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ABSTRACT

Differentially private massively distributed learning poses one key challenge when
compared to differentially private centralized learning, where all data are aggregated
at one party: minimizing communication overhead while achieving strong utility-
privacy tradeoffs. The minimal amount of communication for distributed learning
is non-interactive communication, i.e., each party only sends one message.
In this work, we propose two differentially private, non-interactive, distributed
learning algorithms in a framework called Secure Distributed DP-Helmet. This
framework is based on what we coin blind averaging: each party locally learns and
noises a model and all parties then jointly compute the mean of their models via
a secure summation protocol (e.g., secure multiparty computation). The learning
algorithms we consider for blind averaging are empirical risk minimizers (ERM)
like SVMs and Softmax-activated single-layer perception (Softmax-SLP). We
show that blind averaging preserves privacy if the models are averaged via secure
summation and the objective function is smooth, Lipschitz, and strongly convex.
We show that the objective function of Softmax-SLP fulfills these criteria, which
implies leave-one-out robustness and might be of independent interest.
On the practical side, we provide experimental evidence that blind averaging for
SVMs and Softmax-SLP can have a strong utility-privacy tradeoff: we reach an
accuracy of 86% on CIFAR-10 for ε = 0.36 and 1,000 users and of 44% on
CIFAR-100 for ε = 1.18 and 100 users, both after a SimCLR-based pre-training.
As an ablation, we study the resilience of our approach to a strongly non-IID setting.
On the theoretical side, we show that in the limit blind averaging hinge-loss based
SVMs convergences to the centralized learned SVM. Our approach is based on
the representer theorem and can be seen as a blueprint for finding convergence for
other ERM problems like Softmax-SLP.

1 INTRODUCTION

Privacy-preserving massively distributed learning poses one key challenge when compared to cen-
tralized learning: minimizing communication overhead, especially the number of communication
rounds, while achieving strong utility-privacy tradeoffs. Jayaraman et al. (2018) achieved strong
utility-privacy tradeoffs for empirical risk minimization (e.g., SVMs) in a number of communication
rounds logarithmical in the training iterations. Yet, even few rounds can be expensive when scaling
to hundreds, thousands, or millions of participants. Ideally, every party only sends a single message.
For such optimal non-interactive communication, no prior work has achieved utility-privacy tradeoffs
comparable to centralized learning, not even for well-understood tasks like SVMs learning.

One proposal for scalable distributed learning is differentially private federated learning (DP-FL). In
DP-FL, each party protects its local data by only submitting local model updates protected via strong
DP guarantees. A central server then aggregates all incoming updates (McMahan et al., 2017; Abadi
et al., 2016). While DP-FL’s communication rounds are independent of the number of parties, they
are proportional to the number of training iterations M . Moreover, DP-FL achieves a significantly
weaker utility-privacy tradeoffs than central learning, already for hundrets of parties.

Computation- and communication-heavy cryptographic methods can achieve the same utility-privacy
tradeoffs as the centralized setting. However, these methods generally incur a large communication
or computation overhead. Recent work has introduced efficient secure summation methods, such as
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MPC for addition only (Bell et al., 2020). Secure summation methods can, e.g., be applied to DP-FL
and lead to privacy-utility tradeoff that match its central learning counterpart DP-SGD (Abadi et al.,
2016). Yet, DP-FL is interactive: the number of secure summation invocations is proportional to M .

In this work, we introduce a non-interactive distributed learning framework for two smooth convex
ERMs, for SVM and a Softmax-activated single layer perception (Softmax-SLP), which is useful
for last-layer fine-tuning during transfer learning: Secure Distributed DP-Helmet. We focus on what
we coin blind averaging: each party runs an unsynchronized local learning algorithm, then locally
noises the models, and then averages the models via scalable secure summation. Secure summation
based on MPC can incur a few communication rounds, yet we invoke it only once. If computation
servers are used for secure summation, then clients need only send one message (Bogetoft et al.,
2009); hence, we consider blind averaging non-interactive from the client’s perspective.

Contribution. Our contribution is fourfold:

(1) Output sensitivity suffices for strong privacy results in blind averaging. We show a sufficient
condition for privacy for blind averaging, if at least a fraction t (e.g., 50%) of users is honest: a bound
on the effect of exchanging any one data point on the locally trained model. Given a bounded local
output sensitivity, the output sensitivity after secure summation coincides with centralized learning:
O((

∑
i|D(i)|)−1) for the n local datasets (D(i))ni=1. To avoid expensive distributed noise generation

protocols, each user locally adds Gaussian noise, which when summed up results in Gaussian noise.

(2) Softmax-layer learning satisfies an output sensitivity bound. For multiple classes, an
SVM-approach trains one SVM for each class (e.g., via one-versus-rest), which neither scales in
utility since the classes cannot be balanced nor in privacy since as many sequential compositions
are needed as there are classes. A Softmax-SLP solves this multi-class challenge and is often used
for single-layer fine-tuning. Wu et al. (2017) show that it suffices to prove that the loss function is
smooth, Lipschitz, and strongly convex. We prove these properties for Softmax-SLP learning and
obtain the first output sensitivity bounds for Softmax-SLP learning, which might be of independent
interest as it implies leave-one-out robustness for Softmax-SLP learning.

(3) Experiments illustrate strong utility-privacy tradeoffs. We show that distributed SVMs and
distributed Softmax-SLP training achieve competitive utility-privacy tradeoffs by evaluating them
on CIFAR-10 and CIFAR-100. We utilize a feature extractor that has been pre-trained on ImageNet
data (SimCLR by Chen et al. (2020b)). We observe an accuracy of 86% on CIFAR-10 for ε = 0.36
and 1,000 users and of 44% on CIFAR-100 for ε = 1.18 and 100 users. We also evaluate strongly
non-IID scenarios where each party solely holds data from one class. As the non-interactivity and the
feasibility of the local learning algorithms enable massive scalability but the benchmark datasets are
limited, we extrapolate compelling utility-privacy results for millions of users.

(4) Blind averaging for SVM learning: convergence in the limit & sufficient condition. On
the theoretical side, we derive a sufficient condition for strong utility from the representer theorem
(Argyriou et al., 2009) which works for a large class of regularized ERM tasks. For that we utilize
the dual representation of ERMs which leads to a characterization of the utility implications of any
learning task that utilizes blind averaging. For SVMs, we use this characterization to prove graceful
convergence in the limit to the best model for the combined local datasets ℧. For other ERMs, our
sufficient condition for blind averaging leads to a precise formulation of an open problem that needs
to be solved to prove convergence. We consider this precise formulation of the open problem an
important step forward toward better understanding blind averaging beyond SVM learning.

