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Abstract

Decision support systems for classification tasks
are predominantly designed to predict the value
of the ground truth labels. However, since their
predictions are not perfect, these systems also
need to make human experts understand when
and how to use these predictions to update their
own predictions. Unfortunately, this has been
proven challenging. In this context, it has been re-
cently argued that an alternative type of decision
support systems may circumvent this challenge.
Rather than providing a single label prediction,
these systems provide a set of label prediction
values constructed using a conformal predictor,
namely a prediction set, and forcefully ask ex-
perts to predict a label value from the prediction
set. However, the design and evaluation of these
systems have so far relied on stylized expert mod-
els, questioning their promise. In this paper, we
revisit the design of this type of systems from
the perspective of online learning and develop a
methodology that does not require, nor assumes,
an expert model. Our methodology leverages the
nested structure of the prediction sets provided
by any conformal predictor and a natural coun-
terfactual monotonicity assumption to achieve an
exponential improvement in regret in compari-
son to vanilla bandit algorithms. We conduct a
large-scale human subject study (n = 2,751) to
compare our methodology to several competitive
baselines. The results show that, for decision sup-
port systems based on prediction sets, limiting
experts’ level of agency leads to greater perfor-
mance than allowing experts to always exercise
their own agency.

1Max Planck Institute for Software Systems, Kaiserslautern,
Germany. Correspondence to: Eleni Straitouri <estraitouri@mpi-
sws.org>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
Throughout the years, one of the main focus in the area of
machine learning for decision support has been classification
tasks. In this setting, the decision support system typically
uses a classifier to predict the value of a ground truth label
of interest and a human expert uses the predicted value to
update their own prediction (Bansal et al., 2019; Lubars &
Tan, 2019; Bordt & von Luxburg, 2020). Classifiers have
become notably accurate in a variety of application domains
such as medicine (Jiao et al., 2020), education (Whitehill
et al., 2017), or criminal justice (Dressel & Farid, 2018), to
name a few. However, their data-driven predictions are not
always perfect (Raghu et al., 2019). As a result, there has
been a flurry of work on helping human experts understand
when and how to use the predictions provided by these sys-
tems to update their own (Papenmeier et al., 2019; Wang &
Yin, 2021; Vodrahalli et al., 2022; Liu et al., 2023). Unfor-
tunately, it is yet unclear how to guarantee that, by using
these systems, experts never decrease the average accuracy
of their own predictions (Yin et al., 2019; Zhang et al., 2020;
Suresh et al., 2020; Lai et al., 2021).

Very recently, Straitouri et al. (2023) have argued that an al-
ternative type of decision support systems may provide such
a guarantee, by design. Rather than providing a label predic-
tion and letting human experts decide when and how to use
the predicted label to update their own prediction, this type
of systems provide a set of label predictions, namely a pre-
diction set, and forcefully ask the experts to predict a label
value from the prediction set, as shown in Figure 1.1 Their
key argument is that, if the prediction set is constructed us-
ing conformal prediction (Vovk et al., 2005; Angelopoulos
& Bates, 2023), then one can precisely trade-off the proba-
bility that the ground truth label is not in the prediction set,
which determines how frequently the systems will mislead
human experts2, and the size of the prediction set, which

1There are many systems used everyday by experts that, under
normal operation, limit experts’ level of agency. For example, think
of a pilot who is flying a plane. There are automated, adaptive
systems that prevent the pilot from taking certain actions based on
the monitoring of the environment.

2Since these systems do not allow experts to predict a label
value if it lies outside the prediction set, if the prediction set does
not contain the ground truth label, we know that the expert’s
prediction will be incorrect.
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determines the difficulty of the classification task the experts
need to solve using the system. However, Straitouri et al. are
only able to find the (near-)optimal conformal predictor that
maximizes average accuracy under the assumption that the
experts’ predictions follow a stylized expert model, which
they also use for evaluation. In this work, our goal is to lift
this assumption and efficiently find the optimal conformal
predictor that maximizes the average accuracy achieved by
real experts using such a system.

1.1. Our Contributions

We start by formally characterizing experts’ predictions over
prediction sets constructed using a conformal predictor us-
ing a structural causal model (SCM) (Pearl, 2009). Building
upon this characterization, we identify the following natu-
ral counterfactual monotonicity assumption on the experts’
predictions, which may be of independent interest. If an
expert succeeds (fails) at predicting the ground truth label
from a prediction set and the set contains the ground truth
label, the expert would have also succeeded (failed) had the
prediction set been smaller (larger) but had still contained
the ground truth label. Then, we use this counterfactual
monotonicity assumption and the nested structure of the pre-
diction sets provided by conformal prediction to design very
efficient bandit algorithms to find the optimal conformal pre-
dictor. In particular, we formally show that, in our setting,
a variant of the successive elimination algorithm (Slivkins,
2019), which we refer to as counterfactual successive elim-
ination, achieves an exponential improvement in regret in
comparison with vanilla successive elimination.

Finally, we conduct a large-scale user study with 2,751 hu-
man subjects who make 194,407 predictions over 19,200
different pairs of natural images and prediction sets. In our
study, we experiment both with a strict and a lenient im-
plementation of our decision support systems. Under the
strict implementation, experts can only predict a label value
from the prediction set whereas, under the lenient imple-
mentation, experts are encouraged to predict a label value
from the prediction set but have the possibility to predict
other label values. Perhaps surprisingly, our results demon-
strate that, under the strict implementation, experts achieve
higher accuracy. This suggests that, for decision support
systems based on prediction sets, limiting experts’ level of
agency leads to greater performance than allowing experts
to always exercise their own agency. Further, our results
also demonstrate that, for the strict implementation, the
conformal predictor found by our counterfactual successive
elimination algorithm offers greater performance than that
found by the algorithm by Straitouri et al. (2023).

An open-source implementation of both the strict and the
lenient implementation of our system as well as all the data
gathered in our human subject study, which we refer to as

ImageNet16H-PS, are available at https://github.c
om/Networks-Learning/counterfactual-p
rediction-sets.

1.2. Further Related Work

Our work builds upon further related work on set-valued pre-
dictors, multi-armed bandits, and learning under algorithmic
triage.

