
Topological Graph Signal Compression

Guillermo Bernárdez∗, Lev Telyatnikov†, Eduard Alarcón∗, Albert Cabellos-Aparicio∗,
Pere Barlet-Ros∗ and Pietro Liò§

∗Universitat Politècnica de Catalunya, †Sapienza Università di Roma, §University of Cambridge

Abstract
Recently emerged Topological Deep Learning (TDL) methods aim to extend
current Graph Neural Networks (GNN) by naturally processing higher-order
interactions, going beyond the pairwise relations and local neighborhoods defined
by graph representations. In this paper we propose a novel TDL-based method
for compressing signals over graphs, consisting in two main steps: first, disjoint
sets of higher-order structures are inferred based on the original signal –by
clustering N datapoints into K ≪ N collections; then, a topological-inspired
message passing gets a compressed representation of the signal within those
multi-element sets. Our results show that our framework improves both standard
GNN and feed-forward architectures in compressing temporal link signals from
two real-world Internet Service Provider Networks’ datasets –from 30% up to
90% better reconstruction errors across all evaluation scenarios–, suggesting that
it better captures and exploits spatial and temporal correlations over the whole
graph-based network structure.

1 Motivation
Graph Neural Networks (GNNs)[25] have demonstrated remarkable performance in modelling
and processing relational data on the graph domain, which naturally encodes binary interactions.
Topological Deep Learning (TDL)[15] methods take this a step further by working on domains that
can feature higher-order relations. By leveraging (algebraic) topology concepts to encode multi-
element relationships (e.g. simplicial[6], cell[5] and combinatorial complexes[10]), Topological
Neural Networks (TNNs) allows for a more expressive representation of the complex relational
structure at the core of the data. In fact, despite its recent emergence, TDL is already postulated
to become a relevant tool in many research areas and applications[10], including complex physical
systems[4], signal processing[2], molecular analysis[6] and social interactions[17].

We argue that the task of data compression can hugely benefit from TDL by enabling to exploit
multi-way correlations between elements beyond pre-defined local neighborhoods to get the desired
lower-dimensional representations. To the best of our knowledge, current Machine Learning (ML)
compression approaches mainly rely on Information Theory (IT) and are narrowed to Computer
Vision applications[12, 22]. In contrast to that, and inspired by zfp[8] –the current state-of-the-art
lossy compression method for floating-point data, more details in A.2–, we propose in this paper a
novel TDL framework to (a) first detect higher-order correlated structures over a given data, and (b)
then directly apply TNNs to obtain compressed representations within those multi-element sets.

This work provides evidence supporting that TDL could have great potential in compressing relational
data. With the long-term objective of outperforming zfp, our current goal is to assess if the proposed
framework naturally exploits multi-datapoint interactions –between possibly distant elements– in a
way that makes it more suitable for compression than other ML architectures (even if data comes from
the graph domain). To do so, we consider the critical problem of traffic storage in today’s Internet
Service Providers (ISP) networks[1], and set the target to compress the temporal per-link traffic
evolution –Figure 4– for two real-world datasets extracted from [14] (more details and motivation
of this use case provided in A.1). Once the original link-based signal is divided into processable
temporal windows, we benchmark our method against a curated set of GNN-based architectures
–and a Multi-Layer Perceptron (MLP)– properly designed for compression as well. Obtained results
clearly suggest that our topological framework defines the best baseline for lossy neural compression.

Guillermo Bernárdez et al., Topological Graph Signal Compression (Extended Abstract). Presented at the
Second Learning on Graphs Conference (LoG 2023), Virtual Event, November 27–30, 2023.

Topological Graph Signal Compression

= h 09x10 x11 ⋯ x1
t

= h 09x30 x31 ⋯ x3
t

= h 09x20 x21 ⋯ x2
t

= h 09xN0 xN1 ⋯ xN
t

⋯ ⋯

⋯

⋯

⋯ ⋯

Temporal Link Traffic Monitoring in ISP Networks

⋱
⋱

subsignals

no
de

s
(ne

tw
or

k
lin

ks
)

window
S1S2S3

Si

⋱
⋱

(1) Input: Signal expressed by a set of temporal
subsignals of a certain window length d

𝒮 = {Si}M
i=1 =

(2) Similarity Matrix: For each subsignal ,
a similarity score is computed between

each pair of initial node embeddings

Si
muv

h01
h02

h0
N

⋮

ψ𝒱 ∈ ℝN×d′

Initial node
embeddings

fS

m1,1 m1,2 ⋯ m1,N

⋯

⋯
⋮ ⋮ ⋮⋱

MS ∈ ℝN×N

m2,1 m2,2 m2,N

mN,1 mN,2 mN,N

x10 x11 ⋯ x1
d

x20 x21 ⋯ x2
d

xN0 xN1 ⋯ xN
d

⋮ ⋮ ⋮⋱
x30 x31 ⋯ x3

d h03

⋮
mN,3

m1,3

m2,3
m3,1 m3,2 m3,3 ⋯ m3,N

(3) Higher-order structures: Set of uniform and
disjoint hyperedges via clustering of 𝒲 MS

⋯
w1 w2 wK

⋯ ⋯ ⋯

(4) Pairwise relations (Opt): Edges computed
via intra-hyperedge k-nearest neighbors

ℰ

⋯
w1 w2 wK

⋯ ⋯ ⋯

(1) Initial embeddings: Built upon the
node initial features ,

i.e. the signals to compress
xv= ∈ ℝd

Si ∈ 𝒮

←h0
v = ψ𝒱() ∈ ℝd′

←h0
e = ψ𝒱→ℰ(,) ∈ ℝd′

←h0
w = ψ𝒱→𝒲(, ,) ∈ ℝd′

v ∈ 𝒱

e ∈ ℰ

w ∈ 𝒲

(2) Topological Message Passing:
edge-hyperedge communications

Between neighboring edges
← ψℰ→ℰ(,) ∈ ℝd′

UP: edges hyperedge →
← ψℰ→𝒲(, ,) ∈ ℝd′

DOWN: hyperedge edges→
← ψℰ→ℰ(,) ∈ ℝd′

 iterationsT

(3) Edge-to-Node MP: Final compressed
node hidden representations

hc = ψℰ→𝒱(, ,) =
hc = ψℰ→𝒱(, , ,) = ∈ ℝdc𝒱

hc = ψℰ→𝒱(, ,) =

(4) Node-to-hyperedge MP: Final hidden
state representation of the hyperedge

hc = ψ𝒱→𝒲(, , , ,)

= ∈ ℝdc𝒲

Compressed
representation

 and selected
so as to reduce input
dimensionality

dc𝒱 dc𝒲

N × d(*)

 (,)

 (,)

 (,)

∈ ℝd

∈ ℝd

∈ ℝdϕdec(⋅ , ⋅)
Compressed 𝒮 Reconstructed �̂�

Figure 1: Topology Inference Module. For each subsignal Si ∈ S, it outputs a topological object
T = (V, E ,W) determined by K disjoint hyperedges.

