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ABSTRACT 
Non-expert annotators must select an appropriate label for an 
image when the annotation task is difficult. Then, it might be 
easier for an annotator to choose multiple “likely” labels than to 
select a single label. Multiple labels might be more informative in 
the training of a classifier because multiple labels can have the 
correct one, even when a single label is incorrect. We present 
DualLabel, an annotation tool that allows annotators to assign 
secondary labels to an image to simplify the annotation process 
and improve the classification accuracy of a trained model. A user 
study compared the proposed dual-label and traditional single-
label approaches for an image annotation task. The results show 
that our dual-label approach reduces task completion time and 
improves classifier accuracy trained with the given labels. 

Keywords: Annotation Tool, Challenging Image Annotation, 
Non-Expert Annotator, Secondary Label, Machine Learning. 

Index Terms: • Human-centered computing~Human computer 
interaction (HCI)~Interactive systems and tools 

1 INTRODUCTION 
Accuracy is expected in annotations. Classifiers were trained and 
evaluated based on annotations, assuming they represent the 
ground truth. Humans provide imperfect annotations. This is 
especially true with limited budgets, and one cannot recruit a 
sufficient number of domain experts. One must use a limited 
number of annotators without sufficient domain knowledge 
(usually via crowdsourcing) [2, 10, 37] and train a classifier based 
on inaccurate training data. Multi-class labeling is particularly 
challenging for non-expert annotators where an annotator is 
required to select a single label among multiple “likely” options 
for a target image. Figure 1 shows an example of the difficulty 
faced by a non-expert annotator in a multiclass image 
classification task (i.e., a non-expert worker may not know the 
correct label, but they may know either label A or label B). Then, 
it is desirable to have a method to reduce the burden of 
annotations (making it easier for non-expert annotators to perform 
the task) while maintaining (or even improving) the accuracy of 
the classifiers trained with the resulting annotations without 
increasing the annotation cost. 

We present a novel annotation tool, DualLabel, to solve this 
problem. The basic concept is that it is simple. When it is difficult 
for an annotator to select an appropriate label for a target image, 
we allow the annotator a second choice. We expect this to reduce 

the psychological burden of making a final decision and thus 
expedite the annotation process. This process produces more 
annotations for a set of images than the traditional single-label 
method; therefore, we expect that this method would improve the 
accuracy of a classifier trained with similar number of images. 
 

 
Figure 1: Problem of multi-class labeling for non-expert annotators. 

 We conducted a user study to compare the proposed dual-label 
approach with a traditional single-label approach for multi-class 
image annotation. We measured the time required for annotation 
and collected the subjective feedback. We also trained classifiers 
using the annotation results and measured their accuracy. The 
results showed that the dual-label approach requires less time to 
complete the image annotation task than the single-label approach 
in a challenging image annotation task.  The classifier accuracy 
trained with dual labels was better than that of the classifier 
trained with single labels. Our questionnaire results showed that 
participants felt that the dual-label approach was more 
straightforward, helpful, and efficient than the single-label 
approach when they were not confident in their label selection 
during annotation. Additionally, the dual-label approach increased 
the annotators’ confidence in challenging image annotation. This 
study makes the following contributions. 
 
• DualLabel, a novel annotation tool that allows users to assign 

a secondary label to a difficult multiclass image classification 
task.   

• A user study comparing DualLabel to a traditional single-
label approach demonstrated the benefits of the dual-label 
approach in challenging image annotation tasks.  

• A machine learning experiment training classifier using two 
sets of annotations showed that the dual-label approach could 
improve the accuracy of classifiers.   *e-mail: chiaming@ui.is.s.u-tokyo.ac.jp 
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2 RELATED WORK 

2.1 Crowdsourcing Data Annotation 
Crowdsourcing is a popular method for conducting data-
annotation tasks. Data quality in crowdsourcing often contains 
numerous errors [3, 4, 5]. Crowdsourcing data annotation tasks 
are often designed to be relatively simple and easy to increase the 
data quality. For example, various types of binary tasks (i.e., users 
selecting one option from two) are used. In a binary task, crowd 
workers are requested to answer a simple yes or no question, such 
as “does this image contain a dog?” ImageNet [1] is a large-scale 
image dataset manually verified by humans via binary judgment. 
Pairwise HITS [19] is an annotation workflow that allows 
annotators to compare a pair of labeled data and select the better 
one. A binary labeling task is easy when the data are clear or the 
task is simple (e.g., selecting a dog or cat label). However, it 
becomes difficult for annotators when the data are difficult or 
when the task is complex (e.g., selecting a dog breed label for a 
dog image). Then, the data quality may be unstable and low, 
which causes problems in the machine learning process [22]. 

To avoid errors during annotation, an “unsure” function is 
conventionally provided during annotation, which allows 
annotators to give up (skip) a labeling task when it is difficult [6, 
7]. For example, Audio Set [17] and Revolt [18] provided 
uncertain features in their annotation tasks. This “unsure” option 
can avoid errors made by the annotators when they are not sure 
about the data. In addition, “user confidence” is another piece of 
information that can be collected during annotation to measure 
label quality. For example, annotators indicate their confidence 
scores on the label they select for an image. Oyama et al. [21] 
proposed a labeling approach that allows annotators to assign 
confidence scores to a binary labeling task. Jinhua et al. [21] 
proposed a method that shares the same concept in a data 
annotation task. Here, annotators were asked to judge their 
answers by giving confidence via a sliding bar. 

These approaches primarily focus on single-label annotation 
tasks. However, this may be insufficient for challenging data-
annotation tasks. For example, it can be very difficult for 
annotators to select an appropriate label from two possible labels 
when they are not confident in the labels. We believe that our 
dual-label approach can provide new opportunities to address this 
issue, different from other existing approaches. 

2.2 Utilizing Different Data in Machine Learning 
Uncertain functions have been widely used in various data-
annotation tasks. Several studies have proven that uncertain data 
can help machine learning results. Takeoka et al. [8] indicated that 
the performance of unsure loss is better than that of conventional 
models (no unsure labels) because unsure labels tend to be located 
close to the ground-truth decision boundary. Zhong et al. [6] 
indicated that providing annotators an uncertain option would 
significantly benefit active learning from crowds (ALC). Cui et al. 
[51] proposed an uncertainty pairwise comparison oracle to aid 
interactive labeling by comparing the uncertainty of two 
unlabelled data points. In addition, Wu et al. [9] proposed a 
unified end-to-end learning framework by using “unsure data” in 
medical image analysis. This framework shows the benefits of 
learning with uncertain data, and the validity of their models is 
demonstrated in the prediction of Alzheimer’s Disease and lung 
nodules.  

Alternatively, Ishida et al. [11] introduced a learning approach 
learning from complementary labels, for optimizing algorithms. A 
complimentary label specifies the class to which the pattern does 
not belong. This can reduce the human workload in manual data 
annotation because selecting an incorrect label is easier than 
selecting a correct label when data is difficult.  Yu et al. [12] 

shared this concept and proposed a framework for learning with 
biased complementary labels. Moreover, partial label learning is 
an approach for training a set of possible labeled data, where each 
instance is tagged with more than one label, only one of which is 
correct [13, 23, 24, 52, 53]. These studies focused on partial 
multi-labels for machine learning, whereas our study focused on 
the annotation process. Cui and Sato [50] introduced a method for 
learning from triplet comparison data using only passively 
obtained triplet comparison data. Whitehil et al. [14] introduced 
GLAD, a learning model for optimizing the integration of labels 
from annotators of unknown expertise. This model refers to the 
concept “whose vote should count more” that can recover the true 
data labels more accurately than the Majority Vote heuristic. 

