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Abstract

Optical flow models are commonly evaluated by their
ability to accurately predict the apparent motion from image
sequence data. Though not seen during training, this eval-
uation data generally shares the training data’s character-
istics because it stems from the same distribution, i.e., it is
in-distribution (ID) with the training data. However, when
models are applied in the real world, the test data char-
acteristics may be shifted, i.e., out-of-distribution (OOD),
compared to the training data. For optical flow models, the
generalization to dataset shifts is much less reported than
the typical accuracy on ID data. In this work we close this
gap and systematically investigate the generalization of op-
tical flow models by disentangling accuracy and robustness
to dataset shifts with a new effective robustness metric. We
evaluate a testbed of 20 models on six established optical
flow datasets. Across models and datasets, we find that ID
accuracy can be used as a predictor for OOD performance,
but certain models generalize better than this trend sug-
gests. While our analysis reveals that model generalization
capabilities declined in recent years, we also find that more
training data and smart architectural choices can improve
generalization. Across tested models, effective robustness to
dataset shifts is high for models that avoid attention mech-
anisms and favor multi-scale designs. Code is available at
https://github.com/cv-stuttgart/OF-EffectiveRobustness.

1. Introduction

Optical flow describes the motion in image sequences as a
dense correspondence field between image pixels in subse-
quent frames. It is a low-level motion description used for a
large variety of down-stream tasks including action recog-
nition [59], video segmentation [65], robot navigation [18],
and medical imaging [64]. As such, the optical flow estima-
tions should be equally reliable on varying domains. The
current literature evaluates optical flow models on various
public benchmarks such as KITTI [37], MPI-Sintel [9] and
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Figure 1. A high prediction accuracy on the training distribution
does not imply good generalization. While GMFlow+ is more ac-
curate than RAFT on the FlyingThings3D training data [top], its
quality stagnates or drops on new datasets relative to the training
data [middle, bottom] (Diff low or negative). RAFT, however, im-
proves on OOD data over its ID baseline (Diff positive), showing
better generalization despite lower absolute accuracies. Effective
robustness measures this performance difference on OOD data to
the ID baseline performance. ID heatmaps [top] show EPE ac-
curacy; OOD heatmaps [middle, bottom] show improvements or
losses over average ID accuracy. Models use C+T checkpoints.

Spring [36], which cover real-world and simulated scenes
containing various challenges like changing illumination,
blurs, and altering weather conditions.

While the abundance of existing optical flow datasets [9,
14, 31, 35–37, 48] creates an ideal testing ground for
model generalization across domains, robustness compar-
isons across datasets are challenging for two main reasons:
(i) incomparable performances for differently fine-tuned
models and (ii) correlation of model performance across
datasets. Firstly, new optical flow methods commonly re-
port results per dataset after fine-tuning, which familiarizes
the model with the dataset characteristics. For generaliza-



Standard Robust Vision Effective
Evaluation respects Evaluation Challenge Robustness

[22, 24, 63, 72] [26, 60] (ours)

(i) consistent finetuning ✗ ✓ ✓
(ii) ID-OOD correlation ✗ ✗ ✓

Table 1. Optical flow generalization: Evaluation challenges. Stan-
dard model evaluations use fine-tuned checkpoints per dataset and
do not consider the ID-OOD performance correlation. Methods
submitted to the robust vision challenge use a fixed ID checkpoint
for all generalization evaluations, but only our effective robustness
evaluation for optical flow corrects the ID-OOD correlation.

tion, however, one is interested in the model performance
on completely shifted datasets which are out-of-distribution
(OOD) with the training data, while the results of a model
that was fine-tuned to a dataset are in-distribution (ID). Sec-
ondly, even if the same model checkpoint is used for the
evaluation of multiple OOD datasets, the results on ID and
OOD data are correlated, meaning that a model that did well
on its training data distribution should typically perform
well on a shifted dataset. For generalization, however, we
search for models that can outperform this expectation on
the shifted dataset, which is called effective robustness [62].
Fig. 1 illustrates the effect. Though RAFT [63] performs
worse than GMFlow+ [72] on ID data, it maintains or im-
proves its performance on the OOD data relative to its ID
accuracy, meaning it generalizes well. In contrast, the OOD
performance of GMFlow+ stagnates or drops compared to
its ID accuracy, implying poor generalization.

