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Abstract—This paper discusses efficient system designs for
Large Language Model (LLM) scaling to up to 128 trillion
parameters. We use a comprehensive analytical performance
model to analyze how such models could be trained on current
systems while maintaining 75% Model FLOPS Utilization (MFU).
We first show how tensor offloading alone can be used to
dramatically increase the size of trainable LLMs. We analyze
performance bottlenecks when scaling on systems up to 16,384
GPUs and with models up to 128T parameters. Our findings
suggest that current H100 GPUs with 80 GiB of HBM enabled
with 512 GiB of tensor offloading capacity allows scaling to
11T-parameter LLMs; and getting to 128T parameters requires
120 GiB of HBM and 2 TiB of offloading memory, yielding 75%+
MFU, which is uncommon even when training much smaller
LLMs today.

I. INTRODUCTION

We wish to consider what software and system configura-
tions might permit existing Large Language Models (LLMs),
now at about 1 trillion parameters [11], to scale with greater
efficiency to even larger model sizes. Our analysis is driven
by the continued success and efficacy of LLMs in a variety of
applications [2], [3], [7], [11], [14], [16], [21] and motivated
by the observation that Model FLOPS Utilization (MFU)—a
common metric of efficiency for assessing how well special-
ized Artificial Intelligence (AI) accelerators are utilized during
model training—can be as low as 50% or less [15].

A significant improvement to MFU will be necessary to
increase model sizes by 10× (10 trillion parameters) or higher
on architectures similar to current systems. With a space
requirement of 20 bytes per parameter, to store just the
model’s weights and optimizer state we would need more
than 200 TB of memory. For a system based on NVIDIA
H100 [12] Graphics Processing Unit (GPU) with 80 GiB of
high bandwidth memory (HBM) memory, we would need
2,500 GPUs and a fully model-parallel implementation to train
such a model. No known model-parallelism technique at this
scale would be able to provide anywhere near 50% MFU.

Motivated by this example, we aim to establish the sys-
tem limitations that prevent us from training multi-trillion
parameter models on large systems built using clusters of 8
interconnected GPUs, similar to NVIDIA DGX and HGX.
We start by presenting a methodology for choosing well
structured multi-trillion parameter LLMs. Then, using our own
fast analytical performance model of transformer-based LLM
training, we search a space of billions of system configurations
and execution strategies. This paper explains a few of our
findings, which may be summarized as follows.

1) Training a hundred-trillion parameter LLM is feasible
but requires a secondary memory pool up to 1 TiB per
GPU with a bandwidth of 100 GB/s bidirectionally.

2) Strong scaling for a 1T model stalls around 12,288
GPUs, as matrix multiply becomes small, inefficient, and
unable to overlap with communication.

3) Scaling beyond 10T models requires more first-level
memory, with HBM size scaling with model size.

4) Growing model and system size beyond 10T parameters
and 10k GPUs demands a larger fast-network domain
and more targeted software optimizations.

Overall, we find it will be critical to co-design the LLM, soft-
ware, and hardware to attain high performance and efficiency.

II. EXPERIMENTS METHODOLOGY

For performance estimation we use Calculon [5], a fast
open source analytical model of LLM training performance
that we developed.1 Calculon can estimate the time and
resource usage for a given LLM, system configuration, and
software execution strategy in about 1 millisecond, allowing
the exploration of large design spaces having many billions
of such configurations. Calculon models LLM training with
tensor parallelism (TP), pipeline parallelism (PP), and data
parallelism (DP), allowing searches to determine optimal split-
parallelism configurations. The system specification describes
an accelerator-based distributed system with a two-level mem-
ory hierarchy connected to multiple networks shown on Fig. 1.
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Fig. 1. Node architecture used for system modeling.

1The full description of Calculon will be available in a future paper.
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To validate the accuracy of its modeling, Calculon was
compared against actual runs of Megatron LLM on NVIDIA’s
A100-based Selene supercomputer [8]. Calculon achieves a
high level of accuracy, with an average error of 3.4% and a
maximum error of 7.25% on these validation runs as presenetd
in Table I.

TABLE I
VALIDATION RESULTS COMPARING CALCULON’S PERFORMANCE
PREDICTION TO ACTUAL RUNS ON THE A100-BASED SELENE [8]

22B 175B 530B 1T

Full Selene 1.42 18.13 49.05 94.42
Calculon 1.43 18.30 50.46 91.70

Delta -0.40% -0.94% -2.88% -2.88%

Seq+Sel Selene 1.10 13.75 37.83 71.49
Calculon 1.17 13.92 35.09 67.74

Delta -6.36% -1.24% 7.25% 5.24%

We perform experiments that vary system size, model
size, memory capacity, bandwidth, and NVLink domain sizes,
working with the FP8 data format supported by H100. For each
system, we pick an execution strategy that considers multiple
state-of-the-art software optimizations [8], [11], [17]–[19] and
picks the best-performing one. Given the large search spaces,
we cannot present our experiments fully and instead focus on
a few of the most important trends we have discovered.