Various systems/algorithms use different types of collected data 
to improve machine learning results. Developing a better 
system/algorithm to enhance machine learning accuracy is a 
popular (common) approach that most studies have focused on. 
However, there is also another approach which is to provide better 
data (i.e., correct labels). This study focused on the latter and 
aimed to expedite the data annotation process from a human 
perspective. 

2.3 Expediting Data Annotation Process  
The data annotation process can be discussed in terms of two 
aspects: (a) data quality and labeling efficiency (i.e., objective 
data analysis) and (b) the annotator’s perception during annotation 
(i.e., subjective data analysis). Many studies have focused on the 
former aspect and have proposed efficient and supportive 
approaches to expedite the data annotation process (i.e., decrease 
labeling time and increase label quality). For example, a 
hierarchical task assignment was proposed to expedite manual 
image annotation [28]. Moreover, many semi-automatic 
annotation systems have been proposed to assist manual image 
labeling using collaborative filtering and computer vision 
techniques [29, 30, 31]. Interactive concept learning guides 
annotators in assigning labels to the most informative images for 
classifiers [32, 33, 34]. 

Some studies have focused on annotators’ perceptions. For 
example, Ahn et al. [35] proposed an image annotation tool 
combined with a computer game. Chang et al. [36] designed a 
spatial layout labeling interface that can increase the confidence 
of nonexpert annotators in an image annotation task. In addition to 
non-expert annotation, Schaekermann [57] explored the 
understanding of expert disagreements in medical image 
annotation. Some studies have indicated that the human aspect is 
an important part of crowdsourcing annotation tasks. For example, 
Zhuang and Gadiraju [38] analyzed crowd workers’ mood, 
performance, and engagement during annotation; LaPlante et al. 
[39] investigated the trust issue between crowd workers and task 
requesters; and Durward et al. [40] identified ethical issues in 
crowdsourcing, especially with a focus on the crowd workers’ 
perspective. Chang et al. [56] investigated the effects of quick and 
careful labeling styles on an image annotation task. 

These studies have shown that human aspects play an essential 
role in manual data annotation. However, no detailed research has 
explored the relationship between the data quality/labeling 
efficiency (i.e., objective data analysis) and the annotator’s 
perceived usability (i.e., subjective data analysis). This can be a 
significant point in expediting the data annotation process 
investigated in this study. 

3 DUAL LABEL 
We propose DualLabel, a dual-label image annotation tool that 
allows annotators to assign a high-confident and low-confident 
(secondary) label to an image when making a label decision is 
challenging during annotation (i.e., not confident with the target 



image and labels). Figure 2 shows a screenshot of the dual-label 
annotation interface using dog-breed labeling. The lower part of 
the left-side interface shows the labels to be assigned to the 
corresponding representative images, and the upper part presents a 
magnified view of the activated label. The user activates the label 
by clicking on one of the labels below. The upper part of the right-
side interface represents the target image to be labelled. The lower 
part of the right-side interface is the selected label(s) for the target 
image, which includes a high-confidence label box (left) and a 
low-confidence label box (right). The annotator drags a label on 
the bottom left of the label box on the bottom right to assign a 
label. A high-confidence label is required, but a low-confidence 
label is optional (annotators are allowed to choose one label they 
are confident of). Annotators were allowed to swap the high-
confidence and low-confidence labels by clicking the arrow icon 
between the two boxes. 

 
Figure 2: DualLabel user interface. 

Figure 3 shows an example of a usage scenario in a challenging 
image annotation task using a dual-label image annotation tool. 
Here, the annotator is not confident about the target image and 
labels (i.e., it is difficult to make a label decision). Then, the 
annotator is unsure which dog breed (label) is the most 
appropriate label for the target dog image, but they think that the 
answer is probably either “Chih-Tzu” or “Maltese dog”. So, the 
annotator selects “Chih-Tzu” as a primary label (high-confident 
label) and “Maltese dog” as a secondary label (low-confident 
label) for the image. 

 
Figure 3: An example of a usage scenario. 

This dual-label annotation tool helps annotators make a label 
decision more easily and quickly when they face difficulties 
making an appropriate label decision during annotation. We 
assume that in most cases, the two selected labels may contain one 
“correct” label and one “likely” label. We expect that this “likely” 
label is a valuable resource that improves the classification 
accuracy of a trained model. 

4 USER STUDY 
A user study compared a traditional single-label annotation 
approach with our proposed dual-label annotation approach for a 
manual image annotation task. Our hypothesis is that the dual-
label approach can expedite the annotation process in challenging 
image classification, mainly when the annotators are not confident 
in label assignment. 

4.1 Image Annotation System 
Two online image annotation systems single -and dual-label) were 
developed for the user study. We used HTML and JavaScript for 
user interface and Node development. js on the server-side to 
collect and process the data. The system was deployed on an 
Ubuntu system with 2GB of RAM provided as a server from the 
Sakura VPS. The image-annotation interfaces are shown in Figure 
4. The only difference between the two interfaces is that the 
single-label interface has only one label box (participants select 
only one label for an image), whereas the dual-label interface has 
two label boxes (participants can select a low-confidence label in 
addition to a high-confidence label for an image). 
 

 
Figure 4: Screenshots of single-label and dual-label image 
annotation interfaces. 

4.2 Participants 
Twenty-four participants (16 men and 8 women, aged 18 to 59 
years) were recruited using Amazon Mechanical Turk (MTurk) 
[25]. All participants were MTurk Master Workers and had a 98% 
HIT approval rate [26]. Eighteen of the 24 participants (75%) 
have (or had) dogs as pets. However, none of the participants had 
professional knowledge of the dog breeds. We paid a slightly 
higher compensation ($15.75/h) to the participants than the 
average wage in Amazon MTurk ($11.58/h) [27]. 

4.3 Dataset 
We used a dog image dataset from ImageNet (ILSVRC 2012), 
which contained 120 dog labels (breeds) [15]. We manually 
created two datasets (Datasets A and B) with different difficulty 
levels for the image annotation tasks. The difficulty levels of 
selected dog labels (breeds) are based on Stanford dog image 
classification [16]. The Stanford Dogs Dataset also used 120 dog 
labels from ImageNet. Their machine learning experiment 
followed a similar training and testing methodology as Caltech-
101 [49]. Dataset A includes the most difficult 12 dog breeds 
(among the 120 dog breeds), and Dataset B included the easiest 12 
dog breeds. A difficult dog breed means that the classification 



accuracy is low for the dog breed [16].  Tables 1 and 2 show the 
12 dog breeds in Datasets A (difficult) and B (easy). For each dog 
breed (label), five images were randomly selected from 1,300 
images, from ImageNet (ILSVRC 2012) [15] for the image 
annotation task in the user study. 

Table 1. Dataset A: 12 difficult dog breeds. 