In this work, we conduct the first evaluation of optical
flow generalization that addresses both challenges: We ex-
plicitly select consistent model checkpoints and evaluate
them with a carefully designed effective robustness metric
to control for the ID-OOD correlation, which disentangles
optical flow generalization from its accuracy.

Differences to Prior Generalization Studies. Prior
generalization studies addressed the two challenges – con-
sistent finetuning and ID-OOD correlation correction – to
varying degrees, cf . Tab. 1. For optical flow, the stan-
dard evaluation evaluates new models after fine-tuning
on training data of the respective dataset [12, 13, 22–
27, 41, 61, 63, 69, 71], which addresses neither challenge.
Many works additionally evaluate the performance of non-
finetuned model checkpoints, but these studies are typically
limited to few datasets including KITTI [37], Sintel [9],
or special-property datasets [10], and furthermore disregard
ID-OOD correlation. The Robust Vision Challenge1 sys-
tematically investigates optical flow generalization by eval-
uating participating models with one consistent checkpoint
for all evaluation datasets. However, the evaluation datasets
are not truly OOD because training on their respective train-
ing splits is allowed, and the robustness evaluation uses

1www.robustvision.net

model rankings across datasets, which does not correct ID-
OOD correlation. Hence, no prior works evaluate optical
flow generalization on true OOD dataset shifts in a manner
that corrects the ID-OOD correlation.

Outside the optical flow domain, evaluations that ac-
count for the ID-OOD correlation were first introduced by
Taori et al. [62] for classification. They propose effective
robustness to identify models that outperform the linear cor-
relation between accuracy on the training data (ID) and un-
seen evaluation data (OOD). In this work, we demonstrate
an ID-OOD performance correlation for optical flow mod-
els, which motivates our optical flow adaptation of effective
robustness to quantify generalization.

Contributions. In summary, we make four contributions.

(1) We systematically study the generalization to out-of-
distribution dataset shifts for optical flow, demonstrat-
ing a linear correlation between ID and OOD accuracy.

(2) To separate generalization and accuracy, we propose ef-
fective robustness for optical flow, which quantifies ro-
bustness as improvement over the expected linear trend.

(3) We validate this new effective robustness formulation
on 13 optical flow architectures (20 total variants) and
across six diverse OOD evaluation datasets.

(4) Our analysis confirms that diverse training data im-
proves generalization, but also finds that architectural
details influence robustness more than pure model size.

2. Related Work
Traditionally, optical flow robustness focused on specific
challenging conditions including varying illumination [30,
43, 75], large object motion [8, 70], occlusion [33], motion
blur [45], image noise [7] or rain [34]. While these chal-
lenges remain, the advent of deep learning has led to more
systematic studies on three robustness types: robustness to
adversarial attacks, image corruptions and dataset shifts.

Adversarial Robustness. Adversarial robustness stud-
ies worst-case scenarios by optimizing image corruptions
for a maximally perturbing effect on a model’s perfor-
mance. Several attacks were proposed for optical flow,
ranging from local attacks with adversarial patches [46]
over global [1, 51, 56] and object-constrained [32] image
perturbations to attacks that simulate maximally distracting
weather conditions [50, 52]. Adversarial attacks are a con-
tinuing security risk, as proposed defense strategies [3, 74]
can be overcome by specialized attacks [49]. At the same
time, for optical flow, the robustness to such attacks is al-
ready studied more extensively than other robustness types,
and therefore not a focus of this work.

Robustness to Image Corruptions. Model perfor-
mance can also strongly degrade under non-optimized



model-agnostic image corruptions. There are numerous
image corruptions for general deep-learning tasks, includ-
ing translations and rotations [15, 53], stylizations [17, 21],
noises [19], blurs [19, 28, 42], or weather [19, 38, 52, 66].
Only few works study image corruptions on optical flow [2,
52, 54, 56], and most use the corruptions from Hendrycks
and Dietterich [19]. While such synthetic corruptions can
describe specific scenarios, robustness to image corrup-
tions does not indicate robustness to natural distribution
shifts, i.e., other datasets, as observed for classification
tasks [20, 62]. To study generalization of optical flow meth-
ods, we thus directly analyze robustness to dataset shifts
rather than image corruptions.

