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ABSTRACT

Diffusion models have demonstrated powerful generative capabilities, but their
potential in statistical hypothesis testing remains underexplored. The score-based
paradigm of diffusion formulates the task as the problem of detecting positive
Fisher divergence between the noised null distribution and the noised, unknown
data distribution. Diffusion models were initially proposed for generation since
noising simplifies sampling, but they pose a conceptual puzzle in the context of hy-
pothesis testing: the null and alternative hypotheses become harder to distinguish
as the noise level increases. Therefore, aside from testing in Fisher divergence,
diffusion models may face serious limitations in addressing fundamental hypoth-
esis testing problems, such as testing in total variation distance. In this paper, we
set out to rigorously characterize the statistical limits of diffusion’s score-based
approach to testing. We derive the minimax rate of testing in Fisher divergence
against a broad alternative hypothesis consisting of densities which are compactly
supported and assumed only to be bounded below by a constant. Notably, we cap-
ture the sharp scaling with respect to the the noise level. We then turn to testing
in total variation, and since it is folklore that the problem is trivial without any
regularity conditions, we study Holder-smooth alternatives. As established in the
literature, the Fisher divergence can be aggregated over noise levels to bound the
total variation distance; hence, separation in total variation implies separation in
aggregated Fisher divergence. After sharpening our Fisher divergence testing re-
sults to incorporate the available smoothness, we show that an aggregation of test
statistics furnishes a test which achieves the sharp minimax testing rate in total
variation. Hence, diffusion models are optimal for hypothesis testing.

1 INTRODUCTION

Recent advances in generative modeling have demonstrated the remarkable ability of diffusion mod-
els to capture complex probability distributions with high fidelity. These models operate on a simple
idea. Clean training data are incrementally corrupted through a noising mechanism with a gradu-
ally increasing noise scale (often a diffusion process (Sohl-Dickstein et al., 2015; Ho et al., 2020)).
At each step, a denoiser is learned to recover the current, noisy image from its noisier counterpart
obtained at the next step. After the completion of all forward steps, the fitted denoiser has been
learned to progressively denoise at each step; it is deployed on a fresh draw of pure noise to ulti-
mately convert it into a new sample which is drawn approximately from the original, ground truth
data-generating distribution. Central to this process is the estimation of the score function of the
forward process. Through score matching (Hyvirinen, 2005; Vincent, 2011; Song & Ermon, 2019),
diffusion models learn to approximate the true distribution of the data, enabling the generation of
realistic samples from an unknown target distribution.

Besides estimation, hypothesis testing is an equally fundamental problem in statistical inference.
Diffusion models are especially relevant for hypothesis testing from two angles. First, diffusion
models are particularly flexible and successfully recover fine-grained details necessary for high-
quality generation. This flexibility suggests the capacity to detect rare, subtle, and weak signals; big
gains in power might be had by employing diffusion-based testing methodology. In fact, an emerging
body of work has empirically shown better performance compared to testing methodology based
on earlier generative frameworks (such as generative adversarial networks (GANs) and variational
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autoencoders (VAEs)) (Wyatt et al., 2022; Bandara et al., 2022; Pinaya et al., 2022; Wolleb et al.,
2022).

Second, with the widespread use of generative models, there are settings where the null hypothesis
itself is some pre-trained diffusion model. For example, consider the extremely topical problem of
detecting whether a given dataset of images has been generated from some specific Al model; this
can be formulated as a hypothesis testing problem with that AT model specifying the null hypoth-
esis. The problem is exceptionally important in the post-hoc regime where the model provider has
not implemented any kind of reliable watermarking scheme. The same hypothesis testing formula-
tion can address the problem of detecting distribution shift. A model provider may wish to update
their specific diffusion model if the target distribution of natural, authentic images has shifted (Heng
et al., 2024; Graham et al., 2023). Generative models have also been increasingly deployed in scien-
tific applications (Angelopoulos et al., 2023; Wang et al., 2023). Generative models are especially
attractive in domains where gold-standard experimental data is cost-prohibitive to collect.

Research efforts in diffusion models have largely been concentrated in practical, engineering aspects
for the purposes of generation; essentially, the estimation problem has received most of the attention.
The hypothesis testing context has been much less studied, and so even basic theoretical questions
remain open. In this work, we address questions concerning statistical optimality in the context of
applying diffusion models for hypothesis testing. Our focus is exclusively on the statistical aspect,
and we leave computational and algorithmic considerations for future work.

1.1 BACKGROUND ON DIFFUSION MODELS

Before formulating the testing problem and the diffusion-based approach we are going to study, we
first review some background on diffusion models. Consider a probability density function f on R
representing the unknown target distribution from which we wish to produce a sample!. Diffusion
models approach this generation problem by considering a forward process and a reverse process,
which are solutions to some specified stochastic differential equations (SDEs). Consider a generic
SDE which implicitly defines the forward process { X; },> as its solution,

dX, = g(X,, t)dt + o(t)dW,, Xo~ f (1)

where g : Rx [0, 00) — Ris the drift, o : [0, 00) — [0, 00) is the diffusion coefficient, and {W; };>¢
is the standard Wiener process in R. The practitioner chooses g and o as part of their model design.
For a fixed T' > 0, the reverse process is defined as Y; := Xp_; for 0 < ¢ < T'. Under some mild
conditions, it is known (Anderson, 1982) that {Y;s}ogth solves the following SDE,

dY; = (—g(Yt,T— t) + (T — t)s(Yt,T—t)) dt+o(T —t)dW;, Yo~p(,T) (2

where p(-,t) denotes the density of the marginal distribution of X, and the function s(x,t) :=
O: log p(x, t) is referred to as the score function of the density p(-, t).

These probabilistic facts have algorithmic utility. For various choices of g and o in (1), the distri-
bution p(-,T") is close to some known distribution for large T even though the initialization f is not
known. For example, if g(z,t) = —z and o(t) = /2, then p(-, T) is close to N (0, 1) (this is re-
ferred to as the variance preserving SDE (Song et al., 2021)). Therefore, the practitioner can plug in
an estimator of the score $(, t) (constructed from available training data drawn from f) into (2) and
solve the reverse SDE by using a known initialization rather than the unknown p(-,7") to obtain an

approximate reverse process {Y; }o<i<7. Since the true reverse process satisfies Y ~ f, it is hoped

that Y7 has a distribution which approximates f well. The sources of error are the approximation of
the initialization and of the score function. The former should be negligible since p(-, T) is close to
a known distribution by design. The real challenge is to estimate the score function well (Oko et al.,
2023; Dou et al., 2024; Zhang et al., 2024). For a detailed review of diffusion models and recent
advances, we refer the reader to (Chen et al., 2024; Tang & Zhao, 2024; Yang et al., 2023).

'To maintain focus on the mathematical essence, we will work in the one-dimension setting so as not to get
distracted by tedious, notational burdens in the multidimensional setting. In principle, the paper’s results can
be straightforwardly generalized without conceptual difficulty to the setting where the dimension is fixed and
greater than one.
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1.2 HYPOTHESIS TESTING

The diffusion model framework focuses on the score function as the central statistical object. For
the generation problem, estimation of the score function at each noise level ¢ is the chief task. For
hypothesis testing, detecting deviations with respect to the Fisher divergence at each level ¢t becomes
the task at hand. To elaborate, consider independent and identically distributed data p1, ..., py, ~ f
from an unknown distribution f. Further consider testing the null hypothesis Hy : f = fq, where fy
is some known, reference distribution. The score-based paradigm of diffusion models casts the null
hypothesis equivalently as Hy : F;(f || fo) = 0. Here, ¢t > 0 and F; denotes the Fisher divergence

oo

Fo(f || fo) = / [5(2,£) — so(z, 1) po (e, 1) de, 3

— 00
where po(z,t) is the law of X, in the forward process {X;};>o with initialization f; in (1) and
so(x,t) = 0y logpo(z,t) is its score function. The formulation in terms of the Fisher divergence
immediately delineates the alternative hypothesis; the goal is to detect deviations with respect to the
Fisher divergence. Concretely, for each ¢ > 0 we have

Ho :F(f | fo) =0,
Hy :Fy(f|| fo) > eiand f € F.
Here, F denotes a class of signals to be detected.

4)

When speaking about the diffusion model approach to hypothesis testing, we are referring to the
conceptual approach of viewing the testing problem (4) as the target problem to solve. While there
may be many possible methodological strategies for addressing (4), understanding the fundamental
hypothesis testing capability of diffusion models requires characterizing the statistical limits of the
problem (4), which so far has been lacking in the literature. In this paper, we take a minimax
perspective on statistical limits. Namely, we denote €} as the minimax testing rate (also referred to
as the minimax separation rate) for (4); a rigorous definition is given in Appendix A. The following
fundamental question immediately arises.

Question 1. For any t > 0, what is the minimax testing rate for (4)?

An answer to Question 1 sharply describes the testing capability of diffusion models by precisely
characterizing the magnitude of deviations in the alternative hypothesis (4) which are necessary and
sufficient for successful detection. To probe diffusion model’s capacity for hypothesis testing in the
most general setting, we will take F to be very broad in the first part of the paper, namely densities
which are only assumed to be supported on [—1, 1] and bounded below by a constant. Later on, we
will also investigate whether the diffusion approach has the capability to exploit smoothness, which
is particularly important for small ¢; we will consider a class of Holder-smooth signals.

The diffusion approach to hypothesis testing poses an interesting statistical puzzle. From the es-
timation perspective, the score function s(z,t) becomes easier to estimate as ¢ increases since the
target density p(z, t) looks more and more like noise; estimation of pure noise is a trivial problem.
This progressive simplification of the estimation problem is the basic premise of diffusion from the
generation vantage point. However, it is not immediately clear this is helpful in the testing problem.
As t gets larger and larger, both the noised null po(x, t) and the noised data density p(x, t) look like
noise, which is to say both distributions become more and more indistinguishable. In other words,
noising seems to make the testing problem harder! It appears a progressively larger and larger signal
is needed to distinguish the two.

This statistical puzzle might also suggest that the diffusion model approach may face serious limi-
tations in addressing foundational hypothesis testing problems. Concretely, consider testing in total
variation distance,

Hy: f=Jo,

Hy :dpv (f, fo) >cand f € F.
The problem (5) is clearly of fundamental interest and is formulated from first principles without
any reference to a particular approach. The minimax rate £* for (5) can be defined analogously to

(1). The problem (5) is related to (4) by the following well-known bound (Oko et al., 2023; Chen
et al., 2023),

&)

T
drv(f, fo)? SdKL(f*QOTHfO*(PT)""A Fi(f ] fo) dt, (6)
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For large T the first term is negligible, so let us ignore it for now. The bound (6) implies that a
separation drv (f, fo) > € in the alternative hypothesis implies that the signals in (4) are large after
aggregating over t, namely we have ¢2 < fOT F.(f1| fo) dt. An essential question is whether the
diffusion model approach can optimally solve (5) by aggregating the problems (4) over .

Question 2. [f(4) can be optimally tested at every noise level t, can the problem (5) be tested at the
minimax rate by aggregating the evidence across t?

The testing problem (5) has been extensively studied in the nonparametric statistics literature (e.g.
see (Ingster & Suslina, 2003; Giné & Nickl, 2016) and references therein). For our first choice of
F which imposes essentially no assumptions, it is well known the problem (5) is trivial (i.e. testing
is impossible even with constant order ). Constraints are necessary for (5) to be meaningful. For
various classical choices of F (e.g. which impose smoothness assumptions), minimax rates have
long been established in the literature and are well understood. For our later choice of Holder-
smooth F, the point of Question 2 is to determine whether the diffusion approach (i.e. the approach
which targets (4)) can yield an optimal test for (5) and match the known minimax rate.

1.3 MAIN CONTRIBUTIONS

To focus on core ideas, we focus on the diffusion model associated to the variance exploding SDE

(Song et al., 2021) in (1) given by g = 0 and o = 1. Namely, the forward process {X; };>¢ solves
dXy = dW,, Xy~ f. 7

Note the marginal distribution of X; has density p(x,t) = (f * ¢¢)(x) where * denotes convolution

and @ () = ﬁe‘ﬁ is the density of N(0,¢). The corresponding reverse process {Y; }o<i<r

solves (2), which is given by

dY, = s(Y;, T — t)dt + dW,, Yo ~ p(-,T). @®)
Recall Y ~ f and s(z,t) = 9, logp(x,t) = a;i’m(i’)t).