 
Chihuahua 

 
Japanese Spaniel 

 
Maltese Dog 

 
Pekinese 

 
Shih-Tzu 

 
Blenheim Spaniel 

 
Papillon 

 
Toy Terrier 

 
Rhodesian Ridgeback 

 
Afghan Hound 

 
Basset 

 
Beagle 

Table 2. Dataset B: 12 easy dog breeds. 

 

African Hunting Dog 

 

Dhole, Cuon Alpinus 

 
Dingo, Warrigal 

 
Mexican Hairless 

 
Standard Poodle 

 
Miniature Poodle 

 
Toy Poodle 

 
Cardigan 

 
Pembroke 

 
Brabancon Griffon 

 
Keeshond 

 
Chow 

4.4 Task and Condition 
The image annotation task for each participant involved labeling 
120 dog images (60 = 12 × 5 images for each dataset). The 
annotation task requested participants to select an appropriate dog 
breed (label) for each dog image from a 12-dog breed list (12 
labels). The within-subjects method was used, where 24 
participants were asked to complete two annotation tasks via the 
single-label and dual-label interfaces (different datasets were used 
for the tasks conducted by different interfaces). 

Single-label Condition. This is the baseline. Figure 4 (a) shows 
a screenshot of the single-label annotation interface. The 
instructions for the single-label annotation task were as follows. 

“If you are confident with the target image and the label you 
intend to select, assign it to the image directly. However, if you 
are not confident with the target image and the label, please 
consider carefully  and try to assign the most appropriate one.” 

Dual-label Condition. This was the proposed approach. The 
dual-label annotation interface is shown in Fig. 4 (b). The 
instructions for the dual-label annotation task were as follows.      

“If you are confident with the target image and the label you 
intend to select, assign it to the image as the ‘high-confident 
label’. However, if you are not confident with the target image 
and the label, assign the label you are more confident with to the 
high-confident label box, and the label you are less confident with 
to the low-confident label box.”     

We balanced the order of the conditions and datasets among the 
24 participants to ensure a balance between the two conditions 
and the two datasets. Table 3 shows the distribution of the 
conditions and datasets. 

Table 3. Distribution of the training data. 

Participants 1st Task 2nd Task 
P01 - P06 Single-Label + Dataset A Dual-Label + Dataset B 
P07 - P12 Single-Label + Dataset B Dual-Label + Dataset A 
P13 - P18 Dual-Label + Dataset A Single-Label + Dataset B 
P19 - P24 Dual-Label + Dataset B Single-Label + Dataset A 

 

4.5 Procedure 
A 3-minutes video instruction was presented at the beginning to 
the participants to explain the details of the user evaluation 
process. This includes a step-by-step demonstration (step by step) 
of how to use the annotation interfaces to complete the given 
image annotation tasks. After completing the two annotation 
tasks, the participants were asked to complete a questionnaire 
about the annotation tasks. 

4.6 Measurement 
Our annotation system recorded and measured the time and 
accuracy of the image annotation tasks completed by the 
participants. The system also recorded the time spent by 
participants on each image label. The system recorded the number 
of secondary labels collected via the dual-label approach in cases 
(images) when the participants were not confident with a single 
label selection. The questionnaire had three Likert-scale questions 
and one open-ended question regarding the participants’ 
perception and preference of the single-label and dual-label 
annotation approaches. 

5 MACHINE LEARNING EXPERIMENT 
In addition to evaluating the manual image annotation process, we 
conducted a small-scale machine learning experiment to compare 
the accuracy of classifiers trained with the labeled data created 
using the single-and dual-label approaches. The hypothesis is that 
the labeled data collected using the dual-label approach achieve 
better classification accuracy than the data collected via the 
traditional single-label approach. 

Training Data.  We used data collected from the two 
annotation approaches to train the classifiers. A total of 2,880 
labeled images were collected from the user study. Table 4 
presents the distribution of training data. A total of 720 labelled 
images (60 labelled images for each dog breed) were collected for 
each condition. The number of images was similar (720 images); 
however, the dual-label task contained more labels for training. 
The collected training data contained errors made by the 
participants (i.e., the accuracy rate of the training data was not 
100%). 

 



Table 4. Distribution of the training data. 

Tasks Dataset Amount 
Single-label Dataset A (difficult) 60x12=720 
Single-label Dataset B (easy) 60x12=720 
Dual-label Dataset A (difficult) 60x12=720 
Dual-label Dataset B (easy) 60x12=720 

Testing Data. The test data used in the machine learning 
experiment were 2,880 images (60 × 12 =720 images in each 
condition). These images were not included in the training dataset.     

Classification Algorithm. We used the unpretrained AlexNet 
[46] implemented by PyTorch [47]. We trained four classifiers, 
each trained using 720 images, as listed in Table 4. The accuracy 
of each classifier was measured by using 720 test images (60 
images from each class). We reshaped the input images to a size 
of 224×224 and trained the model with a learning rate of 0.01 and 
a weight decay of 0.0005 as parameters. We used the stochastic 
gradient descent (SGD) optimizer, passed the model's output to a 
sigmoid layer, and then obtained the binary cross-entropy loss. 
The number of epochs of the model training was 200. For the data 
collected via the dual-label approach, we encoded all the 
categories into 0-1 vectors while assigning a weight of 1 to the 
high-confidence label and 0.5, to the low-confidence label. The 
sum of the vectors was normalized to one. The output is consistent 
with that of the single-label approach; both are single-result 
outputs. We then compared the accuracy of the labeled data 
obtained using the two annotation approaches on the test data. 

6 RESULTS 

6.1 Task Completion Time 
Overall Task Completion Time. Figure 5 shows that the 
participants spent an average of 10 min 6 s and 10 min 37 s 
labeling the 60 images using the single-label and dual-label 
approaches. The results of the paired t-test on task completion 
time showed that the difference was not significant (p > 0.05) 
between the single-label and dual-label approaches. This indicates 
that the dual-label task does not require additional time to 
complete the image annotation task. 
 

 
Figure 5: Overall task completion time. Single: mean = 10.06; SD = 

3.76; Dual: mean = 10.37; SD = 3.90. 

Task Completion Time in Easy and Difficult Datasets. 
Figure 6 shows the task completion times for the easy and 
challenging datasets. The accessible dataset shows that the 
participants spent an average of 7 min 49 s and 11 min 39 s 
labeling the 60 images via the single-label and dual-label 
approaches, respectively. Although the time appears different 
between the two approaches, the result of the paired t-test showed 
that the difference was not significant (p > 0.05). This was 
because the dual-label task's standard deviation (SD) was high. In 
the difficult dataset, the participants spent an average of 12 min 25 
s and 9 min 36 s using the single-label and dual-label approaches, 
respectively. The results of the paired t-test showed that the 

difference was significant (p < 0.05) between the two approaches. 
This indicates that the dual-label approach is more efficient (i.e., it 
requires less time to complete the task) than the single-label 
approach when the target images are difficult. 

 

 
Figure 6: Task completion time in the easy and difficult datasets. 

Easy Dataset. Single: mean = 7.49; SD = 3.24; Dual: mean = 
11.39; SD = 4.54. Difficult Dataset. Single: mean = 12.25; SD = 

2.70; Dual: mean = 9.36; SD = 2.76. 