Robustness to Dataset Shifts. To understand how the
performance of optical flow methods generalizes to real-
world scenarios without known ground-truth, we can as-
sess accuracy changes across datasets. The Robust Vision
Challenge is a notable step in this direction and compares
model performance across various public benchmarks us-
ing the same model checkpoint. However, models can train
on the benchmark training splits while our work focuses
on analyzing generalization without fine-tuning. Also, it
quantifies model robustness by rank relative to other mod-
els, which ignores the previously discussed correlation be-
tween ID and OOD accuracy. This correlation was dis-
covered for classification tasks, where various works found
an accuracy drop from in-distribution accuracy on Ima-
geNet [11] to the out-of-distribution accuracy on challeng-
ing datasets [39, 47, 57]. Because the ID accuracy corre-
lates with the accuracy on previously unseen data, Taori
et al. [62] coined a model’s ability to outperform this pre-
dictable trend as effective robustness. Later works extended
the finding of predictable trends to more distribution shifts
and model architectures [40, 73], unlabeled data [5], pre-
trained models [4], models with varying training data [58]
and multi-modal foundation models [67] – all for classifica-
tion tasks. Here, we extend the concept of effective robust-
ness to optical flow models to investigate their robustness to
distribution shifts.

3. Effective Robustness for Optical Flow
This section establishes how we measure the generalization
of optical flow models to data that is OOD compared to the
training distribution. First, we empirically show that ID and
OOD performance are correlated. Then we introduce ef-
fective robustness as a model’s deviation from the expected
trend. Finally, to transfer the effective robustness concept
to optical flow, we identify a suitable accuracy measure and
a baseline to describe the correlation.

Motivating Example. In Fig. 2 we compare the robust-
ness to distribution shifts for optical flow models trained on
Things [35], and evaluate them on the held-out test set of
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Figure 2. Model accuracies on a distribution shift are strongly
correlated. The effective robustness controls for this correlation
by measuring the gap between the predictable and observed out-
of-distribution accuracy.

Things and KITTI [37], for ID and OOD evaluation, respec-
tively. We see that the OOD performance of models (blue
dots) follows from the ID performance with a predictable
linear trend (blue line). The model marked with ⋆ per-
forms worse on both datasets than the most accurate model
on both datasets ■. Interestingly, ⋆ outperforms the trend
of expected OOD performance based on its ID performance,
meaning it generalizes better than ■ despite its worse accu-
racy on both datasets.

Effective Robustness Concept. Because of the strong
correlation between ID and OOD accuracy as observed in
the motivating example, comparing the plain OOD perfor-
mances across models confounds robustness with accuracy.
The effective robustness concept [62] decouples model ro-
bustness from accuracy by comparing the OOD accuracy to
a robustness baseline β – the blue linear trend in Fig. 2 –
which depends on the ID accuracy:

ER = accuracyOOD−β(accuracyID). (1)

Models with effective robustness ER> 0 generalize better
to OOD data than the baseline trend suggests, while models
with ER< 0 do not generalize well. To adapt this generic
definition to optical flow methods, we first discuss a suit-
able accuracy measure for accuracyID and accuracyOOD,
and then define how to estimate the baseline β.

Accuracy Measure. As we analyze the robustness on var-
ious data distributions, the accuracy measure should take
meaningful values on all of them. Moreover, an accuracy
measure for optical flow that takes values in [0, 1] improves
resemblance to the effective robustness as introduced for
image classification [62], where accuracies are typically in



[0, 1]. The WAUC [48], which was initially proposed for
the VIPER benchmark, satisfies these two requirements.
Unlike unbounded optical flow metrics like the end-point
error EPE [6, 9], it takes values in a fixed range [0, 1]. At
the same time, the WAUC is more flexible and fine-grained
than single-threshold inlier rates IRt [16, 36, 37] because it
aggregates inlier rates over 100 thresholds with threshold-
specific weights wk=1− k−1

100 . Its definition reads

WAUC=
1

|w|

100∑
k=1

wk · IR k
20
, (2)

where IR k
20

= 1
|Ω|

∑
x∈Ω

[
∥fgt(x)−f(x)∥2 ≤ k

20

]
is the in-

lier rate, fgt the ground truth flow, f the predicted flow,
Ω ⊂ R2 the image domain and |w|=

∑100
k=1wk a normaliza-

tion factor. By definition, the WAUC takes values in [0, 1],
where larger values indicate a higher accuracy. Multiplying
its value by 100 converts it to WAUC [%] with values in
[0, 100]. Later in Tab. 2, we experimentally demonstrate a
less noisy linear correlation between the ID and OOD ac-
curacy when using the WAUC than when using the more
commonly used accuracy measures EPE, IR1px, IR3px and
IR5px. This makes it the most suitable accuracy metric for
optical flow generalization evaluations.