In the hypothesis testing problem (4), we will look at a very broad class of alternative densities with
the goal of understanding diffusion’s general capacity for testing. Define

F = {f :R — R:supp(f) C [—1,1],/OO f(p)du =1, and cqg < f(p) < Cy forall |u| < 1}
- ©)

where Cy, cq > 0 are some universal constants. Moving to (5), it is well known that the choice of
F yields triviality. Moreover, it is interesting to ask whether the diffusion approach to testing can
exploit available smoothness in the problem. With this motivation, we will also consider the setting
of Holder smoothness. For any (possibly unbounded) interval A C R, define the Holder space

(o)
Mol D)= { iR R [ ) du=1oupp(s) € A, e sup 791 < L. and
—00 0<j<la] pea

4Dy = fAD @) < Ll = p/1*7 1) forall ' € A}

We will focus on the setting where L is a small universal constant, and we will suppress it from
notation. We also treat o > 0 as a fixed constant and all explicit or implicit universal constants may
depend on it. The class of signals f in the alternative will be taken to be densities supported on
[—1, 1], a-Hélder on their supports, and bounded below by a constant. Furthermore, we will assume
the difference f — f; is a-Holder on R. Define the parameter space

Foll) :={f e F:feHa([-1,1]; L) and f — fo € Ha(R; L)} . (10)

Throughout the paper, both in studying F and F,,, we will make the following assumption about fj.

Assumption 1. Assume fo € Hov1([—1,1]; L), fo(=1) = fo(1), and cq < fo(u) < Cy for all
w € [—1,1] where Cg4, cq > 0 are some universal constants.

Besides being bounded below by a constant (a standard assumption (Tsybakov, 2009)), Assumption
1 essentially assumes f; has at least one bounded derivative and is periodic. From an information-
theoretic point of view, this assumption is actually without loss of generality, since it is assumed
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fo is known. By simply transforming the data by the inverse c.d.f. transform, the transformed
data follow the uniform distribution on [—1, 1] (after an additional transformation to map [0, 1] to
[—1, 1]). In other words, one can take fy = %]lﬂ u|<1} Without loss of generality, which clearly lives
in H,v1(L) and is periodic. This reduction to the uniform case is standard (Giné & Nickl, 2016;
Ingster, 1994; 2000). The periodicity assumption will be used as we will analyze estimators based
on Fourier series projection ideas.

Our first main contribution is an answer to Question 1, namely that the minimax testing rate for (4)
with the choice F given by (9) is
1 1 1
* 2
E(F) X —SAN—F7 AN -. 11

(P =T N EE g (b
The minimax rate (11) turns out to decrease in ¢, meaning that detection actually becomes easier as
the noise level increases, which apparently contradicts the intuition that f * o; and fj * ¢, ought to
get progressively more indistinguishable. Though appealing, this intuition neglects the fact that the
noised densities become smoother as ¢ increases. Consequently, larger ¢ has some statistical benefit
since more regularity is available to exploit in the target F¢(f || fo). It turns out these two competing
effects balance out in such a way to yield (11).

A natural idea for testing (4) is to furnish an estimator E of the Fisher divergence F; and use
it as a test statistic, rejecting the null hypothesis when it exceeds some threshold. This strategy
is employed in the very high noise regime ¢ = 1. However, in the regime ¢t < 1, it turns out
constructing an estimator of F; which is optimal (especially having error with sharp dependence on
t) is challenging. Instead, suppose we had an upper bound F;(f || fo) < U:(f || fo) which satisfies
U.(f 1| fo) = 0 under the null hypothesis f = fy. Then, under the alternative hypothesis, we have
€2 < U(f || fo), which is to say the alternative hypothesis is also separated away from the null in

terms of Uy, not just F;. Then it is an appealing idea to construct an estimator ﬁt for the proxy Uy
and use it as a test statistic, especially if it is easier to estimate than F;. Of course, the difficulty
should not be greater than the target rate ¢} (F)? given by (11), and typically this means U, should
be a fairly close upper bound. Our methodology implements this strategy, and different choices of
the upper bound are made in different regimes of ¢.

Our second contribution is an affirmative answer to Question 2 with the choice of F,, given by (10)
in the alternative hypothesis. The bound (6) suggests an appealing aggregation idea for furnishing
a test statistic. The Kullback-Leibler divergence term is negligible as it is of order at most % and
T will be chosen large (say, T' =< n), so let us ignore it. Therefore, under the alternative hypothesis

drv(f, fo)? > €2, it follows e < [ Fe(f || fo)dt < [ Us(f || fo) dt. Intuitively, the right-hand
side can be estimated at rate fOT - A =iz A 1 dt by the aggregated statistic fOT U, dt.

However, it quickly becomes clear that the estimators [[AJt developed for F instead of F, will not

—4
be optimal. Specifically, the bound fOT # A ﬁ A %dt is problematic since fon %dt = 00.
The error bound for small ¢ is not good enough, and one might hope to do better by exploiting
the smoothness in F,, rather than using estimators developed for . Such blow-up issues with (6)
frequently occur in the diffusion literature, and the very popular early stopping is used to circumvent
this problem. However, early stopping introduces logarithmic factors which may be suboptimal; for
example, Dou et al. (2024) found early stopping is not at all necessary to achieve the optimal density

estimation rate.

The testing rate can be improved by leveraging the smoothness, and we show that when ¢ < ¢ for a
sufficiently small constant ¢, the minimax testing rate of (4) with F,, is given by

(=

1
8:(.7:(1)2 = —57d A (n_ ot —|-to‘_1) . (12)

4(a—1) 4(a—1) .
Importantly, when o > 1, we have n~ 4o+ + t*~1 = n~ 471 which does not blow up when
integrating! Likewise, when o < 1, this regime specializes to t*~!, which is also integrable over
small ¢t. Consequently, we are able to show that the aggregation statistic is able to achieve the

known, minimax testing rate for (5), which is (%)% < n~ 75T and was proved by Ingster & Suslina
(2003). Hence, we can conclude diffusion models are optimal for hypothesis testing in the context
of Holder-smooth signals.
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2 TESTING IN FISHER DIVERGENCE

In this section, we address the upper bound aspect Question 1, namely the question of testing (4)
with the parameter space F given by (9). We defer the minimax lower bound to Appendix C.

As mentioned in Section 1.3, in the very high noise regime ¢ 2 1 an optimal test can be constructed
by plugging in an optimal score estimator to estimate IF;. As described earlier, a different idea is
employed in the ¢ < 1 regime. We furnish a population quantity which upper bounds F; and is also
equal to zero under the null hypothesis. Estimators for this proxy quantity are constructed and used
as test statistics for testing (4).

2.1 VERY HIGH NOISE REGIME

In the very high noise regime ¢ 2 1, an optimal test is constructed via estimating the Fisher diver-
gence Fy(f || fo) by an estimator which plugs in a score estimator. The optimal score estimator from
Dou et al. (2024) is used, which we reproduce here. The estimator is motivated by the following rep-

resentation of the score s(z,t) = %. Note that the partial derivatives are given by 0,p(x,t) =

o [1y prla—p) f(w) dp = [1) =252 0u (x—p) f() dp = —%p(a, )+ 3 [} poi(—p) f () dp.
Therefore, we have O,p(z,t) = —%Fp(z,t) + %f_ll ppr(x — p)f(n) dp.  This representation

gives us a way to estimate Jyp(z,t) from p(z,t). Let e(z,t) = ¢q jil or(z — p)dp and
note p(z,t) > e(x,t) for all f € F,. Define p(z,t) = e(z,t) V 37" oz — p;) and

Dup(z,t) = —2p(x,t) + & >or; piee(x — ;). The score estimator of Dou et al. (2024) is

nt

§(z,t) := a“ip, (:8) The score estimator § is plugged in to obtain an estimator of the Fisher diver-
’ p(,t)

gence, F; := [*_|3(x,t) — so(z,t)[? po(a, t) da.

We use the test
~ C’
on :ZH{EZ n;} (13)

where C7 is a constant to be tuned to achieve a testing risk of at most 1.

Theorem 1. Ift > 1 and 1 > 0, then there exist C,, C; > 0 depending only on 0 such that for all
C > Cy, we have

Py, {pr =1} + sup Pr{¢: =0} <,
feF

Fo(f 1l fo) 2063
where €2 = # and ¢y is given by (13).

The proof of Theorem 1 is deferred to Appendix B.1. The argument is straightforward, and relies
on the error bound of the plugged-in score estimator § provided by Dou et al. (2024).

2.2 HIGH NOISE REGIME

Outside the regime ¢ 2 1, the proxy strategy described in Section 1.3 and at the beginning of Section
2 is employed. Proposition 1 states the proxy we will target in the high noise regime n=% < ¢ < 1.
Its proof is deferred to Appendix B.2.

Proposition 1. We have F:(f || fo) < Qr + Q) where

|0, D2

a-/ m%mmt)—m(x,tn?du (14)
) . 2
—0o po(l‘,t)
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Define the estimators

Q= 21/ @mxt<%@—w—m@mNmew—m@wmm (16)

lséj po(w,1)*
175] po(fE,t)
The test
R ., O,’,
@=1@@+ngmm} a8)

is employed, where C{7 is a constant to be tuned to achieve a testing risk of at most 7.

Theorem 2. Supposet < 1. If n > 0, then there exist C,, Cvlz > 0 depending only on n such that
forall C' > C,, we have

P, {¢r =1} + sup Pr{¢: =0} <,
res,
Fe(f || fo)>Ce?

where €2 = ﬁ and ¢, is given by (18).

The proof is deferred to Appendix B.2.1. The result of Theorem 2 holds for all ¢ < 1, but is only
relevant in the high noise regime n=* < ¢ < 1 where it achieves the minimax rate (11). The low
noise regime requires a different approach. The argument of Theorem 2 relies on sharp calculations

of the variances of the U-statistics Qt and QQ

2.3 LOW NOISE REGIME

In the low noise regime ¢ < n~*, the rate (11) specializes to t~* for o < 1. The trivial test which
always accepts the null hypothesis achieves the separation rate ¢ ~!. Proposition 4 shows the reason
for the triviality, and is an immediate corollary of Lemma 3.1 of (Gupta et al., 2022), which states a
bound on the Fisher information of f % ¢, namely [ _|s(z,t)[* p(z,t) dx St

Proposition 2. We have sup ;= Fy(f || fo) St

Proof. Fix f € F. Since fo < f, we have from the inequality (a + b)?> < a? + b? that
Fe(f [l fo) S S0, Is(z t) 2 p(a,t) da + [ |so(x,t)|* po(z,t) dz. Lemma 3.1 of (Gupta et al.,
2022) immediately delivers the claim. O

Proposition 4 shows that the diameter of the entire alternative hypothesis is of order at most ¢~
Consequently, for a sufficiently large universal constant C* > 0, there does not exist any f € F such
that F;(f || fo) > C*t~1. Consequently, the test which always accepts the null hypothesis achieves
exactly zero testing risk for testing Hy : Fy(f || fo) = 0 against Hy : F¢(f || fo) > Ct ' and f € F
for all C' > C*. Hence, it achieves the separation rate t ~!. This result is formally stated in Theorem
3 without proof.

Theorem 3. There exists a universal constant C* > 0 such that for all C > C*, we have
P {po =1} +sup  ser, Py {¢o =0} =0, where e? =t~ and ¢ = 0.

Fi(f [ fo)>Ce}
Theorem 3 holds for all t > 0, but is only relevant in the regime ¢ < n~* to deliver the upper bound
in (11).

3 TESTING IN TOTAL VARIATION DISTANCE

In this section, we address testing (5) with the parameter space F,, given by (10).
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3.1 EXPLOITING SMOOTHNESS TO IMPROVE TESTING IN FISHER DIVERGENCE

As mentioned in Section 1.3, the key step is to improve the Fisher divergence testing rate (11) to
(12) for small ¢. This section thus describes the upper bound aspect of the optimal minimax testing
rate €} (F,,) given by (12). The lower bound is deferred to Appendix C.

From the upper bound perspective and in view of (12), we only need to improve in the regime

. . N _Aa—1)
t < =4/ (4atD) with the target n—4(@—1)/(4a+1) 4 a—1 Note this target specializes to n~ 2a+1

for a > 1 and to t*~! for o < 1. These two cases are handled separately. The tests of Sections
2.1 and 2.2 can be immediately used to address the regime ¢ > 1 and n—4(@—D/(e+) < ¢ < ]
respectively.

