terms of the Fisher divergence
immediately delineates the alternative hypothesis; the goal is to detect deviations with respect to the
Fisher divergence. Concretely, for each t > 0 we have

H0 : Ft(f || f0) = 0,

H1 : Ft(f || f0) ≥ ε2t and f ∈ F .
(4)

Here, F denotes a class of signals to be detected.

When speaking about the diffusion model approach to hypothesis testing, we are referring to the
conceptual approach of viewing the testing problem (4) as the target problem to solve. While there
may be many possible methodological strategies for addressing (4), understanding the fundamental
hypothesis testing capability of diffusion models requires characterizing the statistical limits of the
problem (4), which so far has been lacking in the literature. In this paper, we take a minimax
perspective on statistical limits. Namely, we denote ε∗t as the minimax testing rate (also referred to
as the minimax separation rate) for (4); a rigorous definition is given in Appendix A. The following
fundamental question immediately arises.
Question 1. For any t > 0, what is the minimax testing rate for (4)?

An answer to Question 1 sharply describes the testing capability of diffusion models by precisely
characterizing the magnitude of deviations in the alternative hypothesis (4) which are necessary and
sufficient for successful detection. To probe diffusion model’s capacity for hypothesis testing in the
most general setting, we will take F to be very broad in the first part of the paper, namely densities
which are only assumed to be supported on [−1, 1] and bounded below by a constant. Later on, we
will also investigate whether the diffusion approach has the capability to exploit smoothness, which
is particularly important for small t; we will consider a class of Hölder-smooth signals.

The diffusion approach to hypothesis testing poses an interesting statistical puzzle. From the es-
timation perspective, the score function s(x, t) becomes easier to estimate as t increases since the
target density p(x, t) looks more and more like noise; estimation of pure noise is a trivial problem.
This progressive simplification of the estimation problem is the basic premise of diffusion from the
generation vantage point. However, it is not immediately clear this is helpful in the testing problem.
As t gets larger and larger, both the noised null p0(x, t) and the noised data density p(x, t) look like
noise, which is to say both distributions become more and more indistinguishable. In other words,
noising seems to make the testing problem harder! It appears a progressively larger and larger signal
is needed to distinguish the two.

This statistical puzzle might also suggest that the diffusion model approach may face serious limi-
tations in addressing foundational hypothesis testing problems. Concretely, consider testing in total
variation distance,

H0 : f = f0,

H1 : dTV (f, f0) ≥ ε and f ∈ F . (5)

The problem (5) is clearly of fundamental interest and is formulated from first principles without
any reference to a particular approach. The minimax rate ε∗ for (5) can be defined analogously to
(1). The problem (5) is related to (4) by the following well-known bound (Oko et al., 2023; Chen
et al., 2023),

dTV(f, f0)
2 ≲ dKL(f ∗ φT || f0 ∗ φT ) +

∫ T

0

Ft(f || f0) dt, (6)
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For large T the first term is negligible, so let us ignore it for now. The bound (6) implies that a
separation dTV (f, f0) ≥ ε in the alternative hypothesis implies that the signals in (4) are large after
aggregating over t, namely we have ε2 ≲

∫ T

0
Ft(f || f0) dt. An essential question is whether the

diffusion model approach can optimally solve (5) by aggregating the problems (4) over t.
Question 2. If (4) can be optimally tested at every noise level t, can the problem (5) be tested at the
minimax rate by aggregating the evidence across t?

The testing problem (5) has been extensively studied in the nonparametric statistics literature (e.g.
see (Ingster & Suslina, 2003; Giné & Nickl, 2016) and references therein). For our first choice of
F which imposes essentially no assumptions, it is well known the problem (5) is trivial (i.e. testing
is impossible even with constant order ε). Constraints are necessary for (5) to be meaningful. For
various classical choices of F (e.g. which impose smoothness assumptions), minimax rates have
long been established in the literature and are well understood. For our later choice of Hölder-
smooth F , the point of Question 2 is to determine whether the diffusion approach (i.e. the approach
which targets (4)) can yield an optimal test for (5) and match the known minimax rate.

1.3 MAIN CONTRIBUTIONS

To focus on core ideas, we focus on the diffusion model associated to the variance exploding SDE
(Song et al., 2021) in (1) given by g ≡ 0 and σ ≡ 1. Namely, the forward process {Xt}t≥0 solves

dXt = dWt, X0 ∼ f. (7)

Note the marginal distribution of Xt has density p(x, t) = (f ∗φt)(x) where ∗ denotes convolution
and φt(x) = 1√

2πt
e−

x2

2t is the density of N(0, t). The corresponding reverse process {Yt}0≤t≤T

solves (2), which is given by

dYt = s(Yt, T − t) dt+ dWt, Y0 ∼ p(·, T ). (8)

Recall YT ∼ f and s(x, t) = ∂x log p(x, t) =
∂xp(x,t)
p(x,t) .

In the hypothesis testing problem (4), we will look at a very broad class of alternative densities with
the goal of understanding diffusion’s general capacity for testing. Define

F :=

{
f : R → R : supp(f) ⊂ [−1, 1],

∫ ∞

−∞
f(µ) dµ = 1, and cd ≤ f(µ) ≤ Cd for all |µ| ≤ 1

}
(9)

where Cd, cd > 0 are some universal constants. Moving to (5), it is well known that the choice of
F yields triviality. Moreover, it is interesting to ask whether the diffusion approach to testing can
exploit available smoothness in the problem. With this motivation, we will also consider the setting
of Hölder smoothness. For any (possibly unbounded) interval A ⊂ R, define the Hölder space

Hα(A;L) :=

{
f : R → R :

∫ ∞

−∞
f(µ) dµ = 1, supp(f) ⊂ A, max

0≤j≤⌊α⌋
sup
µ∈A

|f (j)(µ)| ≤ L, and

|f (⌊α⌋)(µ)− f (⌊α⌋)(µ′)| ≤ L|µ− µ′|α−⌊α⌋ for all µ, µ′ ∈ A
}
.

We will focus on the setting where L is a small universal constant, and we will suppress it from
notation. We also treat α > 0 as a fixed constant and all explicit or implicit universal constants may
depend on it. The class of signals f in the alternative will be taken to be densities supported on
[−1, 1], α-Hölder on their supports, and bounded below by a constant. Furthermore, we will assume
the difference f − f0 is α-Hölder on R. Define the parameter space

Fα(L) := {f ∈ F : f ∈ Hα([−1, 1];L) and f − f0 ∈ Hα(R;L)} . (10)

Throughout the paper, both in studying F and Fα, we will make the following assumption about f0.
Assumption 1. Assume f0 ∈ Hα∨1([−1, 1];L), f0(−1) = f0(1), and cd ≤ f0(µ) ≤ Cd for all
µ ∈ [−1, 1] where Cd, cd > 0 are some universal constants.

Besides being bounded below by a constant (a standard assumption (Tsybakov, 2009)), Assumption
1 essentially assumes f0 has at least one bounded derivative and is periodic. From an information-
theoretic point of view, this assumption is actually without loss of generality, since it is assumed
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f0 is known. By simply transforming the data by the inverse c.d.f. transform, the transformed
data follow the uniform distribution on [−1, 1] (after an additional transformation to map [0, 1] to
[−1, 1]). In other words, one can take f0 = 1

21{|µ|≤1} without loss of generality, which clearly lives
in Hα∨1(L) and is periodic. This reduction to the uniform case is standard (Giné & Nickl, 2016;
Ingster, 1994; 2000). The periodicity assumption will be used as we will analyze estimators based
on Fourier series projection ideas.

Our first main contribution is an answer to Question 1, namely that the minimax testing rate for (4)
with the choice F given by (9) is

ε∗t (F)2 ≍ 1

nt2
∧ 1

nt5/4
∧ 1

t
. (11)

The minimax rate (11) turns out to decrease in t, meaning that detection actually becomes easier as
the noise level increases, which apparently contradicts the intuition that f ∗ φt and f0 ∗ φt ought to
get progressively more indistinguishable. Though appealing, this intuition neglects the fact that the
noised densities become smoother as t increases. Consequently, larger t has some statistical benefit
since more regularity is available to exploit in the target Ft(f || f0). It turns out these two competing
effects balance out in such a way to yield (11).

A natural idea for testing (4) is to furnish an estimator F̂t of the Fisher divergence Ft and use
it as a test statistic, rejecting the null hypothesis when it exceeds some threshold. This strategy
is employed in the very high noise regime t ≳ 1. However, in the regime t ≲ 1, it turns out
constructing an estimator of Ft which is optimal (especially having error with sharp dependence on
t) is challenging. Instead, suppose we had an upper bound Ft(f || f0) ≤ Ut(f || f0) which satisfies
Ut(f || f0) = 0 under the null hypothesis f = f0. Then, under the alternative hypothesis, we have
ε2t ≤ Ut(f || f0), which is to say the alternative hypothesis is also separated away from the null in
terms of Ut, not just Ft. Then it is an appealing idea to construct an estimator Ût for the proxy Ut

and use it as a test statistic, especially if it is easier to estimate than Ft. Of course, the difficulty
should not be greater than the target rate ε∗t (F)2 given by (11), and typically this means Ut should
be a fairly close upper bound. Our methodology implements this strategy, and different choices of
the upper bound are made in different regimes of t.

Our second contribution is an affirmative answer to Question 2 with the choice of Fα given by (10)
in the alternative hypothesis. The bound (6) suggests an appealing aggregation idea for furnishing
a test statistic. The Kullback-Leibler divergence term is negligible as it is of order at most 1

T and
T will be chosen large (say, T ≍ n), so let us ignore it. Therefore, under the alternative hypothesis
dTV(f, f0)

2 ≥ ε2, it follows ε2 ≲
∫ T

0
Ft(f || f0) dt ≤

∫ T

0
Ut(f || f0) dt. Intuitively, the right-hand

side can be estimated at rate
∫ T

0
1

nt2 ∧ 1
nt5/4

∧ 1
t dt by the aggregated statistic

∫ T

0
Ût dt.

However, it quickly becomes clear that the estimators Ût developed for F instead of Fα will not

be optimal. Specifically, the bound
∫ T

0
1

nt2 ∧ 1
nt5/4

∧ 1
t dt is problematic since

∫ n−4

0
1
t dt = ∞.

The error bound for small t is not good enough, and one might hope to do better by exploiting
the smoothness in Fα rather than using estimators developed for F . Such blow-up issues with (6)
frequently occur in the diffusion literature, and the very popular early stopping is used to circumvent
this problem. However, early stopping introduces logarithmic factors which may be suboptimal; for
example, Dou et al. (2024) found early stopping is not at all necessary to achieve the optimal density
estimation rate.

The testing rate can be improved by leveraging the smoothness, and we show that when t ≤ c for a
sufficiently small constant c, the minimax testing rate of (4) with Fα is given by

ε∗t (Fα)
2 ≍ 1

nt5/4
∧
(
n−

4(α−1)
4α+1 + tα−1

)
. (12)

Importantly, when α ≥ 1, we have n−
4(α−1)
4α+1 + tα−1 ≍ n− 4(α−1)

4α+1 , which does not blow up when
integrating! Likewise, when α < 1, this regime specializes to tα−1, which is also integrable over
small t. Consequently, we are able to show that the aggregation statistic is able to achieve the
known, minimax testing rate for (5), which is (ε∗)2 ≍ n−

4α
4α+1 and was proved by Ingster & Suslina

(2003). Hence, we can conclude diffusion models are optimal for hypothesis testing in the context
of Hölder-smooth signals.
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2 TESTING IN FISHER DIVERGENCE

In this section, we address the upper bound aspect Question 1, namely the question of testing (4)
with the parameter space F given by (9). We defer the minimax lower bound to Appendix C.

As mentioned in Section 1.3, in the very high noise regime t ≳ 1 an optimal test can be constructed
by plugging in an optimal score estimator to estimate Ft. As described earlier, a different idea is
employed in the t ≲ 1 regime. We furnish a population quantity which upper bounds Ft and is also
equal to zero under the null hypothesis. Estimators for this proxy quantity are constructed and used
as test statistics for testing (4).

2.1 VERY HIGH NOISE REGIME

In the very high noise regime t ≳ 1, an optimal test is constructed via estimating the Fisher diver-
gence Ft(f || f0) by an estimator which plugs in a score estimator. The optimal score estimator from
Dou et al. (2024) is used, which we reproduce here. The estimator is motivated by the following rep-
resentation of the score s(x, t) = ∂xp(x,t)

p(x,t) . Note that the partial derivatives are given by ∂xp(x, t) =

∂x
∫ 1

−1
φt(x−µ)f(µ) dµ =

∫ 1

−1
−x−µ

t φt(x−µ)f(µ) dµ = −x
t p(x, t)+

1
t

∫ 1

−1
µφt(x−µ)f(µ) dµ.

Therefore, we have ∂xp(x, t) = −x
t p(x, t) +

1
t

∫ 1

−1
µφt(x − µ)f(µ) dµ. This representation

gives us a way to estimate ∂xp(x, t) from p(x, t). Let ε(x, t) := cd
∫ 1

−1
φt(x − µ) dµ and

note p(x, t) ≥ ε(x, t) for all f ∈ Fα. Define p̂(x, t) := ε(x, t) ∨ 1
n

∑n
i=1 φt(x − µi) and

∂̂xp(x, t) := −x
t p̂(x, t) +

1
nt

∑n
i=1 µiφt(x − µi). The score estimator of Dou et al. (2024) is

ŝ(x, t) := ∂̂xp(x,t)
p̂(x,t) . The score estimator ŝ is plugged in to obtain an estimator of the Fisher diver-

gence, F̂t :=
∫∞
−∞ |ŝ(x, t)− s0(x, t)|2 p0(x, t) dx.

We use the test

ϕt := 1

{
F̂t ≥

C ′
η

nt2

}
(13)

where C ′
η is a constant to be tuned to achieve a testing risk of at most η.

Theorem 1. If t ≥ 1 and η > 0, then there exist Cη, C
′
η > 0 depending only on η such that for all

C > Cη , we have

Pf0 {ϕt = 1}+ sup
f∈F,

Ft(f || f0)≥Cε2t

Pf {ϕt = 0} ≤ η,

where ε2t = 1
nt2 and ϕt is given by (13).

The proof of Theorem 1 is deferred to Appendix B.1. The argument is straightforward, and relies
on the error bound of the plugged-in score estimator ŝ provided by Dou et al. (2024).

2.2 HIGH NOISE REGIME

Outside the regime t ≳ 1, the proxy strategy described in Section 1.3 and at the beginning of Section
2 is employed. Proposition 1 states the proxy we will target in the high noise regime n−4 ≲ t < 1.
Its proof is deferred to Appendix B.2.

Proposition 1. We have Ft(f || f0) ≲ Qt +Q′
t where

Qt =

∫ ∞

−∞

|∂xp0(x, t)|2

p0(x, t)3
|p(x, t)− p0(x, t)|2 dx, (14)

Q′
t =

∫ ∞

−∞

|∂xp(x, t)− ∂xp0(x, t)|2

p0(x, t)
dx. (15)

6
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Define the estimators

Q̂t =
1(
n
2

) ∑
i̸=j

∫ ∞

−∞

|∂xp0(x, t)|2

p0(x, t)3
(φt(x− µi)− p0(x, t))(φt(x− µj)− p0(x, t)) dx, (16)

Q̂′
t =

1(
n
2

) ∑
i̸=j

∫ ∞

−∞

(∂xφt(x− µi)− ∂xp0(x, t))(∂xφt(x− µj)− ∂xp0(x, t))

p0(x, t)
dx. (17)

The test

ϕt = 1

{
|Q̂t + Q̂′

t| ≥
C ′

η

nt5/4

}
(18)

is employed, where C ′
η is a constant to be tuned to achieve a testing risk of at most η.