2 Methodology
This section describes the proposed Topological (Graph) Signal Compression framework, which is
divided into the following three primary modules:

1) Topology Inference Module. The first stage of the proposed model infers the computational
topological structure –both pairwise and higher-order relationships– from the data measurements. In
general, the framework assumes to have a set S of M signals, S = {Si}Mi=1, where Si consists of N
vector-valued measurements xj of a pre-defined dimension d, i.e. Si = {xij}Nj=1, xij ∈ Rd. Thus, the
pipeline that we describe as follows (see also Figure 1) is independently applied to every signal Si.

Similarity Matrix: The initial signal {xj}Nj=1
1 is encoded with a MLP into an embedding space

h0j = ψθV (xj) ∈ Rd′
, ∀j ∈ {1, . . . , N}. Next, we compute the pairwise similarity matrix MS =

(muv) ∈ Rd′×d′
where muv := fS

(
h0u, h

0
v

)
and fS : Rd′ × Rd′ → R is a similarity function.

Higher-order Relationships: We use clustering techniques on the similarity matrix MS to deduce
K higher-order structures, over which a Topological Message Passing pipeline –see next module 2)–
performs the compression. In fact, the idea is to compress the signal within the inferred multi-element
sets and encode compressed representations of the data into the final hidden states of these hyperedges.
Therefore, the number of higher-order structures K is desired to be considerably lower than the
number N of datapoints (K ≪ N); we design the following clustering scheme for this purpose:

1. The number of hyperedges are defined as K = ⌊N/p⌉, where p is a hyperparameter that
identifies the maximum hyperedge length.

2. For every row in the similarity matrix MS , we extract the top p− 1 highest entries and calculate
their sum. We then select the row that corresponds to the highest summation value. This chosen
row becomes the basis for forming a hyperedge as we gather the indices of the p− 1 selected
columns along with the index of the row itself. Then the gathered indices are removed from the
rows and columns of the similarity matrix MS , obtaining a reduced M̂S ∈ R(d′−p)×(d′−p).

3. Previous step 2 is repeated with subsequent M̂S until K disjoint hyperedges are obtained.2

On the other hand, the choice of the similarity function becomes a crucial aspect for the compression
task. Supported by our early experiments (see Section 3), our framework makes use of the Signal to
Noise Ratio (SNR) distance metric presented in [23], proposed in the context of deep metric learning
as it jointly preserves the semantic similarity and the correlations in learned features[23].

Pairwise relationships: Besides higher-order structures, our framework can optionally leverage
graph-based relational interactions, either (i) by considering the original graph connectivity if it is
known, or (ii) by inferring the edges via the similarity matrix as well –by connecting each element
with a subset of top k row-based entries in MS . In our experiments only intra-hyperedge edges have
been considered to keep the inferred higher-order structures completely disjoint from each other.

1For the sake of simplicity, and as abuse of notation, we will avoid writing the superscript i when referring to
the measurements of a generic signal Si ∈ S.

2When N/p is not an even division, at some point of the process the ranking starts considering the row-wise
p− 2 higher entries to form p− 1-length hyperedges, so that at the end a total of K = ⌊N/p⌉ hyperedges of
lengths p and p− 1 are obtained; see A.4.2 for further details.

2

Topological Graph Signal Compression

= h 09x10 x11 ⋯ x1
t

= h 09x30 x31 ⋯ x3
t

= h 09x20 x21 ⋯ x2
t

= h 09xN0 xN1 ⋯ xN
t

⋯ ⋯

⋯

⋯

⋯ ⋯

Temporal Link Traffic Monitoring in ISP Networks

⋱
⋱

subsignals

no
de

s
(ne

tw
or

k
lin

ks
)

window
S1S2S3

Si

⋱
⋱

(1) Input: Signal expressed by a set of temporal
subsignals of a certain window length d

𝒮 = {Si}M
i=1 =

(2) Similarity Matrix: For each subsignal ,
a similarity score is computed between

each pair of initial node embeddings

Si
muv

h01
h02

h0
N

⋮

ψ𝒱 ∈ ℝN×d′

Initial node
embeddings

fS

m1,1 m1,2 ⋯ m1,N

⋯

⋯
⋮ ⋮ ⋮⋱

MS ∈ ℝN×N

m2,1 m2,2 m2,N

mN,1 mN,2 mN,N

x10 x11 ⋯ x1
d

x20 x21 ⋯ x2
d

xN0 xN1 ⋯ xN
d

⋮ ⋮ ⋮⋱
x30 x31 ⋯ x3

d h03

⋮
mN,3

m1,3

m2,3
m3,1 m3,2 m3,3 ⋯ m3,N

(3) Higher-order structures: Set of uniform and
disjoint hyperedges via clustering of 𝒲 MS

⋯
w1 w2 wK

⋯ ⋯ ⋯

(4) Pairwise relations (Opt): Edges computed
via intra-hyperedge k-nearest neighbors

ℰ

⋯
w1 w2 wK

⋯ ⋯ ⋯

(1) Initial embeddings: Built upon the
node initial features ,

i.e. the signals to compress
xv= ∈ ℝd

Si ∈ 𝒮

←h0
v = ψ𝒱() ∈ ℝd′

←h0
e = ψ𝒱→ℰ(,) ∈ ℝd′

←h0
w = ψ𝒱→𝒲(, ,) ∈ ℝd′

v ∈ 𝒱

e ∈ ℰ

w ∈ 𝒲

(2) Topological Message Passing:
edge-hyperedge communications

Between neighboring edges
← ψℰ→ℰ(,) ∈ ℝd′

UP: edges hyperedge →
← ψℰ→𝒲(, ,) ∈ ℝd′

DOWN: hyperedge edges→
← ψℰ→ℰ(,) ∈ ℝd′

 iterationsT

(3) Edge-to-Node MP: Final compressed
node hidden representations

hc = ψℰ→𝒱(, ,) =
hc = ψℰ→𝒱(, , ,) = ∈ ℝdc𝒱

hc = ψℰ→𝒱(, ,) =

(4) Node-to-hyperedge MP: Final hidden
state representation of the hyperedge

hc = ψ𝒱→𝒲(, , , ,)

= ∈ ℝdc𝒲

Compressed
representation

 and selected
so as to reduce input
dimensionality

dc𝒱 dc𝒲

N × d

 (,)

 (,)

 (,)

∈ ℝd

∈ ℝd

∈ ℝd

ϕdec(⋅ , ⋅)
Compressed 𝒮 Reconstructed �̂�

 ̂x = ϕdec(,)=

 ̂x = ϕdec(,)=

 ̂x = ϕdec(,)=

�̂�

Figure 2: Compression Module workflow for the CombMP architecture; it is independently applied
to each hyperedge w ∈ W of the inferred topological object T = (V, E ,W). The arguments of the
functions visually represent either initial node features or the corresponding element embedding.