2 RELATED WORK

Here we discuss work that is most related to our results; in Appx. D we discuss related work in more
detail. In Tbl. 1 we detail our utility-bound improvement in comparison to prior work for SVM-based
algorithms and inherently multi-class Softmax-SLP algorithms. Our work matches the utility-privacy
tradeoff of centralized training with only one invocation of secure summation. We demonstrate the
utility bounds theoretically for SVMs and indicate them empirically for Softmax-SLPs. With only
one invocation, DP-Helmet is even realistic for Smartphone-based applications since we avoid issues
stemming from multiple consecutive communication rounds like dropouts or unstable connectivity.
When using Bell et al. (2020)’s construction for secure summation, the number of communication
rounds is fixed to 4 rounds, with each round’s costs increased by only log2(n_users). In comparison
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Table 1: Comparison to related work for n users with m data points each: utility guarantee, DP noise
scale, and number of MPC invocations. ‘Utility: CC’ denotes whether the local models converge to
the centralized setting; for DPHelmet this reflects that blind averaging works. The convergence rate of
Jayaraman et al. (2018, Output perturbation) depends on the dataset size whereas we truly converge
with the number of iterations (cf. Thm. 14). All listed utility bounds are obtained if no noise is added.
(✓) denotes that this has been experimentally indicated, but no formally shown convergence.
∗: In DP-FL an untrusted aggregator combines the differentially private updates (users add noise and
norm-clip those); it does not invoke MPC but needs a communication round per training iteration.

SVM Algorithms Utility: CC Noise MPC rounds

Jayaraman et al. (2018), gradient perturbation ✓ O(1/nm) O(log(nm))
Jayaraman et al. (2018), output perturbation (✓) O(1/nm) 1
Secure Distributed DP-Helmet: SVM (ours) ✓ O(1/nm) 1

Softmax-SLPs Algorithms

DP federated learning (DP-FL) ✓ O(1/m
√
n) ∗

Secure Distributed DP-Helmet: Softmax-SLP (ours) (✓) O(1/nm) 1

Baseline: Centralized training ✓ O(1/nm) 0

Algorithm 1: SVM_SGD(D, ξ,K) with hyperparameters ξ := (h, c,Λ, R,M)

Data: dataset D := { (xj , yj) }Nj=1 where xj is structured as [1, xj,1, . . . , xj,p]; set of classes K;
Huber loss smoothness parameter h ∈ R+; input clipping bound: c ∈ R+; #iterations M ;
regularization parameter: Λ ∈ R+; model clipping bound: R ∈ R+;

Result: models (1d intercepts with p-dimensional hyperplanes):
{
f
(k)
M

}
k∈K

∈ R(p+1)×|K|

clipped(x) := c · x/max(c, ∥x∥);
J (f,D, k) := Λ

2
fT f + 1

N

∑
(x,y)∈D ℓhuber

(
h, fT clipped(x) · y · (1[y = k]− 1[y ̸= k])

)
;

for k in K:
for m in 1, . . . ,M :

f
(k)
m ← SGD(J (f (k)

m−1, D, k), f
(k)
m−1, αm) on learning rate αm = min( 1

β
, 1
Λm

) and β = 1
2h

+Λ;

f
(k)
m := R · f (k)

m /∥f (k)
m ∥; // projected SGD

to DP-FL, we have a 500-fold decrease in total communication cost for CIFAR-10 data: DP-FL has
1,920 rounds (40 epochs á 48 batches) of communication cost ℓ, where ℓ is the model size (roughly
60,000 floats), while we have 4 rounds of cost log2(n_users) + ℓ for roughly the same model size.

3 PRELIMINARIES

3.1 DIFFERENTIAL PRIVACY AND DP_SVM_SGD

Preliminaries of the Secure Summation protocol (Bell et al., 2020) as well as pre-training as a tactic to
boost DP performance are available in Appx. C.2 and Appx. C.3 respectively. Intuitively, differential
privacy (DP) (Dwork et al., 2006b) quantifies the protection of any individual’s data within a dataset
against an arbitrarily strong attacker observing the output of a computation on said dataset. Strong
protection is achieved by bounding the influence of each individual’s data on the resulting SVMs. For
the (standard) definition of differential privacy we utilize in our proofs, we refer to Appx. C.1.

We consider Support Vector Machines (SVMs), which can be made strongly convex, thus display a
unique local minimum and a lower bound on the growth of the optimization function. A differentially
private SVM definition (DP_SVM_SGD) can be derived directly from the work of Wu et al. (2017)
on empirical risk minimization using SGD-based optimization. They rely on a smoothed version of
the hinge-loss: the Huber loss ℓhuber (cf. Appx. C.5 for details). We additionally apply norm-clipping
to all inputs. We use the one-vs-rest (OVR) method to achieve a multiclass classifier. Alg. 1 provides
pseudocode for the sensitivity-bounded algorithm before adding noise.
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In contrast to Wu et al. (2017), which assumes for each data point ∥x∥ ≤ 1, we use a generalization
that holds for larger norm bounds c > 1: we assume ∥x∥ ≤ c, where c is a hyperparameter of the
learning algorithm SVM_SGD. As a result, the optimization function J is c+RΛ Lipschitz (instead
of 1 +RΛ Lipschitz as in Wu et al. (2017)) and ((c2/2h+Λ)2 + pΛ2)

1/2 smooth (instead of 1/2h+Λ
smooth). Wu et al. (2017) showed a sensitivity bound for SVM_SGD from which we can conclude
DP guarantees. The sensitivity proof follows from Wu et al. (2017, Lemma 8) with the Lipschitz
constant L = c+RΛ, a smoothness β = ((c2/2h + Λ)2 + pΛ2)

1/2 and a Λ-strong convexity.

Similarly, our work applies to L2-regularized logistic regression where we adapt Alg. 1 with the
optimization function J ′(f,D) := Λ

2 f
T f + 1

N

∑
(x,y)∈D ln(1+ exp(−fT clipped(x) · y)) which is

Λ-strongly convex, L = c+RΛ Lipschitz, and β = ((c2/4 + Λ)2 + pΛ2)
1/2 smooth. We adapt the

learning rate to accommodate the change in β but have the same sensitivity as the classification case.

Definition 1 (Sensitivity). Let f be a function that maps datasets to the p-dimensional vector space
Rp. The sensitivity of f is defined as maxD∼1D′∥f(D)− f(D′)∥, where D ∼1 D′ denotes that the
datasets D and D′ differ in at most one element. We say that f is an s-sensitivity-bounded function.

Lemma 2. With input clipping bound c, model clipping bound R, strong convexity factor Λ, and N

data points, the learning algorithm SVM_SGD of Alg. 1 has a sensitivity bound of s = 2(c+RΛ)
NΛ for

each of the |K| output models. This directly follows from Wu et al. (2017, Lemma 8).

For sensitivity-bounded functions, there is a generic additive mechanism that adds Gaussian noise to
the results of the function and achieves differential privacy, if the noise is calibrated to the sensitivity.