Robustness Baseline β. The robustness baseline for-
malizes the correlation between model accuracies on dif-
ferent datasets. As illustrated in Fig. 2, effective robustness
compares a model’s OOD accuracy to a robustness baseline
which depends on the model’s ID accuracy. This empiri-
cally fitted baseline is crucial to disentangle OOD robust-
ness from model accuracy. We model the robustness base-
line as a linear fit between the ID and OOD WAUC:

β(WAUCID, a, b) = expit(a · logit(WAUCID) + b) (3)

with parameters a, b ∈ R, determined from the accuracies
of all models in our testbed. Following the original ap-
proach by Taori et al. [62], we apply least squares linear
regression in logit space. The logit transformation maps the
the accuracies in [0, 1] to the entire real axis which gives
models with higher accuracy a higher weight in the regres-
sion than less accurate models. Additionally, it ensures ro-
bust models with ideal ID accuracy of 1 are also expected to
have ideal OOD accuracy of 1. The transformation to logit
space and its inverse are defined as logit(x)=ln

(
x

1−x

)
and

expit(x)= 1
1+exp(−x) .

Effective Robustness for Optical Flow. With all those
ingredients we define effective robustness for optical flow
as the WAUC difference to the logit robustness baseline:

ERWAUC = WAUCOOD−β(WAUCID, a, b). (4)

By taking the difference to the baseline trend, robustness
is separated from model accuracy. Note that each distri-
bution shift to a new OOD dataset requires re-fitting the

baseline parameters a and b. The optical flow effective ro-
bustness takes values in [−1, 1] for WAUC or [−100, 100]
for WAUC [%], where 0 indicates robustness that can be
expected from the fitted baseline. Positive values indicate
good robustness, negative values indicate bad robustness.

4. Experiments
The previously defined effective robustness metric enables
a systematic analysis of optical flow generalization. In
the following, we first describe the evaluated optical flow
methods and datasets. Then, we systematically validate our
choices on how to evaluate optical flow generalization, from
ID and OOD datasets over the design of the effective robust-
ness metric to its properties. With the identified setup, we
finally evaluate generalization across all models, with a fo-
cus on architecture- and dataset-specific differences.

4.1. Models and Datasets
We evaluate generalization on a testbed of 13 optical flow
models on six public datasets, which are described below.

Model Testbed. We compare 13 optical flow models, of-
fering a total of 20 architectural variants as several models
come with multiple versions, cf . Supp. Tab. A2. All models
are state-of-the-art, supervised, and PyTorch-implemented.

Our analyzed models follow a curriculum learning
schedule [24], which yields checkpoints from four train-
ing stages: First, pre-training on FlyingChairs [14]; Second,
pre-training on FlyingThings3D [35]; Third, fine-tuning to
Sintel [9] by combining data from FlyingThings3D, Sin-
tel, KITTI [37] and HD1K [31]; And fourth, fine-tuning to
and on KITTI. We refer to the training phases and resulting
checkpoints as C, C+T, S, and K. The only exception to this
curriculum is SEA-RAFT [69], which is additionally pre-
trained on TartanAir [68] before following the curriculum
schedule described above.

Evaluation Datasets. We evaluate the models on eight
datasets from three different categories: Object datasets,
movie datasets and automotive datasets. FlyingChairs
(Chairs) [14] and FlyingThings3D (Things) [35] are large
synthetic training datasets, featuring random 2D motion of
chairs and 3D motion of diverse objects, respectively. Sin-
tel [9] and Spring [36] are movie datasets extracted from
short animated films with camera and character motion.
KITTI [37], HD1K [31], Driving [35] and VIPER [48] are
automotive datasets with scenes recorded by a car-mounted
camera. Among those, KITTI and HD1K contain real cam-
era feeds, while Driving and VIPER are rendered.

4.2. How to Evaluate Optical Flow Generalization
We evaluate optical flow generalization through effective
robustness, which compares the OOD accuracy to a robust-
ness baseline representing the predictable trend between the
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Figure 3. WAUC of our checkpoints averaged per training stage
on all evaluated datasets. Each colored marker corresponds to the
average over all model checkpoints at a fixed training stage. Sintel
checkpoints achieve the best generalization accuracy.