Suppose o > 1. The proxy strategy is again employed, though the target estimand is different. The
test (18) is not appropriate in the low noise regime, since it achieves a separation rate ﬁ which

diverges as t — 0. To achieve the desired rate n~4(*~1)/(4a+1) 4 ta=1 \yhich notably does not
diverge, the smoothness of f and fy will be explicitly exploited. The proxy given in Proposition 3
is useful precisely because of the availability of smoothness.

Proposition 3. Ifa > landt < 1, then Fy(f || fo) < Q + Q' + t*~ where Q = f_ll |f(p) —
fo(w P dpand @ = [, 1'(w) = fo(w)* dp

The proof of Proposition 3 is deferred to Appendix E.1. The proxy @ + @’ will be our target
estimand. The intuition is that for small ¢, the Fisher divergence F.(f || fo) ought to be close to
Fo(f || fo), that is when ¢ = 0, due to the smoothness of the underlying densities. Att¢ = 0, since
fo =< f =<1, itis very natural to obtain a proxy estimand as follows,

_ [ 12 G05) = S )
sl = [

When ¢ > 0, some error will be incurred and will imply some conditions on how small £ must be.

folp)dp S Q+ Q.

. . _da=l) . ... . . .
To achieve the optimal rate n~ 4a+1 , it turns out the error t*~! in Proposition 3 is only negligible
74 . . . . . .
when ¢t < n~ 7a+T, which is exactly the low noise regime we are considering!

The estimation of () and Q' is classical (Bickel & Ritov, 1988; Laurent, 1996; Giné & Nickl, 2008).
We employ the estimators based on orthogonal series (Laurent, 1996). Formally, let {1, }72 ; denote
the usual trigonometric basis in L?([—1,1]) with ¥4 (y) = % Yo (y) = cos(mk(y + 1)) and
Yop+1(y) = sin(wk(y + 1)). Since f and fy are periodic on [—1, 1], we have the basis expansions
fo = ZZO 1 90,x%1 and f = ZZO 1 Ok Moreover, we have estimates on the coefficient decay.
Define the ellipsoid O, (L) = {6 € (*(N): 377 a?0? < L} where a; = k“ if k is even and
ar = (k—1)>if kis odd We have by standard results (Tsybakov, 2009) that the basis coefficients
of f and fy live in ©,(L). By Parseval’s identity, we have Q = >y, (6 — 6o x)?, and so our
estimator is defined to be

6] ZZ (ke (p:) — Oo,6) (Y1 (15) — Oo,k)- (19)
1#j k=1

Here, K is a tuning parameter.

To estimate f' = Zszl Oy, consider 15, = —mkiogy1 and 5, = mhbgy since {Yr}p
is the trigonometric basis. Therefore, f (W) = >pey 7T]€92k+1’¢2k( ) — wkbagharr1(p). Let us
denote the basis coefficients of f’ by 92k = 7kbs41 and 92k+1 = —mk6y,. Likewise, let 90 k

denote the corresponding coefficients of f{. Define the estimator

=1 ZZAk 1) An (1), (20)

i#j k=1

where Ay (p) := (ki1 (1) — Oo,2) + (—7kipor (1) — Oo,211). The test

6= 1{IQx + Q| = Cpn~ =7 } @D
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is used in this regime, where C{7 > (0 is a constant to be tuned to achieve a testing risk of at most 7.
Theorem 4 establishes ¢ is rate-optimal, and its proof is deferred to Appendix B.3.

Theorem 4. Suppose « > 1 andt <n~ T, Ifn > 0O, then there exist Cy, C’,,’7 > 0 depending only
on 1 such that for all C > C,, we have

Pr,{p=1} + sup  Pr{p=0}<n,
FEFa,
Fe(f || fo)>Ce?

(a—1)
where €2 =n~ E and ¢ is given by (21) with K = {n ToFT -‘

On the other hand, suppose av < 1. It turns out the trivial test which always accepts the null
hypothesis achieves the separation rate >~ 1. Proposition 4 shows the reason for the triviality, and
is an immediate corollary of Theorem 5 of (Dou et al., 2024).

Proposition 4. Ifa < Landt < n~ %7, thensupyer. Fo(f || fo) St

Proof. Fix f € Fy. Letu(p) = 31y, <1} denote the density of the uniform distribution on [—1, 1].

Let py(x,t) = (u* @) (x) and s, (x,t) = 0, log p,, (2, ). Consider n~aTT < p” 751, and so we
can apply Theorem 5 of (Dou et al., 2024) to conclude Fy(u || fo) <t ! and Fy(u|| f) < to L
Since pg < p and (a + b)? < a® + b2, it is immediate that Fy(f || fo) < Fe(u || fo) + Fe(ull f) <
t*—1 as desired. O

Proposition 4 shows that the diameter of the entire alternative hypothesis is of order at most t*~1,
and so the trivial test achieves the separation rate t*~!. This result is formally stated in Theorem 5
without proof.

Theorem 5. Suppose o < 1 andt < n_ﬁ. There exists a universal constant C* > 0 such that

forall C > C*, we have Py, {¢po = 1} +sup  fer., Pp{do =0} =0, wheree? =t and
Fi(f || fo)>Ce?

(bo = O

3.2 AGGREGATION

The estimators we have constructed can be aggregated to furnish an optimal test for the classical
problem (5) of detecting alternatives separated from the null hypothesis in total variation distance.
Define R
F, ift>1,
U, := QtJng ifnfﬁ <t <1, (22)
Qr + Q. ift <n wr,

where R is given in Section 2.1, Q; and QQ are given by (16) and (17) respectively, and Qx and
Q’K are given by (19) and (20) with K = [nﬁ} For T' > 0, define the test

T
or =1 {/ U, dt > C,;n‘éil} (23)

0
where C’,’7 is a constant to be tuned to achieve a testing risk of at most 7.

Theorem 6. Suppose T' 2 n. If n > 0, then there exist C,, C,’7 > 0 depending only on n such that
forall C > C,, we have
Pp{or=1}+  sup  Pr{or =0} <,

c€Fa,
drv(f,fo)>Ce"

where ¢* = n~ 741 and ¢ is given by (23).

. .. — o . " .
Theorem 6 establishes that the minimax rate (¢*)? < n~ 7a+1 can be achieved. Intuitively, this

is precisely because the estimation error at every ¢ integrates to exactly the desired rate; we have

T _A(lal) _ __da . . .
fo # A # A (n e 1) dt < n~ 74T, In this sense, we conclude diffusion models

are optimal for hypothesis testing.
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Appendices to “Diffusion models are optimal for hypothesis testing”

A PRELIMINARIES
Definition 1 defines the minimax testing rate for (4).
Definition 1. Fort > 0, we say €} is the minimax testing rate for (4) if for all n € (0, 1),

(i) there exists C,, > 0 depending only on 1 such that for all C' > C,,, we have

inf { Py, {¢p =1} + sup Pr{p =0} <n,
¢ ferF,

Fe(f || fo)>C(e7)?

(ii) there exists ¢, > 0 depending only on 1 such that for all 0 < ¢ < ¢, we have

inf ¢ Py, {¢p =1} + sup Pi{¢p=0}p>1—n,
¢ feF,
Fe(f || fo)>c(e))?

where the infimums run over all tests ¢ (i.e. binary measurable functions taking the data as input).

Item (i) in Definition 1 is the upper bound criterion, and item (ii) is the lower bound criterion. Note
i characterizes the hardness of the testing problem only up to constant factors.

B PROOFS OF THE UPPER BOUNDS

B.1 VERY HIGH NOISE: PROOF OF THEOREM 1

The proof of Theorem 1 relies on estimation error bounds of the plugged-in estimators. The test
(13) plugs in the score estimator of Dou et al. (2024). This score estimator is rate-optimal for score
estimation and achieves the following error bound. Note the parameter space we consider is a subset
of the parameter space in (Dou et al., 2024), and so their upper bound guarantee continues to hold
in our setting.

Theorem 7 (Theorem 2 in (Dou et al., 2024)). Let § be given as in Section 2.1. Then

E </°o 15(z, t) — s(z, t)]?p(z, ) dm) <

S o
2
oo nt

fort > 1.

The following error bound for the plug-in estimator F; := [2 18, t) — so(a, ) po(w,t) da
defined in Section 2.1 is easily obtained in light of Theorem 7.

Proposition 5. Ift > 1, then

a

where T, is given in Section 2.1.

~ F,
BB 110)]) S g+ LI

Proof. For notational ease, let us write F; for F¢(f || fo). Consider

o0

@t —F < /OC 13(2,t) — s(x,t)|* po(, t) dz —|—/ |s(z,t) — so(z,t)]|5(x,t) — s(z,t)| po(x,t) dx

— 00 — 00

< /C>o 15(z,t) — s(x, t)|*po(x, t) do + \/E \//OO [3(x,t) — s(x,t)|? po(x,t) dx.

— 00

13
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We have used p(x, t) < po(z,t) since f, fo are both bounded above and below by universal constants
on their support, and we have also used Cauchy-Schwarz. Therefore, Theorem 7 yields

1 I,
e(Fr) s o y/B
NntQJr nt?

as claimed. ]

F, — T,

With the error bound of Proposition 5 in hand, the proof Theorem 1 is straightforward.

Proof of Theorem 1. Fix n € (0,1). Examining the Type I error, consider that since F.(f || fo) =0
under the null hypothesis, we have

)
Cy/(nt?)

- c! K (

Profoc=1h < Py {Be- BTl 2 5 ] <
by Markov’s inequality. Proposition 5 implies there exists some universal constant C > 0 such that
E(|F, —F.(f|| fo)]) < 55, and so it follows from taking C,, sufficiently large depending only on

= nt2’

7 that the Type I error is bounded as Py {¢; = 1} < 2.
Let us now examine the Type II error. Suppose f € F with F.(f || fo) > Ce?. Since C,, > 0 is
sufficiently large and C' > C},, we have by Markov’s inequality and Proposition 5,

! !

~ C C ~
Prioe=0y=py{Be< b < {Rr i) - o8 < [ o) - B

ntz —
) E(‘E—E(f“({?)‘)
]Ft(foo) — o
Oy Oy

c
12

= 2 ?

(C=Cp)" /nt2)  Fulfllfo) = 5

Since C' > C,,, we can take C,, sufficiently large to ensure the first term is bounded by 7. Further-
more, we can use the inequality ab < a® + b? to argue C'/ "ol < (|| fo) - & + 173522

A [F 7o) . 2
e P XA E O R T
c! S 1 (fo) + c_C7 S 1 Puttlng
Fe(f Il fo)— % 27t 0 ]

Then since C,, is sufficiently large, we have

n

together our bounds, the Type II error is bounded by 2, and so we have shown thte sum of the Type
I and Type II errors is bounded by 7, completing the proof. O

B.2 HIGH NOISE

First, we prove Proposition 1. We later move on to proving Theorem 2 in Appendix B.2.1.

Proof of Proposition 1. Tt immediately follows from po(z,t) < p(z, ) that

B 1100 = [ Is(t) = sl O pla 1) de
[ 10up(x, t)po (@, t) — Dupo(w, t)p(a, t)|?
-/ polz, OF(a, P pl,t)d
- /00 |amp(mvt)p0($7t) — ampO(‘rvt)p(xvt)F d
= T
— o0 p0($7t)3
% |0zpo(z, 1) 5 /°° |0up(2, ) — Bupo(z, 1)
< et SO e N _
- /—oo po(l‘,t)3 |p(m7t) po<x7t>| dw+ — 00 po(I,t) dm7
as claimed. ]

14
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B.2.1 PROOF OF THEOREM 2

The proof of Theorem 2 will follow once estimation error bounds of Q; and QQ given by (16) and
(17) are obtained. The arguments follow the typical analyses of U -statistics, though the calculations
are somewhat involved. All the attention is paid to the variances since (); and @)} are unbiased for
Q: and Q) respectively.

Proposition 6. Ift < 1, then

A 1 Q1
— 2) < Xt
E ('Qt Q| ) SR T
where Qt and Q¢ are given by (16) and (14) respectively.