Lemma 3 (Gaussian mechanism is DP (Theorem A.1 & Theorem B.1 in Dwork & Roth (2014))). Let
qk be functions with sensitivity s on the set of datasets D. For ε ∈ (0, 1), c2 > 2 ln 1.25/(δ/|K|), the
Gaussian Mechanism D 7→ { qk(D) }k∈K +N (0, (σ · I(p+1)×|K|)

2) with σ ≥ c·s·|K|
ε is (ε, δ)-DP,

where Id is the d-dimensional identity matrix.

Corollary 4 (Gaussian mechanism on SVM_SGD is DP). With the s-sensitivity-bounded learning
algorithm SVM_SGD (cf. Lem. 2), the dimension of each data point p, the set of classes K, and
ε ∈ (0, 1), DP_SVM_SGD(D, ξ,K, σ) := SVM_SGD(D, ξ,K) + N (0, (σ · s · I(p+1)×|K|)

2) is
(ε, δ)-DP, where ε ≥

√
2 ln 1.25/(δ/|K|) · |K| · 1/σ and Id is the d-dimensional identity matrix.

There are tighter composition results (Meiser & Mohammadi, 2018; Sommer et al., 2019; Balle et al.,
2020a) where ε ∈ O(

√
|K|) which we do not formalize for brevity but follow in our experiments.

Definition 5 (Configuration ζ). A configuration ζ(U , t, T, s, ξ,℧, i, N,K, σ) consists of a set of
users U of which t · U are honest, an s-sensitivity-bounded learning algorithm T on inputs (D, ξ,K),
hyperparameters ξ, a local datasets D(i) of user U (i) ∈ U with N = mini∈{ 1,...,|U| }|D(i)| and
℧ =

⋃|U|
i D(i), a set of classes K, and a noise multiplier σ. avg(T ) is the aggregation of |U| local

models of algorithm T : avgi(T (D
(i))) = 1

|U|
∑|U|

i=1 T (D
(i), ξ,K). If unique, we simply write ζ.

4 SECURE DISTRIBUTED DP-HELMET: SYSTEM DESIGN

inference via a
pre-trained feature

extractor (SimCLR)

local data
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extractor (SimCLR)
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train with
learning algorithm T

(e.g., SVM)simplified
representation D1

train with
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(e.g., SVM)simplified
representation Dn

secure
summation

noisy model(s)
M1 ← T(D1, ξ, K) + 𝒩(Σ)User 1

User n
noisy model(s)

Mn ← T(Dn, ξ, K) + 𝒩(Σ)

(ε,δ)-DP model(s)
M

 ⋅ 1/n

Figure 1: Schematic overview of Secure Distributed DP-Helmet. Each user locally applies a pre-
trained feature extractor (SimCLR) to their data, then trains a model, e.g. an SVM, via a learning
algorithm T , which is noised with a spherical Σ-parameterized Gaussian. A single secure summation
step results in an averaged and (ε, δ)-DP model. ξ denotes hyperparameters and K a set of classes.
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Algorithm 2: Secure Distributed DP-Helmet. For T = SVM_SGD (cf. Alg. 1), we have
s = 2(c+RΛ)

NΛ and hyperparameters ξ := (h, c,Λ, R,M). πSecSum as in Def. 18.

def Client Secure Distributed DP-Helmet(D, |U|, K, T, t, ξ, σ):
Data: local dataset D with N = |D|; #users |U|; set of classes K; learning algorithm T ;

ratio t of honest users; hyperparameters ξ; noise multiplier σ
Result: DP-models (intercepts with p-dimensional hyperplanes): Mpriv :=

{
f
(k)
priv

}
k∈K

Model ← T (D, ξ); // T is s-sensitivity-bounded
Mpriv ←Model +N (0, (σ̃ · s · Ip+1×|K|)

2) with σ̃ := σ · 1/√t · |U|;
Run the client code of a secure summation protocol πSecSum on input Mpriv/|U|;

def Server Secure Distributed DP-Helmet(U):
Data: users U
Result: empty string
Run the server protocol of πSecSum;

We here present the system design of Secure Distributed DP-Helmet in detail (cf. Alg. 2) including
its privacy properties. A schematic overview is illustrated in Fig. 1. Each user holds a small dataset
while all users jointly learn a model. There are two scenarios: first, each person contributes one data
point to a user who is a local aggregator, e.g., a hospital (differential privacy, see Fig. 3); second, each
user is a person and contributes a small dataset (local DP, see Fig. 5 for Υ = 50).

Consider a set of users U , each with a local dataset D of size N = |D| that already is in a sufficiently
simplified representation by the SimCLR pre-taining feature extractor (Chen et al., 2020a;b). The
users collectively train a (ε, δ)-DP model using a learning algorithm T that is s-sensitivity-bounded
as in Def. 1. An example for T is SVM_SGD (cf. Alg. 1), which has s = 2(c+RΛ)

NΛ .

Alg. 2 follows the scheme of Jayaraman et al. (2018): First, each user separately trains a non-private
model Model , using T and the hyperparameters ξ, e.g., ξ := (h, c,Λ, R,M) for SVM_SGD (Wu
et al., 2017). Next, each user adds to Model Gaussian noise scaled with s and 1/

√
t · |U|, where t · |U|

is the number of honest users in the system. Together the users then run a secure summation protocol
πSecSum as in Def. 18 where the input of each user is the noised model, which is scaled down by the
number of users to yield the average model. Thanks to secure summation we show centralized-DP
guarantees with noise in the order of O(|U|−1N−1) within a threat model akin to that of federated
learning with differential privacy. For privacy accounting, we use tight composition bounds like
Meiser & Mohammadi (2018); Sommer et al. (2019); Balle et al. (2020a).

Threat model & security goals. For our work, we assume passive, collaborating attackers that
follow our protocol. We assume that a fraction of at least t users are honest (say t = 50%). The
adversary is assumed to have full knowledge about each user’s dataset, except for one data point
of one user. Our privacy goals are (ε, δ)-differential privacy (protecting single samples) and (ε, δ)-
Υ-group differential privacy (protecting all samples of a user at once) respectively, depending on
whether each user is a local aggregator or a person. Note that even passive adversaries can collude
and exchange information about the randomness they used in their local computation. To compensate
for untrustworthy users, we adjust the noise added by each user according to the fraction of honest
users t; e.g., if t = 50%, then we double the noise to satisfy our guarantees.

4.1 SECURITY OF SECURE DISTRIBUTED DP-HELMET

First, we derive a tight output sensitivity bound. A naïve approach would be to release each individual
predictor, determine the noise scale proportionally to σ̃ := σ (cf. Cor. 12), showing (ε, δ)-DP for
every user. We can save a factor of |U|1/2 by leveraging that |U| is known to the adversary and we
have at least t = 50%. Consequently, local noise of scale σ̃ := σ · 1/√t · |U| is sufficient for (ε, δ)-DP.
Lemma 6 (Privacy amplification via averaging). For a configuration ζ, Secure Distributed DP-
Helmet(ζ) of Alg. 2 without noise, avgi(T (D

(i))), has a sensitivity of s · 1/|U| for each class k ∈ K.