Theorem 2. Suppose t < 1. If η > 0, then there exist Cη, C
′
η > 0 depending only on η such that

for all C > Cη , we have

Pf0 {ϕt = 1}+ sup
f∈F,

Ft(f || f0)≥Cε2t

Pf {ϕt = 0} ≤ η,

where ε2t = 1
nt5/4

and ϕt is given by (18).

The proof is deferred to Appendix B.2.1. The result of Theorem 2 holds for all t < 1, but is only
relevant in the high noise regime n−4 ≲ t < 1 where it achieves the minimax rate (11). The low
noise regime requires a different approach. The argument of Theorem 2 relies on sharp calculations
of the variances of the U -statistics Q̂t and Q̂′

t.

2.3 LOW NOISE REGIME

In the low noise regime t ≲ n−4, the rate (11) specializes to t−1 for α < 1. The trivial test which
always accepts the null hypothesis achieves the separation rate t−1. Proposition 4 shows the reason
for the triviality, and is an immediate corollary of Lemma 3.1 of (Gupta et al., 2022), which states a
bound on the Fisher information of f ∗ φt, namely

∫∞
−∞ |s(x, t)|2 p(x, t) dx ≲ t−1.

Proposition 2. We have supf∈F Ft(f || f0) ≲ t−1.

Proof. Fix f ∈ F . Since f0 ≍ f , we have from the inequality (a + b)2 ≲ a2 + b2 that
Ft(f || f0) ≲

∫∞
−∞ |s(x, t)|2 p(x, t) dx +

∫∞
−∞ |s0(x, t)|2 p0(x, t) dx. Lemma 3.1 of (Gupta et al.,

2022) immediately delivers the claim.

Proposition 4 shows that the diameter of the entire alternative hypothesis is of order at most t−1.
Consequently, for a sufficiently large universal constantC∗ > 0, there does not exist any f ∈ F such
that Ft(f || f0) ≥ C∗t−1. Consequently, the test which always accepts the null hypothesis achieves
exactly zero testing risk for testingH0 : Ft(f || f0) = 0 againstH1 : Ft(f || f0) ≥ Ct−1 and f ∈ F
for all C > C∗. Hence, it achieves the separation rate t−1. This result is formally stated in Theorem
3 without proof.

Theorem 3. There exists a universal constant C∗ > 0 such that for all C > C∗, we have
Pf0 {ϕ0 = 1}+ sup f∈F,

Ft(f || f0)≥Cε2t

Pf {ϕ0 = 0} = 0, where ε2t = t−1 and ϕ0 ≡ 0.

Theorem 3 holds for all t > 0, but is only relevant in the regime t ≲ n−4 to deliver the upper bound
in (11).

3 TESTING IN TOTAL VARIATION DISTANCE

In this section, we address testing (5) with the parameter space Fα given by (10).
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3.1 EXPLOITING SMOOTHNESS TO IMPROVE TESTING IN FISHER DIVERGENCE

As mentioned in Section 1.3, the key step is to improve the Fisher divergence testing rate (11) to
(12) for small t. This section thus describes the upper bound aspect of the optimal minimax testing
rate ε∗t (Fα) given by (12). The lower bound is deferred to Appendix C.

From the upper bound perspective and in view of (12), we only need to improve in the regime
t ≲ n−4/(4α+1) with the target n−4(α−1)/(4α+1) + tα−1. Note this target specializes to n− 4(α−1)

4α+1

for α ≥ 1 and to tα−1 for α < 1. These two cases are handled separately. The tests of Sections
2.1 and 2.2 can be immediately used to address the regime t ≳ 1 and n−4(α−1)/(4α+1) ≲ t < 1
respectively.

Suppose α ≥ 1. The proxy strategy is again employed, though the target estimand is different. The
test (18) is not appropriate in the low noise regime, since it achieves a separation rate 1

nt5/4
which

diverges as t → 0. To achieve the desired rate n−4(α−1)/(4α+1) + tα−1, which notably does not
diverge, the smoothness of f and f0 will be explicitly exploited. The proxy given in Proposition 3
is useful precisely because of the availability of smoothness.

Proposition 3. If α ≥ 1 and t < 1, then Ft(f || f0) ≲ Q + Q′ + tα−1 where Q =
∫ 1

−1
|f(µ) −

f0(µ)|2 dµ and Q′ =
∫ 1

−1
|f ′(µ)− f ′0(µ)|2 dµ.

The proof of Proposition 3 is deferred to Appendix E.1. The proxy Q + Q′ will be our target
estimand. The intuition is that for small t, the Fisher divergence Ft(f || f0) ought to be close to
F0(f || f0), that is when t = 0, due to the smoothness of the underlying densities. At t = 0, since
f0 ≍ f ≍ 1, it is very natural to obtain a proxy estimand as follows,

F0(f || f0) =
∫ 1

−1

|f ′(µ)f0(µ)− f ′0(µ)f(µ)|2

f0(µ)2f(µ)2
f0(µ) dµ ≲ Q+Q′.

When t > 0, some error will be incurred and will imply some conditions on how small t must be.
To achieve the optimal rate n−

4(α−1)
4α+1 , it turns out the error tα−1 in Proposition 3 is only negligible

when t ≲ n−
4

4α+1 , which is exactly the low noise regime we are considering!

The estimation of Q and Q′ is classical (Bickel & Ritov, 1988; Laurent, 1996; Giné & Nickl, 2008).
We employ the estimators based on orthogonal series (Laurent, 1996). Formally, let {ψk}∞k=1 denote
the usual trigonometric basis in L2([−1, 1]) with ψ1(y) = 1√

2
, ψ2k(y) = cos(πk(y + 1)) and

ψ2k+1(y) = sin(πk(y + 1)). Since f and f0 are periodic on [−1, 1], we have the basis expansions
f0 =

∑∞
k=1 θ0,kψk and f =

∑∞
k=1 θkψk. Moreover, we have estimates on the coefficient decay.

Define the ellipsoid Θα(L) =
{
θ ∈ ℓ2(N) :

∑∞
k=1 a

2
kθ

2
k ≤ L

}
where ak = kα if k is even and

ak = (k − 1)α if k is odd. We have by standard results (Tsybakov, 2009) that the basis coefficients
of f and f0 live in Θα(L). By Parseval’s identity, we have Q =

∑∞
k=1(θk − θ0,k)

2, and so our
estimator is defined to be

Q̂K :=
1(
n
2

) ∑
i̸=j

K∑
k=1

(ψk(µi)− θ0,k)(ψk(µj)− θ0,k). (19)

Here, K is a tuning parameter.

To estimate f ′ =
∑K

k=1 θkψ
′
k, consider ψ′

2k = −πkψ2k+1 and ψ′
2k+1 = πkψ2k since {ψk}∞k=1

is the trigonometric basis. Therefore, f ′(µ) =
∑∞

k=1 πkθ2k+1ψ2k(µ) − πkθ2kψ2k+1(µ). Let us
denote the basis coefficients of f ′ by θ̃2k := πkθ2k+1 and θ̃2k+1 = −πkθ2k. Likewise, let θ̃0,k
denote the corresponding coefficients of f ′0. Define the estimator

Q̂′
K =

1(
n
2

) ∑
i̸=j

K∑
k=1

Ak(µi)Ak(µj), (20)

where Ak(µ) := (πkψ2k+1(µ)− θ̃0,2k) + (−πkψ2k(µ)− θ̃0,2k+1). The test

ϕ := 1

{
|Q̂K + Q̂′

K | ≥ C ′
ηn

− 4(α−1)
4α+1

}
(21)
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is used in this regime, where C ′
η > 0 is a constant to be tuned to achieve a testing risk of at most η.

Theorem 4 establishes ϕ is rate-optimal, and its proof is deferred to Appendix B.3.

Theorem 4. Suppose α ≥ 1 and t ≤ n−
4

4α+1 . If η > 0, then there exist Cη, C
′
η > 0 depending only

on η such that for all C > Cη , we have
Pf0 {ϕ = 1}+ sup

f∈Fα,
Ft(f || f0)≥Cε2t

Pf {ϕ = 0} ≤ η,

where ε2t = n−
4(α−1)
4α+1 and ϕ is given by (21) with K =

⌈
n

2
4α+1

⌉
.

On the other hand, suppose α < 1. It turns out the trivial test which always accepts the null
hypothesis achieves the separation rate tα−1. Proposition 4 shows the reason for the triviality, and
is an immediate corollary of Theorem 5 of (Dou et al., 2024).

Proposition 4. If α < 1 and t ≲ n−
4

4α+1 , then supf∈Fα
Ft(f || f0) ≲ tα−1.

Proof. Fix f ∈ Fα. Let u(µ) = 1
21{|µ|≤1} denote the density of the uniform distribution on [−1, 1].

Let pu(x, t) = (u ∗ φt)(x) and su(x, t) = ∂x log pu(x, t). Consider n− 4
4α+1 ≤ n−

2
2α+1 , and so we

can apply Theorem 5 of (Dou et al., 2024) to conclude Ft(u || f0) ≲ tα−1 and Ft(u || f) ≲ tα−1.
Since p0 ≍ p and (a + b)2 ≲ a2 + b2, it is immediate that Ft(f || f0) ≲ Ft(u || f0) + Ft(u || f) ≲
tα−1, as desired.

Proposition 4 shows that the diameter of the entire alternative hypothesis is of order at most tα−1,
and so the trivial test achieves the separation rate tα−1. This result is formally stated in Theorem 5
without proof.

Theorem 5. Suppose α < 1 and t ≤ n−
4

4α+1 . There exists a universal constant C∗ > 0 such that
for all C > C∗, we have Pf0 {ϕ0 = 1}+sup f∈Fα,

Ft(f || f0)≥Cε2t

Pf {ϕ0 = 0} = 0, where ε2t = tα−1 and

ϕ0 ≡ 0.

3.2 AGGREGATION

The estimators we have constructed can be aggregated to furnish an optimal test for the classical
problem (5) of detecting alternatives separated from the null hypothesis in total variation distance.
Define

Ût :=


F̂t if t ≥ 1,

Q̂t + Q̂′
t if n− 4

4α+1 < t < 1,

Q̂K + Q̂′
K if t ≤ n−

4
4α+1 ,

(22)

where F̂t is given in Section 2.1, Q̂t and Q̂′
t are given by (16) and (17) respectively, and Q̂K and

Q̂′
K are given by (19) and (20) with K = ⌈n

2
4α+1 ⌉. For T > 0, define the test

ϕT := 1

{∫ T

0

Ût dt ≥ C ′
ηn

− 4α
4α+1

}
(23)

where C ′
η is a constant to be tuned to achieve a testing risk of at most η.

Theorem 6. Suppose T ≳ n. If η > 0, then there exist Cη, C
′
η > 0 depending only on η such that

for all C > Cη , we have
Pf0 {ϕT = 1}+ sup

f∈Fα,
dTV(f,f0)≥Cε∗

Pf {ϕT = 0} ≤ η,

where ε∗ = n−
2α

4α+1 and ϕT is given by (23).

Theorem 6 establishes that the minimax rate (ε∗)2 ≍ n− 4α
4α+1 can be achieved. Intuitively, this

is precisely because the estimation error at every t integrates to exactly the desired rate; we have∫ T

0
1

nt2 ∧ 1
nt5/4

∧
(
n−

4(α−1)
4α+1 + tα−1

)
dt ≲ n−

4α
4α+1 . In this sense, we conclude diffusion models

are optimal for hypothesis testing.
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Appendices to “Diffusion models are optimal for hypothesis testing”

A PRELIMINARIES

Definition 1 defines the minimax testing rate for (4).
Definition 1. For t > 0, we say ε∗t is the minimax testing rate for (4) if for all η ∈ (0, 1),

(i) there exists Cη > 0 depending only on η such that for all C > Cη , we have

inf
ϕ

Pf0 {ϕ = 1}+ sup
f∈F,

Ft(f || f0)≥C(ε∗t )
2

Pf {ϕ = 0}

 ≤ η,

(ii) there exists cη > 0 depending only on η such that for all 0 < c < cη , we have

inf
ϕ

Pf0 {ϕ = 1}+ sup
f∈F,

Ft(f || f0)≥c(ε∗t )
2

Pf {ϕ = 0}

 ≥ 1− η,

where the infimums run over all tests ϕ (i.e. binary measurable functions taking the data as input).

Item (i) in Definition 1 is the upper bound criterion, and item (ii) is the lower bound criterion. Note
ε∗t characterizes the hardness of the testing problem only up to constant factors.

B PROOFS OF THE UPPER BOUNDS

B.1 VERY HIGH NOISE: PROOF OF THEOREM 1

The proof of Theorem 1 relies on estimation error bounds of the plugged-in estimators. The test
(13) plugs in the score estimator of Dou et al. (2024). This score estimator is rate-optimal for score
estimation and achieves the following error bound. Note the parameter space we consider is a subset
of the parameter space in (Dou et al., 2024), and so their upper bound guarantee continues to hold
in our setting.
Theorem 7 (Theorem 2 in (Dou et al., 2024)). Let ŝ be given as in Section 2.1. Then

E

(∫ ∞

−∞
|ŝ(x, t)− s(x, t)|2p(x, t) dx

)
≲

1

nt2

for t ≥ 1.

The following error bound for the plug-in estimator F̂t :=
∫∞
−∞ |ŝ(x, t) − s0(x, t)|2 p0(x, t) dx

defined in Section 2.1 is easily obtained in light of Theorem 7.
Proposition 5. If t ≥ 1, then

E
(∣∣∣F̂t − Ft(f || f0)

∣∣∣) ≲
1

nt2
+

√
Ft(f || f0)

nt2

where F̂t is given in Section 2.1.

Proof. For notational ease, let us write Ft for Ft(f || f0). Consider

|F̂t − Ft| ≲
∫ ∞

−∞
|ŝ(x, t)− s(x, t)|2 p0(x, t) dx+

∫ ∞

−∞
|s(x, t)− s0(x, t)||ŝ(x, t)− s(x, t)| p0(x, t) dx

≲
∫ ∞

−∞
|ŝ(x, t)− s(x, t)|2p0(x, t) dx+

√
Ft ·

√∫ ∞

−∞
|ŝ(x, t)− s(x, t)|2 p0(x, t) dx.

13
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We have used p(x, t) ≍ p0(x, t) since f, f0 are both bounded above and below by universal constants
on their support, and we have also used Cauchy-Schwarz. Therefore, Theorem 7 yields

E
(∣∣∣F̂t − Ft

∣∣∣) ≲
1

nt2
+

√
Ft

nt2
,

as claimed.

With the error bound of Proposition 5 in hand, the proof Theorem 1 is straightforward.

Proof of Theorem 1. Fix η ∈ (0, 1). Examining the Type I error, consider that since Ft(f || f0) = 0
under the null hypothesis, we have

Pf0 {ϕt = 1} ≤ Pf0

{
|F̂t − Ft(f || f0)| ≥

C ′
η

nt2

}
≤
E
(∣∣∣F̂t − Ft(f || f0)

∣∣∣)
C ′

η/(nt
2)

by Markov’s inequality. Proposition 5 implies there exists some universal constant C̃ > 0 such that
E(|F̂t − Ft(f || f0)|) ≤ C̃

nt2 , and so it follows from taking C ′
η sufficiently large depending only on

η that the Type I error is bounded as Pf0{ϕt = 1} ≤ η
2 .