In addition, the results show that, in the single-label task, the 
participants spent significantly (p < 0.01) a more extended time 
completing the challenging task (12 m25s) and the easy task 
(7m49s). However, the difference between the easy (11m39s) and 
complex (9m36s) tasks in the dual-label task was not significant 
(p > 0.05). This indicates that the dual-label approach is robust 
against task difficulty in terms of task completion time. 

6.2 Annotation Accuracy 
Figure 7 displays the accuracy of the annotations provided by the 
participants using the single- and dual-label approaches. The 
results show that the annotation accuracy was 75% for the single-
label task, while the annotation accuracy was 71.12% for the high-
confident label and 12% for the low-confident label in the dual-
label task. The results of the paired t-test showed that the 
difference was not significant (p > 0.05) between the labels in the 
single-label task and the high-confidence labels in the dual-label 
task. This indicates that the dual-label approach cannot 
significantly improve label quality; however, it can collect more 
data (i.e., low-confidence labels) during annotation. Additionally, 
the results showed that the accuracy of the low-confidence label in 
the dual-label task was only 12%. This indicates that the low-
confidence labels are not very reliable. 
 

 
Figure 7: Accuracy rate. Single: mean = 75.00; SD = 9.65; Dual-

label H-confident: mean = 71.12; SD = 8.98 and L-confident: mean 
= 12.00; SD = 6.26. 

Figure 8 shows the annotation accuracy of the annotation tasks 
for the easy and difficult datasets. The easy dataset shows that the 
accuracy rate was 78.42% for the single-label task, while the 
accuracy rate was 70.50% for the high-confident label and 
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13.39% for the low-confident label in the dual-label task. In the 
difficult dataset, the results show that the accuracy rate was 
71.58% for the single-label task, while the accuracy rate was 
71.75% for the high-confident label and 10.08% for the low-
confident label in the dual-label task. The results of the paired t-
test showed that the difference was not significant (p > 0.05) 
between the annotation accuracy in the single-label task and the 
dual-label task (high-confidence label) for both the easy and 
difficult datasets. 

 

 
Figure 8: Accuracy rates in the easy and difficult datasets. Easy 
Dataset. Single: mean = 78.42; SD = 6.86; Dual_H-con: mean = 
70.50; SD = 8.61 and L-con: mean = 13.92; SD = 7.61. Difficult 

Dataset. Single: mean = 71.58; SD = 11.07; Dual_H-con: mean = 
71.75; SD = 9.69 and L-con: mean = 10.08; SD = 4.01. 

The results showed that the difference was significant (p < 
0.05) between the two datasets in the single-label task. However, 
the difference between the two datasets in the dual-label task was 
not significant (p > 0.05). This indicates that the data difficulty 
affects only the annotation accuracy in the single-label task. This 
does not affect the label quality in the dual-label task.   

6.3 Number of Assigned Labels 
Table 5 shows the number of assigned labels collected via single -
and dual-label annotation tasks in the user study. In the single-
label annotation task, the total number of labels assigned to 
images was 1440 labels (720 for Dataset A and 720 for Dataset 
B). In the dual-label annotation task, the total number of labels 
assigned to images was 2397 (66.45% more than the single-label 
task), which includes 1440 high-confidence labels (720 for 
Dataset A and 720 for Dataset B), and 957 low-confidence labels 
(481 for Dataset A and 476 for Dataset B). 

Table 5. Distribution of the training data. 

Tasks Datasets Number of Assigned Labels 

Single-label 
Dataset A 720 
Dataset B 720 

Dual-label 
Dataset A 720 (h-con) and 481 (l-con) 
Dataset B 720 (h-con) and 476 (l-con) 

(h-con = high-confident label; l-con = low-confident label) 

The results show that the dual-label annotation task can collect 
66.8% (Dataset A) and 66.11% (Dataset B) more labeled images 
(i.e., low-confidence labeled images) than the single-label 
annotation task. Originally, expected the dual-label approach 
would collect more data (i.e., low-confidence labeled images) in 
the difficult dataset than in the easy dataset because the annotators 
might find it difficult to make a single label decision when the 
images are difficult. However, the results showed almost no 
difference between the easy (481 images) and difficult (476 
images) datasets. This indicates that the data difficulty does not 
affect the amount of data collected in the dual-label annotation 
task. 

6.4 Learning Effect 
Figure 9 shows the average time for the annotation process for the 
first half (1-30 images) and the second half (31-60 images) via the 
single-label and dual-label approaches in the easy dataset. The 
results showed that the participants spent an average of 4 min 11 s 
and 3 min 38 s to complete the first half and second half, 
respectively, using the single-label approach, whereas they spent 
an average of 5 min 21 s and 6 min 18 s, respectively. The paired 
t-test showed no significant difference (p > 0.05) between the first 
and second halves of the annotation process in both the single-
label and dual-label annotation tasks. This indicates that there is 
no learning effect for easy images. 
 

 
Figure 9: Average time for the annotation process in the easy 

dataset. Single (1-30 images): mean = 4.11; SD = 1.95; Single (31-
60 images): mean = 3.38; SD = 2.12.  Dual (1-30 images): mean = 

5.21; SD = 3.43; Dual (31-60 images): mean = 6.18; SD = 4.13. 

Figure 10 shows the average time for the annotation process for 
the first half (1-30 images) and the second half (31-60 images) via 
the single-label and dual-label approaches in the difficult dataset. 
The results showed that the participants spent an average of 6 min 
3 s and 6 min 22 s to complete the first half and second half, 
respectively, using the single-label approach, whereas they spent 
an average of 5 min 39 s and 3 min 57 s, respectively. The results 
of the paired t-test showed no significant difference (p > 0.05) 
between the first and second halves of the annotation process in 
the single-label annotation task. However, a significant difference 
(p < 0.05) was observed in the dual-label annotation task. This 
indicates that the time per image decreased in the second half of 
the annotation process. This implies that annotators can learn and 
improve the efficiency of the annotation process using the dual-
label approach when images are difficult. 
 

 
Figure 10: Average time for the annotation process in the difficult 

dataset. Single (1-30 images): mean = 6.03; SD = 2.52; Single (31-
60 images): mean = 6.22; SD = 2.37.  Dual (1-30 images): mean = 

5.39; SD = 1.01; Dual (31-60 images): mean = 3.57; SD = 1.39. 

6.5 Questionnaire 
Figure 11 shows questionnaire results. Fig 11 (a) shows that the 
dual-label approach can reduce annotators’ subjective feelings of 
difficulty when the images are difficult in the annotation task.  Fig 
11 (b) shows that the dual-label approach was more helpful than 

0

100%

80%

60%

40%

20%

Ac
cu

ra
cy

  R
at

e

78.42%
70.50%

Easy Dataset

n.s.

Dual
H-con

Single-
label L-con

Difficult Dataset

Dual
H-con

Single-
label

13.92%

71.58% 71.75%

L-con
10.08%

n.s.

*

n.s.

n.s.

* p < 0.05

0

15

12

9

6

3

Ti
m

e 
(m

in
ut

e)

4m11s

Single-label

3m38s

6m18s

1-30 
images

31-60 
images

Dual-label

1-30 
images

31-60 
images

5m21s

n.s.
n.s.