The proof is placed in Appx. H. Having bounded the sensitivity of the aggregate to s · 1/|U|, we show
that locally adding noise per user proportional to σ · s · 1/√|U| and taking the mean is equivalent to
only centrally adding noise proportional to σ · s · 1/|U| (as if the central aggregator was honest).
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Algorithm 3: Softmax_SLP_SGD(D, ξ,K) with hyperparameters ξ := (c,Λ, R,M)

Data: dataset D := { (xj , yj) }Nj=1 where xj is structured as [1, xj,1, . . . , xj,p]; set of classes K;
#iterations M ;
input clipping bound: c ∈ R+; regularization parameter: Λ ∈ R+; model clipping bound: R ∈ R+;

Result: a model with intercept: fM ∈ R(p+1)×|K|

clipped(x) := c · x/max(c, ∥x∥);
Jsoftmax(f,D) := Λ

2

∑K
k=1(f

T f)k + 1
N

∑
(clipped(x),y)∈D −

∑K
k=1 yk log

exp((fT x)k)∑K
j=1 exp((fT x)j)

;

for k in K:
for m in 1, . . . ,M :

f
(k)
m ← SGD(Jsoftmax(fm, D, k), αm), with learning rate αm := min( 1

β
, 1
Λm

) and

β =
√

(d+ 1)KΛ2 + 0.5(Λ + c2)2;
f
(k)
m := R · f (k)

m /∥f (k)
m ∥; // projected SGD

Lemma 7. For configuration ζ and noise scale σ̃: 1
|U|

∑|U|
i=1 N (0, (σ̃ · 1/√|U|)2) = N (0, (σ̃ · 1/|U|)2).

The proof is placed in Appx. I. We can now prove differential privacy for Secure Distributed
DP-Helmet of Alg. 2 where we have noise scale σ̃ := σ · 1/√t · |U| and thus ε ∈ O(s/

√
t · |U|).

Theorem 8 (Main Theorem, simplified). For a configuration ζ as in Def. 5, Secure Distributed
DP-Helmet(ζ) of Alg. 2 satisfies computational (ε, δ + ν)-DP with ε ≥

√
2 ln 1.25/(δ/|K|) · |K| · 1/σ

and a function ν negligible in the security parameter used in πSecSum.

The full statement and proof are in Appx. J. Simplified, the proof follows by the application of the
sensitivity (cf. Lem. 6) to the Gauss Mechanism (cf. Lem. 3) where the noise is applied per user
(cf. Lem. 7). If each user contributes 50 data points and we have 1000 users, N · |U| = 50,000.

Next, we show how to protect the entire dataset of a single user (e.g., for distributed training via
smartphones). The sensitivity-based bound on the Gaussian mechanism (see Appx. M) directly
implies that we can achieve strong Υ-group privacy results, which is equivalent to local DP.
Corollary 9 (Group-private variant). For a configuration ζ as in Def. 5, Secure Distributed
DP-Helmet(ζ) of Alg. 2 satisfies computational (ε, δ+ν), Υ-group DP with ε ≥ Υ·

√
2 ln 1.25/(δ/|K|)·

|K| · 1/σ for ν as above: for any pair of datasets ℧,℧′ that differ at most Υ many data points,

Secure Distributed DP-Helmet(ζ(. . . ,℧, . . . )) ≈ε,δ Secure Distributed DP-Helmet(ζ(. . . ,℧′, . . . ))

Cor. 9 generalizes to a more comprehensive Cor. 10 that is data oblivious. If the norm of each model
is bounded, then Secure Distributed DP-Helmet can apply on the granularity of users instead of that
of data points. This method enables the use of other SVM optimizers or Logistic Regression and can
render a tighter sensitivity bound than SVM_SGD for certain settings of Υ or data points per user N .
In particular, the training procedure of each base learner does not need to satisfy differential privacy.
Corollary 10. Given a learning algorithm T , we say that T is R-norm bounded if for any input
dataset D with N = |D|, any hyperparameter ξ, and all classes k ∈ K, ∥T (D, ξ, k)∥ ≤ R. Any
R-norm bounded learning algorithm T has a sensitivity s = 2R. In particular, T +N (0, (σ · s · Id)2)
satisfies (ε, δ), Υ-group differential privacy with Υ = N and ε ≥

√
2 ln 1.25/(δ/|K|) · |K| · 1/σ, where

N (0, (σ · s · Id)2) is spherical multivariate Gaussian noise and σ a noise multiplier.

The proof is in Appx. K. Here the number of local data points N can vary among the users.

Softmax_SLP_SGD. We also show differential privacy for a softmax-activated single-layer
perception in Alg. 3 by showing that its objective function is Λ-strongly convex (cf. Thm. 26),
L = ΛR +

√
2c Lipschitz (cf. Thm. 27), and β =

√
(d+ 1)|K|Λ2 + 0.5(Λ + c2)2 smooth (cf.

Thm. 28). Then, the sensitivity directly follows from Wu et al. (2017, Lemma 8).
Theorem 11 (Softmax sensitivity). Given a configuration ζ as in Def. 5, the learning algorithm
Softmax_SLP_SGD of Alg. 3 has a sensitivity bound of s = 2(ΛR+

√
2c)

NΛ for the output model.
Corollary 12 (Gauss on Softmax_SLP_SGD is DP). Given a configuration ζ as in Def. 5, with the
s-sensitivity-bounded learning algorithm Softmax_SLP_SGD (cf. Thm. 11), the dimension of each
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data point p, and ε ∈ (0, 1), DP_Softmax_SLP_SGD(D, ξ,K, σ) := Softmax_SLP_SGD(D, ξ,K)+

N (0, (σ · s · I(p+1)×|K|)
2) is (ε, δ)-DP, where ε ≥

√
2 ln 1.25/δ · 1/σ and Id is the identity matrix.

5 SECURE DISTRIBUTED DP-HELMET: NON-INTERACTIVE BLIND AVERAGE

The core idea of Secure Distributed DP-Helmet is to locally train models and compute a blind
average without further synchronizing or fine-tuning the models: avg(T ). To show that such a
non-interactive training is useful, we provide a utility bound on the blind averaging procedure.
For that bound, we (1) reduce the utility requirement of blindly averaging a regularized empirical
risk minimizer (ERM) T to the coefficients α of the dual problem of T , (2) leverage the dual
problem to show that for a hinge-loss linear SVM trained with SGD T = HINGE_SVM_SGD
avg(T ) gracefully convergences in the limit to the best model for the combined local datasets ℧:
E
[
J (avgi(HINGE_SVM(D(i))),℧, _)− inff J (f,℧, _)

]
∈ O(1/M) for M many local training

rounds and objective function J . Thus, convergence also holds in a strongly non-iid scenario which
we illustrate with an example in Fig. 2 where each user only has access to one class.
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Figure 2: Strongly biased local datasets: Local SVMs hyperplanes (solid) and their margins (dotted)
on a point cloud x for user 1 (a) and user 2 (b). After averaging, they approximate the global SVM
trained on the combined point cloud (c). The Normal vectors f of each respective SVM illustrate the
average (d). Hyperparameters: Λ = 20, R = 1, c = 5, N = 500,bs = 25, epochs = 500.