ID and OOD accuracy. In the following, we justify choosing
Things as ID dataset and validate the effective robustness
design with its linear logit baseline and WAUC as accuracy
metric. Then, we analyze how training data and training
variability influence effective robustness.

Choosing ID and OOD Data. As we analyze model
robustness to unseen data, we distinguish between in-
distribution (ID) and out-of-distribution (OOD) data, which
is similar to or distinct from the training data respec-
tively. Rather than directly choosing ID and OOD data,
we chose model checkpoints, which implicitly determine
ID and OOD datasets. For a meaningful robustness analy-
sis, models should have seen enough data to perform well,
but too much training leaves no OOD data.

Fig. 3 visualizes the average OOD accuracy in WAUC
[%] of our testbed models for each training stage. Note
that early checkpoints, e.g. C+T, were not trained on many
datasets and have all datasets except Things for OOD eval-
uation, while later checkpoints, e.g. S and K, were trained
on most datasets and have only Driving, VIPER and Spring
for OOD evaluation. On all datasets, the later checkpoints
S and K have a better OOD performance than the earlier
ones, because they were trained on more varied data. Inter-
estingly, fine-tuning to KITTI degrades the OOD accuracy
compared to the earlier S checkpoints. Across datasets, the
per-checkpoint OOD performance varies strongly and indi-
cates changing difficulties among the datasets. As even ro-
bust models rarely achieve the same WAUC across datasets,
model robustness should only be compared per dataset.

Subsequently, we focus on the checkpoints trained on
C+T, which yield good OOD accuracy despite being trained
on limited data. Hence, Things is our typical ID dataset,
which leaves Sintel, KITTI, HD1K, Driving, VIPER and
Spring as the six OOD datasets.

Effective Robustness: Why Fit a Baseline? While the
accuracy across datasets is not equal, it is correlated. This
correlation is visualized in Fig. 4, which compares the per-
checkpoint WAUC on the ID Things dataset to the WAUC
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Figure 4. WAUC on each OOD dataset over the WAUC on
Things for various models. Each point corresponds to one model
checkpoint evaluated on one dataset. The color indicates the OOD
dataset. For each dataset shift, the WAUC follows a linear trend.
Lines denote the logit-linear fit for each dataset. Fitted baseline
parameters are in Supp. Tab. A3.

on each of the OOD datasets. Here, the ID WAUC is a
strong predictor for the OOD WAUC. Thus, comparing
the plain OOD WAUC of models mixes model accuracy
and generalization ability. We disentangle these two proper-
ties with the effective robustness, which compares the OOD
WAUC of a model to the predictable trend that is modelled
via a fitted robustness baseline. The robustness baselines
per dataset are shown as colored lines in Fig. 4. A model’s
effective robustness is its slight deviation from the baseline.

Effective Robustness: Which Accuracy Measure? The
observed correlation between ID and OOD performance is
not equally strong for all optical flow accuracy measures.
Tab. 2 quantifies the correlation between the ID and OOD
accuracy for the popular measures WAUC, Inlier Rate (IR)
with fixed thresholds and EPE. The Pearson correlation [44]
measures linear correlation in [−1, 1], where 1 indicates
perfect linear correlation. Compared to all other accuracy
measures, the WAUC yields the highest ID-OOD Pearson-
correlation across datasets, and confirms our quantitative
observations from Fig. 4. A strong correlation not only jus-
tifies fitting a baseline but also reduces the baseline’s vari-
ance. This validates our choice of the WAUC as accuracy
measure for optical flow effective robustness.

Influence of Model Training Data. Having established ef-
fective robustness for optical flow, we now investigate how
model training data influences the OOD generalization and
baseline trend. To this end, we visualize the ID-OOD corre-
lation for different training stages, i.e., for models trained on
varying amounts of data. Fig. 5 shows the results on Things
as ID and Driving as OOD data, results for other OOD data
are in Supp. Fig. A2. Across datasets, OOD accuracy im-
proves with more training data, i.e., late checkpoints like S
and K generalize better than the C+T checkpoint, which is
a common notion in optical flow training. For each train-



Correlation of Things with

Metric Sintel KITTI HD1K Driving VIPER Spring

WAUC 0.993 0.977 0.931 0.982 0.819 0.667
IR1px 0.996 0.954 0.928 0.964 0.739 0.369
IR3px 0.995 0.947 0.891 0.966 0.769 0.745
IR5px 0.993 0.936 0.870 0.944 0.764 0.706
EPE 0.807 0.884 0.793 0.850 0.459 0.043