Our analysis assumes a networked system of compute nodes
whose node-architecture is depicted in Fig. 1. It is similar
to DGX or HGX in structure and connectivity. The only
difference is the addition of offload memory attached to GPU
in addition to HBM. Such memory can be connected via
compute express link (CXL), or hosted by Central Processing
Unit (CPU) and made directly accessible from GPU, similar
to NVIDIA’s Grace-Hopper [13].

III. SELECTION OF LLM CONFIGURATIONS

An important parameter is the LLM’s aspect ratio, defined
as the ratio between the hidden dimension of the transformer
block to the number of blocks (a.k.a., transformer layers).
Some recent research claims the ideal aspect ratio is a constant
128 [6], while others claim that the aspect ratio should increase
exponentially with the number of blocks [9]. Both of these
analyses were performed on LLMs 2 to 5 orders of magnitude
smaller than today’s production LLMs. In the absence of
consensus among the LLM experts, we follow the apparent
current practice suggested by Table II, which is to extrapolate
aspect ratios linearly with the number of transformer blocks.
Nevertheless, our analysis method would work for any scaling
function.

In scaling and shaping the LLM, one challenge is mapping
the models onto the available hardware. Some models, such
as GPT-3 [2] with its 175 billion parameters across 96 blocks,
are designed with many dimensions as powers of two or
multiples of powers of two, making them well-suited to typical
system designs that are also commonly built in powers of
two. Other models are not as easy to map. Turing-NLG [20]
has 530 billion parameters across 105 blocks, which results in

TABLE II
ASPECT RATIOS OF CURRENT LLMS.

Name Hidden # Blocks Aspect Ratio

GPT2-1.5B [16] 1600 48 33.3
Jurassic-6.5B [10] 4096 32 128

PaLM-8B [3] 4096 32 128
GPT3-13B [2] 5140 40 128.5

Megatron-40B [11] 6144 40 153.6
PaLM-62B [3] 8192 64 128

Chinchilla-64B [4] 8192 80 102.4
GPT3-175B [2] 12288 96 128

Jurassic-175B [10] 13824 76 181.9
Megatron-309B [11] 16384 96 170.7

TuringNLG-530B [20] 20480 105 195
PaLM-540B [3] 18432 118 156

Megatron-1T [11] 25600 128 200

fewer possible mappings. PaLM [3] has 540 billion parameters
across 118 blocks, a prime number multiplied by 2, which
results in even fewer.
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Fig. 2. Performance comparison of two 11T models.

To see the impact of such choices, Fig. 2 compares two
similarly sized models of about 11 trillion parameters. One
has a power of two number of blocks (256) and the other
has a prime number multiplied by two (254). When mapped
onto 4,096 processors, the 256-block model yields 15,612,832
possible mappings while the 254-block model yields only
842,080, or 18.5× fewer. Consequently, the 256-block model
ends up being 36% faster, with an MFU of 75% compared to
the 254-block model’s MFU of 54%.

Thus, we propose scaling the number of blocks and attention
heads with a step size that is a power of two. Doing so makes
it easier to configure tensor and pipeline parallelism, yielding
better overall performance. Fig. 3 summarizes the model sizes
for a variety of aspect ratios. These models all result in many
millions of mapping solutions on various common system
designs and across many system sizes.

The hidden step size shown in Fig. 3 is 8,192. However,
when finding the optimal (closest to ideal aspect ratio), we
use a step size of 1,024. For the remainder of this paper we
use the model configurations found in Table III. All models
have a sequence size of 8,192, the feed forward size is fixed
to 4× the hidden size, and the number of attention heads is
equal to the number of blocks. For all experiments we limited
the maximum batch size to 3,072.
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Fig. 3. Linear scaling of the hidden size with number of transformer blocks, in
steps of 8,192 for hidden size and 32 for number of blocks. Each cell contains
model size and hidden to blocks ratio. Red color represents narrower models,
blue color represents wider ones. Optimal choices are represented by white
color in the frame, model size and ratio in bold.

TABLE III
TWELVE MULTI-TRILLION PARAMETER LLMS, FROM 1T TO 128T.