2) Compression Module via Topological Message Passing. We implemented two topological
Message Passing (MP) compression pipelines, named SetMP and CombMP. SetMP is a purely set-
based architecture that operates only over hyperedges and nodes; more details in A.3. In this section
we describe CombMP, our most general architecture that leverages the three different structures
(nodes, edges, hyperedges) in a hierarchical way,3 and can be seen as a generalisation of SetMP.

For a given signal Si and its corresponding initial embeddings {h0j}Nj=1, our model operates over a
topological object T = (V, E ,W) where V denotes the set of elements or nodes, |V| = N ; E ∈ V×V
represent the set of edges; and W ∈ (V × · · · × V) the set of hyperedges. The compression pipeline
(visualized in Figure 2) can be described as follows:

Initial embeddings: First, we generate initial embeddings for the three considered topological
structures. For nodes, we use the previously computed embeddings {h0v}Nv=1. For edges and
hyperedges, (learnable) permutation invariant functions are applied over the initial embeddings of the
nodes they contain; respectively, h0e = ϕθE

(
⊕v∈eh

0
v

)
for each e ∈ E , and h0w = ϕθW

(
⊕v∈wh

0
v

)
for

each w ∈ W . The same dimension d′ is used for all initial and intermediate hidden representations.

Edge-Hyperedge Message Passing: We define a hierarchical propagation of messages between edges
and hyperedges. First, neighboring edges communicate to each other to update their representations;
denoting the edge neighbors of an edge e ∈ E by N E

e := {e′ = (u, v) ∈ E|e′ ̸= e, u ∈ e ∨
v ∈ e}, its new hidden state becomes h1e = ϕθE→E

(
⊕e′∈NE

e
ψθE→E

(
h0e, h

0
e′

))
. Next, hyperedges

also update their hidden states based on the updated edge representations according to h1w =
ϕθE→W

(
⊕e∈E,e⊂wψθE→W

(
h0w, h

1
e

))
, for each w ∈ W . Then the idea is to propagate downwards

towards the edges, i.e. from hyperedges to edges, h2e = ϕθW→E

(
⊕w∈W,e⊂wψθW→E

(
h1e, h

1
w

))
; and

only between edges again. This whole communication process can be iterated T times.

Edge-to-Node Compression: At this point, we perform a first compression step over the nodes
by leveraging the updated edge hidden representations, the initial node embeddings, as well as the
original node data as a residual connection. Formally, for each node v ∈ V we get a compressed
hidden representation hcv = ϕθE→V

(
⊕e∈E,v∈eψθE→V

(
xv, h

0
v, h

t
e

))
∈ Rdc

V .

Node-to-Hyperedge Compression: Finally, a second and last compression step is performed
over the hypergraph representations, in this case leveraging a residual connection to the original
measurements, the previously computed compressed representations of nodes, as well as the updated
hidden representations of hyperedges. More in detail, each hyperedge w ∈ W obtains its final
compressed hidden representation as hcw = ϕθV→W (⊕v∈V,v∈wψθV→W (xv, h

c
v, h

t
w)) ∈ Rdc

W .

The final node and hyperedge states, {{hcv}v∈V , {hcw}w∈W}, encode the compressed representation
of a signal Si = {xj}Nj=1. Consequently, the compression factor rc can be expressed as:

rc =
N · dcV +K · dcW

N · d
(1)

3Edges and hyperedges are distinguished because, analogously to recent Combinatorial Complexes (CCC)
models[10], edges can hierarchically communicate with hyperedges if they are contained in them; in fact, the
name CombMP relates to these general topological constructions (more details in Appendix A.2).

3

Topological Graph Signal Compression

Table 1: Reconstruction Mean Squared Error (MSE) and Mean Absolute Error (MAE) over the test
set of the considered datasets for two different compression factors. Top: Methods that leverage
the original graph-based network structure. Middle: Methods with no inductive biases. Bottom:
Methods that leverage higher-order structures (ours).

Abilene Geant

rc = 1/3 rc = 2/3 rc = 1/3 rc = 2/3

MSE MAE MSE MAE MSE MAE MSE MAE

GNN 1.95 · 10−2 1.08 · 10−1 1.95 · 10−2 1.08 · 10−1 2.33 · 10−2 1.21 · 10−1 2.32 · 10−2 1.20 · 10−1

MPNN 7.88 · 10−4 1.24 · 10−2 7.92 · 10−4 1.24 · 10−2 8.45 · 10−3 4.13 · 10−2 1.82 · 10−3 2.39 · 10−2

MLP 1.04 · 10−3 1.88 · 10−2 9.71 · 10−4 1.80 · 10−2 3.76 · 10−3 3.96 · 10−2 3.62 · 10−3 3.89 · 10−2

SetMP 3.22 · 10−4 8.75 · 10−3 2.03 · 10−4 6.80 · 10−3 6.93 · 10−4 1.52 · 10−2 2.90 · 10−4 1.05 · 10−2

CombMP 5.81 · 10−4 1.12 · 10−2 3.76 · 10−4 1.06 · 10−2 1.07 · 10−3 1.88 · 10−2 7.04 · 10−4 1.61 · 10−2

= h 09x10 x11 ⋯ x1
t

= h 09x30 x31 ⋯ x3
t

= h 09x20 x21 ⋯ x2
t

= h 09xN0 xN1 ⋯ xN
t

⋯ ⋯

⋯

⋯

⋯ ⋯

Link Traffic Monitoring in ISP Networks

⋱
⋱

subsignals

da
ta

po
in

ts
(no

de
s)

window
S1S2S3

Si

⋱
⋱

(1) Input: Signal expressed by a set of temporal
subsignals of a certain window length d

𝒮 = {Si}M
i=1 =

(2) Similarity Matrix: For each subsignal ,
a similarity score is computed between

each pair of initial node embeddings

Si
muv

h01
h02

h0
N

⋮

ψ𝒱 ∈ ℝN×d′

Initial node
embeddings

fS

m1,1 m1,2 ⋯ m1,N

⋯

⋯
⋮ ⋮ ⋮⋱

MS ∈ ℝN×N

m2,1 m2,2 m2,N

mN,1 mN,2 mN,N

x10 x11 ⋯ x1
d

x20 x21 ⋯ x2
d

xN0 xN1 ⋯ xN
d

⋮ ⋮ ⋮⋱
x30 x31 ⋯ x3

d h03

⋮
mN,3

m1,3

m2,3
m3,1 m3,2 m3,3 ⋯ m3,N

(3) Higher-order structures: Set of uniform and
disjoint hyperedges via clustering of 𝒲 MS

⋯
w1 w2 wK

⋯ ⋯ ⋯

(4) Pairwise relations (Opt): Edges computed
via intra-hyperedge k-nearest neighbors