Table 2. Pearson correlation [44] between the error of models on
Things and each of the other datasets for the WAUC, inlier rate
IR with thresholds 1, 3, and 5 pixels and average end-point error
EPE, using C+T checkpoints. A Pearson correlation of 1 indicates
a perfect linear correlation. A high correlation justifies the linear
fit that we use as robustness baseline.
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Figure 5. WAUC on Driving over the WAUC on Things for vari-
ous models. Each point corresponds to one model checkpoint. The
color indicates the training stage. Note that not all architectures
offer a checkpoint at each training stage. Lines denote the logit-
linear fit to the WAUC of model checkpoints at a fixed training
stage. Model checkpoints trained on different data follow differ-
ent trends. Fitted baseline parameters are in Supp. Tab. A3.

ing stage, the ID-OOD WAUC distribution follows a linear
trend while checkpoints at different training stages follow
different trends. Between the training stages C+T and S, the
trend is offset with S checkpoints having a higher baseline
robustness than the C+T one. Hence, we only fit effective
robustness baselines for models trained on the same data,
which separates robustness gains through model architec-
ture from training data. Following our previous choice of
Things as ID dataset, we only fit effective robustness base-
lines for the corresponding C+T model checkpoints.

Influence of Model Training Variability. The effective
robustness is a model’s accuracy deviation from the robust-
ness baseline. Here, we investigate if this deviation – and
thus effective robustness as metric – is stable and mean-
ingful, given that model accuracies can vary depending on
training randomness. To this end, we compare multiple in-
stances of the RAFT architecture [63], all trained on Things
but with varying batch sizes, learning rates, weight decays
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Figure 6. Accuracy of several RAFT checkpoints trained on
Things. The robustness baseline is given by the logit-linear fit to
the public C+T models (same blue line as in Fig. 5).

and training steps, to simulate training randomness. Fig. 6
shows the accuracies of those RAFT checkpoints on Things
(ID) and Driving (OOD). While the checkpoint accuracies
vary due to training randomness, they follow a linear trend
that is nearly parallel to the robustness baseline. Therefore,
all trained instances of RAFT have a similar effective ro-
bustness to the official RAFT checkpoint, even though their
OOD accuracies vary. In Supp. Fig. A4, we show analo-
gous results for other OOD datasets. While, in case of Sin-
tel, KITTI and VIPER, the RAFT checkpoint trend does not
completely parallel the robustness baseline, the robustness
variance among checkpoints with similar accuracy is small,
which still indicates the representativeness of effective ro-
bustness across model instances. Overall, this shows that
effective robustness accounts for model accuracy variations
due to model training variability, and demonstrates its ex-
pressiveness and stability.

4.3. Optical Flow Generalization Evaluated

After establishing effective robustness as an evaluation tool
for optical flow generalization in the previous section, we
now use it to analyze the OOD robustness in detail. Fol-
lowing the last section, we use model checkpoints after
training on C+T, with the validation split of Things as ID
dataset. Note that models are trained on Things’ training
set but not the validation set. Effective robustness scores
for all model architectures across the six OOD datasets are
listed in Tab. 3. Generalization is good for positive and bad
for negative scores. By construction, effective robustness
is uncorrelated with ID accuracy, i.e., complexity differ-
ences among OOD datasets are equalized. Since models are
trained on the same data, scores exclusively express differ-
ences in architectural robustness. All subsequent analysis is
based on the data in Tab. 3. The first part focuses on opti-
cal flow model architectures, the second investigates OOD
dataset similarities.
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MemFlow 83.52 0.09 −1.14 0.69 0.34 0.04 0.86 0.15 0.65
RPKNet 81.74 −0.36 2.42 −0.53 1.71 4.94 1.35 1.59 1.84
FlowFormer 82.03 −0.39 −0.58 −0.29 1.25 −1.32 1.10 −0.04 0.92
MatchFlow (R) 81.30 0.90 2.51 1.62 0.46 0.37 1.13 1.16 0.73
MatchFlow (G) 82.10 0.64 0.04 0.23 −1.18 2.13 1.10 0.49 1.01
GMFlow+ (s1) 69.92 −1.52 −6.65 −12.11 −5.58 −15.96 −21.47 −10.55 6.74
GMFlow+ (s2) 76.63 0.71 −0.19 −5.59 0.52 −8.98 −5.00 −3.09 3.66
GMFlow+ 84.22 −0.80 −1.26 −1.16 −0.51 −7.58 −4.22 −2.59 2.54
SEA-RAFT (S) 84.29 −0.48 −1.39 0.64 0.73 −1.84 0.34 −0.33 0.99
SEA-RAFT (M) 85.39 −0.95 −1.64 0.24 −0.30 −1.26 −0.17 −0.68 0.66
SEA-RAFT (L) 85.69 −1.38 −2.36 0.07 −0.44 −0.53 −1.63 −1.04 0.82
MS-RAFT+ 86.21 0.39 1.41 0.26 0.02 2.37 0.23 0.78 0.84
CCMR+ 86.78 0.24 1.05 −0.05 −1.41 2.22 0.32 0.40 1.10