Conformal predictors are just one among many different
types of set-valued predictors (Chzhen et al., 2021), i.e.,
predictors that, for each sample, output a set of label values.
In our work, we opted for conformal predictors over alterna-
tives such as, e.g., reliable or cautious classifiers (Yang et al.,
2017; Mortier et al., 2021; Ma & Denoeux, 2021; Nguyen
& Hüllermeier, 2021), because of their provable coverage
guarantees, which allow us to control how frequently our
decision support systems will mislead human experts. Ex-
cept for two notable exceptions by Straitouri et al. (2023)
and Babbar et al. (2022), set-valued predictors have not
been specifically designed to serve decision support sys-
tems. Within these two exceptions, the work by Straitouri
et al. (2023) is more related to ours. However, it assumes
that the experts’ predictions are sampled from a multinomial
logit model (MNL), a classical discrete choice model (Heiss,
2016). On the contrary, in our work, we do not make any
parametric assumptions about the distribution the experts’
predictions are sampled from. The work by Babbar et al.
(2022) studies the lenient implementation of our decision
support systems, under which the experts appear to achieve
lower accuracy in our human subject study, as shown in
Figure 3. However, it considers a conformal predictor with
a given coverage probability, rather than optimizing across
conformal predictors.3

Within the vast literature of multi-armed bandits (refer
to Slivkins (2019) for a recent review), our work is most
closely related to causal bandits (Lattimore et al., 2016; Lee
& Bareinboim, 2018; Kroon et al., 2022) and combinatorial
multi-armed bandits (Chen et al., 2013). In causal bandits,
there is a known causal relationship between arms and re-
wards, similarly as in our work. However, the focus is on
using this causal relationship, rather than counterfactual
inference, to explore more efficiently and achieve lower
regret. In combinatorial multi-armed bandits, one can pull
any subset of arms, namely a super arm, at the same time.
Then, the goal is to identify the (near-)optimal super arm.
While one could view our problem as an instance of combi-

3Babbar et al. (2022) reduce the size of the prediction sets
constructed using conformal prediction by deferring some samples
to human experts during calibration and testing. However, since
such an optimization can be applied both to the strict and the
lenient implementation of our system, and we do not find any
reason why it would change the conclusions of our human subject
study, for simplicity, we decided not to apply it.
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Figure 1. Our automated decision support system C. Given a sample with a feature vector x, the system C helps the expert by automatically
narrowing down the set of potential label values to a subset of them C(x) ⊆ Y , which we refer to as a prediction set, using a set-valued
predictor. The system forcefully asks the expert to predict a label value ŷC from the prediction set C(x), i.e., ŷC ∈ C(x).

natorial multi-armed bandits, our goal is not to identify the
optimal super arm but the optimal base arm. Further, our
work also relates to an extensive line of work using multi-
armed bandits in real-world applications, which includes,
but is not limited to, efficient data collection for clinical
trials (Durand et al., 2018), dynamic product pricing (Misra
et al., 2019; Mueller et al., 2019), optimal assortment se-
lection (Agrawal et al., 2019), and anomaly detection on
networks (Ding et al., 2019). The survey by Bouneffouf et al.
(2020) includes more examples of real-world applications
where multi-armed bandits have been used.

In learning under algorithmic triage, a classifier predicts the
ground truth label of a given fraction of the samples and
leaves the remaining ones to a human expert, as instructed
by a triage policy (Mozannar & Sontag, 2020; De et al.,
2020; 2021; Okati et al., 2021). In contrast, in our work,
for each sample, a classifier is used to build a set of label
predictions and the human expert needs to predict a label
value from the set.

2. Decision Support Systems based on
Prediction Sets

Given a multiclass classification task where, for each sample,
a human expert needs to predict a label y ∈ Y = {1, . . . , L},
with a feature vector x ∈ X , with x, y ∼ P (X,Y ), the
decision support system C : X → 2Y helps the expert
by automatically narrowing down the set of potential label
values to a subset of them C(x) ⊆ Y , which we refer to as a
prediction set, using a set-valued predictor (Chzhen et al.,
2021). Here, for reasons that will become apparent later,
we focus on a strict implementation of the system that, for
any x ∈ X , forcefully asks the expert’s prediction ŷ ∈ Y ,
with ŷ ∼ P (ŶC |X, C(X)), to belong to the prediction set
C(x). More formally, this is equivalent to assuming that
P (ŶC = ŷ |X = x, C(x)) = 0 for all ŷ /∈ C(x). Refer to
Figure 1 for an illustration of the decision support system C.

Then, the goal is to find the optimal decision support system
C∗ that maximizes the average accuracy of the expert’s

predictions, i.e.,

C∗ = argmax
C

EX,Y,ŶC
[I{ŶC = Y }],

where X,Y∼P (X,Y ) and ŶC∼P (ŶC |X, C(X)). How-
ever, to solve the above maximization problem, we need
to first specify the class of set-valued predictors we aim to
maximize average accuracy upon. Here, we favor conformal
predictors (Vovk et al., 2005; Angelopoulos & Bates, 2023)
over alternatives for two key reasons. First, they provide
prediction sets with a nested structure that, together with
the counterfactual monotonicity assumption, will allow us
to find the optimal conformal predictor that maximizes the
average accuracy of the expert’s predictions very efficiently.
Second, they allow for a precise control of the trade-off
between how frequently the expert is misled by the system
and the difficulty of the classification task she needs to solve,
as we discuss next.

Given a user-specified parameter α ∈ [0, 1], a conformal
predictor uses a pre-trained classifier f̂(x) ∈ [0, 1]L and
a calibration set Dcal = {(xi, yi)}mi=1, where (xi, yi) ∼
P (X,Y ), to construct the prediction sets Cα(X) as fol-
lows:4

Cα(X) = {y | s(X, y) ≤ q̂α}, (1)

where s(xi, yi) = 1−f̂yi
(xi) is called the conformal score5,

f̂yi
(xi) is the output of the classifier (e.g., the softmax

score) for feature vector xi and label value yi, and q̂α is the
⌈(m+1)(1−α)⌉

m empirical quantile of the conformal scores
s(x1, y1), . . . , s(xm, ym). Here, note that, for any sample
with feature vector x, the prediction sets are nested with
respect to the parameter α, i.e., Cα(x) ⊆ Cα′(x) for any
α > α′. Moreover, the conformal predictor enjoys proba-
bly approximately correct (PAC) coverage guarantees, i.e.,
given tolerance values δ, ϵ ∈ (0, 1), we can compute the

4The assumption that f̂(x) ∈ [0, 1]L is without loss of gen-
erality. Here, the higher the score f̂y(x), the more the classifier
believes the ground truth label Y = y.

5In general, the conformal score s(x, y) can be any function
of x and y measuring the similarity between samples. Here, we
choose s(x, y) = 1− f̂y(x) following Sadinle et al. (2019).

3



Designing Decision Support Systems using Counterfactual Prediction Sets

minimum size m of the calibration set Dcal such that, with
probability 1− δ, it holds that (Vovk, 2012)

1− α− ϵ ≤ P[Y ∈ Cα(X) | Dcal] ≤ 1− α+ ϵ,

where (1− α) is called the (user-specified) coverage proba-
bility.6 Then, we can conclude that, with high probability,
for a fraction (1 − α) of the samples, Cα(x) contains the
ground truth label and thus cannot mislead the expert—if the
expert would succeed at predicting the ground truth label y
of a sample with feature vector x on her own, she could still
succeed using Cα because Cα(x) contains the ground truth
label. On the flip side, for a fraction α of the samples, we
know that, if the expert uses Cα, she will fail at predicting
the ground truth label.7 Further, we know that the smaller
(larger) the value of α, the larger (smaller) the size of Cα(x),
and thus the higher (lower) the difficulty of the classification
task the expert must solve (Wright & Barbour, 1977; Beach,
1993; Ben-Akiva & Boccara, 1995).

The important point above is that, since α is a parameter we
choose, we can precisely control the trade-off between how
frequently the system misleads the expert and the difficulty
of the classification tasks the expert needs to solve. Finally,
note that, if we do not forcefully ask the expert to predict
a label value from the prediction set, we would not be able
to have this level of control and good performance would
depend on the expert developing a good sense on when to
predict a label from the prediction set and when to predict a
label from outside the set.