Let us now examine the Type II error. Suppose f ∈ F with Ft(f || f0) ≥ Cε2t . Since Cη > 0 is
sufficiently large and C > Cη , we have by Markov’s inequality and Proposition 5,

Pf {ϕt = 0} = Pf

{
F̂t ≤

C ′
η

nt2

}
≤ Pf

{
Ft(f || f0)−

C ′
η

nt2
≤
∣∣∣Ft(f || f0)− F̂t

∣∣∣}

≤
E
(∣∣∣F̂t − Ft(f || f0)

∣∣∣)
Ft(f || f0)−

C′
η

nt2

≤ C̃/(nt2)(
C − C ′

η

)2
/(nt2)

+
C̃
√

Ft(f || f0)
nt2

Ft(f || f0)−
C′

η

nt2

.

Since C > Cη , we can take Cη sufficiently large to ensure the first term is bounded by η
4 . Further-

more, we can use the inequality ab ≤ a2 + b2 to argue C̃
√

Ft(f || f0)
nt2 ≤ Ft(f || f0) · η

16 + 16C̃2

ηnt2 .

Then since Cη is sufficiently large, we have
C̃
√

Ft(f || f0)

nt2

Ft(f || f0)−
C′
η

nt2

≤ Ft(f || f0)· η
16

1
2Ft(f || f0)

+
16C̃2

ηnt2

C−C′
η

nt2

≤ η
4 . Putting

together our bounds, the Type II error is bounded by η
2 , and so we have shown the sum of the Type

I and Type II errors is bounded by η, completing the proof.

B.2 HIGH NOISE

First, we prove Proposition 1. We later move on to proving Theorem 2 in Appendix B.2.1.

Proof of Proposition 1. It immediately follows from p0(x, t) ≍ p(x, t) that

Ft(f || f0) =
∫ ∞

−∞
|s(x, t)− s0(x, t)|2 p(x, t) dx

=

∫ ∞

−∞

|∂xp(x, t)p0(x, t)− ∂xp0(x, t)p(x, t)|2

p0(x, t)2p(x, t)2
p(x, t) dx

≍
∫ ∞

−∞

|∂xp(x, t)p0(x, t)− ∂xp0(x, t)p(x, t)|2

p0(x, t)3
dx

≤
∫ ∞

−∞

|∂xp0(x, t)|2

p0(x, t)3
|p(x, t)− p0(x, t)|2 dx+

∫ ∞

−∞

|∂xp(x, t)− ∂xp0(x, t)|2

p0(x, t)
dx,

as claimed.
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B.2.1 PROOF OF THEOREM 2

The proof of Theorem 2 will follow once estimation error bounds of Q̂t and Q̂′
t given by (16) and

(17) are obtained. The arguments follow the typical analyses of U -statistics, though the calculations
are somewhat involved. All the attention is paid to the variances since Q̂t and Q̂′

t are unbiased for
Qt and Q′

t respectively.
Proposition 6. If t < 1, then

E
(
|Q̂t −Qt|2

)
≲

1

n2t5/2
+
Qt

nt

where Q̂t and Qt are given by (16) and (14) respectively.

Proof of Proposition 6. Since Q̂t is unbiased for Qt, it suffices to bound its variance. For notational
ease, denote A(x, t) = |∂xp0(x,t)|2

p0(x,t)3
. By direct calculation, we have

Var(Q̂t)

=
1(
n
2

)2 ∑
i̸=j

∑
k ̸=l

∫ ∞

−∞

∫ ∞

−∞
A(x, t)A(y, t)·

Cov ((φt(x− µi)− p0(x, t))(φt(x− µj)− p0(x, t)), (φt(y − µk)− p0(y, t))(φt(y − µl)− p0(y, t))) dx dy.

If {i, j} ∩ {k, l} = ∅, then the covariance is zero due to independence. Therefore the only cases to
consider are when the intersection is nonempty. There are O(n2) choices of the indices such that
i ̸= j, k ̸= l, and |{i, j} ∩ {k, l}| = 2. Likewise, there are O(n3) choices for which i ̸= j, k ̸= l,
and |{i, j} ∩ {k, l}| = 1. Let N1 and N2 denote the respective counts of choices. Therefore, by the
identical distribution of the µi’s, we have

Var(Q̂t)

=
N1(
n
2

)2 ∫ ∞

−∞

∫ ∞

−∞
A(x, t)A(y, t)·

Cov((φt(x− µ1)− p0(x, t))(φt(x− µ2)− p0(x, t)), (φt(y − µ1)− p0(x, t))(φt(y − µ2)− p0(x, t))) dx dy

+
N2(
n
2

)2 ∫ ∞

−∞

∫ ∞

−∞
A(x, t)A(y, t)·

Cov((φt(x− µ1)− p0(x, t))(φt(x− µ2)− p0(x, t)), (φt(y − µ1)− p0(x, t))(φt(y − µ3)− p0(x, t))) dx dy.

By Lemmas 1 and 2, we have Var(Q̂t) ≲ 1
n2t5/2

+ Qt

nt , which completes the proof.

The following lemmas were used in the variance calculation in Proposition 6. Their proofs are
deferred to Appendix D.1.
Lemma 1. If t < 1, then∫ ∞

−∞

∫ ∞

−∞
A(x, t)A(y, t)·

Cov((φt(x− µ1)− p0(x, t))(φt(x− µ2)− p0(x, t)), (φt(y − µ1)− p0(y, t))(φt(y − µ2)− p0(y, t))) dx dy

≲
1

t5/2
,

where A(x, t) = |∂xp0(x,t)|2
p0(x,t)3

.

Lemma 2. If t < 1, then∫ ∞

−∞

∫ ∞

−∞
A(x, t)A(y, t)·

Cov((φt(x− µ1)− p0(x, t))(φt(x− µ2)− p0(x, t)), (φt(y − µ1)− p0(y, t))(φt(y − µ3)− p0(y, t))) dx dy

≲
Qt

t
,

where A(x, t) = |∂xp0(x,t)|2
p0(x,t)3

and Qt is given by (14).
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Proposition 7 gives a similar bound as Proposition 7 for the estimation of Q′
t

Proposition 7. If t < 1, then

E
(
|Q̂′

t −Q′
t|2
)
≲

1

n2t5/2
+
Q′

t

nt

where Q̂′
t and Q′

t are given by (15) and (17) respectively.

Proof of Proposition 7. Since Q̂′
t is unbiased for Q′

t, it suffices to bound its variance. Denote
B(x, t) = 1

p0(x,t)
. Following the same logic as in the proof of Proposition 7, we have

Var(Q̂′
t)

=
N1(
n
2

)2 ∫ ∞

−∞

∫ ∞

−∞
B(x, t)B(y, t)·

Cov ((φ′
t(x− µ1)− ∂xp0(x, t))(φ

′
t(x− µ2)− ∂xp0(x, t)), (φ

′
t(y − µ1)− ∂xp0(y, t))(φ

′
t(y − µ2)− ∂xp0(y, t))) dx dy

+
N2(
n
2

)2 ∫ ∞

−∞

∫ ∞

−∞
B(x, t)B(y, t)·

Cov ((φ′
t(x− µ1)− ∂xp0(x, t))(φ

′
t(x− µ2)− ∂xp0(x, t)), (φ

′
t(y − µ1)− ∂xp0(y, t))(φ

′
t(y − µ3)− ∂xp0(y, t))) dx dy.

By Lemmas 3 and 4, we have Var(Q̂′
t) ≲

1
n2t5/2

+
Q′

t

nt , which completes the proof.

The following lemmas are used in the variance calculation in the argument of Proposition 7, and
their proofs are deferred to Appendix D.2.
Lemma 3. If t < 1, then∫ ∞

−∞

∫ ∞

−∞
B(x, t)B(y, t)·

Cov ((φ′
t(x− µ1)− ∂xp0(x, t))(φ

′
t(x− µ2)− ∂xp0(x, t)), (φ

′
t(y − µ1)− ∂xp0(y, t))(φ

′
t(y − µ2)− ∂xp0(y, t))) dx dy

≲
1

nt5/2

where B(x, t) = 1
p0(x,t)

.

Lemma 4. If t < 1, then∫ ∞

−∞

∫ ∞

−∞
B(x, t)B(y, t)·

Cov ((φ′
t(x− µ1)− ∂xp0(x, t))(φ

′
t(x− µ2)− ∂xp0(x, t)), (φ

′
t(y − µ1)− ∂xp0(y, t))(φ

′
t(y − µ2)− ∂xp0(y, t))) dx dy

≲
Q′

t

t

where B(x, t) = 1
p0(x,t)

and Q′
t is given by (15).

Propositions 6 and 7 enable us to prove Theorem 2.

Proof of Theorem 2. Fix η ∈ (0, 1). By Propositions 6 and 7 along with the inequality (a + b)2 ≤
2a2 + 2b2, we have

E

(∣∣∣Q̂t + Q̂′
t −Qt −Q′

t

∣∣∣2) ≤ C̃

(
1

n2t5/2
+
Qt +Q′

t

nt

)
for some universal constant C̃ > 0. Let us examine the Type I error. Consider by Markov’s inequal-
ity (and noting Qt +Q′

t = 0 under the null hypothesis),

Pf0 {ϕt = 1} = Pf0

{
|Q̂t + Q̂′

t −Qt −Q′
t| ≥

C ′
η

nt5/4

}
≤ C̃/(n2t5/2)

C ′2
η /(n

2t5/2)
=

C̃

C ′2
η

.
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By taking C ′
η sufficiently large depending only on η, it follows the Type I error is bounded by η/2.

We now turn to the Type II error. Suppose f ∈ F with Ft(f || f0) ≥ Cε2t . By Proposition 1, there
exists some universal constant C̃ ′ > 0 such that Cε2t ≤ C̃ ′ (Qt +Q′

t). Since Cη > 0 is sufficiently
large, we have by Markov’s inequality

Pf {ϕt = 0} ≤ P

{
|Q̂t + Q̂′

t| ≤
C ′

η

nt5/4

}
≤ P

{
Qt +Q′

t −
C ′

η

nt5/4
≤ |Q̂t + Q̂′

t −Qt −Q′
t|
}

≤
E
(
|Q̂t + Q̂′

t −Qt −Q′
t|2
)

(
Qt +Q′

t −
C′

η

nt5/4

)2
≤
C̃
(

1
n2t5/2

+
Qt+Q′

t

nt

)
(
Qt +Q′

t −
C′

η

nt5/4

)2
≤

C̃
n2t5/2

+ 16C̃2

η · 1
n2t2 + η

16 (Qt +Q′
t)

2(
Qt +Q′

t −
C′

η

nt5/4

)2
≤

C̃
n2t5/2

+ 16C̃2

η · 1
n2t2

(C/2)2 · 1
n2t5/2

+
η
16 (Qt +Q′

t)
2

((Qt +Q′
t)/2)

2

≤ η

4
+
η

4

≤ η

2
.

Here, we have used the inequality ab ≤ a2 + b2 in the above calculation. We have also used
C
C̃′ ε

2
t ≤ Qt + Q′

t and C > 0 is sufficiently large in the above calculation. Hence, the Type II
error is bounded by η

2 , and so the sum of the Type I and Type II errors is at most η. The proof is
complete.

B.3 LOW NOISE: PROOF OF THEOREM 4

Like in Appendix B.2.1, the proof of Theorem 4 rests on estimation error results for Q̂K and Q̂′
K

given by (19) and (20) respectively. These orthogonal series estimators are classical (Laurent, 1996);
we provide full proof details of Lemmas 5 and 6 in Appendix E.2 for completeness though the ideas
are not new.

Lemma 5. We have

E
(
|Q̂K −Q|2

)
≲ K−4α +

K

n2
+
Q

n

where Q is defined in Proposition 3 and Q̂K is given by (19).

Lemma 6. If α ≥ 1, we have

E
(
|Q̂′

K −Q′|2
)
≲ K−4(α−1) +

K5

n2
+
K2Q′

n

where Q′ is defined in Proposition 3 and Q̂′
K is given by (20).

Proof of Theorem 4. Fix η ∈ (0, 1). By Lemmas 5 and 6, along with the inequality (a + b)2 ≤
2a2 + 2b2 and the choice of K ≍ n

2
4α+1 , we have

E

(∣∣∣Q̂K + Q̂′
K −Q−Q′

∣∣∣2) ≤ C̃

(
n−

8(α−1)
4α+1 +

n
4

4α+1 (Q+Q′)

n

)
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for some universal constant C̃ > 0. Examining the Type I error, consider by Markov’s inequality
(and noting Q+Q′ = 0 under the null hypothesis),

Pf0 {ϕ = 1} = Pf0

{
|Q̂K + Q̂′

K −Q−Q′| ≥ C ′
ηn

− 4(α−1)
4α+1

}
≤ C̃n−

8(α−1)
4α+1

C ′2
η n

− 8(α−1)
4α+1

≤ C̃

C ′2
η

≤ η

2

where the final inequality follows by taking C ′
η > 0 sufficiently large. Hence, the Type I error is

bounded by η/2.

Let us now examine the Type II error. Suppose f ∈ Fα with Ft(f || f0) ≥ Cε2t . By Proposition 3,
there exists some universal constant C̃ ′ > 0 such that

Cn−
4(α−1)
4α+1 = Cε2t ≤ C̃ ′ (Q+Q′ + tα−1

)
≤ C̃ ′

(
Q+Q′ + n− 4(α−1)

4α+1

)
.

Since Cη > 0 can be taken sufficiently large, it follows that C
2 n

− 4(α−1)
4α+1 ≤ C̃(Q+Q′). Then since

Cη > 0 is sufficiently large, we have by Markov’s inequality

Pf {ϕ = 0} = P
{
|Q̂K + Q̂′

K | ≤ C ′
ηn

− 4(α−1)
4α+1

}
≤ P

{
Q+Q′ − C ′

ηn
− 4(α−1)

4α+1 ≤ |Q̂K + Q̂′
K −Q−Q′|

}
≤
E
(
|Q̂K + Q̂′

K −Q−Q′|2
)

(
Q+Q′ − C ′

ηn
− 4(α−1)

4α+1

)2

≤
C̃

(
n−

8(α−1)
4α+1 + n

4
4α+1 (Q+Q′)

n

)
(
Q+Q′ − C ′

ηn
− 4(α−1)

4α+1

)2

≤
C̃

(
n−

8(α−1)
4α+1 + 16C̃

η
n

8
4α+1

n2 + η

16C̃
(Q+Q′)2

)
(
Q+Q′ − C ′

ηn
− 4(α−1)

4α+1

)2
≤
C̃
(
n−

8(α−1)
4α+1 + 16C̃

η n−
8(α−1)
4α+1 − 4

4α+1

)
(C/4)2n−

8(α−1)
4α+1

+
η
16 (Q+Q′)2

((Q+Q′)/2)
2

≤
C̃ + 16C̃2

η

(C/4)2
+
η

4

≤ η

2

where the final inequality follows from taking Cη > 0 sufficiently large and noting C > Cη .
Therefore, the Type II error is bounded by η

2 , and so the sum of Type I and Type II errors is bounded
above by η. The proof is complete.

B.4 AGGREGATION: TESTING IN TV DISTANCE

In this section, we prove Theorem 6. To reason about the aggregated test statistic
∫ T

0
Ût dt with Ût

given by (22), it is useful to think about the estimand that Ût targets. Define

Ut =


Ft(f || f0) if t ≥ 1,

Qt +Q′
t if n− 4

4α+1 < t < 1,

Q+Q′ if t ≤ n−
4

4α+1 ,

(24)

where Qt and Q′
t are given by (14) and (15) respectively, and Q and Q′ are defined in Proposition

3. Proposition 8 gives a bound on the estimation error of the aggregated statistic
∫ T

0
Ût dt.
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Proposition 8. Suppose T > 0. If c > 0, then there exists C > 0 such that

E

(∣∣∣∣∣
∫ T

0

Ût dt−
∫ T

0

Ut dt

∣∣∣∣∣
)

≤ c

∫ T

0

Ut dt+ Cn− 4α
4α+1 ,

where Ût and Ut are given by (22) and (24) respectively.

