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Abstract

Graph matching, usually cast as a discrete Quadratic Assignment Problem (QAP),
aims to identify correspondences between nodes in two graphs. Since QAP is NP-
hard, many methods its discrete constraints by projecting the discrete feasible set
onto its convex hull and solving the resulting continuous problem. However, these
relaxations inevitably enlarge the feasible set and introduce two errors: sensitivity
to numerical scales and geometric misalignment between the relaxed and original
feasible domains. To address these issues, we propose a novel relaxation framework
to reformulate the projection step as a Frobenius-Regularized Linear Assignment
(FRA) problem. This formulation incorporates a tunable regularization term to
curb the inflation of the feasible region and ensure numerical scale invariance. To
solve the FRA efficiently, we introduce a scaling algorithm for doubly stochastic
normalization. Leveraging its favorable computational properties, we design a
theoretically grounded, accelerated mixed-precision algorithm. Building on these
components, we propose Frobenius-Regularized Assignment Matching (FRAM),
which approximates the QAP solution through a sequence of FRA problems. Ex-
tensive CPU experiments show that FRAM consistently outperforms all baselines.
On GPUs, with mixed precision, FRAM achieves up to a 370× speedup over its
FP64 CPU implementation without sacrificing accuracy.

1 Introduction

Graph matching aims to find correspondences between graphs that share potential relationships. It can
be used in various fields of intelligent information processing, e.g., image similarity detection [33],
graph similarity computation [19, 20], knowledge graph alignment [40], autonomous driving [36],
vision-language model alignment [30], point cloud registration [10], deep neural network fusion [25],
multi-object tracking [14], and COVID-19 disease mechanism study [13]. However, graph matching
is an NP-hard discrete optimization problem [32] and computationally prohibitive for large-scale
instances.

To scale up the graph matching problem, many relaxation methods were proposed [2, 5, 12, 21,
27, 34]. These methods relax the discrete problem to a continuous domain and then project the
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continuous solution back to the original discrete domain. The doubly stochastic projection is a typical
representative and frequently used recently [27, 43]. This projection maps the gradient matrix onto
the convex hull of the original domain. However, such relaxations inevitably enlarge the feasible
region and result in two sources of errors: (1) geometric misalignment between the relaxed and
original domains, which undermines the quality of the recovered integer solution; and (2) the loss of
numerical scale invariance due to the projections in the nonconvex setting. Such limitations motivate
our current research.

Our contributions include

1. Theoretical results: We extend the doubly stochastic projection to the FRA by introducing
a tunable regularization parameter that controls relaxation-induced distortion. We provide a
thorough analysis of how the regularization parameter affects performance, and address the
numerical scale sensitivity through an integrated normalization mechanism.

2. Algorithm: we propose FRAM, a graph matching algorithm, that solves the QAP approxi-
mately by iteratively solving a sequence of FRA problems. Each FRA problem can be solved
efficiently by our proposed Scaling Doubly Stochastic Normalization (SDSN). Empirical
evaluations show that FRAM achieves superior performance compared to state-of-the-art
baselines.

3. Computing acceleration: We develop a theoretically grounded mixed-precision implemen-
tation of FRAM. Compared to CPU-based double-precision computation, it achieves up to a
370× speedup on an NVIDIA RTX 4080 SUPER GPU across some benchmark problems,
with at most a 0.2% drop in accuracy. To the best of our knowledge, this is the first graph
matching algorithm built upon a theoretically grounded mixed-precision design.

2 Related Works

Related graph matching algorithms. We categorize related graph matching algorithms into three
representative classes. (1) Methods based on doubly stochastic optimization: these works employ
continuous relaxations. Graduated Assignment (GA) [12] pioneers this approach via a sequence of
linear approximations. Adaptive softassign [34] improves GA by automatically tuning an entropic
parameter. IPFP [22] projects gradients onto permutations, while DSN [43] finds the nearest doubly
stochastic matrix. DSN is adopted by [27] for gradient projection. (2) Spectral-based methods:
these approaches leverage spectral properties. Typical methods [21, 35] recover assignments from
the leading eigenvector. The method in [5] adds affine constraints to improve accuracy while
maintaining speed. Recent research [16] connects eigenvectors to multiscale structural features.
(3) Methods based on optimal transport: these techniques formulate graph matching as an optimal
transport problem. GWL [39] measures graph distance via Gromov-Wasserstein discrepancy, while
S-GWL [38], a scalable variant, applies a divide-and-conquer strategy to enhance efficiency. For a
comprehensive survey, we refer readers to [8, 41].

Mixed-precision computing is a sophisticated technique for accelerating computationally intensive
applications. It has been successfully applied to solving linear systems [4, 15] and large-scale AI
models such as DeepSeek-V3 [24]. However, little attention has been paid to its use in the graph
matching context, partly due to a lack of theoretical understanding. The main challenges in mixed-
precision computing stem from (1) the limited range of lower-precision formats, which increases
the risk of overflow or underflow, and (2) rounding errors introduced by lower-precision operations,
which may lead to error propagation [28]. See [17] for more details on mixed-precision algorithms.
This paper provides theoretical guarantees for a mixed-precision graph matching algorithm, achieving
both numerical stability and computational speedups.

3 Preliminaries

An undirected attributed graph G = {V,E,A, F} consists of a finite set of nodes V = {1, . . . , n}
and a finite set of edges E ⊂ V × V . The matrix A is a nonnegative symmetric edge-attribute matrix
whose element Aij specifies the attribute of the edge between nodes i and j. The i-th row of the
feature matrix F represents the attribute vector of node i.
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Matching matrix. Given two attributed graphs G = V,E,A, F and G̃ = Ṽ , Ẽ, Ã, F̃ , we first assume
that the two graphs have the same number of vertices, i.e., n = ñ, for simplicity. A matching matrix
M ∈ Rn×n encodes the correspondence between nodes: Mĩi = 1 if node i in G matches node ĩ in G̃,
and Mĩi = 0 otherwise. Under the one-to-one constraint, a matching matrix is a permutation matrix.
The set of permutation matrices is denoted as Πn×n = {M : M1 = 1,MT1 = 1,M ∈ {0, 1}n×n},
where 1 represents vectors with all ones.