3. Prediction Sets through a Causal Lens
In this section, we start by characterizing how human experts
make predictions using a decision support system via a
structural causal model (SCM) (Pearl, 2009), which we
denote as M. Our SCM M is defined by the following
assignments:

CA(X) = fC(X,A), ŶCA
= fŶ (U, V, CA(X)),

X = fX(V ) and Y = fY (V ) (2)

where A, U and V are independent exogenous random vari-
ables and fC , fŶ , fX and fY are given functions. The
exogenous variables A, U and V characterize the (user-

6Most of the literature on conformal prediction focuses on
marginal coverage rather than PAC coverage. However, since
we will optimize the performance of our system with respect to
α, we cannot afford marginal coverage guarantees, as discussed
in Straitouri et al. (2023).

7There may be some feature vectors x for which, in principle,
a conformal predictor may return an empty prediction set Cα(x).
However, during deployment, one can trivially conclude that they
will not contain the ground truth label. Hence, in those cases, Cα
may allow the expert to choose from Y (or any other subset of
labels).

specified) coverage probability, the expert’s individual char-
acteristics, and the data generating process for the feature
vectors X and ground truth labels Y , respectively. The
function fC is a set-function directly defined by the confor-
mal predictor, i.e., fC(X = x,A = α) = Cα(x), where
the calibration set Dcal is given and thus it does not appear
explicitly as an independent variable. Further, as argued
elsewhere (Pearl, 2009), we can always find a distribution
for the exogenous variables U and V and functions fX , fY
and fŶ such that the observational distributions P (X,Y )

and P (ŶCα
|X, Cα(X)) of interest, defined in the previous

section, are given by the distribution PM entailed by the
SCM M, i.e., P (X = x, Y = y) = PM(X = x, Y = y)
and

P (ŶCα
= ŷ |X = x, Cα(X) = Cα(x)) =

PM ; do(CA(X)=Cα(x))(ŶCA
= ŷ |X = x),

where do(CA(X) = Cα(x)) denotes a (hard) intervention
in which the first assignment in Eq. 2 is replaced by the
value Cα(x). Here, note that we model the stochasticity
in both features X and labels Y through the exogenous
random variable V , instead of considering X = fX(V ) and
Y = fY (X), to allow for both causal and anticausal features
X (Schölkopf et al., 2012). In what follows, we will use the
above SCM M to formally reason about the predictions ŶCα

made by a human expert under different support systems Cα
and then introduce two natural monotonicity assumptions
from first principles.

Given a sample with feature vector x, we can first con-
clude that, since the expert’s predictions only depend on the
(user-specified) coverage probability (1−α) through the pre-
diction set Cα(x), it must hold that, for any pair of decision
support systems Cα and Cα′ such that Cα(x) = Cα′(x), if we
observe that the expert has predicted ŶCα

= ŷ using Cα, we
can be certain that she would have predicted ŶCα′ = ŷ had
she used Cα′ while holding “everything else fixed” (Pearl,
2009). Next, motivated by prior empirical studies in the psy-
chology and marketing literature (Schwartz, 2004; Haynes,
2009; Kuksov & Villas-Boas, 2010; Chernev et al., 2015),
which suggest that increasing the number of alternatives in
a decision making task increases its difficulty, we hypoth-
esize and later on empirically verify (refer to Figure 6 in
Appendix C) that the following interventional monotonicity
assumption holds:
Assumption 3.1 (Interventional monotonicity). The experts’
predictions satisfy interventional monotonicity if and only if,
for any x ∈ X and any Cα and Cα′ such that Y ∈ Cα(x) ⊆
Cα′(x), it holds that

PM ; do(CA(X)=Cα(x))(ŶCA = Y |X = x) ≥
PM ; do(CA(X)=Cα′ (x))(ŶCA

= Y |X = x), (3)
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where the probability is over the uncertainty on the expert’s
individual characteristics and the data generating process.

Moreover, motivated by the aforementioned empirical stu-
dies, we further hypothesize that the following natural coun-
terfactual monotonicity assumption, which is a sufficient
condition for interventional monotonicity, may also hold:

Assumption 3.2 (Counterfactual monotonicity). The ex-
perts’ predictions satisfy counterfactual monotonicity if
and only if, for any x ∈ X and any Cα and Cα′ such that
Y ∈ Cα(x) ⊆ Cα′(x), it holds that

I{fŶ (u, v, Cα(x)) = Y } ≥ I{fŶ (u, v, Cα′(x)) = Y }

for any u ∼ PM(U) and v ∼ PM(V |X = x).

The above assumption is a sufficient condition for inter-
ventional monotonicity since we can obtain the interven-
tional monotonicity inequality given by Eq. 3, by tak-
ing the expectation in both sides of the counterfactual
monotonicity inequality, i.e., I{fŶ (u, v, Cα(x)) = Y } ≥
I{fŶ (u, v, Cα′(x)) = Y } over u, v. Further, the counterfac-
tual monotonicity assumption directly implies that, for any
sample with feature vector x and any Cα and Cα′ such that
Y ∈ Cα(x) ⊆ Cα′(x), if we observe that an expert has suc-
ceeded at predicting the ground truth label Y using Cα′ , she
would have also succeeded had she used Cα and, conversely,
if she has failed at predicting Y using Cα, she would have
also failed had she used Cα′ , while holding “everything else
fixed”. In other words, under the counterfactual monotonic-
ity assumption, the counterfactual dynamics of the expert
under certain alternative prediction sets are identifiable and
purely deterministic. However, note that this does not pre-
vent the factual dynamics of the expert from being stochastic
and fallible, as extensively argued in psychology and be-
havior literature (Kahneman & Tversky, 1973; Tversky &
Kahneman, 1981; Kahneman & Tversky, 1984; Loewen-
stein & Prelec, 1992; Loewenstein et al., 2003).

In what follows, we will leverage this assumption to develop
very efficient online algorithms to find the optimal confor-
mal predictor among those using a given calibration set Dcal,
i.e., α∗ = argmaxα EX,Y,ŶCα

[I{ŶCα = Y }].
Remarks. Since the counterfactual monotonicity assump-
tion lies within level three in the “ladder of causation” (Pearl,
2009), we cannot validate it using observational nor inter-
ventional experiments. However, the good practical perfor-
mance of our online algorithms in our human subject study,
shown in Figures 2 and 3, suggests that it may hold in the
context of the prediction task we have considered. More-
over, in Appendix D, we carry out an additional sensitivity
analysis, which shows that the performance of our algo-
rithms degrades gracefully with respect to the amount of
violations of the counterfactual monotonicity assumption.

4. Finding the Optimal Conformal Predictor
using Counterfactual Prediction Sets

Given a fixed calibration set Dcal = {(xi, yi)}mi=1, there
exist only m different conformal predictors. This is because
the empirical quantile q̂α, which the subsets Cα(xi) depend
on, can only take m different values (Straitouri et al., 2023).
As a result, to find the optimal conformal predictor, we just
need to solve the following maximization problem:

α∗ = argmax
α∈A

EX,Y,ŶCα

[
I{ŶCα = Y }

]
, (4)

where A = {αi}i∈[m], with αi = 1− i/(m+1) and [m] =
{1, 2, . . . ,m}. However, since we do not know the causal
mechanism experts use to make predictions over prediction
sets, we need to trade-off exploitation, i.e., maximizing
the expected accuracy, and exploration, i.e., learning about
the accuracy achieved by the experts under each conformal
predictor. To this end, we look at the problem from the
perspective of multi-armed bandits (Slivkins, 2019).