Table 3. Effective robustness score w.r.t. WAUC on different
datasets. The baseline was fitted to all models listed in the table.
Rows are roughly grouped by architectural similarity. Negative
scores (bad robustness) are marked with a gray background. Best
and second-best per column are bold and underlined respectively.
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Figure 7. Effective robustness of each model over its publica-
tion year [left] and its number of weights [right]. Robustness de-
creased or stagnated the last years. The model size is not indicative
of its robustness.

4.3.1. Influence of Model Architecture
In the following, we analyze generalization and its rela-
tion to model architecture. Initially, we assess broad model
properties like publication date and size. Then, we focus on
specifics, such as attention and receptive field sizes.

Model Publication Date and Size. In Fig. 7 we visu-
alize the average effective robustness of all models with
their publication date [left] and size [right]. Interestingly,
the effective robustness of models stagnated or declined
for the last half-decade, indicating no automatic generaliza-
tion improvements for architectures that advance ID accu-
racy. Regarding model size, there is no apparent correlation
with effective robustness. The smallest and largest models,
RPKNet and FlowNet2, are both effectively robust. Hence,
broad model properties like size as proxy for learning ca-
pacity do not explain generalization differences.
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Figure 8. Average effective robustness and standard deviation
of each model. Models with global motion aggregation (GMA,
MatchFlow (G)) are less robust than similar models without it
(RAFT, MatchFlow (R)). Larger convolution kernels (SKFlow,
RPKNet) and multi-scale approaches (IRR-PWC, MS-RAFT+)
provide good robustness.

Attention Mechanism. Since broad architectural prop-
erties do not explain generalization differences, we focus
on an increasingly popular concept: the attention mecha-
nism. Our model selection offers several model pairs with
architectures that use and do not use attention: RAFT [63]
and GMA [27], as well as MatchFlow (R) and Match-
Flow (G) [13] are distinct through the insertion of the
GMA module in the iterative refinement steps, and CCMR+
extends MS-RAFT+ mainly by adding an attention mod-
ule. Fig. 8 visualizes the average effective robustness. In
all three model pairs, attention or GMA modules reduce
the effective robustness. Furthermore, transformers like
FlowFormer [22] and GMFlow+ [72], which rely on self-
attention, also have low effective robustness scores. Inter-
estingly, SKFlow [61] also includes the GMA module but
reaches a high effective robustness. We attribute this to its
increased receptive field, resulting from larger convolution
kernels, see below. There are two potential reasons for the
observed poor generalization with attention: Global atten-
tion may distract models by attending to far-away details,
and require more training data to generalize well.

Receptive Field Sizes. While attention seems to hinder
generalization, we now turn to two potentially beneficial
concepts: Large convolutions and multiscale architectures,
which both effectively increase the receptive field. SKFlow
and RPKNet apply larger convolution kernels than RAFT,
improving their accuracy while preserving RAFT’s good ef-
fective robustness, cf . Fig. 8. Also, the multi-scale methods
IRR-PWC and MS-RAFT+ achieve high robustness scores
within the testbed. Possibly related, the GMFlow+ vari-
ant (s2) improves the effective robustness of variant (s1)
by adding a hierarchical matching refinement at a smaller
scale. Models with large convolutions and multiple scales
can process more context without distracting distant details
and, hence, tend to improve effective robustness.