ℰ

⋯
w1 w2 wK

⋯ ⋯ ⋯

(1) Initial embeddings: Built upon the
node initial features ,

i.e. the signals to compress
xv= ∈ ℝd

Si ∈ 𝒮

←h0
v = ψ𝒱() ∈ ℝd′

←h0
e = ψ𝒱→ℰ(,) ∈ ℝd′

←h0
w = ψ𝒱→𝒲(, ,) ∈ ℝd′

v ∈ 𝒱

e ∈ ℰ

w ∈ 𝒲

(2) Topological Message Passing:
edge-hyperedge communications

Between neighboring edges
← ψℰ→ℰ(,) ∈ ℝd′

UP: edges hyperedge →
← ψℰ→𝒲(, ,) ∈ ℝd′

DOWN: hyperedge edges→
← ψℰ→ℰ(,) ∈ ℝd′

 iterationsT

(3) Edge-to-Node MP: Final compressed
node hidden representations

hc = ψℰ→𝒱(, ,) =
hc = ψℰ→𝒱(, , ,) = ∈ ℝdc𝒱

hc = ψℰ→𝒱(, ,) =

(4) Node-to-hyperedge MP: Final hidden
state representation of the hyperedge

hc = ψ𝒱→𝒲(, , , ,)

= ∈ ℝdc𝒲

Compressed
representation

 and selected
so as to reduce input
dimensionality

dc𝒱 dc𝒲

N × d

 (,)

 (,)

 (,)

∈ ℝd

∈ ℝd

∈ ℝdϕdec(⋅ , ⋅)
Compressed 𝒮 Reconstructed �̂�

x10 x11 ⋯ x1
t

x20 x21 ⋯ x2
t

xN0 xN1 ⋯ xN
t

⋮ ⋮ ⋮⋱
x30 x31 ⋯ x3

t
𝒮 =

time

lin
ks

(da
ta

po
in

ts
)

Signal over network links𝒮

(3) Node-to-hyperedge MP: Final hidden
state representation of the hyperedge

hc = ψ𝒱→𝒲(, , , ,)

= ∈ ℝdc𝒲

(1) Initial embeddings: Built upon the initial node
features xv= ∈ ℝd

 ←h0
v = ψ𝒱() ∈ ℝd′

←h0
w = ψ𝒱→𝒲(, ,) ∈ ℝd′

v ∈ 𝒱
w ∈ 𝒲

(2) Hyperedge-to-Node MP: Final hidden
representations of nodes

hc = ψ𝒲→𝒱(, ,) =
hc = ψ𝒲→𝒱(, ,) = ∈ ℝdc𝒱

hc = ψ𝒲→𝒱(, ,) =

∈ ℝd

∈ ℝd

∈ ℝd

 ̂x = ϕdec(,)=

 ̂x = ϕdec(,)=

 ̂x = ϕdec(,)=

�̂�

Figure 3: Decompression Module. It is ap-
plied over each hyperedge-dependent com-
pressed representation set generated by the
Compression Module.

3) Decompression Module. This last module
learns to reconstruct the original signal of every node
through its compressed representation and the final
hidden state of the hyperedge it belongs to. More
formally, for each v ∈ V and its corresponding hy-
peredge v ∈ w ∈ W , the reconstructed signal x̂v is
obtained as x̂v = ϕdec (h

c
v, h

c
w), where ϕdec is im-

plemented as a MLP in our framework. The whole
model is trained end-to-end to minimize the (mean
squared) reconstruction error.

3 Evaluation & Discussion
Experimental Setup: For the evaluation, we use two public real-world datasets –Abilene, Geant–
from [14]. They are pre-processed to generate subsignals Si of network link-level traffic measure-
ments in temporal windows of length d = 10, to which then a random 60/20/20 split is performed
for training, validation and test, respectively. In this context, our method is compared against:

• w we implemented several standard GNN architectures (GCN[13], GAT[19], GATv2[7], Graph-
SAGE[11]) to perform signal compression over the network graph topology; we take the best
result among them in each evaluation scenario.

• MPNN: a custom MP-based GNN scheme –over the original network graph structure as well–
whose modules and pipeline are similar to our proposed topological MPs.

• MLP: a feed-forward auto-encoder architecture with no inductive biases over subsignals Si.

GNN and MPNN baselines implement a decompression module similar to that of our TDL-based
methods. More details about the evaluation and all model implementations are provided in A.4.

Experimental Results: Table 1 shows the reconstruction error (MSE and MAE) obtained by our
framework and the baselines in both datasets for two compression factors, 1/3 and 2/3. SetMP, our
topological edge-less architecture, clearly performs the best in all scenarios –improving on average
by 75% and 48%, respectively, the best MSE and MAE obtained by baselines–, followed by our most
general CombMP method. As for the baselines, in overall MPNN slightly outperforms MLP, and
GNN performs the worst. In addition, a comparison against state-of-the-art zfp can be found in A.4.5.

Discussion: These results support our hypothesis that taking into account higher-order interac-
tions could help in designing more expressive ML-based models for (graph) signal compression
tasks, specially due to the fact that these higher-order structures can go beyond the (graph) local
neighborhood and connect possibly distant datapoints whose signals may be strongly correlated
(e.g. generator and sink nodes in ISP Networks). In that regard, TDL can provide us with novel
methodologies that naturally encompass and exploit those multi-element relations. Moreover, it is
interesting to see how our set-based architecture outperforms the combinatorial-based one in every
scenario, suggesting that intermediate binary connections might add noise in the process of distilling
compressed representations. Further discussion on future work, focusing on the current limitations of
our method and how to possibly address them, can be found in A.5.

4

Topological Graph Signal Compression

Acknowledgements
This publication is part of the Spanish I+D+i project TRAINER-A (ref. PID2020-118011GB-C21),
funded by MCIN/AEI/10.13039/ 501100011033. This work is also partially funded by the Catalan
Institution for Research and Advanced Studies (ICREA), the Secretariat for Universities and Research
of the Ministry of Business and Knowledge of the Government of Catalonia, and the European Social
Fund.

References
[1] Paul Almasan et al. “Leveraging Spatial and Temporal Correlations for Network Traffic

Compression”. In: arXiv preprint arXiv:2301.08962 (2023). 1, 7
[2] Claudio Battiloro, Paolo Di Lorenzo, and Sergio Barbarossa. “Topological Slepians: Maximally

Localized Representations of Signals Over Simplicial Complexes”. In: ICASSP 2023-2023
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE.
2023, pp. 1–5. 1

[3] Claudio Battiloro et al. “From Latent Graph to Latent Topology Inference: Differentiable Cell
Complex Module”. In: arXiv preprint arXiv:2305.16174 (2023). 10

[4] Federico Battiston et al. “The physics of higher-order interactions in complex systems”. In:
Nature Physics 17.10 (2021), pp. 1093–1098. 1

[5] Cristian Bodnar et al. “Weisfeiler and lehman go cellular: Cw networks”. In: Advances in
Neural Information Processing Systems 34 (2021), pp. 2625–2640. 1

[6] Cristian Bodnar et al. “Weisfeiler and lehman go topological: Message passing simplicial
networks”. In: International Conference on Machine Learning. PMLR. 2021, pp. 1026–1037. 1