In our problem, each arm corresponds to a different param-
eter value α and, at each round t, a (potentially different)
human expert receives a sample with feature vector xt, picks
a label value ŷt from the prediction set Cαt

(xt) provided by
the conformal predictor with αt ∈ A, and obtains a reward
I{ŷt = yt} ∈ {0, 1}. Here, we observe xt at the beginning
of each round and yt and I{ŷt = yt} at the end of each
round. Then, the goal is to find a sequence of parameter
values {αt}Tt=1 with desirable properties in terms of total
regret R(T ), which is given by:

R(T ) = T · EX,Y,ŶCα∗

[
I{ŶCα∗ = Y }

]
−

T∑

t=1

EX,Y,ŶCαt

[
I{ŶCαt

= Y }
]
, (5)

where α∗ is the optimal parameter value, as defined in Eq. 4.
At this point, one could think of resorting to any of the
well-known algorithms from the literature on stochastic
multi-armed bandits (Slivkins, 2019), such as UCB1 or suc-
cessive elimination, to decide which arm to pull, i.e., which
αt to use, at each round t. These algorithms would achieve
an expected regret E[R(t)] ≤ O(

√
mt log T ) for any t ≤ T ,

where the expectation is over the randomness in the exe-
cution of the algorithms. However, in our problem setting,
we can do much better than that—in what follows, we will
design an algorithm based on successive elimination that
achieves an expected regret E[R(t)] ≤ O(

√
t logm log T )

for any t ≤ T .

The successive elimination algorithm keeps a set Aactive of
active arms α, which initially sets to Aactive = A. Then, it
pulls a different arm α ∈ Aactive, without repetition, until
it has pulled all arms in Aactive. Assume it has pulled all
arms at round t. Then, it computes an upper and a lower
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Algorithm 1 Counterfactual Successive Elimination
Input: A, T,Dopt
Output: Aactive

Aactive ← A
t← 0, γ ← 0, ν ← 0
while t < T ∨ |Aactive| > 1 do
Aunexplored ← Aactive
while Aunexplored ̸= ∅ ∧ t < T do
α̃← MEDIAN(Aunexplored)
(xt, yt) ∼ Dopt
Deploy Cα̃(xt) and observe I{ŷt = yt} and yt
Aunexplored, γ, ν ← ALG.2(Aunexplored, γ, ν, α̃, xt, yt, ŷt)
t← t+ 1

end while
for α ∈ Aactive do

µ(α) = γ(α)/ν(α)

ϵ(α) =
√

2 log T/ν(α)
end for
for α ∈ Aactive do

if ∃α′ ∈ Aactive : µ(α) + ϵ(α) < µ(α′) − ϵ(α′) then
{Apply deactivation rule}
Aactive ← Aactive \ {α}

end if
end for

end while

confidence bound on the average reward associated to each
arm α, UCBt(α) = µ̂t(α)+ ϵt(α) and LCBt(α) = µ̂t(α)−
ϵt(α), where

µ̂t(α) =

∑
t′≤t I{ŷt′ = yt′ ∧ αt′ = α}∑

t′≤t I{αt′ = α} and

ϵt(α) =

√
2 log T∑

t′≤t I{αt′ = α} ,

and deactivates any arm α ∈ Aactive for which there exists
α′ ∈ Aactive such that UCBt(α) < LCBt(α

′). Then, it re-
peats the same procedure until the maximum number of
rounds T is reached or until |Aactive| = 1.

The rate at which successive elimination deactivates arms
and, in turn, the expected regret, is essentially limited by
the fact that, to update µ̂t(α) and ϵt(α) for every arm
α ∈ Aactive, it needs to pull O(m) arms. However, in our
problem setting, there exists an efficient strategy to update
µ̂t(α) and ϵt(α) by pulling just O(logm) arms.

In the first round, our algorithm pulls the arm whose cor-
responding parameter value α̃ is the median8 of all values
in Aactive. We distinguish two cases. First, assume that the
expert has failed at predicting the ground truth label y1 us-
ing Cα̃, i.e., I{ŷ1 = y1} = 0. If y1 /∈ Cα̃(x1), we know
that she would have also failed had she used any Cα′ such
that α′ > α̃ since Cα′(x) ⊆ Cα̃(x). If y1 ∈ Cα̃(x1), we
know that she would have also failed had she used any Cα′

8The m
2

-th largest value if m is even or the m+1
2

-th largest
value if m is odd.

Algorithm 2 It updates Aunexplored, γ and ν

Input: Aunexplored, γ, ν, α̃, x, y, ŷ
Output: Aunexplored, γ, ν

α† ← inf{α : y /∈ Cα(x)}
for α′ ∈ Aunexplored : α′ ≥ α† do
ν(α′)← ν(α′) + 1

end for
if I{ŷ = y} = 0 then

if y ∈ Cα̃(x) then
for α′ ∈ Aunexplored : α′ ≤ α̃ do

ν(α′)← ν(α′) + 1
end for
Aunexplored ← Aunexplored \ {α′ : α′ ≤ α̃}

end if
else

for α′ ∈ Aunexplored : α̃ ≤ α′ < α† do
ν(α′)← ν(α′) + 1
γ(α′)← γ(α′) + 1

end for
Aunexplored ← Aunexplored \ {α′ : α′ ≥ α̃}

end if
return Aunexplored, γ, ν

such that α′ < α̃ due to the counterfactual monotonicity
assumption. Second, assume that the expert has succeeded
at predicting y1 using Cα̃, i.e., I{ŷ1 = y1} = 1. Then, for
any α′ > α̃, we know that, if y1 ∈ Cα′(x1), the same expert
would have also succeeded had she used Cα′ due to the coun-
terfactual monotonicity assumption and, if y1 /∈ Cα′(x1),
the expert would have trivially failed had she used Cα′ . In
both cases, the algorithm observes the reward for one arm
and counterfactually infers the reward for at least one half 9

of the arms in Aactive.

In the next O(logm) rounds, it repeats the same reasoning,
it pulls the arm whose parameter value is the median of
the remaining (at most) half of the arms whose reward has
not yet observed or counterfactually inferred, until it has
observed or counterfactually inferred the reward of all arms
at least once. Then, it computes

µ̂t(α) =

∑
t′≤t γt′(α)∑
t′≤t νt′(α)

and ϵt(α) =

√
2 log T∑
t′≤t νt′(α)

,

where γt′(α) = I{ŷt′ = yt′ ∧ αt′ ≤ α ∧ yt′ ∈ Cα(xt′)}
and

νt′(α) = γt′(α) + I{ŷt′ ̸= yt′ ∧ αt′ ≥ α ∧ yt′ ∈ Cαt′ (xt′)}
+ I{yt′ /∈ Cα(xt′)}

and, similarly as standard successive elimination, it deacti-
vates any arm α ∈ Aactive for which there exists α′ ∈ Aactive
such that UCBt(α) < LCBt(α

′) and repeats the entire pro-
cedure until T is reached or until |Aactive| = 1. Algorithm 1

9One half is m
2

or m
2
− 1 values if m is even and m−1

2
values

if m is odd.