0

15

12

9

6

3

Ti
m

e 
(m

in
ut

e)

6m3s

Single-label

6m22s

3m57s

1-30 
images

31-60 
images

Dual-label

1-30 
images

31-60 
images

5m39s

n.s. *

* p < 0.05



the single-label approach when the images are difficult in the 
annotation task. Fig 11 (c) shows that the dual-label approach was 
more efficient than the single-label approach when the images 
were difficult in the annotation task. 

 
Figure 11: Questionnaire results. 

The results also showed that 66.67% of the participants (n = 16) 
preferred the dual-label approach, while 33.33% preferred the 
single-label approach (n = 8). Participants who preferred the dual-
label approach indicated that the dual-label annotation interface 
was supportive and helpful. For example, one participant 
indicated that “Even if I got my answer wrong on the most 
confident, between the two of them I felt I was probably right on 
one of them”; one participant indicated that “having a more 
confident/less confident choice gave more leeway into picking the 
right breed, especially the ones that were hard to tell/could have 
been more than one”; and another participant indicated that “I felt 
like using two labels was insurance against being wrong so I felt 
less anxiety about my choices. I just felt more comfortable 
working on the task when I could choose two labels instead of 
one.” In contrast, participants who preferred the single-label 
approach indicated that the single-label annotation interface was 
easy and simple. For example, one participant indicated that “I 
feel like having two options made me second-guess my instincts a 
little bit” one participant indicated that “most of the dog images 
were clear for me, I only need the single-label interface,” and 
another participant indicated that “it’s an easy mode for the 
annotation task”. 

6.6 Results of Machine Learning Experiment 
Figure 12 shows the accuracy of the classifiers trained with the 
labeled data collected under each annotation condition (each bar 
corresponds to a classifier trained with 720 images). The results 
show that the dual-label approach increases the classifier 
accuracies by 6.95% (from 78.19% to 84.03%) and 9.86% (from 
71.53% to 81.94%) in the easy and difficult datasets, respectively. 
The paired t-test (for each dog breed, we compared the accuracy 
of single-label and dual-label as a pair) on classification accuracy 
showed that the difference was significant (p < 0.01) between the 
single-label and dual-label approaches in the difficult dataset, but 
not significant (p > 0.05) between the two approaches in the easy 
dataset. This indicates that the labeled data collected via the dual-
label approach can improve the accuracy of classifiers in difficult 
datasets (i.e., challenging image annotation).  

 
Figure 12: Accuracy rates of machine learning performance. Easy 
Dataset. Single: mean = 78.33; SD = 19.38; Dual: mean = 84.72; 
SD = 9.27. Difficult Dataset. Single: mean = 71.53; SD = 17.47; 

Dual: mean = 81.94; SD = 14.78. 

7 DISCUSSION 

7.1 Dual-label Approach Expedites Annotation 
Process in Challenging Image Classification   

Manual image annotation is tedious and time-consuming and 
often relies on crowded workers. It is demanding for non-expert 
crowd workers (who have insufficient domain knowledge) to 
select the correct label when the task is difficult [3, 4, 5]. The 
dual-label approach allows annotators to select two labels for an 
image when making a single-label decision is difficult. Our 
original concern was that the selection of two labels for an image 
might take more time than just selecting one label, because 
annotators need to repeat the same operation twice (i.e., selecting 
a label for an image). However, the results show that the dual-
label approach performed better than expected in the user study. 
This indicates that the participants spent significantly (p < 0.05) 
less time completing the image annotation task in the dual-label 
approach than in the single-label approach when the image 
annotation task was difficult. This implies that the dual-label 
approach expedites the manual image annotation process (i.e., 
reduces task completion time) in challenging image classification. 
Reducing image annotation time brings significant benefits to 
manual data annotation because we can reduce the cost of 
conducting a manual data annotation task (normally, labor-
intensive, and costly). 

7.2 Dual-label Approach Shows Learning Effect 
During Annotation in Challenging Image 
Annotation 

The learning effect describes how people learn during a given 
process. This phenomenon analyzes the efficiency of activity or 
study. Learning effects have been studied and discussed in various 
areas [44, 45, 48].  It is also used in data annotation to analyze 
task performance (i.e., efficiency) during the labeling process 
[28]. We analyzed the learning effect during given image-
annotation tasks in the user study. The results showed a 
significant learning effect (p < 0.05) during the annotation process 
in the dual-label annotation task when the images were difficult. 
The dual-label approach allows the annotators to “learn” during 
annotation and increases the annotation efficiency (i.e., reduces 
the task completion time in the second half of the image 
annotation task) in difficult image classification. The reason for 
this effect remains unclear. One possible explanation for this is 
that it helps annotators build domain knowledge during the 
process. It also allows annotators to learn how to use the user 
interface. We conjecture that the second one may not be because 
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we did not see a similar learning effect in the easy image-labeling 
task.  These results have shown that the learning effect is an 
essential factor during annotation, and it has provided potential 
insights for the future development of annotation tools, such as 
designing a learnable annotation tool (e.g., learning domain 
knowledge during annotation). 

7.3 Dual-label Approach Collects More Data and 
Improves Classifier Accuracy 

In general, data provided better classification accuracy. Usually, 
more human effort and money are necessary for a manual data 
annotation task to collect more training data. The results showed 
that the dual-label approach could collect more data (labeled 
images) without significantly increasing the time (even requiring 
less time when the images are difficult). More specifically, the 
dual-label approach collected 481 (66.8%) more labeled images 
(i.e., low-confidence label) than the single-label approach when 
the annotation task was difficult and 476 (66.1%) more labeled 
images when the annotation task was easy. These additional data 
collected via the dual-label approach is the “low-confident” 
labeled images. The results of our machine learning experiment 
show that these 66.8% and 66.1% additional data improved the 
classification accuracy by 9.86% (difficult dataset) and 6.95% 
(easy dataset), respectively. This improvement was affected by the 
low-confidence labeled images collected via the dual-label 
approach. This result implies that low-confidence data is 
significant in the progress of classification accuracy.    

The dual-label approach expedites the image annotation process 
and improves classification accuracy. We believe that this 
significantly benefits difficult image annotation and provides 
valuable insight for conducting a crowdsourcing annotation task. 
Note that the dual-label approach collects more labels without 
requiring additional annotation time and increases the number of 
annotations (label assignments) without increasing the number of 
images to be annotated. This is significantly more efficient than 
increasing the number of annotations by expanding the number of 
images to be annotated. An annotator spends a significant amount 
of time observing the target image to assign the first label, and 
dual label approach “reuses” the effort in assigning the second 
label. 

7.4 Dual-label Approach Increases Perceived Usability 
and Worker’s Confidence in Challenging Image 
Classification 

The analysis of subjective feedback from the questionnaires 
shows that the dual-label approach can increase the perceived 
usability of crowd workers in challenging image annotations. 
Over half of the participants felt that the dual-label approach was 
easier (n = 15), more helpful (n = 16), and more efficient (n = 14) 
than the single-label approach. One participant commented, “The 
dual-label interface is more preferable since it allows one to enter 
their top two choices, but doesn't mandate them to do so. This is 
both efficient as it doesn't require easy judgments to be more 
complicated than they are yet simultaneously allowing one to put 
their top two selections without spending an inordinate amount of 
time internally debating about which answer they should select.” 
This shows the benefits of the dual-label approach from a human 
perspective (e.g., annotators’ perception). This is an important 
result, as several studies [38, 39, 40] have indicated that the 
human aspect is a critical issue when conducting crowdsourcing 
tasks. The dual-label approach increases the confidence of crowd 
workers during annotation. For example, one participant 
indicated, “The dual label interface leads to much higher 
confidence when selecting an answer, especially for breeds that 

are very similar in appearance.” Another participant indicated, “I 
feel bad when I make mistakes. With the dual-label interface, I 
feel less likely to give a wrong answer. Also, I spent less time 
choosing a label because I felt more confident when I could pick 
two labels.” Confidence is a factor that affects the efficiency of 
manual data annotation in challenging image annotation, as it is 
an essential factor that improves people’s motivation for learning 
and its efficiency [41, 42, 43]. 