[7] Shaked Brody, Uri Alon, and Eran Yahav. “How attentive are graph attention networks?” In:
(2022). 4, 8

[8] James Diffenderfer et al. “Error analysis of zfp compression for floating-point data”. In: SIAM
Journal on Scientific Computing 41.3 (2019), A1867–A1898. 1, 6

[9] Matthias Fey and Jan Eric Lenssen. “Fast graph representation learning with PyTorch Geomet-
ric”. In: arXiv preprint arXiv:1903.02428 (2019). 8

[10] Mustafa Hajij et al. Topological Deep Learning: Going Beyond Graph Data. 2023. arXiv:
2206.00606 [cs.LG]. 1, 3, 7

[11] Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive representation learning on large
graphs”. In: Advances in Neural Information Processing Systems 30 (2017). 4, 8

[12] Marton Havasi. “Advances in Compression using Probabilistic Models”. In: (2021). DOI:
10.17863/CAM.79008. URL: https://www.repository.cam.ac.uk/handle/1810/
331555. 1, 6

[13] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph Convolutional
Networks”. In: ICLR. 2017. 4, 8

[14] Sebastian Orlowski et al. “SNDlib 1.0—Survivable network design library”. In: Networks: An
International Journal 55.3 (2010), pp. 276–286. 1, 4, 6, 8

[15] Mathilde Papillon et al. “Architectures of topological deep learning: A survey on topological
neural networks”. In: arXiv preprint arXiv:2304.10031 (2023). 1, 7

[16] Arjun Roy et al. “Inside the social network’s (datacenter) network”. In: Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication. 2015, pp. 123–137. 6

[17] Michael T Schaub et al. “Random walks on simplicial complexes and the normalized Hodge
1-Laplacian”. In: SIAM Review 62.2 (2020), pp. 353–391. 1

[18] Paul Tune et al. “Internet traffic matrices: A primer”. In: Recent Advances in Networking 1
(2013), pp. 1–56. 6

[19] Petar Veličković et al. “Graph Attention Networks”. In: ICLR. 2018. 4, 8
[20] Chenxin Xu et al. “Groupnet: Multiscale hypergraph neural networks for trajectory prediction

with relational reasoning”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2022, pp. 6498–6507. 6, 7

[21] Fengli Xu et al. “Understanding mobile traffic patterns of large scale cellular towers in urban
environment”. In: IEEE/ACM transactions on networking 25.2 (2016), pp. 1147–1161. 6

5

https://arxiv.org/abs/2206.00606
https://doi.org/10.17863/CAM.79008
https://www.repository.cam.ac.uk/handle/1810/331555
https://www.repository.cam.ac.uk/handle/1810/331555

Topological Graph Signal Compression

[22] Yibo Yang, Stephan Mandt, Lucas Theis, et al. “An introduction to neural data compression”.
In: Foundations and Trends® in Computer Graphics and Vision 15.2 (2023), pp. 113–200. 1, 6

[23] Tongtong Yuan et al. “Signal-to-noise ratio: A robust distance metric for deep metric learning”.
In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
2019, pp. 4815–4824. 2

[24] Manzil Zaheer et al. “Deep sets”. In: Advances in neural information processing systems 30
(2017). 7

[25] Jie Zhou et al. “Graph neural networks: A review of methods and applications”. In: AI open 1
(2020), pp. 57–81. 1

A Appendix
A.1 Network Traffic Compression

Computer Network’s traffic has significantly increased in recent years[18], specially driven by the
development of new applications –such as vehicular networks, Internet of Things, virtual reality,
video streaming– and the advancement of network technology –e.g. the fast improvements in link
speed. In fact, current Internet Service Providers (ISP) Networks can easily produce hundreds of
terabytes of traffic traces per day[16], and this keeps growing.

However, network operators continuously need to store and analyze network traffic data for various
network management purposes, including network planning, traffic engineering, traffic classification,
anomaly detection or network forensics. With those huge amounts of generated data, the efficient
storage of all this information is then becoming a crucial aspect for them[21].

= h 09x10 x11 ⋯ x1
t

= h 09x30 x31 ⋯ x3
t

= h 09x20 x21 ⋯ x2
t

= h 09xN0 xN1 ⋯ xN
t

⋯ ⋯

⋯

⋯

⋯ ⋯

Link Traffic Monitoring in ISP Networks

⋱
⋱

subsignals

da
ta

po
in

ts
(no

de
s)

window
S1S2S3

Si

⋱
⋱

(1) Input: Signal expressed by a set of temporal
subsignals of a certain window length d

𝒮 = {Si}M
i=1 =

(2) Similarity Matrix: For each subsignal ,
a similarity score is computed between

each pair of initial node embeddings

Si
muv

h01
h02

h0
N

⋮

ψ𝒱 ∈ ℝN×d′

Initial node
embeddings

fS

m1,1 m1,2 ⋯ m1,N

⋯

⋯
⋮ ⋮ ⋮⋱

MS ∈ ℝN×N

m2,1 m2,2 m2,N

mN,1 mN,2 mN,N

x10 x11 ⋯ x1
d

x20 x21 ⋯ x2
d

xN0 xN1 ⋯ xN
d

⋮ ⋮ ⋮⋱
x30 x31 ⋯ x3

d h03

⋮
mN,3

m1,3

m2,3
m3,1 m3,2 m3,3 ⋯ m3,N

(3) Higher-order structures: Set of uniform and
disjoint hyperedges via clustering of 𝒲 MS

⋯
w1 w2 wK

⋯ ⋯ ⋯

(4) Pairwise relations (Opt): Edges computed
via intra-hyperedge k-nearest neighbors

ℰ

⋯
w1 w2 wK

⋯ ⋯ ⋯

(1) Initial embeddings: Built upon the
node initial features ,

i.e. the signals to compress
xv= ∈ ℝd

Si ∈ 𝒮

←h0
v = ψ𝒱() ∈ ℝd′

←h0
e = ψ𝒱→ℰ(,) ∈ ℝd′

←h0
w = ψ𝒱→𝒲(, ,) ∈ ℝd′

v ∈ 𝒱

e ∈ ℰ

w ∈ 𝒲

(2) Topological Message Passing:
edge-hyperedge communications

Between neighboring edges
← ψℰ→ℰ(,) ∈ ℝd′

UP: edges hyperedge →
← ψℰ→𝒲(, ,) ∈ ℝd′

DOWN: hyperedge edges→
← ψℰ→ℰ(,) ∈ ℝd′

 iterationsT

(3) Edge-to-Node MP: Final compressed
node hidden representations

hc = ψℰ→𝒱(, ,) =
hc = ψℰ→𝒱(, , ,) = ∈ ℝdc𝒱

hc = ψℰ→𝒱(, ,) =

(4) Node-to-hyperedge MP: Final hidden
state representation of the hyperedge

hc = ψ𝒱→𝒲(, , , ,)