6



Designing Decision Support Systems using Counterfactual Prediction Sets

summarizes the overall algorithm, which we refer to as coun-
terfactual successive elimination (Counterfactual SE), and
Theorem 4.1 below formalizes its regret guarantees (proven
in Appendix A):
Theorem 4.1. Given a calibration set Dcal = {(xi, yi)}mi=1

and a maximum number of rounds T ≥ √
m, Counterfac-

tual SE is guaranteed to achieve expected regret E[R(t)] ≤
O
(√

t logm log T
)

for any t ≤ T .

Interestingly, one can use counterfactual rewards to im-
prove other well-known bandit algorithms, not only suc-
cessive elimination. For example, to use counterfactual
rewards in UCB1, at each time step t, one pulls the arm
αt = argmaxα∈A UCBt(α) and counterfactually infers the
rewards for any α > αt or α < αt, similarly as Coun-
terfactual SE does for α̃. In section 5, we evaluate the
benefits of using counterfactual rewards both in successive
elimination and in UCB1. Remarkably, our experimental
results demonstrate that counterfactual UCB1, i.e., UCB1
using counterfactual rewards, achieves lower expected re-
gret than Counterfactual SE. Motivated by this empirical
finding, it would be very interesting, but challenging, to
derive formal regret guarantees for counterfactual UCB1
in future work. One of the main technical obstacles one
would need to solve is that, in counterfactual UCB1, the
number of counterfactually inferred rewards at each time
step is unknown, whereas in Counterfactual SE, which at
each time step counterfactually infers at least one half of the
unobserved arms in Aactive.

Remarks. Counterfactual SE assumes that, every time an
expert predicts a sample, the ground truth label y is (eventu-
ally) observed. However, there may be scenarios in which
the ground truth labels are only observed during the design
phase of the decision support system, but not during deploy-
ment. In those cases, it may be more meaningful to look at
the problem from the perspective of best-arm identification
and derive theoretical guarantees regarding the probabil-
ity that Counterfactual SE chooses the best arm (Slivkins,
2019), which is left as future work. In this context, it is
worth noting that SE and UCB1 offer desirable theoretical
guarantees for best-arm identification (Even-Dar et al., 2006;
Audibert et al., 2010).

5. Evaluation via Human Subject Study
In this section, we conduct a large-scale human subject study
and show that:

a) human experts are more likely to succeed at predict-
ing the ground truth label under smaller prediction
sets, providing strong evidence that the interventional
monotonicity assumption (Assumption 3.1) holds;

b) counterfactual successive elimination and counterfac-
tual UCB1 achieve a significant improvement in ex-

pected regret in comparison with their vanilla imple-
mentations;

c) a strict implementation of our decision support sys-
tem, which adaptively limits experts’ level of agency,
offers greater performance than a lenient implementa-
tion, which allows experts to always exercise their own
agency.10

Human subject study setup. To construct our dataset
ImageNet16H-PS, we gathered 194,407 label predictions
from 2,751 human participants for 1,200 unique images
from the ImageNet16H dataset (Steyvers et al., 2022) using
Prolific. Our experimental protocol received approval from
the Institutional Review Board (IRB) at the University of
Saarland, each participant was rewarded with 9£ per hour
pro-rated, following Prolific’s payment principles, and con-
sented to participate by filling a consent form that included a
detailed description of the study processes, and the collected
data did not include any personally identifiable information.
Each image in the ImageNet16H dataset belongs to one
of 16 different categories (e.g., animals, vehicles as well
as every day objects), which serve as labels. In our study,
we used always the same classifier, namely the pre-trained
VGG-19 (Simonyan & Zisserman, 2015) after 10 epochs
of fine-tuning as provided by Steyvers et al. (2022) and a
fixed calibration set of 120 images, picked at random.11 The
average accuracy of the classifier (over the images not in the
calibration set) is 0.848. For each image, we first computed
all possible prediction sets that any conformal predictor us-
ing the above classifier and calibration set could construct.
Then, we created 715 questionnaires, each with a set of im-
ages and, for each image, a multiple choice question using
a prediction set. Under the strict implementation of our
system, the multiple choice options included only the label
values of the corresponding prediction set and, under the le-
nient implementation, they additionally included an option
“Other”, which allowed participants to pick a label value
outside the prediction set. Under both implementations,
the questionnaires covered all possible pairs of images and
prediction sets. We provide additional information about
the ImageNet16H dataset, further implementation details as
well as screenshots of the questionnaires and the consent
form in Appendix B. In what follows, if not said otherwise,
the results refer to the strict implementation of our system.

Expert success probability vs. prediction set size. As
discussed previously, we cannot directly verify the coun-
terfactual monotonicity assumption using an interventional
study because it is a counterfactual property. However, we
can verify interventional monotonicity, a necessary condi-

10All experiments ran on a Mac OS machine with an M1 pro-
cessor and 16GB memory.

11The model and the dataset ImageNet16H are publicly available
at https://osf.io/2ntrf/.
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Figure 2. Empirical average regret achieved by six different bandit
algorithms across 30 different realizations. The standard error is
not visible as it is always below 0.2.

tion for counterfactual monotonicity to hold—whether, on
average, experts are more likely to succeed at predicting the
ground truth label using smaller prediction sets. To this end,
we stratify the images in the dataset with respect to their
difficulty into groups and, for each group, we estimate the
success probability per prediction set size averaged across
all experts and across experts with the same level of com-
petence. We consider groups of images, rather than single
images, because we have too few expert predictions to de-
rive reliable estimates of the success probability per image.
Refer to Appendix B for more details on how we stratify
images and experts. Figure 6 in Appendix C shows that, as
long as the images are not too easy, the experts are more
accurate under smaller prediction sets—the interventional
monotonicity assumption holds.

Regret analysis. In addition to validating the formal re-
gret guarantees (Theorem 4.1) of counterfactual successive
elimination (Counterfactual SE), here, we aim to evaluate
the competitive advantage that counterfactual rewards bring
to several bandit algorithms in terms of expected regret.12

To this end, we estimate the expected regret over a hori-
zon of 1,080 time steps over 30 different realizations of
the following algorithms:13 a) vanilla successive elimina-
tion (SE), b) vanilla UCB1, c) counterfactual successive
elimination (Counterfactual SE), d) counterfactual UCB1, e)
assumption-free counterfactual successive elimination (AF
Counterfactual SE), and f) assumption-free counterfactual
UCB1 (AF Counterfactual UCB1). The last two algorithms
do not use the counterfactual monotonicity assumption but,
for any sample (x, y) and α ∈ A, they counterfactually infer

12The computation of the expected regret requires knowledge
of α∗. However, since we gathered expert predictions for each
possible prediction set that any conformal predictor using the cali-
bration set may construct, we could estimate the empirical success
probability under each of them and find α∗ by enumeration.