Proof of Proposition 6. Since Qt is unbiased for @, it suffices to bound its variance. For notational

ease, denote A(x,t) = % By direct calculation, we have
Var(Qt)
“arsy [ awoaw

2 i#5 k#l

Cov ((pe(z — pi) — po(x, 1)) (pe(x — p15) — po(®, 1)), (@i (y — tr) — po(y, 1)) (@e(y — ) — po(y,t))) dz dy.

If {i, 5} N {k,1} = 0, then the covariance is zero due to independence. Therefore the only cases to
consider are when the intersection is nonempty. There are O(n?) choices of the indices such that
i # j,k # 1, and |{i,j} N {k,1}| = 2. Likewise, there are O(n?) choices for which i # j, k # I,
and |{4,j} N {k,{}| = 1. Let Ny and N3 denote the respective counts of choices. Therefore, by the
identical distribution of the p;’s, we have

Var(Qt

5 e

Cov((pe(z — p1) — po(, 1)) (pe(x — p2) — po(x,t)), (pe(y — p1) — po(®, 1)) (@i (y — p2) — po(w, 1)) dx dy

s [ e

COV((SOt(x — 1) — po(@, 1)) (pe(z — p2) — po(z, 1)), (we(y — 1) — po(@, ) (@e(y — p3) — po(z,t))) da dy.
By Lemmas 1 and 2, we have Var(Q;) < m + %, which completes the proof. O

The following lemmas were used in the variance calculation in Proposition 6. Their proofs are
deferred to Appendix D.1.

Lemma 1. Ift < 1, then

[ [ i

Cov((pe(z — p1) — pole, 1)) (@e(x — p2) — po(x,t)), (we(y — p1) — po(y, 1)) (e (y — p2) — po(y, 1)) d dy
1
~ t577
where A(z,t) = %_
Lemma 2. [ft < 1, then

[ [ i

Cov((pe(z — p1) — po(z, 1)) (pe(x — p2) — po(x,1)), (0e(y — p1) — po(y, 1)) (pe(y — p3) — po(y, t))) dx dy
_Q
~ t b
where A(x,t) = % and Q; is given by (14).
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Proposition 7 gives a similar bound as Proposition 7 for the estimation of Q}
Proposition 7. Ift < 1, then

A 1 Q/
! /12 t
E(|Qt_Qt| ) 5 n2t5/2 +E

where Q) and Q) are given by (15) and (17) respectively.

Proof of Proposition 7. Since QAQ is unbiased for @}, it suffices to bound its variance. Denote

B(z,t) = m. Following the same logic as in the proof of Proposition 7, we have

Var(Q})
_ (]2[)12/_2 /_O; Bla, ) By, ).

Cov ((py(x — p1) = Oupo(, 1)) (i (x — p2) — Oupolz,t)), (93 (y — p1) — Oupoly, 1)) (i (y — p2) —

4 g;?/z /ZB(x,t)B(y,t)-

Cov ((¢;(z — p1) — apo(, 1)) (0} (x — p2) — c%po(% ), (@3 (y — p1) — Bupo(y, 1)) (@i (y — p3) —

By Lemmas 3 and 4, we have Var(Q’ ) S = to —73 + 2 which completes the proof. O

nt’

The following lemmas are used in the variance calculation in the argument of Proposition 7, and
their proofs are deferred to Appendix D.2.

Lemma 3. Ift < 1, then

/ / B(z,t)B(y, t)-

Cov (i (x — p1) — Depolz, 1)) (i (& — p2) — epo(, 1)), (P4(y — 11) — Dapo(y, 1)) (Pi(y — p2) —

1
~ ntd/2

where B(z,t) = W
Lemmad4. Ift < 1, then

[ [ somen

Cov ((py(x — p1) — Oupo(, 1)) (pi(x — p2) — Aupo(x,t)), (9y(y — p1) — Oupo(y, 1)) (i (y — p2) —

<@
~ot

where B(x,t) = and Q}, is given by (15).

Po (fv t)
Propositions 6 and 7 enable us to prove Theorem 2.

Proof of Theorem 2. Fix 1 € (0,1). By Propositions 6 and 7 along with the inequality (a + b)?

2a2 + 2b%, we have
2 ~ 1 Q:+ Q]
)< (e +

for some universal constant C' > 0. Let us examine the Type I error. Consider by Markov’s inequal-
ity (and noting Q; + @} = 0 under the null hypothesis),

E(‘QtJFQ;QtQ;&

<
- 01/72/(,”2t5/2) 07/72

o o C’ C'/(n2t5/2
Pfo{¢tl}Pf0{|Qt+Q;QtQ;Znt57}4}< /(n?t°/2)

16

Oapo(y,1))) dx dy

0zpo(y,1))) dz dy.

Oapo(y,1))) dx dy
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By taking C{7 sufficiently large depending only on 7, it follows the Type I error is bounded by 7/2.

We now turn to the Type II error. Suppose f € F with Fy(f || fo) > Ce2. By Proposition 1, there

exists some universal constant C’ > 0 such that Ce7 < C' (Q; + @}). Since C,, > 0 is sufficiently
large, we have by Markov’s inequality

A . C)
Prio=0y < {100+l < -3 |
/ C;, A ol /
SPRQuAQr— 5 <@+ Q@ — Qr — Q4
E(1Qi+Q; - Qi - Q)
o \?
(Qt +Qt nf5/4)
A Qt"l‘Qt
2
Qt +Qt ,Lto/4>
2t5/2 + @ ' 212 + %(Qt + Q:&)Q

IA

< 2
(Qt + Qt nt5/4)
2

< 2t5/2 + 16C ’ # %(Qt + Q;:)2
T2 e (@ QD)1

no,n
< X1 A
— 4 * 4
<
-2

Here we have used the inequality ab < a® + b* in the above calculation. We have also used
CC/ ei < Q: + Q} and C > 0 is sufficiently large in the above calculation. Hence, the Type II
error is bounded by 2, and so the sum of the Type I and Type II errors is at most 7). The proof is
complete. O

B.3 LOW NOISE: PROOF OF THEOREM 4

Like in Appendix B.2.1, the proof of Theorem 4 rests on estimation error results for Q x and Q’K
given by (19) and (20) respectively. These orthogonal series estimators are classical (Laurent, 1996);
we provide full proof details of Lemmas 5 and 6 in Appendix E.2 for completeness though the ideas
are not new.

Lemma 5. We have

B (1~ QP) s K+ 4 @
n n
where @ is defined in Proposition 3 and QK is given by (19).
Lemma 6. If a > 1, we have
KS KQQ/
n

B(1Qk - Q1) S K00 4 =
where Q' is defined in Proposition 3 and Q’K is given by (20).

Proof of Theorem 4. Fix n € (0,1). By Lemmas 5 and 6, along with the inequality (a + b)?
9242 + 2b2 and the choice of K = n 371, we have

(|6 )<e (n—m L ETQ+ Q’))
n

17
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for some universal constant C' > 0. Examining the Type I error, consider by Markov’s inequality
(and noting @ + Q" = 0 under the null hypothesis),

8(a—1)

A A _4(a—1) C’n_m C~' n
Pf0{¢:1}:Pfo{|QK+Q/K_Q_Q/|207/7” 4““}§m F<§
C;]Qn 1aT1

where the final inequality follows by taking C’;] > 0 sufficiently large. Hence, the Type I error is
bounded by 7/2.

Let us now examine the Type II error. Suppose f € JF, with F,(f || fo) > Ce?. By Proposition 3,
there exists some universal constant C’ > 0 such that

4(a—1) 1

Cn~ e =02 < 0/ (Q+Q +1°71) < (Q+Q + )

Since C}, > 0 can be taken sufficiently large, it follows that % — Y <C (Q + @'). Then since
Cy, > 0is sufficiently large, we have by Markov’s inequality

Pr{o=0) = P{|Qx + @il < Opn~ 575"}
<P{Q+Q —Cp T < Qi+ Q- Q- Q'l}
EQQK+@%7Q—Q?)
a—1)

(@+@ - oy’

~ _ 8(a—1) nm(Q+Ql)
C <n TaF1 4 —

a—1)

T (et oY

~ _ 8(a—1) e
c (n i 4 16C ST (Q+ Q’)2>

4(a—1)

@+Q—OMﬂﬁf

(R ) g
g 8(a—1 +
(0/4)2n fagr (Q+@)/2)°
A 16C2
< C(_Fin + n
T o(C/4)p 4
n
-2

where the final inequality follows from taking C,, > 0 sufficiently large and noting C > C,.
Therefore, the Type II error is bounded by #, and so the sum of Type I and Type II errors is bounded
above by 7. The proof is complete. O

B.4 AGGREGATION: TESTING IN TV DISTANCE

In this section, we prove Theorem 6. To reason about the aggregated test statistic fOT @t dt with f[jt
given by (22), it is useful to think about the estimand that U, targets. Define

4
Up=4Qu+Q; ifn 57 <t <1, (24)
Q+Q  ift<n e,
where @Q; and @} are given by (14) and (15) respectively, and ) and Q’ are defined in Proposition
3. Proposition 8 gives a bound on the estimation error of the aggregated statistic fOT U, dt.

18
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Proposition 8. Suppose T > 0. If ¢ > 0, then there exists C' > 0 such that

TA T T 4o
FE / Utdt—/ Utdt SC/ Utdt+0n7m’
0 0 0

where @t and Uy are given by (22) and (24) respectively.

E(/OTﬁtdt—/oTUtdt) g/OOOEQIGt—UtD dt.

We will split the integral into the three regions ¢ < n™ TaF1 N Tar <t < 1,and ¢t > 1. Consider
by Proposition 5, we have

Proof. Observe

where C' > 0 is a sufficiently large quantity depending only on ¢ > 0. Here, we have used the
inequality ab < ‘;—z + 72b2 for any r > 0.

. . 4 .
Consider over the region n~ 7a¥1 < { < 1, we have from Propositions 6 and 7 as well as a very
similar argument,

[oom(peulas [, pe-al)+e(e-o-af)a

T ZaF1 n fa+1

1 /
1 Q1 Q}

< LY A Y L
~ /n—ﬁﬂl ntd/4 + nt + nt

1
SCn_ﬁ +c/ . Updt

n” dafl

.. . . . __a_
A very similar argument using Lemmas 5 and 6 yields, over the region t < n~ Z=+1, the bound

niﬁﬂ niﬁ 4(a—1) niﬁ
/ E (‘Ut —U, ) dt < c/ n= et dt+c/ U, dt
0 0 0

. n—ﬁ
=Cn~ a+1 4 c/ U, dt.
0

Putting together our three bounds over the three regions yields the desired result. O

Proposition 8 gives the key error bound in arguing for the success of aggregation for testing (5).
Let us describe the intuition here. Under the alternative hypothesis dv (f, fo)? > €* with €2 >

~

n‘ﬁ, we have from (6) that £2 < fOT Fi(f ] fo)dt < fOT U, dt. In other words, there is signal to
detect. Proposition 8 implies

T T
/ ,dt > (1 fc>/ Uu(f || fo) dt — Cn~ %7
0 0

with high probability under the alternative. Similarly, under the null hypothesis where U (f || fo) =
0, we have fOT U dt < Cn~ %7 with high probability. Consequently, it follows we can detect
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the alternative when fOT Ui(f || fo)dt > €2 > C’ n~ 7S with ¢’ > 0 being a sufficiently large

.. _ 4o, . .
constant. Hence, the minimax rate (a*)2 =< n~ 741 is achieved, notably without any extraneous
logarithmic terms. The proof of Theorem 6 implements this intuition.

Proof of Theorem 6. Fix n € (0,1). Examining the Type I error, consider that under the null hy-
pothesis of (5), we have U; = 0 for all £ > 0. Therefore, by Markov’s inequality we have

T
Py, {¢r =1} = Py, {/ U, dt > c;n—gtil}
0

T _ T
gpfo{/o B [ v

L (|5 Dot = f 0, ar|)

1
C;]n7 TatT

4
Z C;]n_ 4@11 }

~ _ _4do
COn~ Ta+1
— Cl _ 4o
Ta+1
0T

C
< =
ay

where we have applied Proposition 8, which implies there exists some universal constant C > 0such
that £ (‘ foT U, dt — fOT U, dtD < Cp~ %97 since U; = 0 under the null hypothesis. Therefore,

it follows from taking C; sufficiently large depending only on 7 that the Type I error is bounded as
Pro{oe =1} < 3.