Name Hidden Attn Size # Blocks Aspect Ratio

1T 24,576 192 128 192
2T 32,768 205 160 204.8
4T 40,960 213 192 213.3
7T 50,176 224 224 224

11T 60,416 236 256 236
18T 70,656 245 288 245
26T 81,920 256 320 256
37T 94,208 268 352 267.6
53T 106,496 277 384 277.3
72T 119,808 288 416 288
96T 134,144 299 448 299.4
128T 148,480 309 480 309.3

1T 2T 4T 7T 11T 18T 26T 37T 53T 72T 96T128T
model sizes

0

20

40

60

80

100

Ef
fic

ie
nc

y,
 %

(a) Without offloading
Total Efficiency
Compute Efficiency
System Efficiency

1T 2T 4T 7T 11T 18T 26T 37T 53T 72T 96T128T
model sizes

0

20

40

60

80

100

Ef
fic

ie
nc

y,
 %

(b) With offloading

Total Efficiency
Compute Efficiency
System Efficiency

Training efficiency on 4096 GPUs 

Fig. 4. Comparison of LLM scaling on 4,096 GPUs with and without offload
memory. Such memory enables high training efficiency beyond 100T models.

IV. TENSOR OFFLOADING FOR LLM SCALING

While scaling out LLMs using standard DGX/HGX H100s
with 8 NVLink-connected GPUs is possible, achieving high
performance is not trivial. See, for instance, Fig. 4a, which
shows training efficiency while scaling up model size on a
fixed system size of 4,096 GPUs. Even the smallest model
size, 1T, reaches only 60% efficiency and rapidly decays until
18T where it can no longer run. The main scalability issue
is the lack of memory to store weights and activations during
training. This in turn forces the use of activation recomputation
and higher model parallelism. A large pipeline parallelism with
a lack of spare memory forces an excessive time overhead
in the form of a pipeline bubble. A large tensor parallelism
beyond the NVLink size of 8 increases communication time
due to a lack of bandwidth.

These issues can be addressed by a secondary memory pool,
where unused tensors from inactive transformer blocks can
be transferred and retrieved as needed [19]. This could be
implemented as CPU host memory, an array of PCIe-attached
SSDs, or CXL-attached memory. We consider training effi-
ciency when using tensor offloading in Fig. 4b, where the per-
GPU capacity is 1 TiB at infinite bandwidth. Evidently, with
enough offloading capacity and infinite offloading bandwidth,
we could train models at least up to 128T parameters.

1T 2T 4T 7T 11
T

18
T

26
T

37
T

53
T

72
T

96
T

12
8T

0
10
20
30
40
50
60
70
80
90

100

Ef
fic

ie
nc

y,
 %

4096 GPUs, offload memory at 50GB/s

1T 2T 4T 7T 11
T

18
T

26
T

37
T

53
T

72
T

96
T

12
8T

0
10
20
30
40
50
60
70
80
90

100

Ef
fic

ie
nc

y,
 %

16384 GPUs, offload memory at 50GB/s

1T 2T 4T 7T 11
T

18
T

26
T

37
T

53
T

72
T

96
T

12
8T

0
10
20
30
40
50
60
70
80
90

100

Ef
fic

ie
nc

y,
 %

4096 GPUs, offload memory at 100GB/s

256GiB offload mem 512GiB offload mem 1024GiB offload mem 2048GiB offload mem

1T 2T 4T 7T 11
T

18
T

26
T

37
T

53
T

72
T

96
T

12
8T

0
10
20
30
40
50
60
70
80
90

100
Ef

fic
ie

nc
y,

 %

16384 GPUs, offload memory at 100GB/s

Relative efficiency of offload memory compared to infinite bandwidth case

Fig. 5. Efficiency of offload memory compared to infinite offload bandwidth.

The effect of offloading capacity is compared in Fig. 5
for 256 GiB, 512 GiB, 1 TiB, and 2 TiB. We see the rela-
tive slowdown of using 50 GB/s and 100 GB/s of offloading
bandwidth per direction compared to infinite bandwidth. At
50 GB/s on a 4,096 GPUs system, significant slowdowns occur
with increasing model sizes. At 100 GB/s, the majority of the
systems nearly match the performance of infinite bandwidth,
suggesting it is a sufficient target bandwidth.

Importantly, these tensor offload-memory requirements are
within reach of current technology. Memory pools based on
CXL 1.1 and CXL 2.0 with a capacity up to 2 TiB and
bandwidth up to 89.6 GB/s are already available [1]. Systems
based on NVIDIA’s Grace-Hopper [13] have up to 512 GiB
of Low-Power Double Data Rate (LPDDR) memory with up
to 546 GB/s bandwidth behind a CPU-to-GPU link, far above
our offloading-requirement estimates.
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Fig. 6. Training efficiency with model and system scaling using offloading
memory with infinite bandwidth. Green dash line indicates 75% MFU, red
dash line indicates 50% MFU.