Continuous relaxation. The graph matching problem is typically formulated as a QAP that is
NP-hard [11]. A common strategy to handle such discrete problems is relaxation. It first finds a
solution on Dn×n := {N : N1 = 1, NT1 = 1, N ≥ 0} which is the convex hull of the original
domain. The relaxed problem is then formulated as

N∗ = arg max
N∈Dn×n

Φ(N), Φ(N) = 1
2 tr(N

TANÃ)︸ ︷︷ ︸
Edges’ similarites

+λ tr(NTK)︸ ︷︷ ︸
Nodes’ similarites

,
(1)

where λ is a parameter, K = FF̃T , and tr(·) represents the trace operator. And then N∗ is
transformed back to the original discrete domain Πn×n by solving a linear assignment problem:

M = arg min
P∈Πn×n

∥P −N∗∥F . (2)

The matrix M is the final solution. Although relaxation allows the use of continuous optimization,
the problem (1) is non-convex and thus remains NP-hard [31]. Hence, existing algorithms typically
aim to obtain high-quality approximate solutions within acceptable time. Further discussions on
convex relaxations and their constructions can be found in [1, 6, 9].

The projected fixed-point method. Many existing methods [5, 12, 22, 27, 34] adopt a similar
iterative framework to efficiently approximate the objective in (1):

N (t+1) = (1− α)N (t) + αD(t),
D(t) = P(∇Φ(N (t))) = P(AN (t)Ã+ λK),

(3)

where α is a step-size parameter and P(·) is an operator which maps the gradient matrix onto a certain
set. When the solution domain is relaxed to the convex hull of the original domain (i.e., the set of
doubly stochastic matrices), a natural choice for P(·) is the doubly stochastic projection [27, 43]. It
finds the closest doubly stochastic matrix to the gradient matrix ∇Φ(N (t)) in terms of the Frobenius
norm:

PD(X) = arg min
D∈Dn×n

∥D −X∥F . (4)

The resulting algorithm is the Doubly Stochastic Projected Fixed-Point method (DSPFP) [27].

4 Projection to Assignment

We first propose a regularized linear assignment formulation by examining the numerical sensitivity
of the doubly stochastic projection, and then analyze how the regularization parameter affects
performance.

4.1 Doubly stochastic projection to assignment

It can be observed that the solution to the quadratic assignment problem (1) also maximizes wΦ(N),
where w is a positive scaling constant. This reflects the numerical scale-invariant property of the
objective. However, the doubly stochastic projection PD(·) fails to preserve this property:

PD(X) ̸= PD(wX), for X ∈ Rn×n
+ . (5)

Since the objective function is non-convex, this sensitivity can cause the projection-based algorithm
to converge to different points under different scalings.

To elaborate the sensitivity, consider:

PD(wX) = arg min
D∈Dn×n

∥D − wX∥F = arg min
D∈Dn×n

∥D − wX∥2F . (6)
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By expanding the quadratic norm, we have
∥D − wX∥2F = ⟨D,D⟩ − 2⟨D,wX⟩+ ⟨wX,wX⟩, (7)

where ⟨·, ·⟩ represents the Frobenius inner product. Since ⟨wX,wX⟩ is independent of D, it does not
affect the optimization. Thus,

PD(wX) = arg min
D∈Dn×n

⟨D,D⟩ − 2w⟨D,X⟩. (8)

As a result, the problem reduces to

PD(wX) = arg max
D∈Dn×n

⟨D,X⟩ − 1

2w
⟨D,D⟩. (9)

⟨D,X⟩ represents an assignment score.

By referring back to the update formula (3), X corresponds to the gradient matrix ∇Φ(N (t)):

PD(w∇Φ(N (t))) = arg max
D∈Dn×n

⟨D,∇Φ(N (t))⟩ − 1

2w
⟨D,D⟩. (10)

= arg max
D∈Dn×n

⟨D,AN (t)Ã+ λK⟩ − 1

2w
⟨D,D⟩ (11)

= arg max
D∈Dn×n

tr(DTAN (t)Ã) + λ tr(DTK)− 1

2w
⟨D,D⟩ (12)

Intuitively, higher assignment scores in (12) lead to larger objective values (1) during the iterative
process. As w increases, the projection process emphasizes optimizing the objective assignment score
(1). Conversely, when w decreases, the significance of the objective assignment score diminishes.
This finding characterizes how the scaling constant w affects the optimization process.

Motivated by the above observation, we propose converting the uncontrollable scaling constant w
of the problem into a controllable modeling parameter θ, as follows. Specifically, we extend the
doubly stochastic projection to a Frobenius-regularized linear assignment problem by introducing a
modeling parameter θ, leading to the following formulation.
Theorem 1. The solution to the scaled doubly stochastic projection problem

Dθ
X = arg min

D∈Dn×n

∥D − θ
2X∥2F (13)

is equivalent to the solution of a Frobenius-regularized linear assignment problem:
Dθ

X = arg max
D∈Dn×n

Γθ(X), Γθ(X) = ⟨D,X⟩ − 1
θ ⟨D,D⟩. (14)

Furthermore, the flexibility of this formulation allows us to normalize the input matrix X by dividing it
by max(X), thereby eliminating the influence of the scaling constant w. Consequently, the weighting
of the assignment term during optimization is entirely controlled by θ.

4.2 Convergence to optimal assignment

To investigate the properties of FRA, we analyze the limiting behavior of Dθ
X as θ approaches infinity

and 0.
Theorem 2. Let X ∈ Rn×n

+ and F be the convex hull of the optimal permutation matrices for the
linear assignment problem with X . As θ → ∞, the matrix Dθ

X converges to a unique matrix D∗ ∈ F ,
where D∗ is the unique solution to minD∈F

1
θ ⟨D,D⟩.

This theorem reveals a key advantage of FRA: unlike standard linear assignment solvers [22] that
return an optimal permutation and discard others, Dθ

X approximates a convex combination of all
optimal permutations, preserving richer solution information.
Corollary 1. If there is only one optimal permutation, then Dθ

X converges to the corresponding
permutation matrix.

When Dθ
X corresponds to the unique permutation matrix, our algorithm becomes equivalent to

IPFP [22] and the classical Frank–Wolfe algorithm [37]. In contrast, when multiple optimal per-
mutations exist, our matching algorithm can capture a richer set of high-quality matches than these
two methods [22, 37]. However, if θ is chosen too small, the resulting matrix Dθ

X may fail to reveal
high-quality correspondences, as the following proposition demonstrates.

Proposition 1. As θ → 0, the matrix Dθ
X converges to the matrix 11T

n .
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4.3 Influence of the parameter

To analyze the impact of the parameter, we quantify the solution quality through a distance metric
between Dθ

X and D∞
X for a given matrix X ∈ Rn×n

+ . The total assignment score ⟨Dθ, X⟩ scales
with the problem size. To enable scale-independent error analysis, we define a normalized assignment
error to quantify the performance gap:

ϵθX =
1

n

(
⟨D∞

X , X⟩ − ⟨Dθ
X , X⟩

)
(15)

This normalization effectively decouples the approximation error from the problem scale, providing
a stable metric to assess the quality of Dθ

X across different numbers of nodes—like how the Mean
Squared Error (MSE) serves as a scale-independent alternative to the Sum of Squared Errors.
Proposition 2. For a matrix X ∈ Rn×n

+ , the following inequality holds:

ϵθX ≤ 1
θ . (16)

This proposition establishes that the performance gap between Dθ
X and D∞

X is bounded by 1/θ. This
theoretical bound guarantees the stability and accuracy of our approximation scheme, ensuring that
the solution asymptotically approaches optimal performance as θ becomes sufficiently large.