We now show in Lem. 13 in Appx. L.1 that if each converged hinge-loss linear SVM T (D(i), ξ, k) =

argminf
1
N

∑
(x,y)∈D(i) max(0, 1−yfTx)+Λ ∥f∥2 on a local dataset D(i) has support vectors V (i)

then the average of all these locally trained SVMs avgi(T (D
(i))) has support vectors V =

⋃|U|
i=1 V

(i).
Lemma 13 (Support Vectors of averaged SVM). Given a configuration ζ as in Def. 5, a locally
trained model of learning algorithm T , where T (D(i), ξ, k) = argminf

1
N

∑
(x,y)∈D(i) max(0, 1−

fTxy · (1[y = k]− 1[y ̸= k])) +Λ ∥f∥2 comprises a hinge-loss linear SVM, has the support vectors

V (i) =
{
(x, y) ∈ D(i) | T (D(i))Txy ≤

∥∥T (D(i))
∥∥−1

}
. Then, the average of these locally trained

models avgi(T (D
(i))) has the support vectors V =

⋃|U|
i=1 V

(i).

If an SVM of the combined local datasets ℧ has the same support vectors as the average of local
SVMs then both models converge due to the hinge loss definition (cf. Thm. 14 in Appx. L.2). Such a
scenario occurs e.g. if the regularization is high and thus the margin is large enough such that all data
points are within the margin and thus support vectors.
Theorem 14 (Averaging locally trained SVM converges to a global SVM). Given a configuration
ζ as in Def. 5, there exists a regularization parameter Λ such that the average of locally trained
models avgi(T (D

(i))) with a hinge-loss linear SVM as objective function J trained with projected
subgradient descent using weighted averaging (PGDWA), T = HINGE_SVM_PGDWA, converges
with the number of local iterations M to the best model for the combined local datasets ℧, i.e.

E
[
J (avgi(HINGE_SVM_PGDWA(D(i))),℧, _)− inff J (f,℧, _)

]
∈ O(1/M).

The reason the average of SVMs has the union of the local support vectors as support vectors is that
the average of SVMs has the union of the local dual coefficients as dual coefficients α (cf. Cor. 23).
This corollary holds not only for hinge-loss linear SVMs but for a broad range of regularized empirical
risk minimizes (ERM) for which the representer theorem holds (cf. Thm. 20 Argyriou et al. (2009)),
including a converged SVM_SGD and Softmax_SLP_SGD. For limitations, we refer to Sec. 7.
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6 EXPERIMENTAL RESULTS
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Figure 3: Classification accuracy compared to
privacy budget ε (in log10-scale) of Secure Dis-
tributed DP-Helmet (cf. Sec. 4) and DP-SGD-
based federated learning (FL) (δ = 10−5). (top,
bottom) We use all available data points of the
dataset for each line, spreading them among a dif-
fering number of users. (middle) Different num-
bers of users with 50 data points per user.

We analyze three experimental research ques-
tions: (RQ1) How does Secure Distributed
DP-Helmet compare to the strongest alternative,
DP-SGD-based federated learning? We examine
two dimensions for our comparisons: (RQ1.1)
If each user has a set number of data points, how
does performance compare when the number of
users increases (cf. Fig. 4 and Fig. 3, middle)?
(RQ1.2) If we keep the number over overall data
points the same, how does distributing them im-
pact performance (cf. Fig. 3, top and bottom)?
(RQ2) How robust is our performance if the lo-
cal datasets of users differ significantly, e.g. they
are strongly biased non-iid (cf. Tbl. 2)? (RQ3)
How do the learning algorithms DP_SVM_SGD
and DP_Softmax_SLP_SGD perform in a cen-
tralized setting (cf. Appx. G)?

Pretraining. We used a SimCLR pre-
trained model1 on ImageNet ILSVRC-2012
(Russakovsky et al., 2015) for all experiments
(cf. Fig. 7 in the appendix for an embedding
view). It is built with a ResNet152 with se-
lective kernels (Li et al., 2019) architecture in-
cluding a width multiplier of 3 and it has been
trained in the fine-tuned variation of SimCLR
where 100% of ImageNet’s label information
has been integrated during training. Overall, it
totals 795M parameters and achieves 83.1%
classification accuracy (1000 classes) when ap-
plied to a linear prediction head. In comparison,
a supervised-only model of the same size would
only achieve 80.5% classification accuracy.

Sensitive Dataset. CIFAR-10 and CIFAR-
100 (Krizhevsky, 2009) act as our sensitive
datasets, as they are frequently used as bench-
mark datases in differential privacy literature.
Both consist of 60,000 thumbnail-sized, colored
images of 10 or 100 classes.

Evaluation. The model performance is delin-
eated fourfold: First, we evaluated a benchmark
scenario in Fig. 3 (top and bottom) to compare our Secure Distributed DP-Helmet (cf. Sec. 4) in the
DP_SVM_SGD as well as DP_Softmax_SLP_SGD variant to a DP-SGD-based federated learning
approach (DP-FL) on a single layer perceptron with softmax loss. There the approximately same
number of data points is split across a various number of users ranging from 1 to 1000. Second, we
also evaluated a realistic scenario in Fig. 3 (middle) where we fixed the number of data points per user
and report the performance increase obtained with more partaking users. Fig. 4 depicts the setting of
Fig. 3 (middle) for a fixed privacy budget. Third, we evaluated a strongly biased non-iid scenario
where each user has exclusive access to one class (cf. Tbl. 2).

The experiments lead to four conclusions: (RQ1.1) First, performance improves with an increasing
number of users (cf. Fig. 3 (middle)). Although DP_Softmax_SLP_SGD training performs subpar
to DP-FL for few users, it takes off after about 100 users on both datasets due to its vigorous
performance gain with the number of users (cf. Fig. 4). Our scalability advantage with the number of
users becomes especially evident when considering significantly more users (cf. Fig. 5 in Appx. A).

1accessible at https://github.com/google-research/simclr, Apache-2.0 license
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Table 2: Secure Distributed DP-Helmet– strongly biased non-IID experiments for ε = 1.172: each
user has exclusive access to only one class. We compare the accuracy and difference in percentage
points (pp) to the performance in our regular experiments. Similar to Fig. 5 in Appx. A, we extrapolate
the accuracy on datasets 67 times larger by using a lower noise magnitude.