13Given that we have expert predictions using all possible pre-
diction sets for 1,080 images, not including the 120 images in
the calibration set, we can run any bandit algorithm faithfully for
1,080 time steps.

0.0 0.1 0.2 0.3 0.4 0.5
Æ

0.750

0.775

0.800

0.825

0.850

0.875

E
m

p
ir

ic
al

S
u
cc

es
s

P
ro

b
ab

ili
ty

Strict

Lenient

Counterfactual UCB1Optimal

[1]

Counterfactual SE

[2]

Figure 3. Empirical success probability achieved by all experts
across all images using the strict and lenient implementation of our
system Cα with different α values. For the strict implementation,
we annotate the optimal α value, the α values found by the algo-
rithms by Straitouri et al. (2023) [1] and by counterfactual UCB1,
as well as the average success probability achieved by the set of α
values that remain active after running counterfactual SE. For the
lenient implementation, we annotate the α value used by Babbar
et al. (2022) [2]. The average accuracy of the classifier used by
both the strict and the lenient implementation of our system is
0.848 and the empirical success probability achieved by the ex-
perts on their own is 0.760. The shaded areas correspond to a 95%
confidence interval.

that, for any α′ ∈ A such that α′ ̸= α and y /∈ Cα′(x), the
expert would have failed to predict the ground truth label had
she used Cα′ and, for any α′ ∈ A such that Cα′(x) = Cα(x),
the expert would have predicted the same label had she used
Cα′ . Figure 2 summarizes the results, which show that coun-
terfactual rewards provide a clear competitive advantage
with respect to their vanilla counterparts and, by using the
counterfactual monotonicity assumption, Counterfactual SE
and Counterfactual UCB1 are clear winners, suggesting that
the assumption may (approximately) hold.

Strict vs. lenient implementation of our system. One
of the key motivations to forcefully ask experts to predict
label values from the prediction sets provided by confor-
mal prediction is to be able to trade-off how frequently the
system misleads experts and the difficulty of the task the
expert needs to solve (Straitouri et al., 2023). However,
one could argue that a more lenient system, which allows
experts to predict label values from outside the prediction
sets as suggested by Babbar et al. (2022), may offer greater
performance since, in principle, it does not forcefully mis-
lead an expert whenever the prediction set does not contain
the ground truth label. Here, we provide empirical evidence
that suggests that this is not the case. Figure 3 demonstrates
that a strict implementation of our system consistently offers
greater performance than a lenient implementation across
the full spectrum of competitive α values,14 where we al-
low experts to predict any label value from Y whenever a

14We have excluded values of α > 0.5 to improve visibility,
however, we include the full figure in Appendix E.

8



Designing Decision Support Systems using Counterfactual Prediction Sets

prediction set is empty under both the strict and the lenient
implementation of our system. In Appendix E, we further in-
vestigate why the strict implementation is superior. Figure 3
also demonstrates that counterfactual UCB1 and counter-
factual SE offer a significant advantage over the algorithm
proposed by Straitouri et al. (2023), which uses a stylized
expert model.

6. Discussion and Limitations
In this section, we discuss several assumptions and limita-
tions of our work, pointing out avenues for future research.

Data. We have assumed that the data samples and the expert
predictions are drawn i.i.d. from a fixed distribution and
the calibration set contains samples with noiseless ground
truth labels. In future work, it would be very interesting
to lift these assumptions. Regarding distribution shift, a
good starting point may be the rapidly expanding literature
on conformal prediction under distribution shift (Tibshirani
et al., 2020; Podkopaev & Ramdas, 2021; Gibbs & Candes,
2021); regarding label noise, the recent work by Einbinder
et al. (2022), which has found that conformal prediction is
robust to label noise; and, regarding label ambiguity, the
very recent work by Stutz et al. (2023).

Further, while the good empirical performance of both coun-
terfactual SE and counterfactual UCB1 in our human subject
study suggest that the counterfactual monotonicity assump-
tion may hold in the context of the classification task we
have considered in the study, it would be important to in-
vestigate to what extent it holds in other classification tasks.
That said, we find it reassuring that the performance of coun-
terfactual SE and counterfactual UCB1 degrade gracefully
with respect to the amount of violations of the counterfactual
monotonicity assumption, as shown in Appendix D.

Methodology. We have adapted two well-known bandit
algorithms—successive elimination and UCB1—so that they
benefit from counterfactual rewards and, for successive elim-
ination, we have theoretically shown that counterfactual
rewards offer an exponential improvement in terms of re-
gret. It would be very interesting to adapt other well-known
bandit algorithms, including Bayesian bandits algorithms
such as Thomson’s sampling, so that they also benefit from
counterfactual rewards. Moreover, we have focused on
maximizing the average accuracy of the expert’s predic-
tions. However, whenever the expert’s predictions are con-
sequential to individuals, it would be important to extend
our methodology to account for fairness considerations.

Decision making task. We have focused on designing deci-
sion support systems for multiclass classification tasks. It
would be very interesting to extend our approach and our
notion of counterfactual monotonocity to other classification
tasks. To this end, a good starting point may be the frame-

work of risk controlling prediction sets (RCPS) by Bates
et al. (2021), which generalizes conformal prediction and
does allow for a variety of classification tasks, including
multilabel classification. Further, it would also be very inter-
esting to investigate to what extend our ideas are useful in
other types of decision tasks (e.g., reinforcement learning)
and decision support systems (e.g., LLMs).

Human subject study. Our large-scale human subject study
provides encouraging results and suggests our decision sup-
port system may be practical. However, it comprises only
one classification task on a single benchmark dataset of nat-
ural images and one may question its generalizability. It
would be important to conduct additional human subject
studies in other real-world domains with domain experts
(e.g., medical doctors). However, it is worth highlighting
that conducting such studies at scale would entail significant
financial costs—the total cost of our human subject study,
which did not rely on domain experts, was 7,150£.

7. Conclusions
We have looked at the development of decision support sys-
tems based on prediction sets for multiclass classification
tasks from the perspective of online learning and counterfac-
tual inference. This perspective has allowed us to design a
methodology that does not require, nor assumes, a stylized
human expert model, and has modest computational and
data requirements. In doing so, we have also identified two
natural monotonicity assumptions, i.e., interventional mono-
tonicity and counterfactual monotonicity, which may be of
independent interest. Further, we have conducted a large-
scale human subject study that shows that our methodology
is superior to the state of the art and, for decision support sys-
tems based on prediction sets, adaptively limiting experts’
level of agency leads to greater performance.
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A. Proof of Theorem 4.1
Let us define the clean event E = {|µ̂t(α)−E[I{ŶCα

= Y }]| ≤ ϵt(α)|,∀α ∈ A,∀t ≤ T}, with ϵt(α) =
√
2 log(T )/νt(α),

and decompose the average regret with respect to E as follows:

E[R(t)] = E[R(t) | E ]P[E ] + E[R(t) | Ē ]P[Ē ], (6)

where Ē is the complement of E . Then, following Slivkins (2019), we first assume E = {|µ̂t(α) − E[I{ŶCα
= Y }]| ≤

ϵt(α)|,∀α ∈ A,∀t ≤ T} holds and then show that the probability that Ē holds is negligible.