Figure 1 illustrates how the matrix Dθ
X evolves as θ varies. When θ is small, the matrix entries are

nearly uniform. As θ increases, Dθ
X progressively approaches a permutation matrix that lies within

the original feasible domain of the QAP. This observation demonstrates that a larger θ effectively
suppresses the bias introduced by relaxation. By selecting an appropriate value of θ, the intermediate
solution during the matching process remains confined to a relaxed region that stays close to the
original feasible domain of graph matching problems.

(a) θ = 0.1 (b) θ = 1 (c) θ = 10

Figure 1: Visualization of Dθ
X under different values of θ. The color of each cell represents the

matrix entry, with darker shades indicating larger values.

When FRA serves as a component within the graph matching framework (3), increasing θ generally
improves the per-iteration matching score by enforcing sharper correspondences. However, an
excessively large θ may slightly degrade the final matching performance due to premature convergence.
This phenomenon can be interpreted from a probabilistic perspective, where each entry in the doubly
stochastic matrix Dθ

X represents the probability of a potential correspondence. A large θ may lead to
overconfident assignments at early stages, thereby hindering the exploration of alternative matching
possibilities.

5 Scaling Doubly Stochastic Normalization

This section introduces the Scaling Doubly Stochastic Normalization (SDSN) method to efficiently
solve the FRA. The method is further adapted to achieve low-precision acceleration, accompanied by
theoretical guarantees.

5.1 Doubly stochastic normalization

Due to the equivalence between FRA and the scaling doubly stochastic projection, FRA admits a
solution via tailored modifications of standard projection algorithms. Zass and Shashua [43] solved
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the doubly stochastic projection (4) by alternately solving two subproblems:

P1(X) = arg min
Y 1=Y T 1=1

∥X − Y ∥F , P2(X) = argmin
Y≥0

∥X − Y ∥2F (17)

The von-Neumann successive projection lemma [29] states that P2P1P2P1 . . .P2P1(X) converges
to PD(X). The derived doubly stochastic normalization (DSN) [43] for X ∈ Rn×n

+ works as follows.

X̃(k) = P1

(
X(k−1)

)
, X(k) = P2

(
X̃(k)

)
, (18)

P1(X) = X +

(
I

n
+

1TX1

n2
I − X

n

)
11T − 11TX

n
, P2(X) =

X + |X|
2

, (19)

where I is the n × n identity matrix. It alternately applies row and column normalization P1 and
non-negativity enforcement P2 for the doubly stochastic property. Each iteration requires O(n2)
operations. The DSN algorithm converges linearly, meaning that there exists a constant 0 < c < 1

such that c = lim
k→∞

∥X(k+1)−X∗∥
∥X(k)−X∗∥ .

5.2 Convergence criterion

An explicit convergence criterion is notably absent in DSN. Zass and Shashua [43] terminated the
iterations once the updated matrix became doubly stochastic. However, this approach is computation-
ally expensive and thus inefficient for large-scale tasks. In contrast, Lu et al. [27] fixed the number
of iterations to 30 to improve efficiency, but this heuristic did not guarantee that the output matrix
remained doubly stochastic.

Figure 2: Convergence process of SDSN.

We propose a criterion to quantify the deviation be-
tween the current matrix and the ideal solution. To
ensure dimension-invariant analysis and computational
efficiency, we define a dimensional scaled error as

γ(X(k)) =
1

n

∑
i,j

X
(k)
ij − 1 =

1TX(k)1

n
− 1. (20)

Normalization by n ensures that the metric remains com-
parable across matrices of different sizes. A detailed
derivation of the convergence condition is provided in
Appendix B, and the overall process is illustrated in
Figure 2.

5.3 Number of iterations

The SDSN is summarized in Algorithm 2. We analyze the influence of the parameter θ on the
number of SDSN iterations in the following theorem, which shows that the iteration count grows
proportionally with the value of θ.

Proposition 3. For X ∈ Rn×n
+ , the SDSN algorithm requires⌈

ln

(
ϵ

θ(∥X∥F + n)

)
1

ln(c)

⌉
iterations to produce a solution X∗ that satisfies ∥X∗ −Dθ

X∥F < ϵ where Dθ
X is the exact solution

and c ∈ (0, 1) is the convergence rate constant of the DSN algorithm.

5.4 Robustness to rounding error

Our method leverages a unique property of SDSN, where the effect of rounding errors diminishes
over iterations. This enables theoretically guaranteed low-precision acceleration on modern GPUs.
The preservation of accuracy is theoretically guaranteed, ensuring the stability and correctness of the
entire process.
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Theorem 3. In the SDSN algorithm, the k-th iterate Xk can be split as Xk = X̂k +∆Xk, where
∆Xk represents the rounding error. Then, the projection operator satisfies

P1(Xk) = P1(X̂k) + P3(∆Xk),

where P3(∆X) is the solution to the following minimization problem:

P3(∆X) = argmin
Y

∥∆X − Y ∥2F , s.t. Y 1 = 0, Y ⊤1 = 0.

The subsequent transformations of the error term ∆Xk can be expressed as

P2P3 · · · P2P3(∆Xk),

which asymptotically converges to the zero matrix 0n×n.

This property of SDSN prevents the accumulation of rounding errors arising from both the gradient-
matrix computation in (3) and the subsequent SDSN operations that correspond to ∆X0 and
{∆Xk}k≥1. Therefore, this property enables efficient low-precision computation with negligible loss
of accuracy.

6 Matching Algorithm

We propose the Frobenius-Regularized Assignment Matching (FRAM) algorithm2, which approx-
imates the QAP via a sequence of FRA problems. Each FRA is efficiently solved by the scalable
SDSN solver. The overall procedure of FRAM is summarized in Algorithm 1.

Mixed-precision Design on GPU. The selection of numerical precision for each operation is detailed
in inline code annotations. Steps 2-3 perform matrix scaling enabling stable low-precision acceleration
in steps 5 and 6. This scaling adjustment is offset by the normalization in SDSN. The subsequent steps
are conducted in double precision to compensate for the accuracy degradation. Further implementation
details are provided in Appendix D.