ACCuracy on dataset

Blindly averaging variants dataset multiplier CIFAR-10 CIFAR-100

DP_SVM_SGD 1x 85% ACC (−2 pp) –
DP_SVM_SGD 67x 87% ACC (−3 pp) –
DP_Softmax_SLP_SGD 1x 42% ACC (−49 pp) 1.6% ACC (−43 pp)
DP_Softmax_SLP_SGD 67x 88% ACC (−4 pp) 58% ACC (−4 pp)

Here, DP-guarantees of ε ≤ 5 · 10−5 become plausible with at least 87% prediction performance for
a task like CIFAR-10. Alternatively, leveraging Cor. 9 we can consider a local DP scenario (with
Υ = 50) without a trusted aggregator, yielding an accuracy of 87% for ε = 1 ·10−4. (RQ1.2) Second,
if we globally fix the number of data points (cf. Fig. 3 (top and bottom)) that are distributed over the
users, Secure Distributed DP-Helmet’s performance degrades more gracefully than that of DP-FL.
Thm. 14 supports the more graceful decline; it states that averaging multiple of an SVM similar to
SVM_SGD converges for a large enough regularizer to the optimal SVM on all training data. In
absolute terms, the accuracy is better for a smaller regularizer which is visible by the remaining
discrepancy in Fig. 3 (top and bottom) between the number of users. Blind averaging also leads to a
graceful decline for DP_Softmax_SLP_SGD. The difference between 1 and 100 users is largely due
to our assumption of t = 50% dishonest users, which means noise is scaled by a factor of

√
2. In

comparison, DP-FL performs worse the more users U partake as the noise scales with O(|U|1/2).
(RQ2) In a strongly biased non-iid scenario like Tbl. 2, we observe that on CIFAR-10 the utility
decline of DP_SVM_SGD is still small whereas DP_Softmax_SLP_SGD needs more users for a
similar utility preservation since it is more sensitive to noise.
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Figure 4: CIFAR-10
classification accuracy vs.
#users with 50 data points
per user for ε = 0.5885,
δ = 10−5. Values for FL
are interpolated.

(RQ3) We refer to Appx. G for an ablation study in the cen-
trally trained setting for our learning algorithms DP_SVM_SGD and
DP_Softmax_SLP_SGD and other DP learners like DP-SGD (Abadi
et al., 2016). In this setting, DP_SVM_SGD performs worse than
DP_Softmax_SLP_SGD while DP-SGD outperforms both: for ε =
0.59 on CIFAR-10, DP_SVM_SGD has an accuracy of 87.4% and
DP_Softmax_SLP_SGD has 90.2% while DP-SGD has 93.6%. For
ε = 1.18 on CIFAR-100, DP_SVM_SGD has an accuracy of 1.5%
and DP_Softmax_SLP_SGD has an accuracy of 52.8% while DP-
SGD has 71.6%. We reckon that this difference is mostly due to
DP_Softmax_SLP_SGD’s multi-class approach with one sensitivity
bound for all classes and DP-SGD’s joint learning of all classes as well
as noise-correcting property from its iterative noise application.

Computation costs. For Secure Distributed DP-Helmet with 1,000
users and a model size l ≈ 100,000 for CIFAR-10, we need less than
0.2 s for the client and 40 s for the server, determined by extrapolating
the experiments of Bell et al. (2020, Table 2).

Experimental setup. Appx. E describes our experimental setup.

7 LIMITATIONS & DISCUSSION

Limitations of blind averaging For unfavorable datasets, blind averaging leads to a reduced
signal-to-noise ratio, i.e., model parameters smaller than in the centralized setting. This may explain
why blind averaging seems to work for Softmax-SLP and SVMs with little noise (see Tbl. 2, 67x
variant). Further, increasing the regularization parameter Λ to help convergence can lead to poor
accuracy of the converged model, e.g. for unbalanced datasets. For a detailed discussion, cf. Appx. B.
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A EVALUATION: TRULY MANY USERS

The advantage of our method over DP-FL becomes especially evident when considering significantly
more users (cf. Fig. 5), such as is common in distributed training via smartphones. Here, DP-
guarantees of ε ≤ 5 · 10−5 become plausible with at least 87% prediction performance for a task
like CIFAR-10. Alternatively, leveraging Cor. 9 we can consider a local DP scenario (with Υ = 50)
without a trusted aggregator, yielding an accuracy of 87% for ε = 1 · 10−4. Starting from Υ ≥ 2, a
user-level sensitivity (cf. Cor. 10) is in the evaluated setting mostly tighter than a data point dependent
one; hence, the accuracy values are close to the local DP scenario.
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Figure 5: (ε,Υ)-Heatmap for classification accuracy of Secure Distributed DP-Helmet (cf. Sec. 4)
with learning algorithm DP_Softmax_SLP_SGD on CIFAR-10 dataset (left: δ = 10−10; right:
δ = 10−12) with roughly 200,000 (left) and roughly 20,000,000 (right) users. We train 1,000 models
on 50 data points each; to emulate having more users we rescale the ε-values (ε′ := 1000 · ε · Υ/nusers)
to roughly reach the target number of users and report interpolated accuracy values. We extrapolate
the privacy guarantees, due to the limited dataset size. Our accuracy values are pessimistic as we
keep the accuracy numbers that we got from averaging 1,000 models. Actually taking the mean
over roughly 200,000 or even roughly 20,000,000 users should provide better results. Υ < 50 group
privacy places trust in users as local aggregators whereas Υ = 50 is comparable to local DP. Rescaling
the ε-values only approximates the ε-guarantee we would get if we actually rescaled the noise scale
by the target number of users. For Υ ≥ 2, a tighter group-privacy bound is possible (cf. Cor. 10);
hence, the accuracy values are close to Υ = 50 = N , where we protect the entire local dataset of a
user.

B LIMITATIONS & DISCUSSION

Distributional shifts between the public and sensitive datasets. For pre-training our models, we
leverage contrastive learning. While very effective generally, contrastive learning is susceptible to
performance loss if the shape of the sensitive data used to train the SVMs is significantly different
from the shape of the initial public training data.

Input Clipping. DP_SVM_SGD requires a norm bound on the input data as it directly influences
the SVM training. In many pre-training methods like SimCLR no natural bound exists thus we have
to artificially norm clip the input data. To provide a non-data-dependent clipping bound in CIFAR-10
data, we determined the clipping bound on the CIFAR-100 dataset (here: 34.854); its similar data
distribution encompasses the output distribution of the pretraining reasonably well. Similarly, for
CIFAR-100 data we determined the clipping bound based on the CIFAR-10 dataset (here: 34.157).

Hyperparameter Search. In SVM_SGD, we deploy two performance-crucial hyperparameters:
the regularization weight Λ as well as the predictor radius R, both of which influence noise scaling.
In the noise scaling subterm c/Λ +R, the maximal predictor radius is naturally significantly smaller
than c/Λ due to the regularization penalty. Thus, an imperfect R resulting from a non-hyperparameter-
tuned SVM does not have a large impact on the performance. Estimating the regularization weight
for a fixed ε from public data is called hyperparameter freeness in prior work (Iyengar et al., 2019).
For other ε values we can fit a (linear) curve on a smaller but related public dataset (proposed by
Chaudhuri et al. (2011)) or synthetic data (proposed by AMP-NT (Iyengar et al., 2019)) as smaller ε
prefer higher regularization weights and vice versa.