The efficiency of training with offloading appears in Fig. 6
for an offload bandwidth of 100 GB/s and capacities of
256 GiB, 512 GiB, 1 TiB, and 2 TiB across 4,096, 8,192,
12,288, and 16,384 GPUs. The major trends shown are:

• Small models on large systems and large models on small
systems lead to low efficiency.

• Good efficiency occurs rarely at 256 GiB.
• For 8k, 12k, and 16k GPUs, 512 GiB is mostly sufficient.
• A 1 TiB capacity is nearly identical to 2 TiB.

V. STRONG SCALING
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Fig. 7. Batch time and memory consumption break down for 1T model strong
scaling from 4,096 to 16,384 GPUs.

In this section we analyze the strong scaling of the 1T pa-
rameter model from 4,096 to 16,384 GPUs inspecting NVLink
domain sizes of 8 and 16. For each system, we use Calculon
to perform an exhaustive search over possible configurations,
typically 10-30 million configurations per LLM-system pair.
The results appear in Fig. 7. We analyzed all configuration
associated parameters such as TP, PP, DP split, microbatch
size, pipeline interleaving, among others, and summarize no-
table trends below.

Scaling up to 12,288 GPUs fares well but suffers at 16,384
GPUs. An NVLink size of 8 is sufficient up to 12,228 GPUs
but 16 is needed for higher efficiency at 16,384 GPUs. Adding

extra processors requires assigning them to tensor, pipeline, or
data parallelism, but each incurs some resource cost in time
or memory. We identified several reasons for a lack of scaling
at 16,384 GPUs.

1) When increasing TP the tensor may be divided too finely
to maintain a high compute efficiency on the GPU.

2) When increasing TP the size of each message may
become small enough to become latency dominated.

3) When attempting to overlap TP communication and
computation, increasing TP reduces the computation size
but communication size remains the same. At particu-
lar FLOPs/bandwidth ratios, the communication-hiding
decreases, reducing efficiency.

4) When overlapping TP communication and computation,
to sustain the high bandwidth of NVLink the GPU
must dedicate many cores to communication reducing
its computational speed. Adding a specialized direct
memory access (DMA)-like engine for communication
would eliminate this overhead allowing optimal overlap.

5) Increasing PP either increases the pipeline bubble over-
head or requires more memory for higher levels of
interleaving to reduce the pipeline bubble.

6) Increasing DP increases memory due to replication.
7) We constrain our models to have a maximum batch size

of 3,072 to conserve the convergence properties of prior
studies. This choice limits the maximum available DP
to 3,072, so that the rest must be either TP or PP.

VI. SCALING MODELS BEYOND 10T PARAMETERS
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Fig. 8. Efficiency and memory consumption for LLM training on 4,096 GPUs.
Green dash line indicates 75% MFU, red dash line indicates 50%. Memory
consumption presented for the 120 GiB HBM and 2 TiB offload memory.

We also analyze the effects of increasing the model size to
128T parameters for a system with a fixed number of GPUs.
Fig. 8 shows the results for 4,096 GPUs with 80 GiB and
120 GiB of HBM and 256 GiB, 512 GiB, 1 TiB, and 2 TiB of
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offloading capacity. While scaling model training on 4,096
GPUs works well with 80 GiB of HBM for models up to
11T parameters, the HBM size must increase to 120 GiB to
scale further, even when given extra offloading memory. The
reason is that there must be enough HBM memory to hold
two transformer blocks—the one used in computation and
the one needed for offloading and prefetching—even with
offloading. During model scaling, the transformer block size
grows mostly due to weights and activations. Unsurprisingly,
offload memory capacity also needs to scale accordingly.

Our experiments indicate that growing the HBM size to
120 GiB and offload memory to 2 TiB is enough to scale to
100T parameters. Past 11T parameter, models occupy most of
the available memories. This indicates that further efficiency
improvements are possible, either by providing more memory,
or by increasing the size of the NVLink domain to reduce
per-GPU weight space and increase local microbatch size.
These experiments show that the proposed LLMs can scale up
to 128T parameters while maintaining an MFU above 75%,
which is better than typically seen on current systems for much
smaller LLMs.

VII. CONCLUSION

Our co-design analysis reveals that it is feasible to train
a well-structured multi-trillion parameter LLM efficiently at
75% MFU or higher with an appropriate choice of software
and hardware settings, including a secondary memory pool
for tensor offloading. We identify both optimal configuration
strategies and fundamental limitations under strong scaling
(fixed model, increasing numbers of GPUs). And for a fixed
system with 4,096 GPUs, we show how an 11T parameter
model could be trained with only tensor offloading, as well as
how to scale to 128T parameters using a 120 GiB HBM and
a 2 TiB offloading memory.
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