Proof. Observe

E

(∣∣∣∣∣
∫ T

0

Ût dt−
∫ T

0

Ut dt

∣∣∣∣∣
)

≤
∫ ∞

0

E
(∣∣∣Ût − Ut

∣∣∣) dt.
We will split the integral into the three regions t ≤ n−

4
4α+1 , n−

4
4α+1 < t < 1, and t ≥ 1. Consider

by Proposition 5, we have∫ ∞

1

E
(∣∣∣Ût − Ut

∣∣∣) dt = ∫ ∞

1

E
(∣∣∣F̂t − Ft(f || f0)

∣∣∣) dt
≲
∫ ∞

1

1

nt2
+

√
Ft

nt2
dt

≤ C

n
+ c

∫ ∞

1

Ft dt

=
C

n
+ c

∫ ∞

1

Ut dt,

where C > 0 is a sufficiently large quantity depending only on c > 0. Here, we have used the
inequality ab ≤ a2

r2 + r2b2 for any r > 0.

Consider over the region n− 4
4α+1 < t < 1, we have from Propositions 6 and 7 as well as a very

similar argument,∫ 1

n
− 4

4α+1

E
(∣∣∣Ût − Ut

∣∣∣) dt ≤ ∫ 1

n
− 4

4α+1

E
(∣∣∣Q̂t −Qt

∣∣∣)+ E
(∣∣∣Q̂′

t −Qt −Q′
t

∣∣∣) dt
≲
∫ 1

n
− 4

4α+1

1

nt5/4
+

√
Qt

nt
+

√
Q′

t

nt
dt

≤ Cn− 4α
4α+1 + c

∫ 1

n
− 4

4α+1

Ut dt.

A very similar argument using Lemmas 5 and 6 yields, over the region t ≤ n− 4
4α+1 , the bound∫ n

− 4
4α+1

0

E
(∣∣∣Ût − Ut

∣∣∣) dt ≤ C

∫ n
− 4

4α+1

0

n−
4(α−1)
4α+1 dt+ c

∫ n
− 4

4α+1

0

Ut dt

= Cn− 4α
4α+1 + c

∫ n
− 4

4α+1

0

Ut dt.

Putting together our three bounds over the three regions yields the desired result.

Proposition 8 gives the key error bound in arguing for the success of aggregation for testing (5).
Let us describe the intuition here. Under the alternative hypothesis dTV(f, f0)

2 ≥ ε2 with ε2 ≳

n−
4α

4α+1 , we have from (6) that ε2 ≲
∫ T

0
Ft(f || f0) dt ≲

∫ T

0
Ut dt. In other words, there is signal to

detect. Proposition 8 implies∫ T

0

Ût dt ≥ (1− c)

∫ T

0

Ut(f || f0) dt− Cn−
4α

4α+1

with high probability under the alternative. Similarly, under the null hypothesis where Ut(f || f0) =
0, we have

∫ T

0
Ût dt ≤ Cn− 4α

4α+1 with high probability. Consequently, it follows we can detect
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the alternative when
∫ T

0
Ut(f || f0) dt ≥ ε2 ≥ C ′n−

4α
4α+1 with C ′ > 0 being a sufficiently large

constant. Hence, the minimax rate (ε∗)2 ≍ n− 4α
4α+1 is achieved, notably without any extraneous

logarithmic terms. The proof of Theorem 6 implements this intuition.

Proof of Theorem 6. Fix η ∈ (0, 1). Examining the Type I error, consider that under the null hy-
pothesis of (5), we have Ut = 0 for all t > 0. Therefore, by Markov’s inequality we have

Pf0 {ϕT = 1} = Pf0

{∫ T

0

Ût dt ≥ C ′
ηn

− 4α
4α+1

}

≤ Pf0

{∣∣∣∣∣
∫ T

0

Ût dt−
∫ T

0

Ut dt

∣∣∣∣∣ ≥ C ′
ηn

− 4α
4α+1

}

≤
E
(∣∣∣∫ T

0
Ût dt−

∫ T

0
Ut dt

∣∣∣)
C ′

ηn
− 4α

4α+1

≤ C̃n−
4α

4α+1

C ′
ηn

− 4α
4α+1

≤ C̃

C ′
η

where we have applied Proposition 8, which implies there exists some universal constant C̃ > 0 such
that E

(∣∣∣∫ T

0
Ût dt−

∫ T

0
Ut dt

∣∣∣) ≤ C̃n−
4α

4α+1 since Ut = 0 under the null hypothesis. Therefore,
it follows from taking C ′

η sufficiently large depending only on η that the Type I error is bounded as
Pf0{ϕt = 1} ≤ η

2 .

Let us now examine the Type II error. Suppose f ∈ Fα with dTV(f, f0) ≥ Cn−
2α

4α+1 . Now, since
T ≳ n, it follows from the fact f and f0 are compactly supported that dKL(f ∗ φT || f0 ∗ φT ) ≲
1
T ≲ 1

n . Therefore, it follows by (6) and by Propositions 1 and 3 that

C2n−
4α

4α+1 ≤ dTV(f, f0)
2 ≲

1

n
+

∫ T

0

Ft(f || f0) dt

≲
1

n
+

∫ T

0

Ut dt+

∫ n
− 4

4α+1

0

tα−1 dt

≍ n−
4α

4α+1 +

∫ T

0

Ut dt.

Therefore, by taking C > Cη > 0 sufficiently large, it follows that we must have∫ T

0

Ut dt ≥ Cn− 4α
4α+1 .

With such a bound in hand, along with Proposition 8, we can employ very similar arguments as
those appearing in the proofs of Theorems 1, 2, and 4 to bound the Type II error by η

2 , provided
Cη > 0 is chosen sufficiently large, thus yielding the claimed result. We omit the details.

C LOWER BOUNDS

In this section, we present the minimax lower bounds which were deferred from the main text.

C.1 TESTING IN FISHER DIVERGENCE

For the problem (4) under the parameter space F given by (9), Theorem 8 establishes the minimax
lower bound 1

nt5/4
∧ 1

t for t ≲ 1.
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Theorem 8. There exists a universal constant c̃ > 0 such that the following holds. If t ≤ c̃ and
η ∈ (0, 1), then there exists cη > 0 depending only on η such that for all 0 < c < cη , we have

inf
ϕ

Pf0 {ϕ = 1}+ sup
f∈F,

Ft(f || f0)≥cε2t

Pf {ϕ = 0}

 ≥ 1− η,

with ε2t = 1
nt5/4

∧ 1
t .

Before we prove Theorem 8, we first make some high level remarks. Our argument starts by con-
structing a prior distribution on the composite alternative {f ∈ F : Ft(f || f0) ≥ cε2t}, and works to
show it is difficult to distinguish between the null hypothesis Pf0 and the resulting mixture distribu-
tion induced by our choice of prior by bounding the χ2-divergence. The details of the construction
build on recent developments on lower bound arguments for score estimation (Dou et al., 2024). Our
prior will be supported on the collection {fb}b∈{−1,1}m with

fb(µ) = f0(µ) + λ

m∑
i=1

biω

(
µ− xi
ρ

)
(25)

where λ and ρ are parameters to be chosen, {xi}mi=1 are grid points in [−1, 1] which are spaced
2ρ apart with m ≍ 1

ρ , and ω : R → R is a function supported on [−1, 1] such that ω ∈ C∞(R),∫∞
−∞ ω(x) dx = 0, and ||w||∞ ≲ 1. Finally, we make the choice ρ ≍

√
t and λ ≍ 1√

nt1/8
∧ 1.

The choice of λ and ρ are different in our setting since Dou et al. (2024) deal with Hölder smooth
densities whereas F imposes no smoothness assumptions.

For t ≳ 1, the minimax rate (12) specializes to 1
nt2 . Theorem 7 in (Dou et al., 2024) directly

establishes this lower bound, and so we omit the proof. Their use of Le Cam’s two-point method in
the score estimation problem can also be applied to our testing problem. It is not surprising that the
result from the estimation problem can be employed here, since t ≳ 1 is essentially the parametric
regime in which the limits of testing and estimation coincide.

We now dive in to proving Theorem 8. It is easy to verify that fb ∈ F provided λ is smaller than a
sufficiently small universal constant. Hence, Proposition 12 is stated without proof.

Proposition 9. If λ ≤ c where c > 0 is a sufficiently small universal constant, then
{fb}b∈{−1,1}m ⊂ F .

We use the uniform prior on {fb}b∈{−1,1}m in the lower bound argument. In terms of the data, the
Bayes testing problem can be expressed as

H0 : (µ1, ..., µn) ∼ f⊗n
0 ,

H1 : (µ1, ..., µn) ∼
1

2m

∑
b∈{−1,1}m

f⊗n
b . (26)

It needs to be checked that the Bayes problem (29) is a valid reduction of (4). In order to do so, the
separation between any fb and the null hypothesis f0 needs to be computed. Quantitative bounds
on the separation are available from Dou et al. (2024) and is one of the major contributions of their
paper.

Proposition 10 ((Dou et al., 2024)). There exist universal constantsC, c1, c2 > 0 such that if t ≤ c1,
ρ ≤ c2, and ρ = C

√
t, then

Ft(fb || f0) ≳
λ2m

ρ

for b ∈ {−1, 1}m. Here, fb is given by (25).

Proof. In (Dou et al., 2024), see (60) in the proof of Theorem 6 and the use of Proposition 4 in the
argument to derive (60). Note that the reasoning of Dou et al. (2024) applies by the correspondence
λ = ϵα with α > 0 arbitrarily small.
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Proposition 11. There exists some universal constant C > 0 such that

χ2

 1

2m

∑
b∈{−1,1}m

f⊗n
b

∣∣∣∣∣∣
∣∣∣∣∣∣ f⊗n

0

 ≤ eCn2λ4ρ2m − 1,

where fb is given by (25).

Proof. For notational ease, write fb = f0 + ψb. Note
∫ 1

−1
ψb(µ) dµ = 0. Direct calculation yields

1 + χ2

 1

2m

∑
b∈{−1,1}m

f⊗n
b

∣∣∣∣∣∣
∣∣∣∣∣∣ f⊗n

0


=

∫
[−1,1]n

(
2−m

∑
b∈{−1,1}m f⊗n

b (µ)
)2

f⊗n
0 (µ)

dµ

= 2−2m
∑

b,b′∈{−1,1}m

∫
[−1,1]n

f⊗n
b (µ)f⊗n

b′ (µ)

f⊗n
0 (µ)

dµ

= 2−2m
∑

b,b′∈{−1,1}m

n∏
i=1

∫ 1

−1

fb(µi)fb′(µi)

f0(µi)
dµi

= 2−2m
∑

b,b′∈{−1,1}m

(
1 +

∫ 1

−1

ψb(µ)ψb′(µ)

f0(µ)
dµ

)n

= 2−2m
∑

b,b′∈{−1,1}m

1 + λ2
m∑

i,j=1

bib
′
j

∫ 1

−1

ω
(

µ−xi

ρ

)
ω
(

µ−xj

ρ

)
f0(µ)

dµ

n

= 2−2m
∑

b,b′∈{−1,1}m

1 + λ2
m∑
i=1

bib
′
i

∫ 1

−1

ω
(

µ−xi

ρ

)2
f0(µ)

dµ


n

.

The final line follows from the fact that ω
(

·−xi

ρ

)
and ω

(
·−xj

ρ

)
have disjoint supports for i ̸= j.

Denote wi :=
∫ 1

−1

ω(µ−xi
ρ )

2

f0(µ)
dµ. Continuing with the calculation, consider

2−2m
∑

b,b′∈{−1,1}m

(
1 + λ2

m∑
i=1

bib
′
iwi

)n

≤ 2−2m
∑

b,b′∈{−1,1}m

exp

(
nλ2

m∑
i=1

bib
′
iwi

)

= E

(
exp

(
nλ2

m∑
i=1

Riwi

))
,

where Ri
iid∼ Rademacher(1/2). By independence, we have

E

(
exp

(
nλ2

m∑
i=1

Riwi

))
=

n∏
i=1

E
(
exp

(
nλ2Riwi

))
=

m∏
i=1

cosh
(
nλ2wi

)
≤ exp

(
n2λ4

m∑
i=1

w2
i

)
.

Since f0(µ) ≍ 1 for |µ| ≤ 1, it follows that wi ≍
∫ 1

−1
ω
(

µ−xi

ρ

)2
dµ ≍ ρ. Therefore,

exp
(
n2λ4

∑m
i=1 w

2
i

)
≤ exp

(
Cn2λ4mρ2

)
for some universal constant C > 0.

We are now in position to prove Theorem 8. Roughly speaking, λ and ρ are to be tuned subject to the
constraint λ ≤ c for a sufficiently small universal constant, and such that the χ2 divergence between
2−m

∑
b∈{−1,1}m f⊗n

b and f⊗n
0 can be bounded by an arbitrarily small constant. Proposition 10

already specifies the choice ρ ≍
√
t, and so it remains to select λ.
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Proof of Theorem 8. Fix η ∈ (0, 1). By Propositions 12 and 13, there exist some universal constants
C̃, c̃ > 0 such that for t ≤ c̃, λ ≤ c̃, and ρ = C̃

√
t, we have

Ft(fb || f0) ≳
λ2

t
(27)

for all b ∈ {−1, 1}m, where fb is given by (25). Here, we have used m ≍ 1
ρ . By Proposition 14,

there exists some universal constant C > 0 such that

χ2

 1

2m

∑
b∈{−1,1}m

f⊗n
b

∣∣∣∣∣∣
∣∣∣∣∣∣ f⊗n

0

 ≤ eCn2λ4
√
t − 1

where, again, we have used m ≍ 1
ρ and ρ ≍

√
t. Select

λ =

(
η2

Ce

)1/4(
1√
nt1/8

∧ 1

)
.

It is clear Cn2λ4
√
t ≤ η2

e < 1. From the inequality ex − 1 ≤ ex for x ∈ (0, 1), we thus have

dTV

 1

2m

∑
b∈{−1,1}m

f⊗n
b , f⊗n

0

 ≤ 1

2

√√√√√χ2

 1

2m

∑
b∈{−1,1}m

f⊗n
b

∣∣∣∣∣∣
∣∣∣∣∣∣ f⊗n

0

 ≤ 1

2

√
η2 ≤ η. (28)

With our choice of λ and (30), consider

Ft(fb || f0) ≥ κη

(
1

nt5/4
∧ 1

t

)
for some κη > 0 depending only on η. Take cη = κη and observe that {fb}b∈{−1,1}m ⊂ {f ∈ F :

Ft(f || f0) ≥ cε2t} for all c < cη . Therefore, it follows

inf
ϕ

Pf0 {ϕ = 1}+ sup
f∈F,

Ft(f || f0)≥cε2t

Pf {ϕ = 0}

 ≥ inf
ϕ

{
Pf0 {ϕ = 1}+ sup

b{−1,1}m

Pfb {ϕ = 0}

}

≥ inf
ϕ

Pf0 {ϕ = 1}+ 1

2m

∑
b∈{−1,1}m

Pfb {ϕ = 0}


= 1− dTV

 1

2m

∑
b∈{−1,1}m

f⊗n
b , f⊗n

0


≥ 1− η

where the penultimate line follows from Neyman-Pearson lemma and the final line follows from
(31). The proof is complete.