Complexity. For n = ñ, steps 2–3 require O(n2) operations. Step 5 requires O(n3) operations
per iteration, regardless of whether fast or sparse matrix computations are used. Step 6 requires
O(ln2) operations where l denotes the number of iterations in SDSN. Step 10 transforms the doubly
stochastic matrix N back to a matching matrix M using the Hungarian method [18], which has a
worst-case complexity of O(n3). In practice, the cost is significantly lower because N is sparse
in most cases. In short, this algorithm has time complexity O(n3 + ln2) per iteration and space
complexity O(n2).

Algorithm 1 Frobenius-Regularized Assignment
Matching (FRAM)

Require: A, Ã,K, λ, α, θ, δth
1: Initial X(0) = 0n×ñ

2: c = max(A, Ã,K) ▷ FP64
3: A = A/

√
c, Ã = Ã/

√
c, K = K/

√
c ▷ FP64

4: while δ(t) > δth do
5: X(t) = AN (t−1)Ã+ λK ▷ TF32
6: D(t) = SDSN(X(t), θ) ▷ FP32
7: N (t) = (1− α)N (t−1) + αD(t) ▷ FP64
8: δ(t) = ∥N (t) −N (t−1)∥F /∥N (t)∥F ▷ FP64
9: end while

10: Discretize N to obtain M ▷ FP64
11: return Matching matrix M

Algorithm 2 Scaling Doubly Stochastic Nor-
malization (SDSN)

Require: Matrix X , θ, γth
1: X(0) = θ

2X/max(X)

2: while γ(k) > γth do
3: X̄(k) = 1TX1

n2

4: X
(k)
1 =

(
I
n + X̄(k)I − X(k)

n

)
11T

5: X̃(k+1) = X(k) +X
(k)
1 − 11TX(k)

n

6: X(k+1) = (X̃(k+1) + |X̃(k+1)|)/2
7: γ(k) = nX̄(k) − 1
8: end while
9: Output: Doubly stochastic matrix X

2https://github.com/BinruiShen/FRAM
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7 Experiments

We evaluate the proposed algorithm (FRAM) and our additional contributions from the following
perspectives:

• Q1. What improvements does FRAM deliver over baselines on attributed graph matching
tasks?

• Q2. How robust is FRAM on attribute-free graph matching tasks?
• Q3. How does the mixed-precision design accelerate FRAM?

In addition, we discuss the regularization parameter in Appendix F.

Setting. For FRAM, we set θ = 2 for attributed graph matching tasks and θ = 10 for unattributed
tasks. Following [27], we set the regularization parameter to λ = 1 in our experiments, since the
results are not sensitive to λ. We configure α to 0.95 to align with the parameter settings used in
DSPFP [27]. All algorithmic comparison experiments are conducted in Python 3 on a workstation
equipped with an Intel Core i7 (2.80 GHz) processor. All numerical computations are performed
in double precision (FP64) to ensure numerical stability. Typical algorithms such as ASM and
GA involve exponential operations and are sensitive to floating-point precision. For evaluating the
mixed-precision design, we utilize a hardware platform equipped with an Intel Core i9-14900 (3.20
GHz) CPU and an NVIDIA RTX 4080 SUPER GPU.

Dataset. We evaluate our algorithm on three types of graph data: graphs with attributes on both
edges and nodes, graphs with attributed edges only, and graphs without attributes. The dataset
specifications are summarized in Table 1, and the graph construction procedure from images is
described in Appendix E.

Dataset |V | |E| Attributed nodes Attributed edges Ground-truth Dense graphs
Real-world pictures (700,1000) (244 650, 499 500) ✓ ✓ ✗ ✓
CMU House (600,800) (179 700, 319 600) ✗ ✓ ✗ ✓
Facebook-ego 4 039 88 234 ✗ ✗ ✓ ✗

Table 1: Datasets. |V | is the number of nodes and |E| is the number of edges. ( , ) represents a range.

Criteria. For attributed graph matching tasks, we evaluate the matching error of algorithms by

1

2

∥∥∥A−MÃMT
∥∥∥2
F
+
∥∥∥F −MF̃

∥∥∥2
F
. (21)

This formulation is mathematically equivalent to the original objective function (1), differing only by
an additive constant and a scaling factor. These terms do not affect the optimization process, while
the new formulation provides a more intuitive understanding of the problem. For graphs containing
only edge attribute matrices, the metric reduces to the first term of (21). For attribute-free graph
matching tasks, the metric is defined as nc

n , where nc denotes the number of correctly matched nodes.

Baselines include project fixed-point algorithms such as DSPFP [27] and AIPFP [22, 27]; softassign-
based algorithms such as GA [12] (based on (1)) and ASM [34]; optimal transport methods such as
GWL [39] and S-GWL [38]; and a spectral-based algorithm, GRASP [16]. Among these, methods
based on optimal transport and GRASP are designed for attribute-free graph matching tasks. Most
baselines suffer from numerical overflow and accumulation of rounding error under low precision.
Therefore, we omit their low-precision comparisons (see Appendix D for details). Many state-of-the-
art algorithms, including Path Following [42], FGM [44], RRWM [2], PM [7], BGM [5], and MPM
[3], do not scale well to large graphs (e.g., with more than 1000 nodes), and are thus not included in
our large-scale graph matching comparisons.

7.1 Real-world pictures

In this experiment, the attributed graphs are constructed from a public dataset3, containing eight
sets of pictures. The dataset covers five common transformations: viewpoint change, scale change,
image blur, JPEG compression and illumination. The numerical results are presented in Table 2.

3http://www.robots.ox.ac.uk/~vgg/research/affine/
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Performance Running Time
Image Set bark boat graf wall leuv tree ubc bikes

DSPFP 9.1s 7.3s 8.8s 6.1s 5.8s 7.6s 6.1s 3.3s
AIPFP 44.3s 44.2s 84.4s 44.8s 26.3s 40.3s 34.3s 16.3s

GA 30.8s 31.0s 34.2s 29.7s 30.8s 29.8s 31.8s 16.8s
ASM 4.5s 4.5s 4.2s 5s 5s 3.8s 4.5s 3.2s

FRAM 2.6s 2.1s 2.4s 2.3s 2.2s 2.5s 2.4s 1.1s

Performance Matching Error (×104)
Image Set bark boat graf wall leuv tree ubc bikes

DSPFP 5.0 4.4 5.1 4.1 5.0 4.7 4.0 4.9
AIPFP 4.6 4.5 5.3 4.4 3.9 4.7 3.6 4.3

GA 4.9 5.3 6.4 6.6 4.2 6.3 3.4 4.6
ASM 4.6 4.4 4.9 4.2 3.7 3.5 3.3 3.6

FRAM 4.2 4.0 4.6 3.6 4.9 3.8 3.1 4.4

Table 2: Performance comparison in terms of (a) running time and (b) matching error on different
image sets. The number of nodes is set to 1000 (bike set with 700 nodes). All algorithms are evaluated
using double precision (FP64).