= ∈ ℝdc𝒲

Compressed
representation

 and selected
so as to reduce input
dimensionality

dc𝒱 dc𝒲

N × d(*)

 (,)

 (,)

 (,)

∈ ℝd

∈ ℝd

∈ ℝdϕdec(⋅ , ⋅)
Compressed 𝒮 Reconstructed �̂�

x10 x11 ⋯ x1
t

x20 x21 ⋯ x2
t

xN0 xN1 ⋯ xN
t

⋮ ⋮ ⋮⋱
x30 x31 ⋯ x3

t
𝒮 =

time

lin
ks

(da
ta

po
in

ts
)

Signal over network links𝒮

(3) Node-to-hyperedge MP: Final hidden
state representation of the hyperedge

hc = ψ𝒱→𝒲(, , , ,)

= ∈ ℝdc𝒲

(1) Initial embeddings: Built upon the
node initial features xv= ∈ ℝd

 ←h0
v = ψ𝒱() ∈ ℝd′

←h0
w = ψ𝒱→𝒲(, ,) ∈ ℝd′

v ∈ 𝒱
w ∈ 𝒲

(2) Hyperedge-to-Node MP: Final hidden
representations of nodes

hc = ψ𝒲→𝒱(, ,) =
hc = ψ𝒲→𝒱(, ,) = ∈ ℝdc𝒱

hc = ψ𝒲→𝒱(, ,) =

Figure 4: The goal is to compress a signal S over graph-
based ISP Networks representing the temporal evolution of
each link utilization.

This is what motivated us to choose
ISP Traffic Compression for testing
our proposed method. Not only it pro-
vides with complex data naturally rep-
resented in the graph domain, but also
represents a relevant use case for the
networking community. In addition to
that, for network management tasks
there is a reasonable loss tolerance of
the compression, so it would make
sense to consider lossy methods such
as zfp[8] or ours. Finally, it is also im-
portant to note that there exists public
real-world datasets of ISP backbone
networks[14] that, despite of their lim-

ited network sizes, already reflect complex traffic patterns that may go beyond the provided graph
structure (e.g. with distant elements possibly having strong correlations, such as links that are adjacent
to generator and sink nodes). Thus, we argue that this use case perfectly serves for our first testing
purposes. In particular, in our experiments we consider Abilene and Geant datasets from [14], which
are the ones with the higher number of traffic traces; more details about them in Appendix A.4.1.

A.2 Related Work

As already mentioned in Section 1, there already exist ML-based models in the literature that target
compression tasks[12, 22], but they are mainly entangled to Information Theory concepts used in
classical compression algorithms, and applied to Computer Vision domains. Our approach differs
from them in these two basic aspects, and has been inspired by zfp[8], the state-of-the-art lossy
method for floating-point data compression. As detailed in [8], the first step of zfp consists in dividing
floating matrices or tensors in disjoint blocks of a fixed dimension, which then are independently
processed to extract compressed representations. This has obvious similarities with our search of
higher-order structures, with the difference that in zfp the divisions are totally determined by the input
elements’ order.

Precisely our proposed topology inference module has some resemblances to that of [20], which is
also based on grouping entries of an affinity (i.e. similarity) matrix computed over a set of element’s

6

Topological Graph Signal Compression

= h 09x10 x11 ⋯ x1
t

= h 09x30 x31 ⋯ x3
t

= h 09x20 x21 ⋯ x2
t

= h 09xN0 xN1 ⋯ xN
t

⋯ ⋯

⋯

⋯

⋯ ⋯

Link Traffic Monitoring in ISP Networks

⋱
⋱

subsignals

da
ta

po
in

ts
(no

de
s)

window
S1S2S3

Si

⋱
⋱

(1) Input: Signal expressed by a set of temporal
subsignals of a certain window length d

𝒮 = {Si}M
i=1 =

(2) Similarity Matrix: For each subsignal ,
a similarity score is computed between

each pair of initial node embeddings

Si
muv

h01
h02

h0
N

⋮

ψ𝒱 ∈ ℝN×d′

Initial node
embeddings

fS

m1,1 m1,2 ⋯ m1,N

⋯

⋯
⋮ ⋮ ⋮⋱

MS ∈ ℝN×N

m2,1 m2,2 m2,N

mN,1 mN,2 mN,N

x10 x11 ⋯ x1
d

x20 x21 ⋯ x2
d

xN0 xN1 ⋯ xN
d

⋮ ⋮ ⋮⋱
x30 x31 ⋯ x3

d h03

⋮
mN,3

m1,3

m2,3
m3,1 m3,2 m3,3 ⋯ m3,N

(3) Higher-order structures: Set of uniform and
disjoint hyperedges via clustering of 𝒲 MS

⋯
w1 w2 wK

⋯ ⋯ ⋯

(4) Pairwise relations (Opt): Edges computed
via intra-hyperedge k-nearest neighbors

ℰ

⋯
w1 w2 wK

⋯ ⋯ ⋯

(1) Initial embeddings: Built upon the
node initial features ,

i.e. the signals to compress
xv= ∈ ℝd

Si ∈ 𝒮

←h0
v = ψ𝒱() ∈ ℝd′

←h0
e = ψ𝒱→ℰ(,) ∈ ℝd′

←h0
w = ψ𝒱→𝒲(, ,) ∈ ℝd′

v ∈ 𝒱

e ∈ ℰ

w ∈ 𝒲

(2) Topological Message Passing:
edge-hyperedge communications

Between neighboring edges
← ψℰ→ℰ(,) ∈ ℝd′

UP: edges hyperedge →
← ψℰ→𝒲(, ,) ∈ ℝd′

DOWN: hyperedge edges→
← ψℰ→ℰ(,) ∈ ℝd′

 iterationsT

(3) Edge-to-Node MP: Final compressed
node hidden representations

hc = ψℰ→𝒱(, ,) =
hc = ψℰ→𝒱(, , ,) = ∈ ℝdc𝒱

hc = ψℰ→𝒱(, ,) =

(4) Node-to-hyperedge MP: Final hidden
state representation of the hyperedge

hc = ψ𝒱→𝒲(, , , ,)

= ∈ ℝdc𝒲

Compressed
representation

 and selected
so as to reduce input
dimensionality

dc𝒱 dc𝒲

N × d(*)

 (,)

 (,)

 (,)

∈ ℝd

∈ ℝd

∈ ℝdϕdec(⋅ , ⋅)
Compressed 𝒮 Reconstructed �̂�

x10 x11 ⋯ x1
t

x20 x21 ⋯ x2
t

xN0 xN1 ⋯ xN
t

⋮ ⋮ ⋮⋱
x30 x31 ⋯ x3

t
𝒮 =

time

lin
ks

(da
ta

po
in

ts
)

Signal over network links𝒮

(3) Node-to-hyperedge MP: Final hidden
state representation of the hyperedge

hc = ψ𝒱→𝒲(, , , ,)