Let α be any suboptimal arm and α∗ be the optimal one, i.e., E[I{ŶCα
= Y }] < E[I{ŶCα∗ = Y }]. Let t′ ≤ T be the

last round in which we have applied the deactivation rule and α was active. Until then, both α and α∗ are active and, as
a result, in each phase we collected a reward for each of them. Therefore, it must hold that νt′(α) = νt′(α

∗) and thus
ϵt′(α

∗) = ϵt′(α). Further, since, by assumption, E holds, we have that:

∆(α) = E[I{ŶCα∗ = Y }]− E[I{ŶCα
= Y }] ≤ 2(ϵt′(α

∗) + ϵt′(α)) = 4ϵt′(α). (7)

Now, given that α is deactivated whenever the deactivation rule is applied again, we will either collect (or counterfactually
infer) one reward value for α after t′, for t′ < T , or will not collect any reward value again, for t′ = T . As a result,
νt′(α) ≤ νT (α) ≤ 1 + νt′(α) and thus, using also Eq. 7, we can conclude that, for any suboptimal α, it holds that:

∆(α) ≤ O(ϵT (α)) = O

(√
log T

νT (α)

)
= O

(√
log T

νT (α)

)
. (8)

From the above, it immediately follows that anytime we pull α, we suffer average regret ∆(α). Consequently, for any
time t ≤ T , the total average regret due to pulling arm α, which we denote as E[R(α ; t) | E ], is given by E[R(α ; t) | E ] =
nt(α) ·∆(α), where nt(α) denotes the number of times that arm α has been pulled until t. Thus, for any time t ≤ T , the
total average regret conditioned on E is given by:

E[R(t) | E ] =
∑

α∈A
E[R(α ; t) | E ] =

∑

α∈A
nt(α) ·∆(α) ≤

∑

α∈A
nt(α) ·O

(√
log T

νt(α)

)
. (9)

Now, we will derive a lower bound for νt(α). Assume that, until time step t ≤ T , the deactivation rule has been applied
n > 0 times. Let m1,m2, ...,mn, where 0 ≤ mi ≤ m, i = 1, .., n, be the number of arms that are not active after the i-th
time the deactivation rule is applied. Before applying the deactivation rule, we collect (or counterfactually infer) one reward
value for each arm with a number of pulls that is logarithmic to the number of active arms. Before applying the rule for the
first time, all m arms are active, so we will need up to ⌈logm⌉ rounds to collect a reward for each active arm. Then, given
that m1 arms are deactivated, m−m1 remain active, so we will need up to ⌈log(m−m1)⌉ rounds to collect a reward for
each active arm until the deactivation rule is applied again. As a result, we have that:

t ≤ ⌈logm⌉+ ⌈log(m−m1)⌉+ ⌈log(m−m2)⌉+ . . .+ ⌈log(m−mn−1)⌉.
Each logarithmic term in the above equation corresponds to the process of collecting one reward for each arm and, as a
result, one reward for α. As a result, the above has νt(α) logarithmic terms and, given that 0 ≤ mi, i = 1, .., n, we have
that:

t ≤ ⌈logm⌉+ ⌈log(m−m1)⌉+ ⌈log(m−m2)⌉+ . . .+ ⌈log(m−mn−1)⌉ ≤ νt(α) · ⌈logm⌉.
Therefore, we can conclude that νt(α) ≥ t/⌈logm⌉ and, using Eq. 9, we have that:

E[R(t) | E ] ≤
∑

α∈A
nt(α) ·O

(√
log T

νt(α)

)
≤
∑

α∈A
nt(α) ·O

(√
logm log T

t

)

= O

(√
logm log T

t

)
·
∑

α∈A
nt(α).

Further, since it must hold that
∑

α∈A nt(α) = t by definition, we can conclude that:

E[R(t) | E ] ≤ O

(√
logm log T

t

)
· t = O

(√
t logm log T

)
. (10)
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Let us now lift the assumption that E holds. From Hoeffding’s bound and a union bound, it readily follows that:

P[E ] ≥ 1−mTδ ⇒ 1− P[E ] ≤ mTδ ⇒ P[Ē ] ≤ mTδ, (11)

where δ = 2/T 4. Moreover, given that the rewards take values in {0, 1}, it holds that at time step t, R(t) ≤ t. Consequently,
combining Eqs. 6, 10 and 11, we can conclude that:

E[R(t)] = E[R(t) | E ]P[E ] + E[R(t) | Ē ]P[Ē ] ≤ E[R(t) | E ] + E[R(t) | Ē ]P[Ē ]

= O
(√

t logm log T
)
+

2tmT

T 4
,

where the first inequality uses that P[E ] ≤ 1. Finally, using that, by assumption,
√
m ≤ T , the above becomes:

E[R(t)] ≤ O
(√

t logm log T
)
+

2tmT

T 4

≤ O
(√

t logm log T
)
+

2tT 3

T 4
= O

(√
t logm log T

)
+O

(
t

T

)

= O
(√

t logm log T
)
.

This concludes the proof.
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B. Additional Details about the Human Subject Study Setup
Human subject study consent form. Figure 4 shows screenshots of the consent form that Prolific workers had to fill in
order to participate in our study under the strict implementation of our system. We used a similar consent form for our study
under the lenient implementation of our system except for the “Procedures” and “Example Question” sections, which we
show in Figure 5.

Dataset. The ImageNet16H dataset (Steyvers et al., 2022) was created using 1,200 unique images labeled into 207
different fine-grained categories from the ImageNet Large Scale Visual Recognition Challenge (ILSRVR) 2012 dataset (Rus-
sakovsky et al., 2015). More specifically, in the ImageNet16H dataset, each of the above images was used to generate
four noisy images, each with a different amount of phase noise distorsion ω ∈ {80, 95, 110, 125}, and each of the above
fine-grained categories was mapped into one out of 16 coarse-grained categories (i.e., chair, oven, knife, bottle, keyboard,
clock, boat, bicycle, airplane, truck, car, elephant, bear, dog, cat, and bird), which serve as ground truth labels15. The
amount of phase noise distortion controls the difficulty of the classification task; the higher the noise, the more difficult
the classification task. In our experiments, we used all 1,200 noisy images with ω = 110 because, under such noise value,
humans sometimes, but not always, succeed at solving the prediction task (i.e., the empirical success probability achieved by
the human experts on their own was 0.760).

Implementation details. We implemented our algorithms on Python 3.10.9 using the following libraries:

• NumPy 1.24.1 (BSD-3-Clause License).

• Pandas 1.5.3 (BSD-3-Clause License).

• Scikit-learn 1.2.2 (BSD License).

For reproducibility, we used a fixed random seed in all random procedures (a different one) for each realization of the
algorithms. Similarly, we used a fixed random seed to randomly pick the 120 images of the calibration set.

Stratifying images and users. We stratify the images into groups of similar difficulty, where we measure the difficulty of
each image using the empirical success probability of experts predicting its ground truth label. More specifically, for each
image we first compute the empirical success probability over all experts’ predictions. Then, we stratify the images into 5
mutually exclusive groups as follows:

— Highest difficulty: images with empirical success probability within the 20% percentile of the empirical success
probabilities of all images.