As a revolutionary version of DSPFP, FRAM achieves significant acceleration across all image sets.
The average runtime of FRAM is 2.3s, compared to 6.5s for DSPFP, yielding an overall speedup
of 2.8×. In addition to acceleration, FRAM consistently outperforms DSPFP regarding matching
accuracy, demonstrating the effectiveness of the algorithmic design. Overall, FRAM achieves the
best matching performance in more than half of the experiments while being nearly twice as fast as
the second-fastest method, ASM.

7.2 House sequence

CMU house sequence4 is a classic benchmark dataset. It consists of a sequence of images showing a
toy house captured from different viewpoints. Figure 3 demonstrates that FRAM achieves the best
performance in both speed and accuracy on the House sequence dataset. It runs 4.1× faster than
DSPFP and 3.4× faster than ASM, while attaining the lowest matching error. These results clearly
highlight FRAM’s efficiency and effectiveness.
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Figure 3: Comparisons between algorithms on graphs from the house sequence. All algorithms are
evaluated using double precision (FP64).

7.3 Social networks

The social network, comprising ‘circles’ (or ‘friends lists’) from Facebook [23], contains 4039 users
(nodes) and 88234 relations (edges). We compare different methods in matching networks with noisy
versions at 5%, 15% and 25%. Table 3 shows that FRAM achieves the highest node accuracy across
all noise levels while maintaining computational efficiency. FRAM achieves 4% higher accuracy than
ASM (the second-best method) while running twice as fast. Although FRAM is slightly slower than
DSPFP, it offers a substantial 15% improvement in accuracy, demonstrating a favorable trade-off
between precision and efficiency.

4https://www.cs.cmu.edu/afs/cs/project/vision/vasc/idb/images/motion/house/
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Social network 5% noise 15% noise 25% noise
Methods Acc Time Acc Time Acc Time
S-GWL 26.4% 1204.1s 18.3% 1268.2s 17.9% 1295.8s
GWL 78.1% 3721.6s 68.4% 4271.3s 60.8% 4453.9s

DSPFP 79.7% 151.3s 68.3% 154.2s 62.2% 156.9s
GA 35.5% 793.2s 21.4% 761.7s 16.0% 832.6s

GRASP 37.9% 63.6s 20.3% 67.4s 15.7% 71.3s
ASM 91.1% 387.2s 88.4% 391.7s 85.7% 393.1s

AIPFP 68.6% 2705.5s 55.1% 2552.7s 47.8% 2513.8s
FRAM 94.7% 211.1s 91.1% 221.6s 89.5% 222.9s

Table 3: Results on Facebook network matching, which are evaluated using double precision (FP64).

7.4 Mixed-precision acceleration

This subsection analyzes the acceleration performance of mixed-precision design in FRAM across
varying tasks. As demonstrated in Figure 4, the design shows markedly higher acceleration ratios for
large-scale problems. Specifically, in the ubc(2000) matching task, mixed-precision design achieves
(a) 12.7× speedup over standard GPU-FP64 implementations, and (b) a 371.4× acceleration compared
to CPU-FP64 baselines. Conversely, for tasks with up to 1000 nodes, the observed speed-ups are
below 4×, likely because the problem scale is insufficient to fully utilize the hardware’s computational
capacity. These observations are consistent with Amdahl’s law: fixed computational overheads
dominate runtime at small scales, significantly reducing achievable performance improvements.

Figure 4: Runtime comparison of FRAM across different precisions and processors. The y-axis
shows runtime (log scale), and the x-axis indicates datasets and their sizes. Red boxed numbers show
the speedup of GPU mixed-precision over GPU double precision, and yellow boxed numbers show
the speedup over CPU double precision.

8 Conclusion

In the context of graph matching, this study investigates the bias introduced by projection-based
relaxations. To address this issue, we reformulate the projection step as a regularized linear assignment
problem, providing a principled way to control the relaxation error. Building on this formulation,
we propose a robust algorithm that achieves competitive accuracy while providing substantial speed
advantages over existing baselines, including a significant improvement over the second-best method.
On the computational side, we propose a theoretically grounded mixed-precision design. To the best
of our knowledge, this is the first theoretically grounded mixed-precision design for graph matching.
It achieves significant acceleration while maintaining numerical stability.

A limitation of this study lies in the empirical selection of the parameter θ, so we plan to develop an
adaptive parameter selection strategy in future work. While our framework validates the effectiveness
of mixed-precision computation, its computational efficiency can be improved. Future work may
explore low-level compilation techniques to further optimize the implementation and unlock additional
speed gains.
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A Notations

The common symbols are summarized in Table A.

Table 4: Symbols and Notations.
Symbol Definition
G, G̃ matching graphs
A, Ã edge attribute matrices of G and G̃
F, F̃ node attribute matrices of G and G̃
n, ñ number of nodes of G and G̃
M matching matrix

Πn×n the set of n× n permutation matrices
Dn×n the set of n× n doubly stochastic matrices
1,0 a column vector of all 1s,0s
tr(·) trace
⟨·, ·⟩ Frobenius inner product
∥ · ∥F Frobenius norm
θ the parameter in FRA
α the step-size parameter

FP8/16/32/64 8/16/32/64-bit Floating Point
TF32 TensorFloat 32

B Convergence Criterions

B.1 Convergence criterion of SDSN

We recall the SDSN projection steps below:

X̃(k) = P1

(
X(k−1)

)
, X(k) = P2

(
X̃(k)

)
,

P1(X) = X +

(
I

n
+

1TX1

n2
I − X

n

)
11T − 11TX

n
, P2(X) =

X + |X|
2

.

Before the non-negative projection, the updated matrix satisfies∑
i,j

X̃
(k)
ij =

∑
X̃

(k)
ij >0

X̃
(k)
ij +

∑
X̃

(k)
ij <0

X̃
(k)
ij = n. (22)

After applying the non-negative projection (all negative elements are set to 0), we obtain∑
i,j

X
(k)
ij =

∑
X̃

(k)
ij >0

X̃
(k)
ij = n+

∑
X̃

(k)
ij <0

|X̃(k)
ij |. (23)

Since
∑

i,j X
(k)
ij converges to n, ∑

X̃
(k)
ij <0

|X̃(k)
ij | =

∑
i,j

X
(k)
ij − n (24)

is natural to represent the residual. Moreover, the von Neumann successive projection lemma [29]
guarantees that this distance decreases monotonically over successive iterations. Therefore, we define
a dimensional scaled error as