= ∈ ℝdc𝒲

(1) Initial embeddings: Built upon the initial node
features xv= ∈ ℝd

 ←h0
v = ψ𝒱() ∈ ℝd′

←h0
w = ψ𝒱→𝒲(, ,) ∈ ℝd′

v ∈ 𝒱
w ∈ 𝒲

(2) Hyperedge-to-Node MP: Final hidden
representations of nodes

hc = ψ𝒲→𝒱(, ,) =
hc = ψ𝒲→𝒱(, ,) = ∈ ℝdc𝒱

hc = ψ𝒲→𝒱(, ,) =

Figure 5: Compression Module workflow for the SetMP architecture; it is independently applied
to each inferred hyperedge w ∈ W . The arguments of the functions visually represent either initial
node features or the corresponding element embedding.

neural embeddings. Nevertheless, due to the constraints imposed by the compression task there
exists relevant differences between that inference procedure and ours: whereas we design a clustering
methodology to get disjoint and uniform-length sets, in [20] they implement a multi-scale hyperedge
forming pipeline where each node ends up belonging to an arbitrary number of higher-order structures
–and not only among different hyperedge degrees, but also within the same scale.

Regarding our topological-inspired MP architectures, we highlight the paper of [10] on Combinatorial
Complexes (CCC) and the survey [15] on TDL architectures. Our most general method –CombMP–
was conceptualized before the publication of these works, but we note that it can be formalized in
terms of CCCs’ notation by considering nodes as 0-cells, edges as 1-cells, and hyperedges as 2-cells;
it is due to this fact that we called it CombMP, which stands for Combinatorial Message Passing.
SetMP, on the other hand, belongs to the hypergraph family of TDL architectures according to the
classification of [15]. More precisely, it can be linked to DeepSets architectures[24], which is why it
received that name.

Finally, a special mention should be given to [1], which also leverages a ML model to specifically
perform traffic compression on ISP networks. However, authors of this work implement a spatio-
temporal GNN that acts as a predictor of a traditional lossless compression method (in this case,
Arithmetic Coding), which defines a totally different conceptual approach.

A.3 Compression via Topological Message Passing (SetMP)

In this section we describe the topological MP pipeline of SetMP (Figure 5). In contrast to CombMP,
this architecture disregards binary connections and consequently operates over a topological object
T = (V,W), where again V denotes the set of N nodes and W ∈ (V ×· · ·×V) the set of K inferred
hyperedges. We describe the differences in the compression pipeline in this scenario:

Initial embeddings: Initial embeddings for nodes and hyperedges are generated in the same way:
{h0v}Nv=1 for the nodes, and h0w = ϕθW

(
⊕v∈wh

0
v

)
for each w ∈ W for the hyperedges (both of them

with dimension d′).

Hyperedge-to-Node Compression: Without edges as intermediaries, we directly perform the
node compression, in this case based on both the initial node and hyperedge embeddings and the
original signal Si. Formally, for each node v ∈ V we get a compressed hidden representation
hcv = ϕθW→V

(
⊕w∈W,v∈eψθW→V

(
xv, h

0
v, h

0
w

))
∈ Rdc

V .

Node-to-Hyperedge Compression: The second and last compression step over the hyperedge
representations is exactly the same as in the CombMP –except for the fact that now the considered
hyperedge hidden states have not been updated. Therefore, each hyperedge w ∈ W obtains its final
compressed hidden representation as hcw = ϕθV→W

(
⊕v∈V,v∈wψθV→W

(
xv, h

c
v, h

0
w

))
∈ Rdc

W .

Thus, again the final node and hyperedge representations –{{hcv}v∈V , {hcw}w∈W}– encode the
compressed representation of a signal Si = {xj}Nj=1, and the same expression of the compression
factor rc applies to SetMP. Finally, we note that the decompression module does not vary either.

A.4 Further Details of Evaluation

In this section we provide more technical details about the datasets and model implementations.
Lastly, we also show the performance of zfp in the considered evaluation scenarios.

7

Topological Graph Signal Compression

A.4.1 Datasets

As stated in Section 3, the traffic traces of both datasets are publicly available at [14]. After distributing
them into links, Abilene dataset contains link-level traffic utilization measurements over 6 months –in
intervals of 5 minutes– for a topology with 12 nodes and 30 directional links. Considering a temporal
window of length d = 10, this results in N = 4, 809 subsignal samples after data cleaning. On the
other hand, Geant dataset contains analogous measurements for a period of 4 months and a time
interval of 15 minutes, in this case for a topology with 22 nodes and 72 directional links. After data
cleaning, it has a total of 1, 075 final samples with the same window size.

The topology structure of both networks is also provided, and we use it in our GNN-based baselines.
The aforementioned 60/20/20 split is performed over these resulting link-based subsignals.

A.4.2 Implementation of our Proposed Models

Regarding the Topology Inference module, we recall the relevance of the hyper-parameter p that de-
fines the maximum allowed hyperedge length, and which also defines the number of those hyperedges
by K = ⌊N/p⌉, being N the total number of datapoints. In particular, in our implementation we try
to form K p-uniform disjoint hyperedges if possible, but otherwise build a combination of p− 1 and
p-uniform disjoint hyperedges –so that every datapoint is contained in one of them. Moreover, we
always consider p > 4 so that K ≪ N holds.

As shown in Equation 1, this parameter p together with the dimensions of the final node and hyperedge
compressed representations, dcV and dcW , define the compression factor of our method. After some
hyperparameter tuning, in our experiments we used p = 8, dcV = 2 and dcW = 10 for achieving
rc = 1/3, and p = 6, dcV = 5 and dcW = 10 for rc = 2/3; respectively, this resulted in 4 and 5
inferred hyperedges for the Abilene dataset, and 9 and 12 for Geant.

These parameters apply to both SetMP and CombMP architectures, and in both scenarios we also
consider node, edge and hyperedge hidden representations of dimension d′ = 20, double the the
dimension d of node signals. All message and update functions, ψθ· and ϕθ· , are implemented as
MLPs, and permutation-invariant aggregator functions ⊕ consist of the concatenation three element-
wise operations: mean, max and min. In the case of CombMP, only 1 iteration of topological message
passing (Figure 2.2) is performed. Finally, we note that the Decompression Module has the same
MLP structure in both compression pipelines.

We will publicly release the code in the future extended version of this work.