— Medium to high difficulty: images with empirical success probability within the 40% percentile and outside the 20%
percentile of the empirical success probabilities of all images.

— Medium difficulty: images with empirical success probability within the 60% percentile and outside the 40% percentile
the of the empirical success probabilities of all images.

— Low difficulty: images with empirical success probability within the 80% percentile and outside the 60% percentile
the of the empirical success probabilities of all images.

— Lowest difficulty: images with empirical success probability outside the 80% percentile of the empirical success
probabilities of all images.

We follow a similar method to stratify experts into two groups based on their level of competence, where we measure the
level of competence of an expert using the empirical success probability of predicting the ground truth label across all the
predictions that she made. As a result we consider the 50% of users with the highest empirical success probability as the
experts with high level of competence and the rest 50% as experts with low level of competence.

15Note that, by mapping the fine-grained categories used in the ILSRVR 2012 dataset into coarse-grained categories, one essentially
gets rid of any potential label disagreement among annotators in the ILSRVR 2012 dataset.
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(a) Purpose of the study and procedures

Figure 4. The consent form including a detailed description of the study processes that Prolific workers had to read and fill in order to
participate in our human subject study. The procedures describe use of the decision support systems under the strict implementation. The
consent form continues in Figures 4b and 4c.
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(b) Example question, potential risk and discomforts and potential benefits

Figure 4. Consent form continued.
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(c) Confidentiality, compensation, right to withdraw, questions, and consent

Figure 4. Consent form continued.
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Figure 5. Procedures and example question included in the consent form that Prolific workers had to fill in order to participate in our study
under the lenient implementation of our systems.
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C. Expert Success Probability vs. Prediction Set Size
Figure 6 shows the empirical success probability per prediction set size across images with different difficulty levels and
experts with different levels of competence.
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(c) Experts with high level of competence

Figure 6. Empirical success probability per prediction set size averaged across (a) all experts, (b) experts with low level of competence,
and (c) experts with high level of competence, for images of high difficulty, medium to high difficulty and medium difficulty. In all panels,
we have only considered prediction sets that included the true label and thus have omitted showing the empirical success probability for
singletons, as it is always 1. Error bars denote standard error.
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D. Sensitivity Analysis to Violations of the Counterfactual Monotonicity Assumption
In this section, we study the sensitivity of counterfactual SE and counterfactual UCB1 to violations of the counterfactual
monotonicity assumption. In what follows, we first describe how we post-process the experts’ predictions gathered in
our human subject study to artificially increase the amount of counterfactual monotonicity violations and then discuss
the performance of counterfactual SE and counterfactual UCB1 under different amounts of counterfactual monotonicity
violations. Throughout the section, we focus on the experts’ predictions using the strict implementation of our system.
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(c) Medium difficulty

Figure 7. Empirical success probability per prediction set size averaged across all experts for images with (a) the highest difficulty, (b)
medium to high difficulty, and (c) medium difficulty under different amounts of counterfactual monotonicity violations controlled by pv .
In all panels, we have only considered prediction sets that included the true label and thus have omitted showing the empirical success
probability for singletons, as it is always 1. Error bars denote standard error.

Experimental setup. Since counterfactual monotonicity lies within level three in the “ladder of causation” (Pearl, 2009),
we cannot directly increase (nor estimate!) the amount of counterfactual monotonicity violations in the experts’ predictions
gathered in our human subject study. However, we can increase the amount of interventional monotonicity violations
(i.e., how frequently Eq. 3 is violated) and, since interventional monotonicity is a necessary condition for counterfactual
monotonicity, we argue that we are indirectly increasing the amount of counterfactual monotonicity violations. To this
end, we randomly select a fraction pv of the images used in our human subject study and, for each of these images, we
randomly permute the values I{ŷCα = y} across pairs of experts’ predictions ŷCα and prediction sets Cα(x) such that
y ∈ Cα(x). Here, the larger the fraction pv of images we permute their labels, the larger the amount of interventional
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(counterfactual) monotonicity violations, as shown in Figure 7. In the Figure, we stratify the images into groups of similar
difficulty, following the procedure described in Appendix B, to demonstrate that the effect of the above random permutations
is more apparent in the images of higher difficulty.16

Results. Figure 8 shows (i) the empirical success probability achieved by all experts using our system Cα against the
full range of values of α ∈ [0, 1], (ii) the optimal α∗, (iii) the α value found by counterfactual UCB1 and (iv) the average
success probability achieved by the set of α values that remain active after running counterfactual SE, under different
amounts of counterfactual monotonicity violations. As expected, we find that the greater the amount of counterfactual
monotonicity violations, the greater the difference between the empirical success probability achieved by our system with
the optimal α∗ and by our system with the α values found by counterfactual SE and counterfactual UCB1. However, we
also find that the performance degrades gracefully with respect to the amount of counterfactual monotonicity violations.
For example, even if we introduce monotonicity violations in the experts’ predictions for all images, the empirical success
probability achieved by all experts under the α value found by counterfactual UCB1 is only 3.8% lower than under the
optimal α∗.
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(b) pv = 0.6
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(c) pv = 1.0

Figure 8. Empirical success probability achieved by all experts across all images using our system Cα with different α values under
different amounts of counterfactual monotonicity violations controlled by pv . In each panel, we annotate the optimal α∗, the α value
found by counterfactual UCB1, as well as the average success probability achieved by the set of α values that remain active after running
counterfactual SE. The average accuracy of the classifier used by our system is 0.848 and the empirical success probability achieved by
the experts on their own is between 0.766 and 0.785. Here, note that, since we also permute experts’ predictions whenever the prediction
set is Y , the empirical success probability achieved by the experts on their own changes across panels. The shaded area corresponds to a
95% confidence interval.

16We do not show the empirical success probability for images of low difficulty because it is originally almost always 1 and thus it is
not affected by the random permutations.
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E. Expert Success Probability under the Strict and Lenient Implementation of our Systems
Figure 9 shows the empirical success probability under the full range of values of α ∈ [0, 1]. The results show that a strict
implementation of our system consistently offers greater performance than a lenient implementation across the full spectrum
of competitive α values. However, the results also show that, as the α value increases, the empirical success probability
under both the strict and the lenient implementation of our system converges to the success probability of the experts’
choosing on their own, i.e., choosing from Y . This happens because, the larger the α value, the more often happens that the
prediction set is the empty set and thus we allow the expert to choose from Y under both implementations, as discussed in
Footnote 7 in the main paper.
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Figure 9. Empirical success probability achieved by all experts across all images using the strict and lenient implementation of our system
with different α values. The annotated α values as well as the horizontal dashed line are the same as in Figure 3. The shaded areas
correspond to a 95% confidence interval.

Figure 10 shows that the lenient implementation compares unfavorably against the strict implementation because, under the
lenient implementation, the number of predictions in which the prediction sets do not contain the true label and the experts
succeed is consistently smaller than the number of predictions in which the prediction sets contain the true label and the
experts fail.
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Figure 10. Number of experts’ predictions in which, under the lenient implementation, the prediction sets do not contain the true label and
the experts succeed (blue dots) and the prediction sets contain the true label and the experts fail (yellow crosses). The sums are over the
1,080 images not used in the calibration set.
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