γ(X(k)) =
1

n

∑
i,j

X
(k)
ij − 1 =

1TX(k)1

n
− 1, (25)

where normalization by n ensures applicability to matrices of any size. Furthermore, since 1TX(k−1)1
is computed in P1(·), we can avoid the computation for the error by approximately using γ(X(k−1))
in k-th iteration.
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B.2 Convergence criterion of the matching algorithm

The matching algorithm in DSPFP [27] adopts the following original convergence criterion:

max

(∣∣∣∣ N (t)

max(N (t))
− N (t−1)

max(N (t−1))

∣∣∣∣) , (26)

which was also adopted by the ASM [34]. This metric primarily captures local fluctuations between
the successive iterations. To better characterize the global structural evolution, we adopt the following
normalized Frobenius criterion:

δ(t) =
∥N (t) −N (t−1)∥F

∥N (t)∥F
. (27)

This criterion demonstrates enhanced suitability for our framework due to two principal considerations:
(1) The Frobenius norm inherently aligns with the FRA and the objective formulation, ensuring
mathematical consistency throughout the optimization process. (2) The normalization scheme
provides a scale-invariant measurement of the variation of the solution trajectory.

C Proofs in Section 4

Theorem 1. The solution to the scaled doubly stochastic projection problem

Dθ
X = arg min

D∈Dn×n

∥D − θ
2X∥2F (28)

is equivalent to the solution of a Frobenius-regularized linear assignment problem:

Dθ
X = arg max

D∈Dn×n

Γθ(X), Γθ(X) = ⟨D,X⟩ − 1
θ ⟨D,D⟩. (29)

Proof. The squared Frobenius norm can be expanded as:

∥D − θ

2
X∥2F = ⟨D,D⟩ − 2⟨D,

θ

2
X⟩+ ⟨θ

2
X,

θ

2
X⟩. (30)

Since the term ⟨ θ2X, θ
2X⟩ is a constant with respect to D, it does not affect the optimization. Thus,

the objective simplifies to:

Dθ
X = arg min

D∈Dn×n

⟨D,D⟩ − θ⟨D,X⟩. (31)

As a result, the problem reduces to:

Dθ
X = arg max

D∈Dn×n

⟨D,X⟩ − 1

θ
⟨D,D⟩. (32)

Proposition 1. For a nonnegative matrix X ∈ Rn×n, the following inequality holds:

ϵθX ≤ 1

θ
. (33)

Proof. Since Dθ
X is the maximizer of Γθ(X), we have

Γθ(Dθ
X) ≥ Γθ(D∞

X ), (34)

where D∞
X is a maximizer of the unperturbed problem maxD∈Dn×n

⟨D,X⟩.
Expanding the inequality gives:

⟨Dθ
X , X⟩ − 1

θ
⟨Dθ

X , Dθ
X⟩ ≥ ⟨D∞

X , X⟩ − 1

θ
⟨D∞

X , D∞
X ⟩. (35)

Rearranging terms, we have:

⟨Dθ
X , X⟩ − ⟨D∞

X , X⟩ ≥ 1

θ

(
⟨Dθ

X , Dθ
X⟩ − ⟨D∞

X , D∞
X ⟩

)
. (36)
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In particular, the maximum of ⟨D∞
X , D∞

X ⟩ is n when D∞
X is a permutation matrix. Therefore, we

have ⟨D∞
X , D∞

X ⟩ ≤ n for general cases.

⟨Dθ
X , X⟩ − ⟨D∞

X , X⟩ ≥ 1

θ
(⟨Dθ

X , Dθ
X⟩ − n). (37)

Taking the negative of both sides,

⟨D∞
X , X⟩ − ⟨Dθ

X , X⟩ ≤ 1

θ
(n− ⟨Dθ

X , Dθ
X⟩). (38)

Note that Dθ
X ∈ Dn×n is doubly stochastic, so 1 ≤ ⟨Dθ

X , Dθ
X⟩ ≤ n (The inner product achieves

its maximum value when Dθ
X is a permutation matrix, while attaining its minimum value under the

condition that all elements of Dθ
X are 1

n ). Therefore,

⟨D∞
X , X⟩ − ⟨Dθ

X , X⟩ ≤ n− 1

θ
, (39)

which completes the proof.

Theorem 2. Let X ∈ Rn×n
+ and F be the convex hull of the optimal permutation matrices for the

linear assignment problem with X . As θ → ∞, the matrix Dθ
X converges to a unique matrix D∗ ∈ F ,

where D∗ is the unique solution to minD∈F
1
θ ⟨D,D⟩.

Proof. We prove the theorem in two steps: (1) D∞
X lies on the face F , and (2) D∞

X must equal D∗.

Step 1. Since Dθ
X is defined as the maximizer of

Γθ(D) = ⟨D,X⟩ − 1

θ
⟨D,D⟩, (40)

we have
Γθ(Dθ

X) ≥ Γθ(D∗), (41)
which implies

⟨Dθ
X , X⟩ − 1

θ
⟨Dθ

X , Dθ
X⟩ ≥ ⟨D∗, X⟩ − 1

θ
⟨D∗, D∗⟩. (42)

As θ → ∞, we have
1

θ
⟨Dθ

X , Dθ
X⟩ → 0 and

1

θ
⟨D∗, D∗⟩ → 0. (43)

Taking the limit, we get
lim
θ→∞

⟨Dθ
X , X⟩ ≥ ⟨D∗, X⟩. (44)

Since D∗ is the optimal solution to the linear assignment problem, for any D ∈ Dn×n,
⟨D,X⟩ ≤ ⟨D∗, X⟩. (45)

In particular,
⟨Dθ

X , X⟩ ≤ ⟨D∗, X⟩. (46)
Combining both inequalities, we obtain

lim
θ→∞

⟨Dθ
X , X⟩ = ⟨D∗, X⟩, (47)

which means D∞
X lies in the face F .

Step 2. For each fixed θ, the objective Γθ(D) is strictly concave in D due to the quadratic term
− 1

θ ⟨D,D⟩. Strict concavity ensures that for large θ, the maximizer of Γθ(D) is unique.

Suppose, for the sake of contradiction, that D∞
X ̸= D∗. Since both are in F , we have

⟨D∞
X , X⟩ = ⟨D∗, X⟩. (48)

If D∞
X were distinct from D∗, then as θ → ∞, the perturbed objective Γθ(D) would admit at

least two different maximizers (D∞
X and D∗) with the same objective value. This contradicts the

uniqueness guaranteed by strict concavity. Therefore, D∞
X must coincide with D∗.

Since the entire sequence Dθ
X is bounded and any convergent subsequence converges to D∗, it follows

that
Dθ

X → D∗ as θ → ∞. (49)
This establishes the desired convergence.
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Proposition 2. As θ → 0, the matrix Dθ
X converges to the matrix 11T

n .