Blind averaging – Signal-to-noise ratio. For unfavorable datasets, we identify as a main limitation
of blind averaging a reduced signal-to-noise ratio. In other words, the model is not as large as in the
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centralized setting w.r.t. the sensitivity analysis. This effect would explain why our experiments show
that with very little noise, blind averaging seems to work for Softmax-SLP and SVMs.

For SVMs, our formal characterization of the effect of blind averaging enables us to more precisely
describe potential limitations of blind averaging for SVMs. In summary, we see two effects that
reduce the signal-to-noise ratio. One effect comes from the requirement of the SVM training that the
model with the smallest norm shall be found that satisfies the soft-margin constraints of the training
data points. The local SVM training has fewer data points and, thus, fewer constraints. Hence,
unfavorable local data sets will lead to a smaller model. Another effect comes from the averaging
itself. Unfavorable local data sets can lead to local models that point in very different directions.
When averaging these models, their norm naturally decreases as for any two vectors a, b ∈ Rn we
have 0.5∥a+ b∥2 ≤ 0.5(∥a∥2 + ∥b∥2), and this discrepancy is larger the smaller the inner product is.

Blind averaging – Unbalanced datasets. Convergence holds if all data points are support vectors
which implies a large margin, yet an SVM chooses roughly equally many support vectors per class:
by the dual problem, we have the constraint yTα = 0 for labels yj ∈ {−1, 1 } and dual coefficients
α. If we have a support vector inside the margin then αj = Λ−1. Hence, enlarging the margin such
that all data points are support vectors can lead to poor utility performance.

Active attacks. Active attackers may deviate from the protocol or send maliciously construed
local models. If the secure summation protocol used is resilient against active adversaries and can
still guarantee that only the sum of the inputs is leaked, then privacy is preserved. This follows from
analyzing our algorithm for just the honest users and then leveraging the post-processing property of
differential privacy. Secure summation protocols such as Bell et al. (2020) leak partial sums under
active attacks and will diminish the privacy offered by our work against such adversaries as well.

C EXTENDED PRELIMINARIES

C.1 DIFFERENTIAL PRIVACY

To ease our analysis, we consider a randomized mechanism M to be a function translating a database
to a random variable over possible outputs. Running the mechanism then is reduced to sampling
from the random variable. With that in mind, the standard definition of differential privacy looks as
follows.
Definition 15 (≈ε,δ relation). Let Obs be a set of observations, and RV(Obs) be the set of random
variables over Obs , and D be the set of all databases. A randomized algorithm M : D → RV(Obs)
for a pair of datasets D,D′, we write M(D) ≈ε,δ M(D′) if for all tests S ⊆ Obs we have

Pr[M(D) ∈ S] ≤ exp(ε) Pr[M(D′) ∈ S] + δ. (1)
Definition 16 (Differential Privacy). Let Obs be a set of observations, and RV(Obs) be the set of
random variables over Obs , and D be the set of all databases. A randomized algorithm M : D →
RV(Obs) for all pairs of databases D,D′ that differ in at most 1 element is a (ε, δ)-DP mechanism
if we have

M(D) ≈ε,δ M(D′). (2)

In the context of machine learning, the randomized algorithm represents the training procedure of a
predictor. Our distinguishing element is one data record of the database.

Computational Differential Privacy Note that because of the secure summation, we technically
require the computational version of differential privacy (Mironov et al., 2009), where the differential
privacy guarantees are defined against computationally bounded attackers; the resulting increase
in δ is negligible and arguments about computationally bounded attackers are omitted to simplify
readability.
Definition 17 (Computational ≈c

ε,δ Differential Privacy). Let D be the set of all databases and η a
security parameter. A randomized algorithm M : D → RV(Obs) for a pair of datasets D,D′, we
write M(D) ≈c

ε,δ M(D′) if for any polynomial-time probabilistic attacker

Pr[A(M(D)) = 0] ≤ exp(ε) Pr[A(M(D′)) = 1] + δ(η). (3)
For all pairs of databases D,D′ that differ in at most 1 element M is a computational (ε, δ(η))-DP
mechanism if we have

M(D) ≈c
ε,δ M(D′). (4)
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C.2 SECURE SUMMATION

Hiding intermediary local training results as well as ensuring their integrity is provided by an instance
of secure multi-party computation (MPC) called secure summation (Bonawitz et al., 2017; Bell et al.,
2020). It is targeted to comply with distributed summations across a huge number of parties. In fact,
Bell et al. (2020) has a computational complexity for n users on an l-sized input of O(log2 n+ l log n)
for the client and O(n(log2 n+ l log n)) for the server as well as a communication complexity of
O(log2 n+ l) for the client and O(n(log n+ l)) for the server thus enabling an efficient run-through
of roughly 109 users without biasing towards computationally equipped users. Additionally, it offers
resilience against client dropouts and colluding adversaries, both of which are substantial features for
our distributed setting.

Before being able to formulate the security of the secure summation protocol, we need to a net-
work execution against global network attacker that is active and adaptive. For the sake of self-
containedness, we briefly present the notion of interactive machines and a sequential activation
network execution. More general frameworks for such a setting include, e.g., the universal compos-
ability framework (Canetti, 2000).

We rely on the notion of interactive machines. For two interactive machines X,Y , we write ⟨X,Y ⟩
for the interaction between X and Y . We write ⟨X,Y ⟩ = b to state that the machine X terminates
and outputs b.

The network execution Realπ. Next, we define network executions against global network
attacker that is active and adaptive. Given a protocol π with client and server code, we define an
interactive machine Realπ that lets each client party run the client code, lets the servers run the
server code, and emulates a (sequential-activation-based) network execution, and interacts with
another machine, called the attacker A. The interaction is written as ⟨A,Realπ⟩. Whenever within
this network execution a party B sends a message m over the network to a party C, the interactive
machine Realπ , sends this message m to the attacker, activates the attacker, and waits for a response
m′ from the attacker. Realπ then lets this response m′ be delivered to party C, and activates party
C. Moreover, the attacker A can send a dedicated message (compromise, P ) for compromising a
party P within the protocol execution. Whenever the attacker sends the message (compromise, P )
to the network execution Realπ , the network execution marks this party P as compromised and sends
the internal state of this party to the attacker A. For each compromised party P , the attacker decides
how P acts. Formally, the network execution redirects each message m that is sent to P to the
attacker A and awaits a response message (m′, P ′) from the attacker A. Upon receiving the response
(m′, P ′), the network execution Realπ sends on behalf of P the message m′ to the party P ′.

For convenience, we write that a party P runs the client code of a protocol π on input m when the
network execution runs for party P the client code of π on input m.
Definition 18 (Secure Summation). Let F(s1, . . . , sn) :=

∑n
i=1 si. We say that πSecSum is secure

summation if there is a probabilistic polynomial-time simulator SimF such that if a fraction of clients
is corrupted (C ⊆

{
U (1), . . . , U (n)

}
, |C| = γn), RealπSecSum

(s1, . . . , sn) is statistically indis-
tinguishable from SimF (C,F(s1, . . . , sn)), i.e., for an unbounded attacker A there is a negligible
function ν such that

Advantage(A) =

|Pr[langleA,RealπSecAgg
(s1, . . . , sn)⟩ = 1]− Pr[⟨A, SimF (C,F(s1, . . . , sn))⟩ = 1]| ≤ ν(η).