4.3.2. Optical Flow Dataset Similarities

After focusing on model architectures during the first part
of this analysis, we finally turn to dataset-related aspects
within our results. While the effective robustness base-
line aims to remove ID-OOD correlation within the results,
the effective robustness in Tab. 3 of each model still varies
across datasets, e.g. FlowFormer is effectively robust on
Driving and Spring, but less so on Sintel, KITTI, HD1K
and VIPER. This inspires an analysis of dataset similarity
to identify groups of OOD datasets that elicit similar gener-
alization behavior from the tested models.

In Tab. 4 [left] we investigate whether the effective ro-
bustness rankings of models are correlated across datasets.
We use Kendall’s Tau correlation coefficient [29] as sim-
ilarity measure, as it compares rankings rather than abso-
lute values, making it more robust against outliers. Overall,
there is a moderate correlation between the dataset’s effec-
tive robustness rankings. However, there are three dataset
pairs with stronger correlation, i.e., where Kendall’s Tau is
larger than 0.6 – Spring with HD1K, VIPER with KITTI,
and VIPER with Spring. Since VIPER and KITTI are au-
tomotive datasets, we exemplarily pick Spring and HD1K,
where the scene content is unalike and hence does not ex-
plain the dataset correlation, for investigation. In this case,
an explanation may be the distribution of flow vector length
in each dataset, cf . Tab. 4 [right], which visualizes the cu-
mulative flow length distribution per dataset. There, two of
the dataset pairs have very similar flow length distributions,
with many long motion vectors in VIPER and KITTI, and
predominantly short vectors in Spring and HD1K.

Overall, while dataset pairs with high correlation could
be used as generalization-proxies for one another, the mod-
erate values for the correlation coefficients suggest that the
considered data sets only share some of their properties.

4.3.3. Discussion of Robustness Concepts

Previous literature discussed several different robustness
concepts as outlined in Sec. 2. For optimized per-image
perturbations (adversarial attacks) a trade-off between ac-
curacy and robustness was observed [46, 51], which weak-
ens for increasingly realistic perturbations [52]. For unopti-
mized realistic perturbations (e.g. the common corruptions
by Hendrycks and Dietterich [19]), newer and more accu-
rate methods are generally more robust [55]. This trend con-
tinues when transitioning from per-image corruptions to a
joint optimization on different datasets in the Robust Vision
Challenge. In contrast, our analysis finds neither a trade-off
nor a systematic association between effective robustness
and accuracy, thereby enabling comparisons of architectural
concepts that are not confounded by model accuracy. For a
more detailed comparison, we refer to Appendix B.
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Table 4. Kendall’s Tau correlation coefficient [29] comparing the
ranking of models by the effective robustness on different datasets.
That is, each entry in this table indicates the similarity between
two columns of Tab. 3. Values are in the range [−1, 1] where −1
indicates negative correlation, 0 no correlation and 1 positive cor-
relation. The right figure shows the cumulative frequency of flow
lengths in each dataset. Spring and HD1K yield the most similar
rankings and also contain a similar length distribution.

5. Conclusion
We systematically analyzed the out-of-distribution gener-
alization of current optical flow models to new datasets.
For models trained on the same data distribution, we find
a strong linear correlation between the ID and OOD accu-
racy. Therefore, we introduced the notion of effective ro-
bustness for optical flow that defines robustness as an im-
provement over the predictable trend and thus disentangles
OOD robustness from accuracy. We experimentally vali-
dated our choices of ID and OOD datasets, the used model
checkpoints, and our effective robustness definition for op-
tical flow. Our evaluation of 20 optical flow architectures
across six OOD datasets uncovers that the generalization
capabilities of modern architectures steadily declined in re-
cent years, independent of overall model size. However,
we also find that improving robustness is possible with in-
creased training data variety and smart architectural choices
that avoid global motion aggregation (GMA) modules and
favor large kernels or multi-scale concepts.

Limitations. A first limitation of this study is the moderate
size of our optical flow model testbed. While we demon-
strated a clear ID-OOD accuracy correlation, the limited
testbed size can pronounce randomness in our logit-linear
fit, and may skew the resulting effective robustness score.
A second limitation is the baseline fit. As we only find a
linear trend for models with the same ID, OOD and training
data, any data change requires fitting a new baseline, poten-
tially limiting the metric’s scope. Finally, the effective ro-
bustness improves for reduced ID accuracy and maintained
OOD accuracy. Hence, comprehensive model evaluations
should always report plain accuracy alongside robustness.
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