Proof. As θ → 0, the matrix Dθ
X exhibits the limiting behavior:

lim
θ→0

Dθ
X = arg min

D∈Dn×n

⟨D,D⟩ =
∑

D2
ij . (50)

Since
∑

Dij = n,
∑

D2
ij achieve minimum when all entries are equal to 1/n. Consequently,

lim
θ→0

Dθ
X =

11T

n
. (51)

Proposition 3. For X ∈ Rn×n
+ , the SDSN algorithm requires⌈

ln

(
ϵ

θ(∥X∥F + n)

)
1

ln(c)

⌉
iterations to produce a solution X∗ that satisfies ∥X∗ −Dθ

X∥F < ϵ where Dθ
X is the exact solution

and c ∈ (0, 1) is the convergence rate constant of the DSN algorithm.

Proof.
Xk+1 = P1P2(Xk) (52)

where P1 and P2 denote projection operators maintaining the constraint Xk1 = (1TXk)
T = 1. This

operation can be explicitly expressed as:

Xk+1 = P1 (Xk + |Xk|) (53)
with the absolute value operation applied element-wise to matrix entries. Expanding the projection
operators yields the detailed formulation:

Xk+1 =
1

2
(Xk+|Xk|)+

1T [ 1
2
(Xk + |Xk|)]1

n2
11T− 1

n
[
1

2
(Xk+|Xk|)]11T− 1

n
11T [

1

2
(Xk+|Xk|)]+

1

n
11T .

(54)

Through vectorization and Kronecker product analysis, we transform the matrix equation into its
vector form:

vec(Xk+1) = A vec (|Xk|+Xk) +
1

n
vec

(
11T

)
(55)

where A = 1
2 (I −

1
n11

T )⊗ (I − 1
n11

T ) possesses a spectral radius of 1
2 . Defining the error vector

ek = vec(Xk)− vec(X∗) for solution matrix X∗, we derive the error propagation relationship:

ek+1 = A vec (|Xk| −X∗) +Aek (56)

Applying norm inequalities and leveraging the spectral properties of A, we obtain:

∥ek+1∥ ≤ 1

2
(ck∥ek∥+ ∥ek∥) = c∥ek∥ (57)

where c = sup1:k{ ck+1
2 } < 1 establishes the linear convergence rate.

Considering scaled initial conditions θX, the first iteration error becomes ∥e1∥ = ∥θ · e0∥. For k
iterations with scaling factor θ, the error evolution follows:

∥ek∥ = ∥θ · ck · e0∥ (58)

The ϵ-accuracy requirement ∥θ · ck′ · e0∥ ≤ ϵ leads to the logarithmic relationship:

ln θ + k′ ln c+ ln ∥e0∥ ≤ ln ϵ (59)
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Solving for the required iterations yields:

k′ ≥ ln(ϵ/θ) + ln(ϵ/∥e0∥)
ln c

=
ln (ϵ/(θ∥e0∥))

ln c
(60)

Given the initial error bound ∥e0∥ = ∥X∥F + n ≤ ∥X∥F + n, we finalize the iteration complexity:

k′ ≥
ln
(

ϵ
θ(∥X∥F+n)

)
ln c

(61)

This demonstrates the logarithmic relationship between the scaling factor θ and the required iterations
to maintain solution accuracy, completing the proof.

Lemma 1. The closed-form solution to the optimization problem

P3(X) = argmin
Y

∥X − Y ∥2F , s.t. Y 1 = Y T1 = 0 (62)

is given by:

P3(X) = X +

(
1

n2
1TX1− 1

n
X

)
11T − 1

n
11TX. (63)

Proof. The Lagrangian corresponding to the problem takes the form:

L(Y, µ1, µ2) = tr(Y Y T − 2XY )− µT
1 Y 1− µT

2 Y
T . (64)

By differentiating (64), we can obtain the following:

∂L

∂Y
= Y −X − µ11

T − 1µT
2 ,

∂L

∂µ1
= Y 1,

∂L

∂µ2
= Y T1. (65)

Thus, let ∂L
∂Y = 0, we have:

Y = X + µ11
T + 1µT

2 . (66)

Applying 1 to both sides of the equation above, we get:

0 = X1+ nµ1 + 1µT
2 1. (67)

Multiplying both sides of (67) by n, we get:

0 = nX1+ n2µ1 + n1µT
2 1. (68)

Multiplying both sides of (68) by 11T , we get:

0 = 11TX1+ n11Tµ1 + n1µT
2 1. (69)

Subtracting (68) and (69), we obtain:

(nI − 11T )X1+ n(nI − 11T )µ1 = 0. (70)

Solving this equation, we find:

µ1 =
1

n
X1− k11, µ2 = − 1

n
XT1− k21, (71)

where k1, k2 ∈ R.

Substituting the results into (64), we rewrite the Lagrangian as:

L(Y, k1, k2) = tr(FFT − 2XF ) + (
1

n
X1+ k11)

TY 1+ (
1

n
XT1+ k21)

TY T . (72)

Finally, setting ∂L
∂Y = ∂L

∂k1
= ∂L

∂k2
= 0, we solve for Y :

Y = X +

(
1TX1

n2
I − 1

n
X

)
11T − 1

n
11TX, (73)

which completes the proof.
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Theorem 3. In the SDSN algorithm, the k-th iterate Xk can be split as Xk = X̂k +∆Xk, where
∆Xk represents the rounding error. Then, the projection operator satisfies

P1(Xk) = P1(X̂k) + P3(∆Xk),

where P3(∆X) is the solution to the following minimization problem:

P3(∆X) = argmin
Y

∥∆X − Y ∥2F , s.t. Y 1 = 0, Y ⊤1 = 0.

The subsequent transformations of the error term ∆Xk can be expressed as

P2P3 · · · P2P3(∆Xk),

which asymptotically converges to the zero matrix 0n×n.

Proof. In SDSN calculations, the nonnegativity-enforcing part can be computed entirely in low
precision, so this error analysis focuses on the first component P1 (19). To examine the behavior of
the rounding error ∆Xk during iterations, we split Xk, the variable at the k-th iteration, as

Xk = X̂k +∆Xk. (74)

Then, P1(Xk) becomes(
I

n
+

1T (X̂k +∆Xk)1I

n2
− (X̂k +∆Xk)1

n

)
11T + X̂k +∆Xk − 1

n
11T (X̂k +∆Xk) (75)

= X̂k +

(
I

n
+

1T X̂k1I

n2
− X̂k

n

)
11T − 11T X̂k

n︸ ︷︷ ︸
P1(X̂k)

+∆Xk +

(
1T∆Xk1

n2
I − ∆Xk

n

)
11T − 11T∆Xk

n︸ ︷︷ ︸
∆Tk

.