8 LIMITATION AND FUTURE WORK 
A limitation of this study is that the training data used in the 
machine learning experiment were small (60 images for each dog 
breed) and were only tested in a limited setting. The primary 
purpose of this study is not to pursue high accuracy rates of 
machine learning performance but instead to focus on the effects 
of the dual-label approach during annotation in challenging image 
classification. Our results show that the dual-label approach can 
collect more data, and the data can increase machine learning 
accuracy. We believe that the dual-label approach may have an 
even greater effect on large-scale data annotation tasks. This study 
only evaluated the dual-label approach with a type of data and 
task (dog image classification task). We believe that the dual-label 
approach can also be used to benefit various data types and 
annotation tasks.     

In the future, we would like to conduct a large-scale user study 
and test more machine learning conditions (e.g., soft labeling [54] 
and self-knowledge distillation [55]). There are many possible 
variations in using collected data with the dual-label approach. 
For example, over two labels (three or four) label an image, or 
force two labels to an image. They are applying a dual-label to 
binary classification (no label to an image might differ from two 
labels to an image). We investigate the real reasons for the 
learning effect (improving annotation efficiency). One possible 
direction is to observe the annotators’ behavior during the entire 
annotation process. For example, how do workers spend their time 
during an annotation task (i.e., what exactly do they do?). Another 
possible direction is to explore self-learning during annotation and 
design a learnable annotation interface to help non-expert 
annotators build domain knowledge during annotation. 

9 CONCLUSION 
This study presented DualLabel, a new manual image annotation 
tool for expediting the manual data annotation process and 
improving the classification accuracy of the trained model in 
challenging image annotation. This tool allows annotators to 
assign a high-confidence and low-confidence label to an image 
when the annotators find it challenging to make a label decision. 
The user study compared the proposed dual-label approach to a 
traditional single-label annotation task for a manual multi-class 
image annotation task. The results showed that our dual-label 
approach could collect more data with a shorter task completion 
time when the images were difficult. The dual-label approach 
exhibited a positive learning effect during the annotation process. 
Our machine learning results demonstrated that labeled images 
using the dual-label approach improved the accuracy of a 
classifier trained with the annotation results. We discuss the 
perceived usability and workers’ confidence in challenging image 
annotations. The findings presented significant insights into the 
future development of crowdsourcing annotation tools for 
challenging image annotation. 

ACKNOWLEDGMENTS 
This work was supported by JST CREST Grant Number JP- 
MJCR17A1, and JST, ACT-X Grant Number JP-MJAX21AG, 
Japan. 



REFERENCES 
[1] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei 

Li. 2009. ImageNet: A Large-Scale Hierarchical Image Database. In 
2009 IEEE conference on computer vision and pattern recognition, 
pp. 248-255. DOI: http://dx.doi.org/10.1109/CVPR.2009.5206848 

[2] Cyrus Rashtchian, Peter Young, Micah Hodosh, and Julia 
Hockenmaier. 2010. Collecting Image Annotations Using Amazon’s 
Mechanical Turk. In Proceedings of the NAACL HLT 2010 
Workshop on Creating Speech and Language Data with Amazon’s 
Mechanical Turk, pp. 139-147. 
https://dl.acm.org/doi/10.5555/1866696.1866717 

[3] Jiyin He, Jacco van Ossenbruggen, and Arjen P. de Vries. 2013. Do 
You Need Experts in the Crowd? A Case Study in Image Annotation 
for Marine Biology. In Proceedings of the 10th Conference on Open 
Research Areas in Information Retrieval, pp. 57-60. 
https://dl.acm.org/doi/10.5555/2491748.2491763 

[4] Donghui Feng, Sveva Besana, and Remi Zajac. 2009. Acquiring 
High Quality Non-Expert Knowledge from On-demand Workforce. 
In Proceedings of the 2009 Workshop on The People’s Web Meets 
NLP: Collaboratively Constructed Semantic Resources (People’s 
Web), pp. 51-56. https://dl.acm.org/doi/10.5555/1699765.1699773 

[5] Wei Wang, and Zhi-Hua Zhou. 2015. Crowdsourcing label quality: a 
theoretical analysis. Science China Information Sciences 58, no. 11: 
1-12. DOI: http://doi.org/10.1007/s11432-015-5391-x 

[6] Jinhong Zhong, Ke Tang, and Zhi-Hua Zhou. 2015. Active Learning 
from Crowds with Unsure Option. In IJCAI, pp. 1061-1068. 
http://dl.acm.org/doi/10.5555/2832249.2832396 

[7] Yao-Xiang Ding, and Zhi-Hua Zhou. 2018. Crowdsourcing with 
unsure option. Machine Learning 107, no. 4: 749-766. DOI: 
http://doi.org/10.1007/s10994-017-5677-x 

[8] Kunihiro Takeoka, Yuyang Dong, and Masafumi Oyamada. 2020. 
Learning with unsure responses. In Proceedings of the AAAI 
Conference on Artificial Intelligence, vol. 34, no. 01, pp. 230-237. 
DOI: http://doi.org/10.1609/aaai.v34i01.5355 

[9] Botong Wu, Xinwei Sun, Lingjing Hu, and Yizhou Wang. 2019. 
Learning with unsure data for medical image diagnosis. In 
Proceedings of the IEEE/CVF International Conference on 
Computer Vision, pp. 10590-10599. DOI: 
http://doi.org/10.1109/ICCV.2019.01069 

[10] Jing Zhang, Xindong Wu, and Victor S. Sheng. 2016. Learning from 
crowdsourced labeled data: a survey. Artificial Intelligence Review 
46, no. 4: 543-576. DOI: http://doi.org/10.1007/s10462-016-9491-9 

[11] Takashi Ishida, Gang Niu, Weihua Hu, and Masashi Sugiyama. 
2017. Learning from complementary labels. arXiv preprint 
arXiv:1705.07541. https://arxiv.org/abs/1705.07541 

[12] Xiyu Yu, Tongliang Liu, Mingming Gong, and Dacheng Tao. 2018. 
Learning with biased complementary labels. In Proceedings of the 
European conference on computer vision (ECCV), pp. 68-83. 
https://openaccess.thecvf.com/content_ECCV_2018/papers/Xiyu_Y
u_Learning_with_Biased_ECCV_2018_paper.pdf 

[13] Timothee Cour, Ben Sapp, and Ben Taskar. 2011. Learning from 
partial labels. The Journal of Machine Learning Research 12: 1501-
1536. https://dl.acm.org/doi/10.5555/1953048.2021049 