C.2 TESTING IN FISHER DIVERGENCE WITH SMOOTHNESS

Theorem 9 establishes the minimax lower bound 1
nt5/4

∧
(
n−

4(α−1)
4α+1 + tα−1

)
, showing that the

improved rate achieved by the projection estimator in Section 3.1 is optimal.
Theorem 9. There exists a universal constant c̃ > 0 such that the following holds. If t ≤ c̃ and
η ∈ (0, 1), then there exists cη > 0 depending only on η such that for all 0 < c < cη , we have

inf
ϕ

Pf0 {ϕ = 1}+ sup
f∈Fα,

Ft(f || f0)≥cε2t

Pf {ϕ = 0}

 ≥ 1− η,

with ε2t = 1
nt5/4

∧ (n− 4(α−1)
4α+1 + tα−1).
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The argument is very similar to the proof of Theorem 8. However, some modification is needed to
ensure the constructed densities live in Fα (instead of just F). Our prior will be supported on the
collection {fb}b∈{−1,1}m with

fb(µ) = f0(µ) + ϵα
m∑
i=1

biω

(
µ− xi
ρ

)
.

Here, 0 < ϵ ≤ ρ < 1 are parameters to be chosen, and the constraint ϵ ≤ ρ is important to ensure the
Hölder smoothness. However, we will also require that the first ⌊α⌋ derivatives of ω are bounded.
Our prior is the uniform distribution on {fb}b∈{−1,1}m . Finally, we make the choice ρ ≍

√
t ∨ ϵ

and ϵ ≍
(

1
n2

√
t

)1/(4α)
∧
(
n−

2
4α+11{α≥1} +

√
t1{α<1}

)
. The forms of the densities are precisely

the forms employed by Dou et al. (2024), especially more so now since we also enforce ϵ ≤ ρ as
they do. We remark that the choice of ϵ is different from the choice made in (Dou et al., 2024); this
difference is expected since the hypothesis testing problem we consider has different minimax rates
than the score estimation problem.

The proof of Theorem 9 follows the same general path as the proof of Theorem 8. First, it is easy to
verify that fb ∈ Fα provided ϵ ≤ ρ is smaller than a sufficiently small universal constant. Moreover,
note that fb satisfies the periodicity constraint since ω is compactly supported. Hence, Proposition
12 is stated without proof.
Proposition 12. If ϵ ≤ ρ ≤ c where c > 0 is a sufficiently small universal constant, then
{fb}b∈{−1,1}m ⊂ Fα.

Recall we use the uniform prior on {fb}b∈{−1,1}m , and the Bayes testing problem is

H0 : (µ1, ..., µn) ∼ f⊗n
0 ,

H1 : (µ1, ..., µn) ∼
1

2m

∑
b∈{−1,1}m

f⊗n
b . (29)

Proposition 13 is an analogue of Proposition 10, but note that the choice of ρ satisfies the constraint
ρ ≥ ϵ to ensure the Hölder condition is satisfied.
Proposition 13 ((Dou et al., 2024)). There exist universal constantsC, c1, c2 > 0 such that if t ≤ c1,
ϵ ≤ c2, and ρ = C

√
t ∨ ϵ, then

Ft(fb || f0) ≳
ϵ2αm

ρ

for b ∈ {−1, 1}m.

Proof. In (Dou et al., 2024), see (60) in the proof of Theorem 6 and the use of Proposition 4 in the
argument to derive (60).

Proposition 14. There exists some universal constant C > 0 such that

χ2

 1

2m

∑
b∈{−1,1}m

f⊗n
b

∣∣∣∣∣∣
∣∣∣∣∣∣ f⊗n

0

 ≤ eCn2ϵ4αρ2m − 1.

Proof. The proof is exactly the same as Proposition 11 with ϵα = λ.

We can now prove Theorem 9. We tune ρ and ϵ subject to the constraint ρ ≥ ϵ and ϵ ≤ c for a
sufficiently small universal constant, and such that the χ2 divergence between the null and alternative
hypotheses can be bounded by an arbitrarily small constant. Proposition 13 already specifies the
choice ρ ≍

√
t ∨ ϵ, and so it remains to select ϵ.

Proof of Theorem 9. Fix η ∈ (0, 1). By Propositions 12 and 13, there exist some universal constants
C̃, c̃ > 0 such that for t ≤ c̃, ϵ ≤ c̃, and ρ = C̃

√
t ∨ ϵ, we have

Ft(fb || f0) ≳
ϵ2α

t
∧ ϵ2(α−1) (30)
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for all b ∈ {−1, 1}m. Here, we have used m ≍ 1
ρ . By Proposition 14, there exists some universal

constant C > 0 such that

χ2

 1

2m

∑
b∈{−1,1}m

f⊗n
b

∣∣∣∣∣∣
∣∣∣∣∣∣ f⊗n

0

 ≤ eCn2ϵ4α(
√
t∨ϵ) − 1

where, again, we have used m ≍ 1
ρ and ρ ≍

√
t ∨ ϵ. Select

ϵ =

((
η2

Ce

) 1
4α
(

1

n2
√
t

) 1
4α

)
∧

((
η2

Ce

) 1
4α+1 (

n−
2

4α+1 · 1{α≥1} +
√
t · 1{α<1}

))
.

We claim Cn2ϵ4α(
√
t ∨ ϵ) ≤ η2

e < 1. To see this, consider it suffices to show both Cn2ϵ4α
√
t ≤

η2

Ce and Cn2ϵ4α+1 ≤ η2

Ce hold. The first condition is easily seen to be satisfied since ϵ ≤(
η2

Ce

) 1
4α
(

1
n2

√
t

) 1
4α

. To show the second condition, suppose α ≥ 1. Then ϵ ≤
(

η2

Ce

) 1
4α+1

n−
2

4α+1 ,
which immediately establishes the second condition holds. Suppose α < 1. Since we have both

ϵ ≤
(

η2

Ce

) 1
4α
(

1
n2

√
t

) 1
4α

and ϵ ≤
(

η2

Ce

) 1
4α+1 √

t, it follows that ϵ4α+1 ≤ η2

Ce ·
1

n2
√
t
·
(

η2

Ce

) 1
4α+1 √

t,

which delivers Cn2ϵ4α+1 ≤ η2

Ce ·
(

η2

Ce

) 1
4α+1 ≤ η2

e since we can assume C ≥ 1 without loss of
generality. Hence, we have shown the claim.

From the inequality ex − 1 ≤ ex for x ∈ (0, 1), it follows from Cn2ϵ4α(
√
t ∨ ϵ) ≤ η2

e < 1 that we
have

dTV

 1

2m

∑
b∈{−1,1}m

f⊗n
b , f⊗n

0

 ≤ 1

2

√√√√√χ2

 1

2m

∑
b∈{−1,1}m

f⊗n
b

∣∣∣∣∣∣
∣∣∣∣∣∣ f⊗n

0

 ≤ 1

2

√
η2 ≤ η. (31)

With our choice of ϵ and (30), consider

Ft(fb || f0) ≥ κη

(
1

nt5/4
∧
(
n−

4(α−1)
4α+1 + tα−1

))
for some κη > 0 depending only on η. Take cη = κη and observe that {fb}b∈{−1,1}m ⊂ {f ∈ Fα :

Ft(f || f0) ≥ cε2t} for all c < cη . Therefore, it follows

inf
ϕ

Pf0 {ϕ = 1}+ sup
f∈Fα,

Ft(f || f0)≥cε2t

Pf {ϕ = 0}

 ≥ inf
ϕ

{
Pf0 {ϕ = 1}+ sup

b{−1,1}m

Pfb {ϕ = 0}

}

≥ inf
ϕ

Pf0 {ϕ = 1}+ 1

2m

∑
b∈{−1,1}m

Pfb {ϕ = 0}


= 1− dTV

 1

2m

∑
b∈{−1,1}m

f⊗n
b , f⊗n

0


≥ 1− η

where the penultimate line follows from Neyman-Pearson lemma and the final line follows from
(31). The proof is complete.

D HIGH NOISE: DEFERRED PROOFS

This section contains the deferred proofs of Lemmas 1, 2, 3, and 4.
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D.1 PROOFS OF LEMMAS 1 AND 2

Proof of Lemma 1. We proceed by direct calculation. Consider the covariance satisfies

Cov ((φt(x− µ1)− p0(x, t))(φt(x− µ2)− p0(x, t)), (φt(y − µ1)− p0(y, t))(φt(y − µ2)− p0(y, t)))

= (E ((φt(x− µ1)− p0(x, t)) (φt(y − µ1)− p0(y, t))))
2 − (E (φt(x− µ1)− p0(x, t)))

2
(E (φt(y − µ1)− p0(y, t)))

2

=

∫ 1

−1

∫ 1

−1

(φt(x− µ)− p0(x, t))(φt(y − µ)− p0(y, t))(φt(x− ν)− p0(x, t))(φt(y − ν)− p0(y, t)) f(µ)f(ν) dµ dν

− (p(x, t)− p0(x, t))
2(p(y, t)− p0(y, t))

2.

Therefore,

∫ ∞

−∞

∫ ∞

−∞
A(x, t)A(y, t)·

Cov ((φt(x− µ1)− p0(x, t))(φt(x− µ2)− p0(x, t)), (φt(y − µ1)− p0(y, t))(φt(y − µ2)− p0(y, t))) dx dy

=

∫ 1

−1

∫ 1

−1

(∫ ∞

−∞
A(x, t)(φt(x− µ)− p0(x, t))(φt(x− ν)− p0(x, t)) dx

)2

f(µ)f(ν) dµ dν

−
∫ ∞

−∞

∫ ∞

−∞
A(x, t)A(y, t)(p(x, t)− p0(x, t))

2(p(y, t)− p0(y, t))
2 dx dy

=

∫ 1

−1

∫ 1

−1

(∫ ∞

−∞
A(x, t)(φt(x− µ)− p0(x, t))(φt(x− ν)− p0(x, t)) dx

)2

f(µ)f(ν) dµ dν −Q2
t

≲
∫ 1

−1

∫ 1

−1

(∫ ∞

−∞
A(x, t)(φt(x− µ)− p0(x, t))(φt(x− ν)− p0(x, t)) dx

)2

dµ dν

where we have used f0(µ) ≍ 1 for µ ∈ [−1, 1]. We can split into three terms,

∫ 1

−1

∫ 1

−1

(∫ ∞

−∞
A(x, t)(φt(x− µ)− p0(x, t))(φt(x− ν)− p0(x, t)) dx

)2

dµ dν

≲
∫ 1

−1

∫ 1

−1

(∫ ∞

−∞
A(x, t)φt(x− µ)φt(x− ν) dx

)2

dµ dν (32)

+

∫ 1

−1

(∫ ∞

−∞
A(x, t)φt(x− µ)p0(x, t) dx

)2

dµ (33)

+

(∫ ∞

−∞
A(x, t)p0(x, t)

2 dx

)2

. (34)

The terms (33) and (34) can be handled similarly. Consider that by Jensen’s inequality, we

have the bound
∫ 1

−1

(∫∞
−∞A(x, t)φt(x− µ)p0(x, t) dx

)2
dµ ≤

∫ 1

−1

∫∞
−∞A(x, t)2p0(x, t)

2φt(x−
µ) dx dµ ≍

∫∞
−∞A(x, t)2p0(x, t)

3 dx since f0(µ) ≍ 1 for µ ∈ [−1, 1]. Sim-

ilarly, looking at (34), we have by Jensen’s inequality
(∫∞

−∞A(x, t)p0(x, t)
2 dx

)2
=(∫∞

−∞A(x, t)p0(x, t) · p0(x, t) dx
)2

≤
∫∞
−∞A(x, t)2p0(x, t)

3 dx, and so (33) and (34) both ad-
mit the same bound. From here, observe

∫ ∞

−∞
A(x, t)2p0(x, t)

3 dx =

∫ ∞

−∞

|∂xp0(x, t)|4

p0(x, t)3
dx.
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Consider by Holder’s inequality with the choice p = 4 and q = 4
3 , we have

∫ ∞

−∞

|∂xp0(x, t)|4

p0(x, t)3
dx =

∫ ∞

−∞

∣∣∣∫ 1

−1
x−µ
t φt(x− µ)f0(µ) dµ

∣∣∣4
p0(x, t)3

dx

≤
∫ ∞

−∞

(∫ 1

−1
|x−µ|4

t4 φt(x− µ) dµ
)(∫ 1

−1
φt(x− µ) dµ

)3
p0(x, t)3

≍
∫ 1

−1

∫ ∞

−∞

|x− µ|4

t4
φt(x− µ) dµ dx

≲
1

t2
.

Therefore, we have shown that both (33) and (34) are of order at most 1
t2 .

It remains to bound (32). Let us write hν(x) = A(x, t)φt(x− ν). Then

(32) =

∫ 1

−1

∫ 1

−1

(∫ ∞

−∞
hν(x)φt(x− µ) dx

)2

dµ dν

=

∫ 1

−1

∫ 1

−1

|(hν ∗ φt)(µ)|2 dµ dν

≤
∫ 1

−1

∫ 1

−1

|hν(µ)|2 dµ dν

=

∫ 1

−1

∫ 1

−1

|A(µ, t)φt(µ− ν)|2 dµ dν

=

∫ 1

−1

∫ 1

−1

|s0(µ, t)|4φt(µ− ν)2

p0(µ, t)2
dµ dν.

Here, we have used that ||g ∗ φt||2L2(R) ≤ ||g||2L2(R) for any function g : R → R. Continuing
with the calculation, consider p0(µ, t) ≍ 1 for µ ∈ [−1, 1]. Furthermore, we have φt(µ − ν)2 ≲
1

t1/2
φt(µ − ν). Additionally, from our earlier calculation, it is straightforward to see |s0(µ, t)|4 ≍

|∂xp0(µ, t)|4 ≲ 1
t2 . Hence, we have∫ 1

−1

∫ 1

−1

|s0(µ, t)|4φt(µ− ν)2

p0(µ, t)2
dµ dν ≲

∫ 1

−1

∫ 1

−1

1

t5/2
φt(µ− ν) dµ dν ≲

1

t5/2
.

Putting together this bound with the bound 1
t2 for (33) and (34) shown earlier, it follows that∫ 1

−1

∫ 1

−1

(∫ ∞

−∞
A(x, t)(φt(x− µ)− p0(x, t))(φt(x− ν)− p0(x, t)) dx

)2

dµ dν ≲
1

t5/2
,

completing the proof.

Proof of Lemma 2. The covariance satisfies

Cov((φt(x− µ1)− p0(x, t))(φt(x− µ2)− p0(x, t)), (φt(y − µ1)− p0(x, t))(φt(y − µ3)− p0(y, t)))

= E((φt(x− µ1)− p0(x, t))(φt(y − µ1)− p0(y, t)))E(φt(x− µ1)− p0(x, t))E(φt(y − µ1)− p0(y, t))

− (E(φt(x− µ1)− p0(x, t)))
2(E(φt(y − µ1)− p0(y, t)))

2

= E((φt(x− µ1)− p0(x, t))(φt(y − µ1)− p0(y, t)))(p(x, t)− p0(x, t))(p(y, t)− p0(y, t))

− (p(x, t)− p0(x, t))
2(p(y, t)− p0(y, t))

2.
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Here, we have used that µi and µj for i ̸= j are independent and identically distributed to obtain the
second line. With this in hand, it follows that∫ ∞

−∞

∫ ∞

−∞
A(x, t)A(y, t)·

Cov((φt(x− µ1)− p0(x, t))(φt(x− µ2)− p0(x, t)), (φt(y − µ1)− p0(x, t))(φt(y − µ3)− p0(x, t))) dx dy

=

∫ ∞

−∞

∫ ∞

−∞
A(x, t)A(y, t)·

E((φt(x− µ1)− p0(x, t))(φt(y − µ1)− p0(y, t)))(p(x, t)− p0(x, t))(p(y, t)− p0(y, t)) dx dy

−
∫ ∞

−∞

∫ ∞

−∞
A(x, t)A(y, t)(p(x, t)− p0(x, t))

2(p(y, t)− p0(y, t))
2 dx dy

=

∫ 1

−1

(∫ ∞

−∞
A(x, t)(φt(x− µ)− p0(x, t))(p(x, t)− p0(x, t)) dx

)2

f(µ) dµ−Q2
t

≤
∫ 1

−1

(∫ ∞

−∞
|A(x, t)||φt(x− µ)− p0(x, t)|2 dx

)(∫ ∞

−∞
|A(x, t)||p(x, t)− p0(x, t)|2 dx

)
f(µ) dµ

= Qt

∫ 1

−1

∫ ∞

−∞
A(x, t)|φt(x− µ)− p0(x, t)|2f(µ) dµ dx

≲ Qt

(∫ ∞

−∞
A(x, t)

∫ 1

−1

φt(x− µ)2 f(µ) dµ dx+

∫ ∞

−∞
A(x, t)p0(x, t)

2 dx

)
.