Lemma 1 establishes that ∆Tk = P3(∆Xk), so the subsequent transformation of ∆Xk can be
represented as

P2P3 · · · P2P3(∆Xk).

Through this process, the propagation of this rounding error ultimately converges to 0n×n to satisfy
the constraints imposed by both P2(·) and P3(·).

D Details of the Mixed-Precision Design

Algorithm 1 Frobenius-Regularized Assignment Matching (FRAM)

Require: A, Ã,K, λ, α, θ, δth
1: Initial X(0) = 0n×ñ

2: c = max(A, Ã,K) ▷ FP64
3: A = A/

√
c, Ã = Ã/

√
c, K = K/

√
c ▷ FP64

4: while δ(t) > δth do
5: X(t) = AN (t−1)Ã+ λK ▷ TF32
6: D(t) = SDSN(X(t), θ) ▷ FP32
7: N (t) = (1− α)N (t−1) + αD(t) ▷ FP64
8: δ(t) = ∥N (t) −N (t−1)∥F /∥N (t)∥F ▷ FP64
9: end while

10: Discretize N to obtain M ▷ FP64
11: return Matching matrix M

Implementation details of the mixed-precision design.

Algorithm 1 employs mixed-precision design to improve computational efficiency while maintaining
numerical stability, with precision for each operation specified via inline annotations. It starts by
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normalizing matrices A, Ã, and K in steps 2-3 using FP64 to prevent overflow and ensure input
consistency, enabling subsequent low-precision acceleration.

Step 5 employs TF32 (which is computationally similar to FP16) for critical computations. This
strategy strikes a balance between performance and accuracy: it utilizes high-throughput GPU fused
multiply-add operations while keeping precision loss within acceptable limits, as proven in Theorem
3. In contrast, further reducing the precision risks numerical instability due to inadequate accuracy.

Step 6 then switches to FP32 to maintain consistency, as FP16 would introduce additional truncation
error, reducing accuracy by approximately 5% without increasing iterations. In contrast, FP32
maintains nearly the same number of iterations as FP64, balancing efficiency and precision.

Finally, step 7 reverts to FP64 for high-precision iterative updates, compensating for earlier precision
trade-offs. Steps 8 and 10 continue in FP64 to ensure final output accuracy. This precision hierarchy
accelerates performance in preconditioned computations while maintaining the reliability required
for assignment matching tasks.

Introduction to different data type.

Data Type Bits Range Precision FLOPs (RTX 4080)

FP32 32 [−1038, 1038] 10−6 52.2 TeraFLOPS
TF32 19 [−1038, 1038] 10−3 209 TeraFLOPS
FP64 64 [−10308, 10308] 10−16 0.82 TeraFLOPS

Table 5: Characteristics of FP32, TF32, and FP64 floating-point formats. The listed ranges are
approximate, based on the IEEE 754 standard. The FLOPs column reports the theoretical peak
performance (in TeraFLOPS) achieved by the NVIDIA RTX 4080 GPU for each format. Here,
1 TeraFLOPS equals 1012 floating-point operations per second, providing a standard measure of
compute performance.

Why were competing algorithms not evaluated in lower precision settings? Mixed precision
requires careful theoretical justification to ensure robustness against truncation errors and to preserve
numerical stability. Not all baseline methods are robust in this regard. In particular, GA, S-GWL,
GWL, and ASM all involve exponential operators, which are prone to numerical instability. For
example, even in double precision, the default parameter settings in S-GWL can already cause
numerical overflow, as documented in Appendix F of [34], making single-precision computation even
more problematic. Among the remaining baselines, though AIPFP is comparatively more tolerant of
reduced precision, it suffers from slow runtime; GRASP is inherently sensitive to noise. Lowering
the precision does not alleviate their main limitations.

E Graphs from Images

The construction consists of three primary steps. (1) Node extraction: SIFT [26] extracts key points
as potential nodes and computes the nodes’ attributes; (2) Node selection: select the nodes that
exhibit a high degree of similarity (i.e., the inner product of feature vectors) to all candidate nodes
of the other graph. (3) Edge attribute calculation: nodes form a fully connected graph weighted by
inter-node Euclidean distances.

Real-world images. The graphs are constructed as described in the previous paragraph. The number
of nodes is set to 1000 (For the bike set, we only record the results for the first three pictures with
700 nodes, as the other images lack sufficient keypoints.). The running time and matching error are
computed by averaging the results over five matching pairs (1 vs. 2, 2 vs. 3, . . . , 5 vs. 6) from the
same image set.

House sequence is a widely used benchmark dataset consisting of 111 grayscale images of a toy house
taken from different viewpoints. The graphs are constructed as described in the previous paragraph,
but without node attributes, to evaluate the algorithms from a different perspective. Matching pairs
consist of the first image and subsequent images with 5 image sequence gaps (such as image 1 vs.
image 6 and so on).
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F Discussion of the regularization parameter

We evaluated the impact of the parameter θ on the FRAM algorithm across different types of tasks,
as shown in Table 6. Overall, the algorithm’s performance increases as the parameter grows, but the
improvements follow a pattern of diminishing marginal effect, while an excessively large θ may lead
to a slight degradation in performance. For tasks with attributed information, relatively small values
of θ are sufficient to achieve good performance. In contrast, for more challenging tasks without
attributed information, larger values of θ are required to achieve the best performance.

House (attributed edges) Bark (attributed edges and nodes) Facebook Network
θ Time (sec) Error (×103) θ Time (sec) Error (×104) θ Time (sec) Node Accuracy

0.1 0.4 16.4 0.1 0.5 5.4 1 165 69.26%
0.5 0.6 7.3 0.5 0.6 4.1 5 192 85.92%
1 0.7 7.2 1 0.9 4.2 10 222 91.69%
2 0.9 7.0 2 1.1 4.2 15 246 93.48%
4 1.2 7.1 4 1.2 4.3 20 263 93.98%
Table 6: Influence of the parameter θ on algorithmic performance across diverse graph types.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide detailed proofs and many numerical experiments for what we
claimed in the abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: As mentioned in the conclusion, the parameter θ is set empirically, and the
implementation of mixed-precision acceleration remains preliminary.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We have clearly listed the assumptions of each theorem, and have provided the
proof in the appendix

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided the code to reproduce the experiments in the article.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All datasets used are publicly available, and we have provided the programming
code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the settings mentioned in this article are included in the programming.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: This article concerned the optimization algorithm instead of statistical uncer-
tainties.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided the details in Section 7.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research in this article does not involve human subjects and therefore will
not be harmful to humans.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This article is mostly a theoretical and computational work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No such risks are associated with this study.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the original papers that provide the datasets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core contributions of this research are independent of LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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