Let us now examine the Type II error. Suppose f € F,, with dry (f, fo) > Cn~ 757, Now, since
T = n, it follows from the fact f and f; are compactly supported that dxr,(f * o1 || fo * 1) <
A < L Therefore, it follows by (6) and by Propositions 1 and 3 that

T ~n

CPn~ T < drv(f. fo)* <

T
+/O Fo(f || fo) dt

T nfﬁ
+/ Utdt+/ e dt
0 0

T
= 7’L_ﬁj"1 + / Ut dt.
0

S|

A
Sl

Therefore, by taking C > C,, > 0 sufficiently large, it follows that we must have

T
/ U, dt > Cn~7a51,
0

With such a bound in hand, along with Proposition 8, we can employ very similar arguments as
those appearing in the proofs of Theorems 1, 2, and 4 to bound the Type II error by %, provided
Cy, > 0is chosen sufficiently large, thus yielding the claimed result. We omit the details. O

C LOWER BOUNDS

In this section, we present the minimax lower bounds which were deferred from the main text.

C.1 TESTING IN FISHER DIVERGENCE

For the problem (4) under the parameter space F given by (9), Theorem 8 establishes the minimax
lower bound —~ A § for ¢t < 1.
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Theorem 8. There exists a universal constant ¢ > 0 such that the following holds. If t < ¢ and
n € (0, 1), then there exists ¢, > 0 depending only on 1) such that for all 0 < ¢ < ¢,, we have

inf < Py, {¢ =1} + sup Pr{p=0} ) >1—n,
[ fer,
Fo(f || fo)>ce?

with e? = nt%/‘l A %

Before we prove Theorem 8, we first make some high level remarks. Our argument starts by con-
structing a prior distribution on the composite alternative { f € F : F.(f || fo) > ce7}, and works to
show it is difficult to distinguish between the null hypothesis Py, and the resulting mixture distribu-
tion induced by our choice of prior by bounding the y2-divergence. The details of the construction
build on recent developments on lower bound arguments for score estimation (Dou et al., 2024). Our
prior will be supported on the collection { fj }ye{—1,13m With

Folw) = folp) + X biw (“ _pxi> (25)
=1

where A and p are parameters to be chosen, {x;}!”, are grid points in [—1, 1] which are spaced
2p apart with m = %, and w : R — R is a function supported on [—1, 1] such that w € C*(R),

7 w(@)de = 0, and ||w||s < 1. Finally, we make the choice p < v/t and A < ﬁ Al

The choice of A and p are different in our setting since Dou et al. (2024) deal with Holder smooth
densities whereas F imposes no smoothness assumptions.

For t 2> 1, the minimax rate (12) specializes to # Theorem 7 in (Dou et al., 2024) directly
establishes this lower bound, and so we omit the proof. Their use of Le Cam’s two-point method in
the score estimation problem can also be applied to our testing problem. It is not surprising that the
result from the estimation problem can be employed here, since ¢ = 1 is essentially the parametric
regime in which the limits of testing and estimation coincide.

We now dive in to proving Theorem 8. It is easy to verify that f, € F provided ) is smaller than a
sufficiently small universal constant. Hence, Proposition 12 is stated without proof.

Proposition 9. If A\ < ¢ where ¢ > 0 is a sufficiently small universal constant, then
{fb}be{—l,l}"" C f

We use the uniform prior on {f}},e(—1,13m in the lower bound argument. In terms of the data, the
Bayes testing problem can be expressed as

HO : (/1'17“’7/1471) ~ 6@7’7,7
1 n 2
Hl : (Mlv"'aﬂn) ~ 27 Z fb® . ( 6)
be{—-1,1}m

It needs to be checked that the Bayes problem (29) is a valid reduction of (4). In order to do so, the
separation between any f; and the null hypothesis fy needs to be computed. Quantitative bounds
on the separation are available from Dou et al. (2024) and is one of the major contributions of their
paper.
Proposition 10 ((Dou et al., 2024)). There exist universal constants C, c1, co > 0 such that ift < ¢y,
p < co,and p = CW/, then
A2m
Fe(foll fo) 2 R

Sforb e {—1,1}"™. Here, fy is given by (25).

Proof. In (Dou et al., 2024), see (60) in the proof of Theorem 6 and the use of Proposition 4 in the
argument to derive (60). Note that the reasoning of Dou et al. (2024) applies by the correspondence
A = €“ with a > 0 arbitrarily small. O
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Proposition 11. There exists some universal constant C' > 0 such that

1 244 2
X2 27 Z fb®n f(()@n SeCnApm_L

be{—-1,1}m

where fy is given by (25).

Proof. For notational ease, write f, = fo + . Note [ _11 ¥p(1) du = 0. Direct calculation yields

1 n n
1+ x° om Z S

be{-1,1}m
_ N 2
/ (2 mZbe{fl,l}m o (M)) p
= n #,
[—1,1]n g@ (1)
Qn Rn
_pm Y / b (gl v (1)
bb/e{—l 1}m [ 11]" fO (:u“)

_9-2m Z H/ fo( Mz fb/ ul) dp;

bb’e{—1,1}mi=1

SR G ‘”“?Zéff;“” ")

bbe{—1,1}m

_9-2m Z 1+)\zzbb//lw(ﬂpﬂ>w(ujj)du "

b et 1y et Jo(p)
() )
w k3
o o e n
b e{—1,1}m H

The final line follows from the fact that w ( 7’) and w ( p ) have disjoint supports for ¢ # j.

(;LT 2

fo(w)

9—2m Z <1 + 22 f: bib;wi> < 972m Z exp (n)\2 f: bib;wl)

bre{-1,1}m i=1 b e{-1,1}m i=1

=F <exp (n)\2 Z R,wl>> ,
i=1

where R; ¢ Rademacher(1/2). By independence, we have

FE <exp (n)\Z Z Riwi>> = H E (exp (n)\2Riwi)) = H cosh (n)\Qwi) < exp <n2)\4 Z w?) .
i=1

Denote w; := Ll1 dp. Continuing with the calculation, consider

i=1 i=1 i=1

2
Since fo(p) =< 1 for || < 1, it follows that w; =< f_llw(%) du =< p. Therefore,

exp ( IS w3 ) < exp (Cn2A4mp ) for some universal constant C' > 0. O

We are now in position to prove Theorem 8. Roughly speaking, A and p are to be tuned subject to the
constraint A < ¢ for a sufficiently small universal constant, and such that the x2 divergence between
277 e (—1,1}m fb®" and f?” can be bounded by an arbitrarily small constant. Proposition 10

already specifies the choice p =< \/t, and so it remains to select \.
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Proof of Theorem 8. Fixn € (0

, 1). By Propositions 12 and 13, there exist some universal constants
C,é>0suchthatfort < ¢ A <g¢,

and p = CV/t, we have

)\2
Fi(foll fo) 2 @7

forall b € {—1,1}™, where f; is given by (25). Here, we have used m =< %. By Proposition 14,
there exists some universal constant C' > 0 such that

1 2,4
X2 — Z fb®n fgbn < eCn PV 1
be{-1,1}m

where, again, we have used m = % and p =< /. Select

2\ 1/4
A= () (A,
Ce /ntl/8

It is clear Cn2 )4Vt < g < 1. From the inequality e* — 1 < ex for x € (0, 1), we thus have

1 . 1 1 Al o 1
drv (o D BT <5 3 | g 2 BT <oVt <a 28
be{—1,1}m be{-1,1}m™

With our choice of A and (30), consider
1 1
Fo(fo 1] fo) = kn (nt5/4 A t>

for some #,, > 0 depending only on 7. Take ¢,, = £, and observe that { fy}re(—1,13» C {f € F :
F(f || fo) > ce?} forall ¢ < c¢;,. Therefore, it follows

ir(;f Pr{o=1}+ fsup Pr{¢p =0} zi%f{PfO {p=1}+ sup Py {(/5:0}}

b{—l,l}’”

)

Fo(f ] fo)>ce?

. 1
Zlgf Pfo{¢:1}+27m Z be{¢:0}
be{—1,1}m

1 n n
=l-dwv | on > I
be{—1,1}m
>1-n
where the penultimate line follows from Neyman-Pearson lemma and the final line follows from
(31). The proof is complete. O

C.2 TESTING IN FISHER DIVERGENCE WITH SMOOTHNESS

. .. _A(al) .
Theorem 9 establishes the minimax lower bound TEM A (n 1oFT 4 t"‘_1>, showing that the

improved rate achieved by the projection estimator in Section 3.1 is optimal.

Theorem 9. There exists a universal constant ¢ > 0 such that the following holds. If t < ¢ and
n € (0,1), then there exists ¢, > 0 depending only on 1 such that for all 0 < ¢ < ¢,,, we have

inf < Py, {¢p =1} + sup Pr{p=0}p>1—n,
4 fEFq,
Fe(f 1] fo)>ce?

. _4(a=l) _
with €2 = Til)/‘l A (n~aeFT 4oL,
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The argument is very similar to the proof of Theorem 8. However, some modification is needed to
ensure the constructed densities live in F,, (instead of just F). Our prior will be supported on the
collection { fp }pe{—1,13m With

Jolp) = folp) + € ibiw (o).

Here, 0 < € < p < 1 are parameters to be chosen, and the constraint € < p is important to ensure the
Holder smoothness. However, we will also require that the first || derivatives of w are bounded.
Our prior is the uniform distribution on { f; }yc{—1,13=. Finally, we make the choice p < ViV e

1/(4a)
and € < (n;\/i A n_ﬁl{azl} + \/f]l{a<1}). The forms of the densities are precisely

the forms employed by Dou et al. (2024), especially more so now since we also enforce ¢ < p as
they do. We remark that the choice of ¢ is different from the choice made in (Dou et al., 2024); this
difference is expected since the hypothesis testing problem we consider has different minimax rates
than the score estimation problem.

The proof of Theorem 9 follows the same general path as the proof of Theorem 8. First, it is easy to
verify that f, € F,, provided € < p is smaller than a sufficiently small universal constant. Moreover,
note that fj, satisfies the periodicity constraint since w is compactly supported. Hence, Proposition
12 is stated without proof.

Proposition 12. If ¢ < p < ¢ where ¢ > 0 is a sufficiently small universal constant, then
{fb}be{—l,l}m C Fa

Recall we use the uniform prior on { f; }4c{—1,1}m, and the Bayes testing problem is

HO : (/’[’17"'7/1‘1'7,) ~ (()XWI,
1 n
Hl . (/’Ll7"'7/’6n) ~ 27'm Z fb® . (29)
be{—1,1}m

Proposition 13 is an analogue of Proposition 10, but note that the choice of p satisfies the constraint
p > € to ensure the Holder condition is satisfied.

Proposition 13 ((Dou et al., 2024)). There exist universal constants C, c1, co > 0 such that ift < ¢y,
€< co,andp = CVtV ¢, then

2am

p

Fol(fy || fo) 2 =
forbe {-1,1}™

Proof. In (Dou et al., 2024), see (60) in the proof of Theorem 6 and the use of Proposition 4 in the
argument to derive (60). O

Proposition 14. There exists some universal constant C' > 0 such that

]. 2 da 2
2 en|| ron c
N SR P
be{-1,1}m
Proof. The proof is exactly the same as Proposition 11 with €* = A. O

We can now prove Theorem 9. We tune p and e subject to the constraint p > € and € < ¢ for a
sufficiently small universal constant, and such that the x? divergence between the null and alternative
hypotheses can be bounded by an arbitrarily small constant. Proposition 13 already specifies the
choice p < V/t V €, and so it remains to select €.

Proof of Theorem 9. Fix n € (0,1). By Propositions 12 and 13, there exist some universal constants
C,¢>0Osuchthatfort < ¢, e <¢ and p = CVtV e, we have

62(1
Fe(foll fo) 2 - N b (30)
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forall b € {—1,1}™. Here, we have used m < %. By Proposition 14, there exists some universal
constant C' > 0 such that

1 «@
X2 L Z ®n fg@n < 6C‘71264 (Vtve) _q

m b
be{—1,1}m

where, again, we have used m =< = and p =< VTV e. Select

1
P

2\ 74 = 2\ Ta¥T
,’7 @ 1 4o TI a+ 2
:<<c> (vt) >A<(c> (v 4“+1-1{a21}+ﬁ-1{a<1})>'

We claim Cn?e® (vt V e) < 7 < 1. To see this, consider it suffices to show both Cn2e*® /i <

- €

2 2
4= and Cn?e**t! < - hold. The first condition is easily seen to be satisfied since ¢ <

772 ﬁ 1 ﬁ .. N < U2 4a1+1 -z 2 .
(@) (m) . To show the second condition, suppose o > 1. Then € < (@) n~ Za+l,
which immediately establishes the second condition holds. Suppose o < 1. Since we have both

1 1 1 1
2\ 4a 1 da 2\ 4a+f1 . 4 1 2 1 2\ Za+1
€< (&) <n2\/2) and € < (%) Vt, it follows that e*+1 < 2. pe (&) Vi,
1

2
which delivers Cn2etet! < Z- .