A.4.3 Baseline Implementations

Analogously to what we do with our proposed architectures, we have fine-tuned the involved hyper-
parameters of all implemented baselines to perform the compression task. Moreover, they follow a
similar compression scheme than our proposed TDL methods. We provide more details below:

Graph-based. These methods leverage the original graph-like network structure present in Abilene
and Geant datasets. In this case, since the signal is over the edges, we compute the (dual) line
graph of the network, so that edges become nodes and are connected between them if they share
origin/destination. The idea is then to perform several iterations of message passing over this line
graph to get a compressed representation of the original signal in the hidden state of these link-based
nodes. The difference between our two graph-based baselines precisely relies on the nature of this
message passing:

• GNN: Under this name we gather the results of implementing several standard GNN architec-
tures (GCN[13], GAT[19], GATv2[7], GraphSAGE[11]). In all of these cases, two consecutive
message interchanges (with relatively high dimensional hidden states, 64 and 32 in our experi-
ments) are performed before a third one gets the desired compressed representation. We have
used the available implementations of PyTorch Geometric [9] for the convolutional GNN layers,
and performed an exhaustive hyperparameter-tuning for each of them (testing different hidden
dimensions, aggregations, normalizations, dropout values, number of heads, etc.). As stated
in Section 3, in each dataset/compression ratio scenario we select the best performing model
among this set of GNN architectures to perform the evaluation (shown in Table 1). However, we
note that there is not a significant difference in performance among the different GNN models,

8

Topological Graph Signal Compression

Table 2: Reconstruction Mean Squared Error (MSE) and Mean Absolute Error (MAE) over the test
set obtained by our best performing architecture (SetMP) and the state-of-the-art method zfp.

Abilene Geant

rc = 1/3 rc = 2/3 rc = 1/3 rc = 2/3

MSE MAE MSE MAE MSE MAE MSE MAE

SetMP 3.22 · 10−4 8.75 · 10−3 2.03 · 10−4 6.80 · 10−3 6.93 · 10−4 1.52 · 10−2 2.90 · 10−4 1.05 · 10−2

zfp 9.19 · 10−5 7.34 · 10−3 4.02 · 10−7 4.84 · 10−4 1.04 · 10−4 7.83 · 10−3 4.18 · 10−7 4.95 · 10−4

and within a single model different hyperparameter settings do not result in huge performance
variations either; we will further expand this analysis in future work.

• MPNN: In this case we implement a custom Message Passing GNN whose pipeline resembles
that of the CombMP architecture: edges to edges, edges to nodes, nodes to edges, and a final
edge to node communication with a residual connection to the original node signal that performs
the compression. In this case the intermediate node and edge hidden states’ dimension is set
to d′ = 20, just as in our topological-inspired methods. Notably, the implementation of this
baseline follows directly from the topological architectures, restricting everything to the graph
domain. As a result, it underwent hyperparameter tuning in exactly the same way as CombMP
and SetMP.

In both cases, the final hidden states obtained from the last MP step represent the node signal
compressed representations. Since the original window-based signals have length d = 10, we set this
final dimension to 4 and 7 when benchmarking our method against them for getting compression
factors rc of 1/3 and 2/3, respectively. Finally, we note that both graph-based baselines implement a
MLP for the decompression task totally analogous to the one of our TDL-based architectures (in this
case simply having as input the final node compressed representation).

MLP. We also implemented a MLP auto-encoder architecture that considers all possible connections
between all elements of each subsignal Si = {xj}Nj=1. In particular, each of the subsignals is flattened
–i.e. dinput = N · d– and passed to a feed forward encoder network (with 1024 and 512 hidden
dimensions and ReLu activation function after our architecture search) that outputs a final compressed
representation of the full subsignal with dimension doutput = ⌈rc · dinput⌉, being rc the considered
compression factor. A symmetric decoder network reconstructs the signal from that representation.

A.4.4 Training and Validation Pipeline

All models are trained for a maximum of 200 epochs in Abilene dataset and 500 in Geant using Adam
optimizer (with learning rate 0.003 and epsilon 0.001) and using batches of 25 samples if required.
The model state corresponding to the best performing iteration over the validation set is selected for
the test evaluation, whose results are represented in Table 1 of the main body of the paper.

A.4.5 Comparison against zfp

Finally, we extend the evaluation by showing the relative performance of our best behaved TDL-based
methodology –SeMP– with respect to the state-of-the-art lossy compression method zfp for the
desired precision; see Table 2. As it can be seen, zfp gets better reconstruction errors than our model
in all scenarios, although we note that differences are considerably lower for smaller (i.e. more
challenging) compression factors. Overall, we reckon that these are promising results; our topological
models are postulated as strong ML-based baselines for lossy compression, and by addressing some
of their current limitations (see Section A.5) there may be room for for shortening the gap w.r.t zfp.

In particular, we hypothesize that the main limitation of our current method revolves around its
topology inference procedure, as it can potentially gather elements that do not necessarily share any
correlation –especially at the end of the clustering process, where groups are built in a greedy manner
regardless of the actual similarities between their elements. Whereas zfp implements a sophisticated
method to deal with such uncorrelated elements, our current methodology mainly relies on existing
correlations to perform compression; this can lead to a systematic poor reconstruction error of the
involved signals. We will delve deeper into this in the extension of this work.

9

Topological Graph Signal Compression

A.5 Future Work

Despite the promising preliminary results obtained, and because of them as well, there are many
aspects and limitations of our proposed methodology that are being investigated and will be addressed
in future work. The following list summarizes some of the main lines of research:

Topology Inference. Apart from exploring other metrics beyond SNR, it would be interesting
to consider more flexible clustering approaches that could dynamically adapt the length/number
of the inferred higher-order structures (e.g. by defining a Reinforcement Learning pipeline to
perform the division, or adapting a solution like the Differentiable Cell Complex Module[3] to our
scenario). Moreover, we would also like to explore non-greedy clustering techniques such as Affinity
Propagation.

Implementation Issues. Our current proposal does not scale well with the original (graph) signal
dimension, as it mainly relies on an iterative pair-wise similarity computation between all (graph)
elements. More research about how to relax this aspect is required in order to make its deployment
feasible, and in this regard some ideas we want to explore are:

• To test whether static higher-order structures generated from training samples can perform well
in testing time; not only this would reduce the execution time, but also the necessity of storing
the cluster sequence at each iteration.

• To check the feasibility of storing simultaneously sparse matrices indicating when the compres-
sion loss exceeds a certain threshold; apart from becoming a potential indicator of anomalies in
the signal, if the distribution of big reconstruction errors is really sparse, combining them with
the compressed representations will provide with loss tolerance guarantees, and could be key for
matching zfp performance.

• For large graphs, to divide the original graph into independent subgraphs, to which then our
method is applied.

Topological MP. Another goal is to shed more light on the performance difference observed
between our two architectures, SetMP and CombMP. Owing to current results, it seems that the lower
complexity of SetMP is a clear advantage, and suggests that intermediate edge communications
noisily interfere in the compression process. This should be further validated with other datasets,
and possibly by testing some variations of the edge-based communication pipeline in the general
CombMP architecture.

10

	1 Motivation
	2 Methodology
	3 Evaluation & Discussion
	A Appendix
	A.1 Network Traffic Compression
	A.2 Related Work
	A.3 Compression via Topological Message Passing (SetMP)
	A.4 Further Details of Evaluation
	A.4.1 Datasets
	A.4.2 Implementation of our Proposed Models
	A.4.3 Baseline Implementations
	A.4.4 Training and Validation Pipeline
	A.4.5 Comparison against zfp

	A.5 Future Work