Here, we have applied Cauchy-Schwarz to obtain the third-to-last line in the previous display. Note,
it is important A is nonnegative so that |A| = A, yielding Qt =

∫∞
−∞A(x, t)|p(x, t)− p0(x, t)|2 dx

and delivering the penultimate line. By definition of A, we have
∫∞
−∞A(x, t)p0(x, t)

2 dx =∫∞
−∞ |s0(x, t)|2p0(x, t) dx ≲ 1

t . Likewise, observe from Lemma 7 that∫ ∞

−∞
A(x, t)

∫ 1

−1

φt(x− µ)2f(µ) dµ dx

≲
∫ ∞

−∞
A(x, t)

(
1√
t
1{|x|≤1} +

1

t
e−

(|x|−1)2

t 1{|x|>1}

)
dx

=
1√
t

∫
|x|≤1

|∂xp0(x, t)|2 dx+
1

t

∫
|x|>1

(
|∂xp0(x, t)|2

p0(x, t)3

)
e−

(|x|−1)2

t dx

≲
1

t
+

1

t

∫
|x|>1

(
|x| − 1√

t
∨ 1

)3

· 1√
t
e−

(|x|−1)2

2t dx

≲
1

t
.

Here, we have used integration by parts and Assumption 1 to

conclude that |∂xp0(x, t)|2 =
∣∣∣∫ 1

−1
x−µ
t φt(x− µ)f0(µ) dµ

∣∣∣2 =∣∣∣f0(−1)φt(x+ 1)− f0(1)φt(x− 1) +
∫ 1

−1
f ′0(µ)φt(x− µ) dµ

∣∣∣2 ≲ φt(x+ 1)2 + φt(x− 1)2 + 1

since ||f ′0||∞ ≲ 1. This gives us
∫
|x|≤1

|∂xp0(x, t)|2 dx ≲ 1√
t
, which we used to obtain the

penultmiate line. Hence, we have shown the bound Qt

t as claimed.

D.2 PROOFS OF LEMMAS 3 AND 4

Proof of Lemma 3. The proof broadly follows the same structure as the proof of Lemma 1. Consider
the covariance satisfies

Cov ((φ′
t(x− µ1)− ∂xp0(x, t))(φ

′
t(x− µ2)− ∂xp0(x, t)), (φ

′
t(y − µ1)− ∂xp0(y, t))(φ

′
t(y − µ2)− ∂xp0(y, t)))

= (E ((φ′
t(x− µ1)− ∂xp0(x, t))(φ

′
t(y − µ1)− ∂xp0(y, t))))

2 − (∂xp(x, t)− ∂xp0(x, t))
2(∂xp(y, t)− ∂xp0(y, t))

2.
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Therefore,∫ ∞

−∞

∫ ∞

−∞
B(x, t)B(y, t)·

Cov ((φ′
t(x− µ1)− ∂xp0(x, t))(φ

′
t(x− µ2)− ∂xp0(x, t)), (φ

′
t(y − µ1)− ∂xp0(y, t))(φ

′
t(y − µ2)− ∂xp0(y, t))) dx dy

=

∫ ∞

−∞

∫ ∞

−∞

∫ 1

−1

∫ 1

−1

B(x, t)B(y, t)(φ′
t(x− µ)− ∂xp0(x, t))(φ

′
t(y − µ)− ∂xp0(y, t))·

(φ′
t(x− ν)− ∂xp0(x, t))(φ

′
t(y − ν)− ∂xp0(y, t))f(µ) f(ν) dµ dν dx dy

−
∫ ∞

−∞

∫ ∞

−∞
B(x, t)(∂xp(x, t)− ∂xp0(x, t))

2B(y, t)(∂xp(y, t)− ∂xp0(y, t))
2 dx dy

=

∫ 1

−1

∫ 1

−1

(∫ ∞

−∞
B(x, t)(φ′

t(x− µ)− ∂xp0(x, t))(φ
′
t(x− ν)− ∂xp0(x, t)) dx

)2

f(µ)f(ν) dµ dν −Q′2
t

≲
∫ 1

−1

∫ 1

−1

(∫ ∞

−∞
B(x, t)φ′

t(x− µ)φ′
t(x− ν) dx

)2

dµ dν +

∫ 1

−1

(∫ ∞

−∞
B(x, t)φ′

t(x− µ)∂xp0(x, t) dx

)2

dµ

+

(∫ ∞

−∞
B(x, t)(∂xp0(x, t))

2 dx

)2

.

Looking at the third term and recalling B(x, t) = 1
p0(x,t)

, it is clear(∫∞
−∞B(x, t)(∂xp0(x, t))

2 dx
)2

=
(∫∞

−∞ s0(x, t)
2p0(x, t) dx

)2
≲ 1

t2 . Similarly, the sec-
ond term satisfies∫ 1

−1

(∫ ∞

−∞
B(x, t)φ′

t(x− µ)∂xp0(x, t) dx

)2

dµ

=

∫ 1

−1

(∫ ∞

−∞
B(x, t)

−(x− µ)

t
φt(x− µ)∂xp0(x, t) dx

)2

dµ

≤
∫ 1

−1

(∫ ∞

−∞

(x− µ)2

t2
φt(x− µ) dx

)(∫ ∞

−∞
B(x, t)2(∂xp0(x, t))

2φt(x− µ) dx

)
dµ

=
1

t

∫ 1

−1

∫ ∞

−∞
s0(x, t)

2φt(x− µ) dx dµ

≲
1

t2

since
∫ 1

−1

∫∞
−∞ s0(x, t)

2φt(x − µ) dx dµ =
∫∞
−∞ s0(x, t)

2p0(x, t) dx dµ ≲ 1
t . It remains to ana-

lyze the first term. For notational ease, let us denote hν(x) = B(x, t)φ′
t(x − ν). Observe hν is

differentiable everywhere. Since φ′
t(x− µ) = −φ′

t(µ− x), it follows

∫ 1

−1

∫ 1

−1

(∫ ∞

−∞
B(x, t)φ′

t(x− µ)φ′
t(x− ν) dx

)2

dµ dν

=

∫ 1

−1

∫ 1

−1

|(φ′
t ∗ hν)(µ)|2 dµ dν

=

∫ 1

−1

∫ 1

−1

|(φt ∗ h′ν)(µ)|2 dµ dν

≤
∫ 1

−1

∫ 1

−1

|h′ν(µ)|2 dµ dν

=

∫ 1

−1

∫ 1

−1

|φ′′
t (µ− ν)p0(µ, t)− φ′

t(µ− ν)∂xp0(µ, t)|2

p0(µ, t)4
dµ dν.
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We have used B(x, t) = 1
p0(x,t)

here. By Lemma 7, we have p0(µ, t) ≍ 1 for |µ| ≤ 1. Therefore,∫ 1

−1

∫ 1

−1

|φ′′
t (µ− ν)p0(µ, t)− φ′

t(µ− ν)∂xp0(µ, t)|2

p0(µ, t)4
dµ dν

≲
∫ 1

−1

∫ 1

−1

|φ′′
t (µ− ν)|2 dµ dν +

∫ 1

−1

∫ 1

−1

(φ′
t(µ− ν)∂xp0(µ, t))

2 dµ dν

=

∫ 1

−1

∫ 1

−1

∣∣∣∣−1

t
φt(µ− ν) +

(µ− ν)2

t2
φt(µ− ν)

∣∣∣∣2 dµ dν + ∫ 1

−1

∫ 1

−1

(µ− ν)2

t2
φt(µ− ν)2|∂xp0(µ, t)|2 dµ dν

≲
∫ 1

−1

∫ 1

−1

1

t2
φt(µ− ν)2 +

(µ− ν)4

t4
φt(µ− ν)2 dµ dν +

∫ 1

−1

∫ 1

−1

(µ− ν)2

t3
φt(µ− ν)2 dµ dν

≲
∫ 1

−1

∫ 1

−1

1

t5/2
φt(µ− ν) +

(µ− ν)4

t9/2
φt(µ− ν) dµ dν +

1

t5/2

∫ 1

−1

∫ 1

−1

(µ− ν)2

t
φt(µ− ν) dµ dν

≲
1

t5/2
.

In the above calculation, we have used |∂xp0(µ, t)| =
∣∣∣∫ 1

−1
µ−ζ
t φt(µ− ζ)f0(ζ) dζ

∣∣∣ ≲ 1√
t

and

φt(µ− ν)2 ≲ 1√
t
φt(µ− ν). Hence, we have shown the bound

Cov ((φ′
t(x− µ1)− ∂xp0(x, t))(φ

′
t(x− µ2)− ∂xp0(x, t)), (φ

′
t(y − µ1)− ∂xp0(y, t))(φ

′
t(y − µ2)− ∂xp0(y, t)))

= (E ((φ′
t(x− µ1)− ∂xp0(x, t))(φ

′
t(y − µ1)− ∂xp0(y, t))))

2 − (∂xp(x, t)− ∂xp0(x, t))
2(∂xp(y, t)− ∂xp0(y, t))

2

≲
1

t2
+

1

t5/2

≍ 1

t5/2

since t < 1. The proof is complete.

Proof of Lemma 4. The proof follows the same cadence as the proof of Lemma 2. The covariance
satisfies
Cov ((φ′

t(x− µ1)− ∂xp0(x, t))(φ
′
t(x− µ2)− ∂xp0(x, t)), (φt(y − µ1)− p0(y, t))(φ

′
t(y − µ3)− ∂xp0(y, t)))

= E ((φ′
t(x− µ1)− ∂xp0(x, t))(φ

′
t(y − µ1)− ∂xp0(y, t)))E (φ′

t(x− µ1)− ∂xp0(x, t))E(φ′
t(y − µ1)− ∂xp0(y, t))

− (E (φ′
t(x− µ1)− ∂xp0(x, t)))

2
(E (φ′

t(y − µ1)− ∂xp0(y, t)))
2

= E ((φ′
t(x− µ1)− ∂xp0(x, t))(φ

′
t(y − µ1)− ∂xp0(y, t))) (∂xp(x, t)− ∂xp0(x, t))(∂xp(y, t)− ∂xp0(y, t))

− (∂xp(x, t)− ∂xp0(x, t))
2(∂xp(y, t)− ∂xp0(y, t))

2.

Consider∫ ∞

−∞

∫ ∞

−∞
B(x, t)B(y, t)·

Cov ((φ′
t(x− µ1)− ∂xp0(x, t))(φ

′
t(x− µ2)− ∂xp0(x, t)), (φ

′
t(y − µ1)− ∂xp0(y, t))(φ

′
t(y − µ3)− ∂xp0(y, t))) dx dy

=

∫ ∞

−∞

∫ ∞

−∞
B(x, t)B(y, t)·

E ((φ′
t(x− µ1)− ∂xp0(x, t))(φ

′
t(y − µ1)− ∂xp0(y, t))) (∂xp(x, t)− ∂xp0(x, t))(∂xp(y, t)− ∂xp0(y, t)) dx dy

−
∫ ∞

−∞

∫ ∞

−∞
B(x, t)B(y, t)(∂xp(x, t)− ∂xp0(x, t))

2(∂xp(y, t)− ∂xp0(y, t))
2 dx dy

=

∫ 1

−1

(∫ ∞

−∞
B(x, t)(φ′

t(x− µ)− ∂xp0(x, t))(∂xp(x, t)− ∂xp0(x, t)) dx

)2

f(µ) dµ−Q′2
t

≲
∫ 1

−1

(∫ ∞

−∞
B(x, t)φ′

t(x− µ)(∂xp(x, t)− ∂xp0(x, t)) dx

)2

f(µ) dµ

+

(∫ ∞

−∞
B(x, t)∂xp0(x, t)(∂xp(x, t)− ∂xp0(x, t)) dx

)2

.
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Recalling B(x, t) = 1
p0(x,t)

, Cauchy-Schwarz yields∫ 1

−1

(∫ ∞

−∞
B(x, t)φ′

t(x− µ)(∂xp(x, t)− ∂xp0(x, t)) dx

)2

f(µ) dµ

=

∫ 1

−1

(∫ ∞

−∞
−x− µ

t
φt(x− µ)B(x, t)(∂xp(x, t)− ∂xp0(x, t)) dx

)2

f(µ) dµ

≤
∫ 1

−1

(∫ ∞

−∞

(x− µ)2

t2
φt(x− µ) dx

)(∫ ∞

−∞

(∂xp(x, t)− ∂xp0(x, t))
2

p0(x, t)2
φt(x− µ) dx

)
f(µ) dµ

=
1

t

∫ 1

−1

∫ ∞

−∞

(∂xp(x, t)− ∂xp0(x, t))
2

p0(x, t)2
φt(x− µ)f(µ) dµ dx

=
1

t

∫ ∞

−∞

(∂xp(x, t)− ∂xp0(x, t))
2

p0(x, t)2
p(x, t) dx

≲
1

t

∫ ∞

−∞
B(x, t)(∂xp(x, t)− ∂xp0(x, t))

2 dx

=
Q′

t

t
.

Here, we have used p(x, t) ≍ p0(x, t) to obtain the penultimate line. Likewise, observe Cauchy-
Schwarz gives (∫ ∞

−∞
B(x, t)∂xp0(x, t)(∂xp(x, t)− ∂xp0(x, t)) dx

)2

=

(∫ ∞

−∞

(∂xp(x, t)− ∂xp0(x, t))

p0(x, t)1/2
· ∂xp0(x, t)
p0(x, t)1/2

dx

)2

≤
(∫ ∞

−∞

(∂xp(x, t)− ∂xp0(x, t))
2

p0(x, t)
dx

)(∫ ∞

−∞

(∂xp0(x, t))
2

p0(x, t)
dx

)
= Q′

t

∫ ∞

−∞
s0(x, t)

2p0(x, t) dx

≲
Q′

t

t
.

Therefore, we have obtained a bound of order at most Q′
t

t . The proof is complete.

E LOW NOISE: DEFERRED PROOFS

This section contains the deferred proofs of Proposition 3 as well as Lemmas 5 and 6.

E.1 PROOF OF PROPOSITION 3

Proof of Proposition 3. LetC denote a sufficiently large universal constant, and define three regions

D1 :=
{
x ∈ R : |x| < 1−

√
Ct log(1/t)

}
,

D2 :=
{
x ∈ R : 1−

√
Ct log(1/t) ≤ |x| ≤ 1 + C

√
t
}
,

D3 :=
{
x ∈ R : |x| > 1 + C

√
t
}
.

Then Ft(f || f0) = I1 + I2 + I3 where Ij =
∫
x∈Dj

|s(x, t) − s0(x, t)|2 p0(x, t) dx for j = 1, 2, 3.
Each term will be bounded separately.