2 da+1 2 . .
(&) < L since we can assume C' > 1 without loss of

generality. Hence, we have shown the claim.

From the inequality e” — 1 < ex for z € (0, 1), it follows from Cn2et® (vt V €) < % < 1 that we
have

m

1 n c@n 1 1 n n 1
dev (o D BT <5 3 | gm 2 BU|ET <gVir<a 6D
be{-1,1}m be{-1,1}m

With our choice of € and (30), consider

1 _aa-n o
Ft(fb||f0>2f€n W/\(n ToF1 4t )

for some x, > 0 depending only on 7. Take c,, = &, and observe that { fy}re(—1,13m C {f € Fa:
F(f || fo) > ce?} forall ¢ < ¢,,. Therefore, it follows

inf { Py, {6 =1} + sup Py {¢p =0} >inf{Pf0 {p=1}+ sup Py, {¢=0}}
¢ f ¢ b{—1,1}m

a

Fi(f || fo)>ce?

. 1
>inf{ P {o=1+50 > Pr{o=0}

be{-1,1}m

1 n n
=1-dry | gn > KBS

be{-1,1}m
>1-y

where the penultimate line follows from Neyman-Pearson lemma and the final line follows from
(31). The proof is complete. O

D HIGH NOISE: DEFERRED PROOFS

This section contains the deferred proofs of Lemmas 1, 2, 3, and 4.
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D.1 PROOFS OF LEMMAS 1 AND 2

Proof of Lemma 1. We proceed by direct calculation. Consider the covariance satisfies

Cov ((%(w — p1) = po(x, 1)) (pe(z — p2) — po(x, 1)), (we(y — p1) — po(y, 1)) (@i (y — p2) — po(y,t)))
((pe(x — 1) — po(, 1)) (e (y — 11) — po(y,1)))* — (B (¢e(x — p1) — po(, 1)))* (B (@e(y — 1) — po(y, 1)))”

/ / 1 — 1) = pol, )21y — 1) — pol ) (e — 1) — po(a ) ey — v) — po(y, 1)) F(u) () dp v

= (p(x,t) = po(@,)*(p(y, 1) — po(y, t))*.

Therefore,

/00 /OO Az, t)Ay,t)

Cov ((pe(x — p1) = po(@, 1)) (pe(x — p2) — po(®, 1)), (pe(y — 1) — po(y, 1)) (pe(y — p2) — po(y, 1)) du dy

/ / (/ mx—m—po<x,t>><got<x—u>—po<x,t>>dm) £ F() dppdo
- / / Al t) Ay, 1) (Pl t) — pol,£))2(p(ys 1) — poly. £))? da dy

=/_11 /_11 (/_Z A(a:,t)(cpt(x—u)—po(m))(got(x—u)—po(a;,t))dg;>2 F) fv) dudy — Q2

S /11 /11 (/Z Az, t)(@e(x — p) — pol,t))(pi(x —v) —po(x,t))dx>2 dy dv

where we have used fo(u) < 1 for p € [—1,1]. We can split into three terms,

/ / </ t)(pe(z — p) = po(@, 1)) (pe(x — v) — po(z,1)) dz>2 du dv
: /_1 /_1 (/_OO A, (@ — mpu(w —v) dw)2 dpdv (32)
L

2
Az, t)pi(x — p)po(z,t) dx) du (33)

1 —
o 2
+ (/ Az, t)po(z,t)? dx) . (34)

The terms (33) and (34) can be handled similarly. Consider that by Jensen’s inequality, we

2
have the bound fil (ffooo Az, t) i (x — p)po(z,t) dx) dp < fil ffooo Az, t)po(x,t) 2o (z —
pydedpy =< [T A(z,t)*po(z,t)3dx since fo(u) =< 1 for p € [-1,1.  Sim-

2
ilarly, looking at (34), we have by Jensen’s inequality ( 75 Al t)po(, t)? dx) =

2
( 12 A, t)po(z, t) - po(x, t) d:z:) < 7 A(z,)?po(x,£)? da, and so (33) and (34) both ad-
mit the same bound. From here, observe

o0 50 4
/ A(Z,t)2p0(x,t)3 dx = / w dx.

po(,t)?
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Consider by Holder’s inequality with the choice p = 4 and ¢ = %, we have

dx

[m Depo(a DIt / =5t = ot |

po(z,t)3 po(z,t)?

</ (f et (e - )du) (ff1<pt(x—u)du)3

po(l‘, t)g

oo 4
// |2 M| (= ) dpdo

t2

Therefore, we have shown that both (33) and (34) are of order at most 2 .

It remains to bound (32). Let us write h, (x) = A(z,t)pi(x — v). Then

(32) / / </ x)oi(r — )dx)Qd,udu
=/ / (B 00) ()2 dp
/ / w)|? dudv
=/_1/_1|A(u7t)<ﬂt(u—v)\2dudv
L

Here, we have used that ||g * <pt||%2(R) < ||g||2L2(R) for any function ¢ : R — R. Continuing

with the calculation, consider pg(j,t) =< 1 for u € [—1,1]. Furthermore, we have ¢;(u — v)? <
1 .. . . . . .
azer(p —v). Addltlonally, from our earlier calculation, it is straightforward to see |so(u, t)

g
|0zpo (1, t)|* < 7. Hence, we have

1,1 4
|so (11, 1) |*pe (11 — v/)? 1
/_1 /_1 o, t)? dpdv S t5/2 or(p—v)dpdrv S S

Putting together this bound with the bound = for (33) and (34) shown earlier, it follows that

/11 /11 (/(: Az, t) (e (x — p) — polx, 1)) (e (x — v) — po(w,t)) dx)2 i < ﬁ%’

completing the proof. O

Proof of Lemma 2. The covariance satisfies

Cov((pe(x — p1) — po(, 1)) (pe(z — p2) — po(x, 1)), (pe(y — p1) — po(x, 1)) (Pe(y — p3) — po(y,1)))
((pe(x — p1) = po(z,8))(@e(y — 1) — po(y, 1)) E(pe(x — p1) — po(x, 1)) E(pe(y — p11) — po(yst))
— (B(pi(z — p1) — po(z,1)))*(E(pi(y — 1) — po(y,1)))*
(x —p1) — po(@, 1)) (pe(y — ) — Po(% t))(p(z,t) — po(z,1))(p(y,t) — po(y, 1))
) (

— (p(x,t) — po(x,))*(p(y, t) — po(y,t))*.
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Here, we have used that y; and 1, for ¢ # j are independent and identically distributed to obtain the
second line. With this in hand, it follows that

/00 /OO Az, t) Ay, t)-

Cov((pt(z — p1) — po(, 1)) (pe(x — p2) — po(x,t)), (pe(y — p1) — po(, 1)) (@i (y — p3) — po(w, 1)) dx dy

/ / Az, t) Ay, t)-

((pe(x — p1) = polz, 1)) (e (y — 1) — po(y, 1)) (p(z, 1) — po(z, 1)) (p(y,t) — po(y,t)) dz dy

/ / y 1) (0 £) — po(z, 0)2(p(y, ) — poly,1))? da dy

- [1 (/OO Az, t)(pi(x — p) — po(z,t))(p(a,t) po(z,t))d$>2 flw) dp — QF

IN

— 00

- // A )lpuw — 1) — pole, O £ () dyede
< Qi (/ Az, 1) /1%(9;— )Qf(,u)dudx—i—/_O;A(:v,t)po(x,t)2dx).

Here, we have applied Cauchy-Schwarz to obtain the third-to-last line in the previous display. Note,
it is important A is nonnegative so that |A| = A, yielding Q¢ = [~ A(z,t)|p(z,t) — po(z,t)[* dx

and delivering the penultimate line. By definition of A, we have [*_A(z,t)po(z,t)*dx =
S5 Iso(@, t)[Ppo(w, t) do < 1. Likewise, observe from Lemma 7 that

/ Axt/ 0w — )2 () dpuda

1 _ (=l 1>2
Axt ﬂ{|x\<1}+ T a1y ) do

2 2
|axpo<x,t>|2dx+,/ <8a:p0(9€ [Bzpo(ar 2 ) R
b a)>1 (@, t)

3
< 1 1/ <|x| -1 v 1) C uepw?
Ut Jig>1 Vi Vi

<1

~t
Here, we  have used integration by  parts and  Assumption 1 to

2

conclude that |0p0 (z,1) ]2 = ‘f L (@ — ) fo(p) du =

i
Fol=Vepular +1) = fo(Wprle 1)+ [, fil wt<m—u>du} Sole 1) pe - 1241
since ||fjlloc < 1. This gives us f o<1 |0:p0(z,t)|? dz < \/, which we used to obtain the

~

penultmiate line. Hence, we have shown the bound Qt’ as claimed. O

D.2 PROOFS OF LEMMAS 3 AND 4

Proof of Lemma 3. The proof broadly follows the same structure as the proof of Lemma 1. Consider
the covariance satisfies

Cov ((py(x — p1) — Oupo(, 1)) (pi(x — p2) — Oupo(z,t)), (93 (y — p1) — Aupoly, 1)) (i (y — p2) —

/ 1 (/1@ 0liedte ) = oo Zde) ([ LG 0lloent) = oo, ) de) 700 i

9apo(y,1)))

= (E ((¢}(z — 1) — 0apo(x, ) (@) (y — p1) — Bomo(y, 1)) — (0up(2,) — Dupo(x,1))*(un(y,t) — Dupo(y,t))>.
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Therefore,

[ B,

Cov ((¢i(x — p1) xpo(x ) (pi(x — p2) — Oupo(z,t)), (pi(y — 1) — Oupo(y, ) (@} (y — p12) — Aupo(y,t))) dxdy

/ / / (2, 1) B(y, 1) (wt(x — ) — upo(a, 1)) (@i(y — p) — apo(y,1t))-
(pi(z —v) fhpo(w )@y = v) = upoly, 1) f () f(v) dudv dx dy
/ / (Oup(,) — Do, )2 B(y,£)(Dep(y, ) — Doy, ))? das dy

:/ / (/ B(x,t)(wi(a:—u)—awpo(a;,t))@;(x_y)_aipo(x,t))dx>2f(u)f(y)dudy_
/ / </ (z, )et(z — pey(a — v) dx)2 d,udqu/ll </O; B(x, t)¢}(z — p)Oxpo(,t) da:)2d,u
+ (/_w B(z,t)(0xpo(z,1))? dm>2.