[14] Jacob Whitehill, Ting-fan Wu, Jacob Bergsma, Javier Movellan, and 
Paul Ruvolo. 2009. Whose vote should count more: Optimal 
integration of labels from labelers of unknown expertise. Advances 
in neural information processing systems 22: 2035-2043. DOI: 
http://dl.acm.org/doi/10.5555/2984093.2984321 

[15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev 
Satheesh, Sean Ma, Zhiheng Huang et al. 2015. ImageNet Large 
Scale Visual Recognition Challenge. International journal of 
computer vision 115, no. 3: 211-252. DOI: 
http://dx.doi.org/10.1007/s11263-015-0816-y 

[16] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and 
Fei-Fei Li. 2011. Novel dataset for fine-grained image 
categorization: Stanford dogs. In Proc. CVPR Workshop on Fine-
Grained Visual Categorization (FGVC), vol. 2, no. 1. 
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.255.6394
&rep=rep1&type=pdf 

[17]  Jort F. Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen, 
Wade Lawrence, R. Channing Moore, Manoj Plakal, and Marvin 
Ritter. 2017. Audio set: An ontology and human-labeled dataset for 
audio events. In 2017 IEEE International Conference on Acoustics, 
Speech and Signal Processing (ICASSP), pp. 776-780. IEEE. DOI: 
http://dx.doi.org/10.1109/ICASSP.2017.7952261 

[18] Joseph Chee Chang, Saleema Amershi, and Ece Kamar. 2017. 
Revolt: Collaborative Crowdsourcing for Labeling Machine 
Learning Datasets. In Proceedings of the 2017 CHI Conference on 
Human Factors in Computing Systems, pp. 2334-2346. DOI: 
http://dx.doi.org/10.1145/3025453.3026044 

[19] Takeru Sunahase, Yukino Baba, and Hisashi Kashima. 2017. 
Pairwise HITS: Quality Estimation from Pairwise Comparisons in 
Creator-Evaluator Crowdsourcing Process. In Thirty-First AAAI 
Conference on Artificial Intelligence. 
https://dl.acm.org/doi/abs/10.5555/3298239.3298383 

[20] Satoshi Oyama, Yukino Baba, Yuko Sakurai, and Hisashi Kashima. 
2013. Accurate integration of crowdsourced labels using workers' 
self-reported confidence scores. In Twenty-Third International Joint 
Conference on Artificial Intelligence. 
https://dl.acm.org/doi/10.5555/2540128.2540496 

[21] Jinhua Song, Hao Wang, Yang Gao, and Bo An. 2018. Active 
learning with confidence-based answers for crowdsourcing labeling 
tasks. Knowledge-Based Systems 159: 244-258. DOI: 
http://doi.org/10.1016/j.knosys.2018.07.010 

[22] Alkida Balliu, Sebastian Brandt, Yuval Efron, Juho Hirvonen, 
Yannic Maus, Dennis Olivetti, and Jukka Suomela. 2019. 
Classification of distributed binary labeling problems. arXiv preprint 
arXiv:1911.13294. https://arxiv.org/abs/1911.13294 

[23] Nam Nguyen, and Rich Caruana. 2008. Classification with partial 
labels. In Proceedings of the 14th ACM SIGKDD international 
conference on Knowledge discovery and data mining, pp. 551-559. 
DOI: https://doi.org/10.1145/1401890.1401958 

[24] Thibaut Durand, Nazanin Mehrasa, and Greg Mori. 2019. Learning a 
deep convnet for multi-label classification with partial labels. In 
Proceedings of the IEEE/CVF Conference on Computer Vision and 
Pattern Recognition, pp. 647-657. https://arxiv.org/abs/1902.09720 

[25] Michael Buhrmester, Tracy Kwang, and Samuel D. Gosling. 2011. 
Amazon’s mechanical Turk: A new source of inexpensive, yet high-
quality, data? Perspectives on Psychological Science 6, 1, 3–5. DOI: 
http://dx.doi.org/10.1177/1745691610393980 

[26] Peer E, Vosgerau J, Acquisti A. 2014. Reputation as a sufficient 
condition for data quality on Amazon Mechanical Turk. Behavior 
Res Methods. December 1;46(4):1023–31. 

[27] Kotaro Hara, Abigail Adams, Kristy Milland, Saiph Savage, Chris 
Callison-Burch, and Jeffrey P. Bigham. 2018. A data-driven analysis 
of workers' earnings on Amazon Mechanical Turk. In Proceedings of 
the 2018 CHI conference on human factors in computing systems, 
pp. 1-14. DOI: https://doi.org/10.1145/3173574.3174023 

[28] Chia-Ming Chang, Siddharth Deepak Mishra, and Takeo 
Igarashi.2019. AHierarchical Task Assignment for Manual Image 
Labeling. In 2019 IEEE Symposium on Visual Languages and 
Human-Centric Computing (VL/HCC), pp. 139-143. DOI: 
http://dx.doi.org/10.1109/VLHCC.2019.8818828 

[29] Shingo Uchihashi, and Takeo Kanade. 2005.Content-Free Image 
Retrieval by Combinations of Keywords and User Feedbacks. In 
International Conference on Image and Video Retrieval, pp. 650-
659. Springer, Berlin, Heidelberg. DOI: 
http://dx.doi.org/10.1007/11526346_68 

[30] Wenyin Liu, Susan T. Dumais, Yanfeng Sun, HongJiang Zhang, 
Mary Czerwinski, and Brent A. Field. 2001. Semi-Automatic Image 
Annotation. In Interact, vol. 1, pp. 326-333. 
https://www.researchgate.net/profle/Liu_Wenyin/publication/232852
3_ Semi- 
Automatic_Image_Annotation/links/5650863608aeafc2aab71e41/Se
mi- Automatic- Image- Annotation.pdf 

[31] Suh Bongwon and Benjamin B. Bederson. 2004. Semi-Automatic 
Image Annota- tion Using Event and Torso Identifcation. Human 
Computer Interaction Labora- tory, University of Maryland, College 



Park, Maryland, USA. http://www.cs.umd. edu/hcil/trs/2004- 
15/2004- 15.pdf 

[32] James Fogarty, Desney Tan, Ashish Kapoor, and Simon Winder. 
2008. CueFlik: Interactive Concept Learning in Image Search. In 
Proceedings of the sigchi conference on human factors in computing 
systems, pp. 29-38. DOI: http://dx. 
doi.org/10.1145/1357054.1357061 

[33] Saleema Amershi, James Fogarty, Ashish Kapoor, and Desney Tan. 
2009. Overview-Based Example Selection in End-User Interactive 
Concept Learning. In Proceedings of the 22nd annual ACM 
symposium on User interface software and technology, pp. 247-256. 
DOI: http://dx.doi.org/10.1145/1622176.1622222 

[34] Saleema Amershi, James Fogarty, Ashish Kapoor, and Desney Tan. 
2010. Exam- ining Multiple Potential Models in End-User 
Interactive Concept Learning. In Proceedings of the SIGCHI 
Conference on Human Factors in Computing Systems, pp. 1357-
1360. DOI: http://dx.doi.org/10.1145/1753326.1753531 

[35] Luis Von Ahn, and Laura Dabbish. 2004. Labeling Images with a 
Computer Game. In Proceedings of the SIGCHI conference on 
Human factors in computing systems, pp. 319-326. DOI: 
http://dx.doi.org/10.1145/985692.985733 

[36] Chia-Ming Chang, Chia-Hsien Lee, and Takeo Igarashi. 2021. 
Spatial Labeling: Leveraging Spatial Layout for Improving Label 
Quality in Non-Expert Image Annotation. In CHI Conference on 
Human Factors in Computing Systems (CHI ’21), May 8–13, 2021, 
Yokohama, Japan. ACM, New York, NY, USA, 12 pages. 
https://doi.org/10.1145/3411764.3445165 

[37] Antonio Ghezzi, Donata Gabelloni, Antonella Martini, and Angelo 
Natalicchio. 2018. Crowdsourcing: a review and suggestions for 
future research. International Journal of Management Reviews 20, 
no. 2: 343-363. 