Bounding I1: For x ∈ D1, we have p0(x, t) ≍ 1 by Lemma 7. Moreover, ∂xp0(x, t) =

f0(−1)φt(x + 1) − f(1)φt(x − 1) +
∫ 1

−1
f ′0(µ)φt(x − µ) dµ. Since |x| − 1 >

√
Ct log(1/t)
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and ||f ′0||∞ ≲ 1, it is immediately clear |∂xp0(x, t)|2 ≲ 1. Therefore,

I1 =

∫
x∈D1

|∂xp(x, t)p0(x, t)− ∂xp0(x, t)p(x, t)|2

p0(x, t)2p(x, t)2
p0(x, t) dx

≍
∫
x∈D1

|∂xp(x, t)p0(x, t)− ∂xp0(x, t)p(x, t)|2 dx

≲
∫
x∈D1

|p0(x, t)|2|∂xp(x, t)− ∂xp0(x, t)|2 dx+

∫
x∈D1

|∂xp0(x, t)|2|p(x, t)− p0(x, t)|2 dx

≲
∫ ∞

−∞
|∂xp(x, t)− ∂xp0(x, t)|2 dx+

∫ ∞

−∞
|p(x, t)− p0(x, t)|2 dx

≲ Q′ +Q (35)

where we have used p(x, t) ≍ p0(x, t). We have also used ||h ∗ φt|| ≲ ||h|| for any function
h : R → R.

Bounding I2: For x ∈ D2, we still have p0(x, t) ≍ 1. Then I2 ≲
∫
x∈D2

|∂xp0(x, t)p(x, t) −
∂xp(x, t)p0(x, t)|2 dx. Consider

∂xp(x, t) = f(−1)φt(x+ 1)− f(1)φt(x− 1) +

∫ 1

−1

f ′(µ)φt(x− µ) dµ,

∂xp0(x, t) = f0(−1)φt(x+ 1)− f0(1)φt(x− 1) +

∫ 1

−1

f ′0(µ)φt(x− µ) dµ.

Therefore,

∂xp0(x, t)p(x, t) = f0(−1)φt(x+ 1)p(x, t)− f0(1)φt(x− 1)p(x, t) + p(x, t)

∫ 1

−1

f ′0(µ)φt(x− µ) dµ,

∂xp(x, t)p0(x, t) = f(−1)φt(x+ 1)p0(x, t)− f0(1)φt(x− 1)p0(x, t) + p0(x, t)

∫ 1

−1

f ′(µ)φt(x− µ) dµ,

and so it follows∫
x∈D2

|∂xp0(x, t)p(x, t)− ∂xp(x, t)p0(x, t)|2 dx

≲
∫
x∈D2

|φt(x+ 1)|2|f0(−1)p(x, t)− f(−1)p0(x, t)|2 + |φt(x− 1)|2|f0(1)p(x, t)− f(1)p0(x, t)|2 dx

+

∫
x∈D2

(
p(x, t)

∫ 1

−1

φt(x− µ)f ′0(µ) dµ− p0(x, t)

∫ 1

−1

φt(x− µ)f ′(µ) dµ

)2

dx.

(36)

Let us look at the second term in (36). Observe∫
x∈D2

(
p(x, t)

∫ 1

−1

φt(x− µ)f ′0(µ) dµ− p0(x, t)

∫ 1

−1

φt(x− µ)f ′(µ) dµ

)2

dx

≲
∫
x∈D2

(∫ 1

−1

φt(x− µ)f ′0(µ) dµ

)2

(p(x, t)− p0(x, t))
2 dx

+

∫
x∈D2

p0(x, t)
2

(∫ 1

−1

φt(x− µ)(f ′0(µ)− f ′(µ)) dµ

)2

dx

≲
∫
x∈D2

(p(x, t)− p0(x, t))
2 dx+

∫
x∈D2

(∫ 1

−1

φt(x− µ)(f ′0(µ)− f ′(µ)) dµ

)2

dx

≲
∫ ∞

−∞
|p(x, t)− p0(x, t)|2 dx+

∫ ∞

−∞
|((f − f0)

′) ∗ φt(x)|2 dx

≲ Q+Q′.
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Here, we have used α ≥ 1 to assert
(∫ 1

−1
φt(x− µ)f ′0(µ) dµ

)2
≲ 1. Let us now look at the first

term in (36). Without loss of generality, take nonnegative x ∈ D2, namely x ∈ D2 ∩R+. The argu-
ment for negative x is entirely analogous. It is straightforward to see |φt(x+ 1)|2|f0(−1)p(x, t)−
f(−1)p0(x, t)|2 ≲ 1

t e
− 1

t . Looking at the remaining term, consider that f(1) = f0(1) since f − f0
is α-Hölder on R and f, f0 are only supported on [−1, 1]. Thus, it follows

|f(1)p0(x, t)− f0(1)p(x, t)|2

=

∣∣∣∣f(1)∫ 1

−1

φt(x− µ)f0(µ) dµ− f0(1)

∫ 1

−1

φt(x− µ)f(µ) dµ

∣∣∣∣2
= |f0(1)|2

∣∣∣∣∫ 1

−1

φt(x− µ)(f0 − f)(µ) dµ

∣∣∣∣2

= |f0(1)|2
∣∣∣∣∣∣
⌊α⌋−1∑
k=0

(f0 − f)(k)(1)

k!

∫ 1

−1

(µ− 1)kφt(x− µ) dµ+
1

⌊α⌋!

∫ 1

−1

(f0 − f)(⌊α⌋)(ξ)(µ− 1)⌊α⌋φt(x− µ) dµ

∣∣∣∣∣∣
2

where ξ is some point between µ and 1. Furthermore, consider (f0 − f)(k)(1) = 0 for all 1 ≤ k ≤
⌊α⌋ since f − f0 ∈ Hα(R). Therefore,

|f0(1)|2
∣∣∣∣∣∣
⌊α⌋−1∑
k=0

(f0 − f)(k)(1)

k!

∫ 1

−1

(µ− 1)kφt(x− µ) dµ+
1

⌊α⌋!

∫ 1

−1

(f0 − f)(⌊α⌋)(ξ)(µ− 1)⌊α⌋φt(x− µ) dµ

∣∣∣∣∣∣
2

= |f0(1)|2
∣∣∣∣ 1

⌊α⌋!

∫ 1

−1

((f0 − f)(⌊α⌋)(ξ)− (f0 − f)(⌊α⌋)(1))(µ− 1)⌊α⌋φt(x− µ) dµ

∣∣∣∣2
≲
∫ 1

−1

∣∣∣((f0 − f)(⌊α⌋)(ξ)− (f0 − f)(⌊α⌋)(1))
∣∣∣2 |µ− 1|2⌊α⌋φt(x− µ) dµ

≲
∫ 1

−1

|µ− 1|2(α−⌊α⌋)|µ− 1|2⌊α⌋φt(x− µ) dµ

≲ (t log(1/t))α.

Here, we have used the Hölder property of f − f0 and that nonnegative x ∈ D2 implies |x − 1| ≤√
Ct log(1/t). Therefore, we have shown

∫
x∈D2∩R+

|φt(x+ 1)|2|f0(−1)p(x, t)− f(−1)p0(x, t)|2 dx+ |φt(x− 1)|2|f0(1)p(x, t)− f(1)p0(x, t)|2 dx

≲
∫
x∈D2∩R+

1

t
e−

1
t + (t log(1/t))α dx

≲

√
log(1/t)

t
e−

1
t + (t log(1/t))α−1/2

≲ tα−1.

The argument for x ∈ D2 ∩R− is entirely analogous, so we have shown the bound tα−1 for the first
term in (36). To summarize, we have thus proved

I2 ≲ Q+Q′ + tα−1. (37)
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Bounding I3: When x ∈ D3, we no longer have p0(x, t) ≍ 1. However, since p(x, t) ≍ p0(x, t),
we have

I3 =

∫
x∈D3

|∂xp(x, t)p0(x, t)− ∂xp0(x, t)p(x, t)|2

p(x, t)2p0(x, t)2
p0(x, t) dx

≍
∫
x∈D3

|∂xp(x, t)p0(x, t)− ∂xp0(x, t)p(x, t)|2

p0(x, t)3
dx

≲
∫
x∈D3

|φt(x+ 1)|2

p0(x, t)3
|f0(−1)p(x, t)− f(−1)p0(x, t)|2 +

|φt(x− 1)|2

p0(x, t)3
|f0(1)p(x, t)− f(1)p0(x, t)|2 dx

(38)

+

∫
x∈D3

1

p0(x, t)3

(
p(x, t)

∫ 1

−1

φt(x− µ)f ′0(µ) dµ− p0(x, t)

∫ 1

−1

φt(x− µ)f ′(µ) dµ

)2

dx

(39)
where we have followed the analysis of I2 to bound the numerator. Let us look at (38) first. Take x ∈
D3, and without loss of generality take x to be nonnegative, i.e. x ∈ D3 ∩R+. It is straightforward
to see that |φt(x+1)|2

p0(x,t)3
|f0(−1)p(x, t)− f(−1)p0(x, t)|2 ≲ |φt(x+1)|2

p0(x,t)
≲ e−

c
t p0(x, t) where c > 0 is

a small universal constant. Therefore,
∫
x∈D3∩R+

|φt(x+1)|2
p0(x,t)3

|f0(−1)p(x, t)− f(−1)p0(x, t)|2 dx ≲

e−c/t. Looking at the other term in (38), we can follow the same calculation in the analysis of I2 to
get

|f(1)p0(x, t)− f0(1)p(x, t)|2 ≲

∣∣∣∣∫ 1

−1

((f0 − f)(⌊α⌋)(ξ)− (f0 − f)(⌊α⌋)(1))(µ− 1)⌊α⌋φt(x− µ) dµ

∣∣∣∣2
≲

∣∣∣∣∫ 1

−1

|µ− 1|αφt(x− µ) dµ

∣∣∣∣2
≤ e−

3(x−1)2

4t

∣∣∣∣∫ 1

−1

|µ− 1|α · 1√
2πt

e−
(x−µ)2

8t dµ

∣∣∣∣2
≲ tαe−

3(x−1)2

4t .

Therefore, by Lemma 7, we have∫
x∈D3∩R+

|φt(x− 1)|2

p0(x, t)3
|f0(1)p(x, t)− f(1)p0(x, t)|2 dx

≲ tα
∫
x∈D3∩R+

1

2πt
e−

(x−1)2

t

(
1 ∨ x− 1√

t

)3

e
3(x−1)2

2t e−
3(x−1)2

4t dx

≲ tα−1/2

∫
x∈D3∩R+

(
1 ∨ x− 1√

t

)3
1√
2πt

e−
(x−1)2

4t dx

≲ tα−1/2.

Hence, we have shown (38) ≲ e−c/t + tα−1/2 ≲ tα−1.

It remains to bound (39). Observe∫
x∈D3

1

p0(x, t)3

(
p(x, t)

∫ 1

−1

φt(x− µ)f ′0(µ) dµ− p0(x, t)

∫ 1

−1

φt(x− µ)f ′(µ) dµ

)2

dx

≲
∫
x∈D3

(∫ 1

−1
φt(x− µ)f ′0(µ) dµ

)2
p0(x, t)3

(p(x, t)− p0(x, t))
2 dx

+

∫
x∈D3

1

p0(x, t)

(∫ 1

−1

φt(x− µ)(f − f0)
′(µ) dµ

)2

dx

≲
∫
x∈D3

1

p0(x, t)
(p(x, t)− p0(x, t))

2 dx+

∫
x∈D3

1

p0(x, t)

(∫ 1

−1

φt(x− µ)(f − f0)
′(µ) dµ

)2

dx.
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Here, we have used ||f ′0||∞ ≲ 1 since α ≥ 1. To proceed with the argument, let us write g = f − f0
and note p(x, t)− p0(x, t) = (g ∗ φt)(x). Observe we have

|(g ∗ φt)(x)| =
∣∣∣∣∫ 1

−1

g(µ)φt(x− µ) dµ

∣∣∣∣
=

∣∣∣∣∣∣
⌊α⌋−1∑
k=0

g(k)(1)

k!

∫ 1

−1

(µ− 1)kφt(x− µ) dµ+
1

⌊α⌋!

∫ 1

−1

g(⌊α⌋)(ξ)(µ− 1)⌊α⌋φt(x− µ) dµ

∣∣∣∣∣∣
=

∣∣∣∣ 1

⌊α⌋!

∫ 1

−1

(g(⌊α⌋)(ξ)− g⌊α⌋(1))(µ− 1)⌊α⌋φt(x− µ) dµ

∣∣∣∣
≲
∫ 1

−1

|µ− 1|α−⌊α⌋ · |µ− 1|⌊α⌋φt(x− µ) dµ

=

∫ 1

−1

|µ− 1|αφt(x− µ) dµ.

Here, ξ is some point between µ and 1. We have used g(k)(1) = 0 for all 1 ≤ k ≤ ⌊α⌋. For x ∈ D3,
we have |x| > 1 + C

√
t. Then we have∫ 1

−1

|µ− 1|αφt(x− µ) dµ ≤ e−
3(|x|−1)2

8t

∫ 1

−1

|µ− 1|α 1√
2πt

e−
(x−µ)2

8t dµ ≲ tα/2e−
3(|x|−1)2

8t .

Therefore,∫
x∈D3

1

p0(x, t)
(p(x, t)− p0(x, t))

2 dx ≲ tα
∫
x∈D3

e−
3(|x|−1)2

4t

p0(x, t)
dx

≲ tα
∫
x∈D3

(
1 ∨ |x| − 1√

t

)
e−

(|x|−1)2

4t dx

≲ tα
∫
|x|>1+C

√
t

e−
(|x|−1)2

8t dx

≍ tα.

A similar argument shows∫
x∈D3

1

p0(x, t)

(∫ 1

−1

φt(x− µ)(f − f0)
′(µ) dµ

)2

dx ≲ tα−1.

Therefore, we have shown (39) ≲ tα + tα−1 ≲ tα−1. Putting together our bounds, we have shown
I3 ≲ tα−1, which completes the proof.

E.2 PROOFS OF LEMMAS 5 AND 6

Proof of Lemma 5. Since E
(
|Q̂K −Q|2

)
= |E(Q̂K) − Q|2 + Var(Q̂K), it suffices to bound the

bias and variance separately. Writing the expansion f =
∑∞

k=1 θkψk and noting Q =
∑∞

k=1(θk −
θ0,k)

2, observe E(Q̂K) =
∑K

k=1(θk − θ0,k)
2 and so the squared bias satisfies

|E(Q̂K)−Q|2 ≤

∣∣∣∣∣
∞∑

k=K+1

(θk − θ0,k)
2

∣∣∣∣∣
2

=

∣∣∣∣∣
∞∑

k=K+1

k−2α · k2α(θk − θ0,k)
2

∣∣∣∣∣
2

≲ K−4α

since the Fourier coefficients of f − f0 satisfy
∑∞

k=1 k
2α(θk − θ0,k)

2 ≲ 1. Moving to the variance,
consider

Var(Q̂K) =
1(
n
2

) ∑
i̸=j

∑
r ̸=s

Cov

(
K∑

k=1

(ψk(µi)− θ0,k)(ψk(µj)− θ0,k),

K∑
k=1

(ψk(µr)− θ0,k)(ψk(µs)− θ0,k)

)
.
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If {i, j} ∩ {r, s} = ∅, the covariance vanishes due to independence. There are O(n2) choices of
indices such that i ̸= j, r ̸= s, and |{i, j}∩{r, s}| = 2. Similarly, there areO(n3) choices for which
i ̸= j, r ̸= s, and |{i, j} ∩ {r, s}| = 1. Let N1 and N2 denote the respective counts of choices.
Hence, by the identical distribution of the µi’s, it follows

Var
(
Q̂K

)
=

N1(
n
2

)2Var
(

K∑
k=1

(ψk(µ1)− θ0,k)(ψk(µ2)− θ0,k)

)

+
N2(
n
2

)2Cov
(

K∑
k=1

(ψk(µ1)− θ0,k)(ψk(µ2)− θ0,k),

K∑
k=1

(ψk(µ1)− θ0,k)(ψk(µ3)− θ0,k)

)
.