Looking at the third term and recalling B(x,t) = m, it is clear

2 2
(ffooo B(x,1)(0po(z,t))? dm) = (ff; so(z,t)?po(z, 1) dx) < . Similarly, the sec-
ond term satisfies

[ ([ pegite - woaman dxf »

/1 (/oo B(z, t)_(%_u)sﬂt(x — 1) 9xpo(z, 1) dx>2du

/ (/ —H) dm) (/_o; B(a,t)*(Depo(@, 1))@ (x — p) dm) dy

IN

1
1
% / / @t r — p)dr dp
<L
since f 1= t)2pu(x — p)dedp = [7_ so(x,t)*po(x,t)dedp < +. It remains to ana-
lyze the ﬁrst term For notational ease, let us denote hl,(x) = B(z,t)p,(x — v). Observe h, is
differentiable everywhere. Since ¢} (x — u) = —¢}(u — ), it follows

//(/ “%(ﬂﬁ—u)wi(fc—u)dxfdudy

/ / (2 % ho) ()| dp dv
:[1[1|(¢t*hl)(u)l2dudu

S/I / 2, (1) dp o

/ /1 |y (v — v)po(p, Z))O(Mcﬁgit—u)axpo(%mz

dp dv.
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We have used B(x,t) = ﬁ here. By Lemma 7, we have pg(u,t) =< 1 for |u| < 1. Therefore,
/ / |0 (1 = V)po (s t) — wé(u v)0apo(p; t)|° dpdy
Po(p,

s [ et ot s / [ =
// vy dudl/—i—//

— v)?[0zpo(, t)|* dpu dv

_,% p=v)t g —eln—v)

/ / t2§0t p—v) +(ut 2k or(p—v) d,udy—i—/ / —v)%dudv
< 7@ (u—V)Jr(u V)’ pr(p—v)dudy + (1 —v)dpdy
~ ) Tt 1972 Tt t5/2
S ER
In the above calculation, we have used |9;po(u, ‘ f_ By (1 — ) fo(€) d¢ \}{ and

oi(p—v)? < \/cpt( v). Hence, we have shown the bound

Cov ((¢h(z — p1) = upo(@, 1)) (@} (x — p2) — apo(, 1)), (¢1(y — p1) — Dupo(y, ) (24 (y — p12) — Dapo(y, 1))

= (E (¢ — 1) = 0upo(2, ) (@} (y — 1) — Bapo(y,1))))” — (0ap(w, 1) — Dupo(x,1))*(Dep(y, t) — Dupo(y: 1))?
1 1

AR

_ 1

=

since ¢t < 1. The proof is complete. O

~

Proof of Lemma 4. The proof follows the same cadence as the proof of Lemma 2. The covariance
satisfies

COV(( (@ = p1) = Ozpo(@, 1)) (i (x — p2) — Ozpo(@, 1)), (e (y — p1) — po(y: 1)) (9 (y — p3) — Ozpo(y,1)))
E((pt(x — p1) — 9upolz, 1)) (w1 (y — p1) — xpo(y, t)) E (@i(x — p1) — Oupo(w,t)) E(p(y — p1) — 9zpo(y,1))
( (@h(x — 1) — Bapo(,1)))* (E (¢4 (y — p1) — Bzpo(y. 1))’
E ((¢y(x — p1) = Oupo(, 1)) (@ (y — p1) — mpo(y,t)))( Oup(,t) — O2po(,1))(02p(y, t) — apo(y,t))
- (Bxp(xvt) — 0upo (2, 1)) (0up(y, 1) — Oupo(y,1))*.
Consider

/ / B(z,t)B(y,t)-

Cov (i (x — p1) — Depolz, 1)) (i (& — p2) — depo(a,1)), (¥4(y — p11) — Dapo(y, 1)) (Pi(y — p13) — Oapo(y; 1)) da dy

/ [ peomo

((pr(x — p1) = Bapo(, 1)) (@i (y — p1) — Depo(y, 1)) (Dup(2, ) — Oupo(w,t))(Dp(y, t) — upo(y, t)) dx dy
/ / 0, )(@a(,£) — Do, 1) (0up(y, 1) — Bepoly, 1))? dar dy

B /_1 (/_oo Bz, t)(ph(x — p) = Ozpo(x,1))(Oep(x,t) — Ozpo(x, 1)) d:U) 2 fu) dp — QF
< /1 (/Z Bz, )¢} (x — 1) (3up(,t) — Oupola, 1)) d:c)2 f(p) dps

~1
oo 2
+ (/_OO B(z,t)0ypo(x,t)(0sp(x,t) — Oppo(x,t)) dx) .
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Recalling B(z,t) = m, Cauchy-Schwarz yields

/_11 (/_O; Bz, t)pi(x — p)(0ep(a, t) — upo(x,t)) dm) : F(w) du

1 v 2
([ -2 oa = B )@uple )~ Qe ) )

|
—

oo T — 2 S P, — Oy Z, 2
et pas) ([ SRR e ) 0
oo T — Oypol(z, 2
- /_1/_ (Gl ’Qo(ft;?( 2 pi(x — p)f(p) dpda
_ /_oo (awp(aT,;)O(—xatgg)P;o(.T,t)) p(x,t) da

8

A

IA

QD = k= | = ‘\\,_‘\’
=N
[

B(xz,t)(0xp(z,t) — Oppo(x,t))? da

|
8

&+~

~|

Here, we have used p(x,t) < po(z,t) to obtain the penultimate line. Likewise, observe Cauchy-
Schwarz gives

(/_Z B(z,t)0zpo(w,t)(0xp(x,t) — Ouxpo(w, 1)) dx)2
_ ([T (Oap(x,t) — Dupo(x,1)) ~ Dwpo(x,1) i 2
(L™ )

—o0 pozxvt)lm 'Po(l‘»t)lz
(e ) ] gt

= Qi/ so(z,t)*po(z,t) do

— 00
<@
~ot
Therefore, we have obtained a bound of order at most QTQ The proof is complete. O

E LOW NOISE: DEFERRED PROOFS
This section contains the deferred proofs of Proposition 3 as well as Lemmas 5 and 6.

E.1 PROOF OF PROPOSITION 3

Proof of Proposition 3. Let C denote a sufficiently large universal constant, and define three regions
D, := {IER:\x|<1—\/W(1/t)},
Dy = {xeR:1—\/W(1/t)g|x|§1+C\/£},
Dy = {xeR;\x|>1+C\/Z}.

Then Fi(f || fo) = I + Ia + I3 where I; = [, |s(x,t) — so(z,t)|* po(,t) dx for j = 1,2,3.
Each term will be bounded separately.

Bounding [;: For x € D;, we have po(x,t) < 1 by Lemma 7. Moreover, 0,po(z,t) =
1 .
fo(=Dge(z + 1) = fFWpi(@ = 1) + [2, fo(p)ei(z — p)dp. Since |z[ — 1 > /Ctlog(1/t)
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and || f}|]co < 1, it is immediately clear |0, po(z,t)|* < 1. Therefore,

_ ‘azp(xat)p()(xat) - azPO(xvt)p(xat)P
L = 2 2
zeDy po(l‘,t) p(a?,t)

= / 0up(, )90 (1) — Dapolas )p(, |2 da
zeDq

po(z,t)dx

/S / \po(ﬂf,t)|2|3mp($vt) - a"cPO(zvt)‘de +/ |amp0(17,t)|2|p(33,t) 7p0(r,t)‘2dx
x€Dy xeD,

5/ |8xp(ac,t)—8wp0(x,t)\2dx+/ Ip(2, 1) — po(a, 1) dz

SR +Q (35)

where we have used p(z,t) =< po(z,t). We have also used ||h * ¢|| < ||h|| for any function
h:R—=R.

Bounding I5: For z € D, we still have po(x,t) < 1. Then Iy < fzeDz |Ozpo(z, t)p(x,t) —
Oxp(,t)po(x,t)|? do. Consider

1
Dupla 1) = f(—Dge(e +1) — F(L)gele — 1) + / e = ) dp

Bepo(z.t) = fo(~Dr(x +1) — fo(Lgulz — 1)+ / faluenle = ) dn

Therefore,
1
&wd%@ﬂ%ﬂ:JM*D%@+iM@J%fh@W&w*DM%D+¢@¢{Kf%mwdwfmdm

9up(, t)po(x,t) = f(=1)pe(z + Dpo(z,t) — fo(1)pi(z — 1)po(x, t) + po(z, t) /_1 F(wpe(x — p) dp,
and so it follows

/ 10.p0 (2, Op(a, £) — Bup(a, po(e, D) do
x€Do

S /GD le(x + 1P| fo(=1)p(e,t) = fF(=Dpo(a, 1) + [e(x = DI fo(Dp(x,t) = f()po(w, t)[ da

+ [ . (p<x, o[ 11 o= ) ) s = ) | 11 ool — 1) (1) du>2 dr.

(36)
Let us look at the second term in (36). Observe

2

/ . (pm o[ 11 il = 10fy (1) doe = po(a.t) [ 11 ool — ) (1) du) dx

2

S /xem </1 pi( — ) fo(p) du) (p(z,t) — polz, t)? dz

-1
2

+AQJMLW</2%@mmwOfWD@)dx

2

</ bl 0) ol ) + / o ( / 11 ool — ) (fyl) — f’(#))dﬂ> dx

o0

S [ e -mieoPdr+ [ - ) s e da
<Q+Q.
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2
Here, we have used o > 1 to assert (f_ll or(x — p) fi(w) du) < 1. Let us now look at the first

term in (36). Without loss of generality, take nonnegative * € D5, namely x € D, "R, . The argu-
ment for negative x is entirely analogous. It is straightforward to see | (z + 1)|2|fo(—=1)p(z,t) —

F(=Dpo(x,1)? < %e’%. Looking at the remaining term, consider that f(1) = fo(1) since f — fo
is a-Holder on R and f, fy are only supported on [—1, 1]. Thus, it follows

[f(W)po(z,t) = fo()p(z, )|

1 1
_ ‘f(l) / il = o) du— fo(1) | ete =

— (D) /1<pt(x—u)(fo D)) dy

la]—1

— k) 1
~1howP | o LI e - man+

k=0

2

L;J! /—1(f0 - f)(LaJ)(g)(M - 1)LaJ90t(£U —p)dp

where ¢ is some point between £ and 1. Furthermore, consider (fo — f)*)(1) = 0forall 1 < k <
la] since f — fo € Hq(R). Therefore,

la]—1

_ (k) 1 1 2
| 30 PR [0t s i G- D00 e da
1t 2
1A |57 [ (o= DD = (o= DD W)= ) ) d

1

5[1 ‘((fo—f)“a“(ﬁ)—(fo—f)“‘*“(l)) * 12 gy (2 — ) dp
1

5/ |‘u_1|2(a*LaJ)|'u_1|2Lanpt(x_'u)du
—1

S (tlog(1/8))".

Here, we have used the Holder property of f — f; and that nonnegative € Ds implies |z — 1| <

\/Ctlog(1/t). Therefore, we have shown

/GD el D[ fo(=1)p(a,t) = fF(=D)po(@, )] dz + ez — 1)?| fo(p(x,t) — F(L)po(a,t)|? da

1
5/ Zemt + (tlog(1/t))* da
z€D>NR

<\ B = (rnog1myee

< tafl

The argument for z € Dy NR_ is entirely analogous, so we have shown the bound t*~* for the first
term in (36). To summarize, we have thus proved

L<Q+Q +t*h 37)
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Bounding /3: When x € D3, we no longer have po(x,t) =< 1. However, since p(z,t) < po(x,t),
we have

|0up(z, t)po(z,t) — Oypo(x, t)p(z,t)|?
I3 = x,t)dx
’ ~/ac€D3 p(x,t)on(:E,t)Q pO( )

X/ ‘azp(xat)p()(xat) 7azp0(x,t)p(.’£,t)|2 dx
z€D3 Po (

x,t)3
< [ O ipte - sevmGe o + S i @pte 0 - rmte 0
S (38)
+ [ . e (p@c,t) | ela=miitu)dn=miat) [ rla=mf du) da
(39)

where we have followed the analysis of I to bound the numerator. Let us look at (38) first. Take = €
D3, and without loss of generality take z to be nonnegative, i.e. + € D3 N R Itis straightforward

to see that “"’5(1“)‘ 0 p(x,t) — f(—Dpo(z,t)> < lee@t D < e~ Tpo(x,t) where ¢ > 0 is
po(z,t)3 po(z,t) ~

a small universal constant. Therefore, f €Dy, ‘S;fo(r;rtl)‘ |fo(=Dp(z,t) — f(=1)po(x, )2 dx <

e—¢/t. Looking at the other term in (38), we can follow the same calculation in the analysis of I to
get

2

|fF(L)pola,t) — fo(L)pla, t)[* < ] /_ (o= HLDE = (fo— HLD @) (1 — 1) pp(z — 1) dp
1 2
< ‘/ = 1o — ) du

T €T — 2
< e~ s ‘/ | — 1| - e~ dp

3(z—
t

<t%e”
Therefore, by Lemma 7, we have

_1)I2
/ o = OB b (1)t 1) — F(Upolie, ) da
r€D3NR
1 _@-u?