[38] Mengdie Zhuang and Ujwal Gadiraju. 2019. In What Mood Are You 
Today? An Analysis of Crowd Workers' Mood, Performance and 
Engagement. In Proceedings of the 10th ACM Conference on Web 
Science, pp. 373-382. https://doi.org/10.1145/3292522.3326010 

[39] Rochelle LaPlante, M. Six Silberman, and Industriegewerkschaft 
Metall. 2016. Building trust in crowd worker forums: Worker 
ownership, governance, and work outcomes. Proceedings of 
WebSci16. ACM: 35-63. 

[40] David Durward, Ivo Blohm, and Jan Marco Leimeister. 2016. Is 
there papa in crowd work?: a literature review on ethical dimensions 
in crowdsourcing. In 2016 Intl IEEE Conferences on Ubiquitous 
Intelligence & Computing, Advanced and Trusted Computing, 
Scalable Computing and Communications, Cloud and Big Data 
Computing, Internet of People, and Smart World Congress 
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), pp. 823-832. 
IEEE. 

[41] Mei-Mei Chang. 2005. Applying Self-Regulated Learning Strategies 
in a Web-Based Instruction—An Investigation of Motivation 
Perception. Computer Assisted Language Learning 18, no. 3: 217-
230. DOI: http://dx.doi.org/10.1080/09588220500178939  

[42] Robert M Klassen. 2010. Confidence to Manage Learning: The Self-
Efficacy for Self-Regulated Learning of Early Adolescents with 
Learning Disabilities. Learning Disability Quarterly 33, no. 1: 19-30. 
DOI: http://dx.doi.org/10.1177/073194871003300102  

[43] Juan Carlos Ortiz-Ordoñez, Friederike Stoller, and Bernd Remmele. 
2015. Promoting Self-Confidence, Motivation and Sustainable 
Learning Skills in Basic Education. Procedia-Social and Behavioral 
Sciences 171: 982-986. DOI: 
http://dx.doi.org/10.1016/j.sbspro.2015.01.205 

[44] Gur Mosheiov. 2001. Parallel machine scheduling with a learning 
effect. Journal of the Operational Research Society 52, no. 10: 1165-
1169. DOI: https://doi.org/10.1057/palgrave.jors.2601215 

[45] Koun-tem Sun, Yuan-cheng Lin, and Chia-jui Yu. 2008. A study on 
learning effect among different learning styles in a Web-based lab of 
science for elementary school students. Computers & Education 50, 
no. 4: 1411-1422. DOI: 
https://doi.org/10.1016/j.compedu.2007.01.003 

[46] [46] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 
2012. ImageNet classification with deep convolutional neural 
networks. In Proceedings of the 25th International Conference on 
Neural Information Processing Systems - Volume 1 (NIPS'12). 
Curran Associates Inc., Red Hook, NY, USA, 1097–1105. 
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8
436e924a68c45b-Paper.pdf 

[47] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James 
Bradbury, Gregory Chanan, Trevor Killeen et al. 2019. Pytorch: An 
imperative style, high-performance deep learning library. Advances 
in neural information processing systems 32: 8026-8037. 
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa
9f7012727740-Paper.pdf 

[48] Yvonne Kammerer, Rowan Nairn, Peter Pirolli, and Ed H. Chi. 
2009. Signpost from the masses: learning effects in an exploratory 
social tag search browser. In Proceedings of the SIGCHI conference 
on human factors in computing systems, pp. 625-634. DOI: 
https://doi.org/10.1145/1518701.1518797 

[49] Fei-Fei Li, Rob Fergus, and Pietro Perona. 2004. Learning 
generative visual models from few training examples: An 
incremental bayesian approach tested on 101 object categories. In 
2004 conference on computer vision and pattern recognition 
workshop, pp. 178-178. IEEE. DOI: 
https://doi.org/10.1109/CVPR.2004.383 

[50] Zhenghang Cui, Nontawat Charoenphakdee, Issei Sato, and Masashi 
Sugiyama. 2020. Classification from triplet comparison data. Neural 
computation 32, no. 3: 659-681. DOI: 
https://doi.org/10.1162/neco_a_01262 

[51] Zhenghang Cui, and Issei Sato. 2020. Active classification with 
uncertainty comparison queries. arXiv preprint arXiv:2008.00645. 
https://arxiv.org/abs/2008.00645 

[52] Jun-Peng Fang,, and Min-Ling Zhang. 2019. Partial multi-label 
learning via credible label elicitation. In Proceedings of the AAAI 
Conference on Artificial Intelligence, vol. 33, no. 01, pp. 3518-3525. 
DOI: https://doi.org/10.1609/aaai.v33i01.33013518 

[53] Lijuan Sun, Songhe Feng, Tao Wang, Congyan Lang, and Yi Jin. 
2019. Partial multi-label learning by low-rank and sparse 
decomposition. In Proceedings of the AAAI Conference on Artificial 
Intelligence, vol. 33, no. 01, pp. 5016-5023. DOI: 
https://doi.org/10.1609/aaai.v33i01.33015016 

[54] Jianlin Cheng, Amanda Jones, Caroline Privault, and Jean-Michel 
Renders. 2013. Soft labeling for multi-pass document review. In 
ICAIL 2013 DESI V Workshop. 
http://legacydirs.umiacs.umd.edu/~oard/desi5/research/Cheng-
final.pdf 

[55] Kyungyul Kim, ByeongMoon Ji, Doyoung Yoon, and Sangheum 
Hwang. 2020. Self-knowledge distillation: A simple way for better 
generalization. arXiv preprint arXiv:2006.12000. 
https://arxiv.org/abs/2006.12000 

[56] Chia-Ming Chang, Xi Yang, and Takeo Igarashi. 2022. An Empirical 
Study on the Effect of Quick and Careful Labeling Styles in Image 
Annotation. The 48th International Conference on Graphics Interface 
and Human-Computer Interaction (Gl 2022), Virtual Conference, 17-
19 May 2022 https://openreview.net/pdf?id=SDyj8aZBPrs 

[57] Mike Schaekermann, Graeme Beaton, Minahz Habib, Andrew Lim, 
Kate Larson, Edith Law. 2019. Understanding expert disagreement 
in medical data analysis through structured adjudication. 
Proceedings of the ACM on Human-Computer Interaction, 
3(CSCW), 1-23. DOI: https://doi.org/10.1145/3359178 