(40)
Each term of (40) will be bounded separately.

First term in (40): By direct calculation, we have

Var

(
K∑

k=1

(ψk(µ1)− θ0,k)(ψk(µ2)− θ0,k)

)

=

K∑
k=1

K∑
k′=1

Cov((ψk(µ1)− θ0,k)(ψk(µ2)− θ0,k), (ψk′(µ1)− θ0,k′)(ψk′(µ2)− θ0,k′))

=

K∑
k=1

K∑
k′=1

(E ((ψk(µ1)− θ0,k)(ψk′(µ1)− θ0,k′)))
2 − (θk − θ0,k)

2(θk′ − θ0,k′)2

≤
K∑

k=1

K∑
k′=1

(∫ 1

−1

(ψk(µ)− θ0,k)(ψk′(µ)− θ0,k′) f(µ) dµ

)2

=

K∑
k=1

K∑
k′=1

∫ 1

−1

∫ 1

−1

(ψk(µ)− θ0,k)(ψk′(µ)− θ0,k′)(ψk(ν)− θ0,k)(ψk′(ν)− θ0,k′)f(µ)f(ν) dµ dν

=

∫ 1

−1

∫ 1

−1

(
K∑

k=1

(ψk(µ)− θ0,k)(ψk(ν)− θ0,k)

)2

f(µ)f(ν) dµ dν

≲
∫ 1

−1

∫ 1

−1

(
K∑

k=1

(ψk(µ)− θ0,k)(ψk(ν)− θ0,k)

)2

dµ dν

=

K∑
k=1

K∑
k′=1

∫ 1

−1

∫ 1

−1

(ψk(µ)− θ0,k)(ψk′(µ)− θ0,k′)(ψk(ν)− θ0,k)(ψk′(ν)− θ0,k′) dµ dν

=

K∑
k=1

K∑
k′=1

(∫ 1

−1

(ψk(µ)− θ0,k)(ψk′(µ)− θ0,k′) dµ

)2

=

K∑
k=1

K∑
k′=1

(∫ 1

−1

ψk(µ)ψk′(µ) dµ− θ0,k′

∫ 1

−1

ψk(µ) dµ− θ0,k

∫ 1

−1

ψk′(µ) dµ+ 2θ0,kθ0,k′

)2

≲
K∑

k=1

K∑
k′=1

(∫ 1

−1

ψk(µ)ψk′(µ) dµ

)2

+ θ20,k′

(∫ 1

−1

ψk(µ) dµ

)2

+ θ20,k

(∫ 1

−1

ψk′(µ) dµ

)2

+ 4θ20,kθ
2
0,k′

≲ K +

K∑
k=1

θ20,k +

(
K∑

k=1

θ20,k

)2

≲ K +

K∑
k=1

k2αθ20,k +

(
K∑

k=1

k2αθ20,k

)2

≲ K.
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Here, we have used
∫ 1

−1
ψ2
k(µ) dµ = 1, ψ1 ≡ 1√

2
, and {ψk}∞k=1 is an orthonormal basis to conclude∫ 1

−1
ψk(µ) dµ = 0 for k ≥ 2. The final line follows from

∑∞
k=1 θ

2
0,kk

2α ≲ 1. Therefore, the first
term in (40) is of order at most Var(Q̂K) ≲ K

n2 .

Second term in (40): Again, direct calculation gives

Cov

(
K∑

k=1

(ψk(µ1)− θ0,k)(ψk(µ2)− θ0,k),

K∑
k=1

(ψk(µ1)− θ0,k)(ψk(µ3)− θ0,k)

)

=

K∑
k=1

K∑
k′=1

Cov((ψk(µ1)− θ0,k)(ψk(µ2)− θ0,k), (ψk′(µ1)− θ0,k′)(ψk′(µ3)− θ0,k′))

=

K∑
k=1

K∑
k′=1

E ((ψk(µ1)− θ0,k)(ψk′(µ1)− θ0,k′)) (θk − θ0,k)(θk′ − θ0,k′)− (θk − θ0,k)
2(θk′ − θ0,k′)2

≤
K∑

k=1

K∑
k′=1

(∫ 1

−1

(ψk(µ)− θ0,k)(ψk′(µ)− θ0,k′)f(µ) dµ

)
(θk − θ0,k)(θk′ − θ0,k′)

=

∫ 1

−1

(
K∑

k=1

(ψk(µ)− θ0,k)(θk − θ0,k)

)2

f(µ) dµ

≲
∫ 1

−1

(
K∑

k=1

(ψk(µ)− θ0,k)(θk − θ0,k)

)2

dµ

=

K∑
k=1

K∑
k′=1

(∫ 1

−1

(ψk(µ)− θ0,k)(ψk′(µ)− θ0,k′) dµ

)
(θk − θ0,k)(θk′ − θ0,k′)

=

K∑
k=1

K∑
k′=1

(
1{k=k′} − θ0,k

∫ 1

−1

ψk′(µ) dµ− θ0,k′

∫ 1

−1

ψk(µ) dµ+ θ0,kθ0,k′

)
(θk − θ0,k)(θk′ − θ0,k′)

= (θk − θ0,k)
2 + 2

(∫ 1

−1

ψ1(µ) dµ

)
(θ1 − θ0,1)

K∑
k=1

θ0,k(θk − θ0,k) +

K∑
k=1

K∑
k′=1

θ0,kθ0,k′(θk − θ0,k)(θk′ − θ0,k′)

≲
K∑

k=1

(θk − θ0,k)
2 + 0 +

(
K∑

k=1

θ0,k(θk − θ0,k)

)2

≲
K∑

k=1

(θk − θ0,k)
2 +

(
K∑

k=1

θ20,k

)(
K∑

k=1

(θk − θ0,k)
2

)
≲ Q.

Here, we have used
∫ 1

−1
ψ2
k(µ) dµ = 1, ψ1 ≡ 1√

2
, and {ψk}∞k=1 is an orthonormal basis to conclude∫ 1

−1
ψk(µ) dµ = 0 for k ≥ 2. We have also used that θ1 − θ0,1 = 1√

2

∫
f − f0 = 0 since both f and

f0 integrate to one. We have also used Cauchy-Schwarz to obtain the penultimate line. Finally, we
used

∑K
k=1 θ

2
0,k ≲ 1 which is obtained by noting

∑∞
k=1 θ

2
0,kk

2α ≲ 1. Hence, we have shown the
second term in (40) is of order at most Q

n . The proof is complete.

Proof of Lemma 6. By the bias-variance decomposition, it suffices to bound the bias and variance
separately. Note Q′ =

∑∞
k=2(θ̃k − θ̃0,k)

2. The squared bias satisfies

|E(Q̂′
K)−Q′|2

=

∣∣∣∣∣
∞∑

k=K+1

(θ̃k − θ̃0,k)
2

∣∣∣∣∣
2

=

∣∣∣∣∣
∞∑

k=K+1

k2(θk − θ0,k)
2

∣∣∣∣∣
2

≲ K−2(α−1)

∣∣∣∣∣
∞∑

k=K+1

k2α(θk − θ0,k)
2

∣∣∣∣∣
2

≲ K−2(α−1).
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Here, we have used the property that the Fourier coefficients of f − f0 live in Θα(L) defined in
Section 3.1, and so

∑∞
k=1 k

2α(θk − θ0,k)
2 ≲ 1.

Moving to the variance, consider

Var(Q̂K) =
1(
n
2

) ∑
i̸=j

∑
r ̸=s

Cov

(
K∑

k=1

Ak(µi)Ak(µj),

K∑
k=1

Ak(µr)Ak(µs)

)
.

If {i, j} ∩ {r, s} = ∅, the covariance vanishes due to independence. There are O(n2) choices of
indices such that i ̸= j, r ̸= s, and |{i, j}∩{r, s}| = 2. Similarly, there areO(n3) choices for which
i ̸= j, r ̸= s, and |{i, j} ∩ {r, s}| = 1. Let N1 and N2 denote the respective counts of choices.
Hence, by the identical distribution of the µi’s, it follows

Var
(
Q̂K

)
=

N1(
n
2

)2Var
(

K∑
k=1

Ak(µ1)Ak(µ2)

)
+

N2(
n
2

)2Cov
(

K∑
k=1

Ak(µ1)Ak(µ2),

K∑
k=1

Ak(µ1)Ak(µ3)

)
.

(41)

Each term of (41) will be bounded separately.

First term in (41): By direct calculation, we have

Var

(
K∑

k=1

Ak(µ1)Ak(µ2)

)

=

K∑
k=1

K∑
k′=1

Cov(Ak(µ1)Ak(µ2), Ak′(µ1)Ak′(µ2))

=

K∑
k=1

K∑
k′=1

(E (Ak(µ1)Ak′(µ1)))
2 − (E(Ak(µ1)))

2(E(Ak′(µ1)))
2

≤
K∑

k=1

K∑
k′=1

(∫ 1

−1

Ak(µ)Ak′(µ) f(µ) dµ

)2

=

K∑
k=1

K∑
k′=1

∫ 1

−1

∫ 1

−1

Ak(µ)Ak′(µ)Ak(ν)Ak′(ν)f(µ)f(ν) dµ dν

=

∫ 1

−1

∫ 1

−1

(
K∑

k=1

Ak(µ)Ak(ν)

)2

f(µ)f(ν) dµ dν

≲
∫ 1

−1

∫ 1

−1

(
K∑

k=1

Ak(µ)Ak(ν)

)2

dµ dν

=

K∑
k=1

K∑
k′=1

∫ 1

−1

∫ 1

−1

Ak(µ)Ak′(µ)Ak(ν)Ak′(ν) dµ dν

=

K∑
k=1

K∑
k′=1

(∫ 1

−1

Ak(µ)Ak′(µ) dµ

)2

.

Consider (∫ 1

−1

Ak(µ)Ak′(µ) dµ

)2

=

(∫ 1

−1

(
(πkψ2k+1(µ)− θ̃0,2k) + (−πkψ2k(µ)− θ̃0,2k+1)

)
(
(πk′ψ2k′+1(µ)− θ̃0,2k′) + (−πk′ψ2k′(µ)− θ̃0,2k′+1)

)
dµ
)2
.
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Therefore,

K∑
k=1

K∑
k′=1

(∫ 1

−1

Ak(µ)Ak′(µ) dµ

)2

≲
K∑

k=1

K∑
k′=1

(∫ 1

−1

(πkψ2k+1(µ)− θ̃0,2k)(πk
′ψ2k′+1(µ)− θ̃0,2k′) dµ

)2

+

(∫ 1

−1

(−πkψ2k(µ)− θ̃0,2k+1)(−πk′ψ2k′(µ)− θ̃0,2k′+1) dµ

)2

By a similar calculation as that in the proof of Lemma 6, it follows

K∑
k=1

K∑
k′=1

(∫ 1

−1

(πkψ2k+1(µ)− θ̃0,2k)(πk
′ψ2k′+1(µ)− θ̃0,2k′) dµ

)2

+

(∫ 1

−1

(−πkψ2k(µ)− θ̃0,2k+1)(−πk′ψ2k′(µ)− θ̃0,2k′+1) dµ

)2

≲
K∑

k=1

K∑
k′=1

(
kk′
∫ 1

−1

ψk(µ)ψk′(µ) dµ

)2

+

K∑
k=1

k2θ̃20,k +

(
K∑

k=1

θ̃20,k

)2

=

K∑
k=1

k4 +K2
K∑

k=1

k2(α−1)θ̃20,2k +

(
K∑

k=1

k2(α−1)θ̃20,k

)2

≲ K5 +K2 + 1

≍ K5

Therefore, the first term in (40) is of order at most Var(Q̂K) ≲ K5

n2 .

Second term in (41): A very similar calculation to that found in the proof of Lemma 5 (namely the
bound for the second term in (40)) with the obvious modifications will show that the second term in
(41) is of order at most Q′

n . We omit the details for brevity.

For notational ease, let us write ρk = E(Ak(µ1)). Direct calculation gives

Cov

(
K∑

k=1

Ak(µ1)Ak(µ2),
K∑

k=1

Ak(µ1)Ak(µ3)

)
=

K∑
k=1

K∑
k′=1

Cov(Ak(µ1)Ak(µ2), Ak′(µ1)Ak′(µ3))

=

K∑
k=1

K∑
k′=1

E (Ak(µ1)Ak′(µ1)) ρkρk′ − ρ2kρ
2
k′

≤
K∑

k=1

K∑
k′=1

(∫ 1

−1

Ak(µ)Ak′(µ)f(µ) dµ

)
ρkρk′

=

∫ 1

−1

(
K∑

k=1

Ak(µ)ρk

)2

f(µ) dµ

≲
∫ 1

−1

(
K∑

k=1

Ak(µ)ρk

)2

dµ

=

K∑
k=1

K∑
k′=1

(∫ 1

−1

Ak(µ)Ak′(µ) dµ

)
ρkρk′ .
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Following our earlier calculation bounding the first term in (40), we have

K∑
k=1

K∑
k′=1

(∫ 1

−1

Ak(µ)Ak′(µ) dµ

)
ρkρk′

≲
K∑

k=1

K∑
k′=1

∣∣∣∣∫ 1

−1

Ak(µ)Ak′(µ) dµ

∣∣∣∣ |ρkρk′ |

≲
2K+1∑
k=1

2K+1∑
k′=1

(
kk′1{k=k′} + k′|θ̃0,k|

∣∣∣∣∫ 1

−1

ψk′(µ) dµ

∣∣∣∣+ k|θ̃0,k′ |
∣∣∣∣∫ 1

−1

ψk(µ) dµ

∣∣∣∣+ |θ0,kθ0,k′ |
)
|θ̃k − θ̃0,k||θ̃k′ − θ̃0,k′ |

≲
2K+1∑
k=1

k2|θ̃k − θ̃0,k|2 + 0 +

2K+1∑
k=1

2K+1∑
k′=1

|θ̃0,kθ̃0,k′ ||θ̃k − θ̃0,k||θ̃k′ − θ̃0,k′ |

≲ K2
2K+1∑
k=1

(θ̃k − θ̃0,k)
2 +

(
2K+1∑
k=1

θ̃20,k

)(
2K+1∑
k=1

(θ̃k − θ̃0,k)
2

)
≲ K2Q′.

Hence, we have shown the second term in (41) is of order at most K2Q′

n . The proof is complete.

F AUXILIARY TOOLS

Lemma 7. If t < 1, then

p(x, t) ≍

{
1 if |x| ≤ 1,(
1 ∧

√
t

|x|−1

)
e−

(|x|−1)2

2t if |x| > 1.

Proof of Lemma 7. Consider that we have p(x, t) =
∫ 1

−1
f(µ)φt(x− µ) dµ ≍

∫ 1

−1
φt(x− µ) dµ =∫ 1

−1
1√
2πt

e−
|x−µ|2

2t dµ. Here, we have used cd ≤ f ≤ Cd on its support. Consider∫ 1

−1

1√
2πt

e−
|x−µ|2

2t dµ = P {|N(x, t)| ≤ 1} .

If |x| ≤ 1, then clearly P {|N(x, t)| ≤ 1} ≍ 1, and so the claim is proved for this case. If |x| > 1,
consider we can use Lemma 132 from (Dou et al., 2024).

Lemma 8 (Lemma 14 (Dou et al., 2024)). If f ∈ Fα and p(x, t) = (f ∗ φt)(x), then the score
function s(x, t) = ∂x log p(x, t) satisfies

|s(x, t)|2 ≤ 2

t
log

(
1

(2πt)1/2 · p(x, t)

)
for all x ∈ R and t > 0.

2Note the statement of Lemma 13 has a typo, but its proof yields the expression stated in Lemma 7.
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