po(x»t)
_ 3 w_1)2 12
< ¢ t \/x 1) 6%67¥ dx

S —e 1
/’rEDgﬂR+ 2mt ( Vi

3
< t"_l/Q/ (1 v 1) 1 e—(zlf,l)z i
z€D3NR 4 Vi 27t

< t(x—l/Q

Hence, we have shown (38) < e=¢/t 4 ¢to=1/2 <ol

It remains to bound (39). Observe
1 2

/IEDS m (p(wvt) /11 pr(x — p) folp) dp — polz, t) / 1 o — p) f' (1) d#) de

) (ff1 i@ — 1) () du)2
\/ZEDQ, po(

~ x,t)3
2

+/HC€D3p0é’t) (/11 sﬁt(xﬂ)(ffo)/(ﬂ)dﬂ> da

! - x 2 €T 1 ' T — _ l "
[ et —wenpie [ ([ ate == ) dn) o

34
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Here, we have used || f()||oo < 1 since o > 1. To proceed with the argument, let us write g = f — fo
and note p(x,t) — po(z,t) = (g * ¢¢)(z). Observe we have

gx el =| [ atwenta=n) du]
L1 (k) 1 1
= Z g kfl)/ (u—l)k@t(x—u)du—i—ﬁ/ gD (- D) gy (@ — p) dps
k=0 ) -1 s J-1
= ﬁ/_l(g“““(é)—gtaj(l))(u—l)tajsot(aﬁ—u) du‘

1
5/ = 171 — 1)y (2 — 1) dp
-1

1
= / I —1%pe(z — p) dp.
-1

Here, ¢ is some point between 2 and 1. We have used g(¥)(1) = O forall 1 < k < |a]. Forz € Ds,
we have || > 1+ Cv/t. Then we have

1 1
/ |1u o 1‘a§0t(l’ . )dﬂ <o 3= \ 1?2 / |,LL . 1|a 1 e,( u) du < ta/2 _3(=z[=-1)% \ 1)2
1 —1

_ V27t
Therefore,
1 _3(lz[-1)? \ 1?2
p(x po(x,t)) / —dx
/JceDa po(z,t)( (&, 1) = pol veDs  Po(, t

/ ( \a:| - 1) _Usl-1? de
r€Dg t

2l—1)2
/ SEIES) .
T\>1+C\/

A similar argument shows

2

Lo iotm (/ e =)~ o) () ) do S0,

Therefore, we have shown (39) <t + t*~1 < t*~1, Putting together our bounds, we have shown
I3 < t>~ 1, which completes the proof. O

E.2 PROOFS OF LEMMAS 5 AND 6

Proof of Lemma 5. Since E (|QK . QP) = |E(Qk) — Q|* + Var(Qx), it suffices to bound the
bias and variance separately. Writing the expansion f = >~ 051, and noting Q@ = >_2=, (6 —
0o.1)% observe E(Qr) = o0 (B — 0o.x)? and so the squared bias satisfies

2 2

BQr) = QP <| Y (B —60x)°| =| D k> k(6 —60x)°| SK*
k=K +1 k=K +1

since the Fourier coefficients of f — fj satisfy Y 7 | k?* (6 — 0px)* < 1. Moving to the variance,
consider

K
Var(Qi) = oy 3 Cov (Z V() = Oo.) (Vi (p15) — Oo.k)s D (i) — Oo.i) (e (p1s) — eo,w).
k=1 k=1

() i] rs
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If {i,7} N {r,s} = 0, the covariance vanishes due to independence. There are O(n?) choices of
indices such thati # j,7 # s, and |{i, 7} N{r, s}| = 2. Similarly, there are O(n?) choices for which
i # j,r # s,and |[{i,5} N {r,s}| = 1. Let Ny and N, denote the respective counts of choices.
Hence, by the identical distribution of the p;’s, it follows

K
Var (QK) = g)lz\/ar (Z(¢k(ﬂ1) — 0o.1) (Vi (p2) — 90,k)>

k=1

N K K
+ n22 Cov < (k1) — O0.) (P (2) = Bo.k), (1) — Bo.k) (r(s) — 90,1<:)> :
(5) i P
(40)
Each term of (40) will be bounded separately.
First term in (40): By direct calculation, we have
Var ( (Vi (k1) — bo,k) (Vi (p2) — 0o k))
K x
=D Covl((Wrlp) = Oo.k) (@n(p2) = Oo,k), (ar (1) = bou) (s (12) — Oo,p))
k; klzl
=3 (B ((Wrlpa) = Oo.k) (¥r (1) = Oo.)))* = (O — 00.1)*(Orr — 0o )
k;: k}j 1 .
<305 ([ nlo0 ~ ) ) — o) 0
k=1k'=1 1
K K 1,1
>3 / (1) — B0.0) (W (1) — o) (1) — Bo.) (o () — o) £40) () dp
k=1k=1"7"1/-1
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Here, we have used | 711 () dp = 1,9 = and {9 }72, is an orthonormal basis to conclude

B k = or k > e final line follows from _ . erefore, the first
' k() dp = 0 for k > 2. The final I fll f ney 02 k** < 1. Therefore, the fi
term in (40) is of order at most Var(Q K) S

Nn2

Second term in (40): Again, direct calculation gives

Cov ( (e (p1) = Oo.k) (Y (p2) — Oox) 72 (Y (p1) — Oo.i) (Vi (ps) — 9o,k)>
=1

I
T T T
] = Mw

Cov((¥r(p1) = Oo.) (Yr(p2) — Oo.k), (Vrr (1) — o,k ) (Vs (3) — O 1))

X
Il

1

E ((¢r(11) — 00.1) (brr (1) — Oo.x)) (O — 00.1) (Orr — Oo.1r) — (O — O0.1)*(Orr — Oo.1)?

X
Il
—

IN

</ 1(¢k( ) = Oo.k) (Y (1) — 0ok ) f (1) du) (Ox — Oo,1) (O — Oo 1)

—Oo1) (rr (1) — bo,1) du) (Ok — Oo.1) (O — Oo 1)

Nk

X
I

(r(p) — 00,1) (0 — bo,1) f

Il
\
- =

YR

NN

(r(p) — 00,1) (0 — bo,1) du

N
|\H
-~

;r.

Mw

1%

M= 11>
]~

f<
<

Lig= k/}_eok/ Vi (1) dpp — 90k'/ Yr(p d,u+90k90k’> Or — Oo,1) (Or — Oo,xr)

k=1k'=1
1 K K K
= (O — Bo.k)* + 2 (/ Y1 (p) du) (61— 60.1) Y Ook(6k — bo.k) + D D Ooxbox (0 — bo.1) (O — 0o )
-1 k=1 k=1k'=1
K K 2
S 0k —60k) +0+ <290k K —90k)>
k=1 k=1
K K
<D 0k — Oox) (Z 0 ) (Z (Or — Qo,k)2>
k=1 k=1
SQ
Here, we have used | 711 PE(p)dp = 1,9, = 5 and {9}, is an orthonormal basis to conclude

f_ll i (p) dp = 0 for k > 2. We have also used that 61 — 6y 1 = ﬁ | f = fo = 0since both f and
fo integrate to one. We have also used Cauchy-Schwarz to obtain the penultimate line. Finally, we
used Zle o.x < 1 which is obtained by noting Y%, 63 . k** < 1. Hence, we have shown the

second term in (40) is of order at most g The proof is complete. [

Proof of Lemma 6. By the bias-variance decomposition, it suffices to bound the bias and variance
separately. Note Q" = Y77, (0 — 6o 1)*. The squared bias satisfies

1B(Qk) — Q'
00 2 2 - 5
S G| = S RO 0007 SKOD| Y K0, — 60, S KA,
=R k=K+1 k=K+1
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Here, we have used the property that the Fourier coefficients of f — fj live in ©,,(L) defined in
Section 3.1, and so Y ;o | k?*(0 — 0o )* < 1.

Moving to the variance, consider

K
Var(Qx) = ZZCOV (Z A (i) A (115), Z () A (s > -

z;éj r#s

If {i,j} N {r,s} = 0, the covariance vanishes due to independence. There are O(n?) choices of
indices such that i # j,r # s, and |{, j} N {r, s}| = 2. Similarly, there are O(n?) choices for which
i # j,r # s,and |[{i,5} N {r,s} = 1. Let Ny and N, denote the respective counts of choices.
Hence, by the identical distribution of the y;’s, it follows

var (Qxc) = (N)v (Z Akml)Ak(m)) 22 Cov (Z A Ax(2), S Akml)Ak(us)) .
2 k=1

k=1 (2) k=1
(41)
Each term of (41) will be bounded separately.

First term in (41): By direct calculation, we have

(Z Ap(p1) Ar( Mz))

K
> Cov(Ak(pa) Ar(pa), Ar (1) A (12))

K
Y (B (Ax(m) Aw (12)))* = (B(Ak(1)))* (B(A (1))

2

\

) A (1) f (1) du)

K 1 1
3 / / Ay (1) A (1) A () A () (1) £ () dp

[ (ZA ) £ ) dp

Consider
2

(f () A () in)

< (w1 (1) — Oo2k) + (—mhktbor (1) — éo,2k+1))

(( "o 1 (1) = Oo2k) + (=K P (12) — 50,2k/+1)) du)2 :
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Therefore,

2

ZK: ZK: (/1 Ak (1) A (1) le)z < ZK: XK: (/1 (mktpap1 (1) — 0o 21) (k' ars 11 (1) — Oo.257) d,u>

k=1k'=1 k=1k'=1 -1

1
+ / (—mktpor (1) — Oo, 2041 ) (— 7K arr (1) — 0o 20 41) du)

2

By a similar calculation as that in the proof of Lemma 6, it follows

K K 1 R . 2
> > </ (mktp1 (1) = o,.28) (K Vopr 41 (1) = Bo,28) du)

2

1
+ (/ (—mktpor (1) — Oo.2k41) (— 7k P (1) — Oo,2041) du)

52%(%/ i () (1 du) Zk200k+<290,€)

1k'=1
K K K 2
= Z K+ K Z kQ(a_l)ég,zk + (Z k2(a_1>é§,k>
k=1 k=1 k=1
SKP+ K241
= K?

Therefore, the first term in (40) is of order at most Var(Qx) < & ;.

n?2

Second term in (41): A very similar calculation to that found in the proof of Lemma 5 (namely the
bound for the second term in (40)) with the obvious modifications will show that the second term in

(41) is of order at most %/ We omit the details for brevity.

For notational ease, let us write p, = E(Ay(p1)). Direct calculation gives

K K K
Cov <Z Ay (1) Ar(p12), ZA (1) A (p3 ) = Z Cov (A (p1)Ax(p2), A (p1) Arr (13))

k=1 =1 1k'=1

ES
Il

M) >
M=

E (Ar(p1) A (11)) prpre — piupiv

~
Il
_
I
Il
—

M=
M=

(/ " A Ae (0 F ) ) o

™~
Il
—
I
Il
-
|
_

Il
I
_ =

-~
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Following our earlier calculation bounding the first term in (40), we have

ZZ(/ Ak (1) A ( )du> PPk

k=1k'=1
K K 1
SN |/ Al ]l
k=1k'=117—1
2K+12K+1 _ 1 B 1 _ ~ ~ B
S>> (kk’ﬂ{k=kf}+k’|9o,k| / wk/w)du‘weo,w / wkw)du\ﬂoo,wo,kw) 165 — Go,0l100 — Bo.ue|
k=1 k'=1 -1 -1
2K+1 ~ ~ 2K+12K+1 ~ ~ ~ B ~ ~
< K210k — Ook” + 04+ Y > 1004001110k — Oo.k]10k — 0o x|
k=1 k=1 k’'=1
2K+1 2K+1 2K+1 ~ ~
SK2SS (B g’ (zew)(zwk—eow)
k=1 k=1
< K2Q'.

Hence, we have shown the second term in (41) is of order at most -9~ The proof is complete. [J

F AUXILIARY TOOLS

Lemma 7. Ift < 1, then

1 iflef <1
t) < 21—1)2
PEOO= (Lh pfy) e ™5 ol > 1.

x[-1

ProofofLemma 7 Consider that we have p(z, t) f fp)o(x — p) du =< fil oi(x — p)dp =

< f < Cy on its support. Consider

1 .
1 o2
/ e~ g (z,8)| < 1}.
-1 2nt

If |z| < 1, then clearly P {|N(x,t)| <1} =< 1, and so the claim is proved for this case. If |z| > 1,
consider we can use Lemma 132 from (Dou et al., 2024).

f_1 \/ﬁe

Lemma 8 (Lemma 14 (Dou et al., 2024)). If f € F, and p(z,t) = (f * ¢¢)(x), then the score
Sfunction s(x,t) = 0y logp(z,t) satisfies

2 1
< Zlog | —————
|S(ZE7 )| i t Og((2ﬂt)1/2'p(1f7t))
forallz € Randt > 0.

’Note the statement of Lemma 13 has a typo, but its proof yields the expression stated in Lemma 7.
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