Here, SimF is a potentially interactive simulator that only has access to the sum of all elements and
the (sub-) set of corrupted clients. The adversary is unable to distinguish interactions and outputs of
the simulator from those of the real protocol.

The following theorem is proven for global network attackers that are passive and statically com-
promise parties. Formally, the theorem holds for all attackers (A′,A′′) of the following form. A′

internally runs A′′ and ensures that only static compromisation is possible and that the attacker
remains passive.
Theorem 19 (Secure Aggregation πSecAgg in the semi-honest setting exists (Bell et al., 2020)). Let
s1, . . . , sn be the d-dimensional inputs of the clients U (1), . . . , U (n). Let F be the ideal secure
summation function: F(s1, . . . , sn) := 1/n

∑n
i=1 si. If secure authentication encryption schemes

and authenticated key agreement protocol exist, the fraction of dropouts (i.e., clients that abort
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the protocol) is at most ρ ∈ [0, 1], at most a γ ∈ [0, 1] fraction of clients is corrupted (C ⊆{
U (1), . . . , U (n)

}
, |C| = γn), and the aggregator is honest-but-curious, there is a secure summation

protocol πSecAgg for a central aggregator and n clients that securely emulates F as in Def. 18.

C.3 PRE-TRAINING TO BOOST DP PERFORMANCE

Pretrained DP Trained

trained on public data trained on sensitive data

input data predictions
simplified 

representation

Figure 6: Pre-training: Schematic overview. Dashed lines denote data flow in the training phase and
solid lines in the inference phase.

Recent work (Tramèr & Boneh, 2021; De et al., 2022) has shown that strong feature extractors
(such as SimCLR (Chen et al., 2020a;b)), trained in an unsupervised manner, can be combined with
simple learners to achieve strong utility-privacy tradeoffs for high-dimensional data sources like
images. As a variation to transfer learning, it delineates a two-step process (cf. Fig. 6), where a
simplified representation of the high-dimensional data is learned first before a tight privacy algorithm
like DP_SVM_SGD conducts the prediction process on these simplified representations. For that,
two data sources are compulsory: a public data source which is used to undertake the learning of
a framework aimed to obtain pertinent simplified representations in addition to our sensitive data
source that conducts the prediction process in a differentially private manner. Thereby the sensitive
dataset is protected while strong expressiveness is assured through the use of the feature reduction
network. Also note that a homogeneous data distribution of the public and the sensitive data is not
necessarily required.

Recent work has shown that for several applications such representation reduction frameworks can be
found, such as SimCLR for pictures, FaceNet for face images, UNet for segmentation, or GPT-3 for
language data. Without loss of generality, we focus in this work on the unsupervised SimCLR feature
reduction network (Chen et al., 2020a;b). SimCLR uses contrastive loss and image transformations to
align the embeddings of similar images while keeping those of dissimilar images separate (Chen et al.,
2020a). It is based upon a self-supervised training scheme called contrastive loss where no labeled
data is required. Labelless data is especially useful as it exhibits possibilities to include large-scale
datasets which would otherwise be unattainable due to the labeling efforts needed.

C.4 REPRESENTER THEOREM

With the representer theorem, we can completely describe a converged SVM T (D) on N -sized
dataset D using a sum of the dual coefficients and the data points: T (D) =

∑N
j=1 αjxj . The

requirements for the representer theorem to hold are listed in the theorem below and include most
notably an L2-regularized ERM objective.

Theorem 20 (Representer theorem, cf. Argyriou et al. (2009) Lem 3, Thm 8). Given a configuration
ζ, a local dataset D(i) := { (xj , yj) }Nj=1 ⊆ H × Y on a Hilbert space H with dim(H) ≥ 2 and
label space Y , and a locally trained model of a learning algorithm T such that there exists a solution
that belongs to span({xj }Nj=1), where T (D(i), ξ, k) = argminf∈H E({ ⟨f, xj⟩ , yj }Nj=1) + ΛΩ(f)

for some arbitrary error function E : (R × Y)N 7→ R and differentiable regularizer Ω: H 7→ R.
Then T admits a solution of the form T (D(i), ξ, k) =

∑N
j=1 αixi for some αi ∈ R if and only if

∀f∈H Ω(f) = h(⟨f, f⟩) with h : R+ 7→ R as a non-descreasing function.

In the case of SVM_SGD and Softmax_SLP_SGD, we have Ω = ∥f∥2 which fulfills the require-
ments of the representer theorem since h(z) = z is a linear function and the learning algorithm T

follows the definitions after convergence: E({ ⟨f, xj⟩ , yj }Nj=1) =
1
N

∑
(x,y)∈D(i) ℓhinge(y ⟨f, x⟩) is
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the error function of SVM_SGD and E({ ⟨f, xj⟩ , yj }Nj=1) =
1
N

∑
(x,y)∈D(i) ℓsoftmax(y ⟨f, x⟩) the

one of Softmax_SLP_SGD.

C.5 DP_SVM_SGD

Definition 21. The Huber loss according to Chaudhuri et al. (2011, Equation 7) is with a smoothness
parameter h defined as

ℓhuber (h, z) :=


0 if z > 1 + h
1
4h (1 + h− z)2 if |1− z| ≤ h

1− z if z < 1− h

.

D RELATED WORK

D.1 PRIVACY-PRESERVING DISTRIBUTED MACHINE LEARNING

There is a rich body of literature about different differentially private distributed learning techniques
that protect any individual data point (sometimes called distributed learning with global DP guaran-
tees). One direction uses an untrusted central aggregator; users locally add noise to avoid leakage
toward the aggregator. This method computationally scales well with the number of users. Another
direction utilizes cryptographic protocols to jointly train a model without a central aggregator. This
direction requires less noise for privacy, but the cryptographic protocols face scalability challenges.

For local noising, the most prominent and flexible approach is federated learning (McMahan et al.,
2017) with DP-SGD approximation (Abadi et al., 2016) (DP-FL). DP-FL proposes each of the n
users locally train with the DP-SGD algorithm and share their local gradient updates with a central
aggregator. This aggregator updates a global model with the average of the noisy local updates,
leading to noise overhead in the order of

√
n.

This noise overhead can be completely avoided by PPDML protocols that rely on cryptographic
methods to hide intermediary training updates from a central aggregator. There are several secure
distributed learning methods that protect the contributions during training but do not come with
privacy guarantees for the model such as DP: an attacker (e.g., a curious training party) can potentially
extract information about the training data from the model. As we focus on differentially private
distributed learning methods (PPDML in this paper), we will neglect those methods.

cpSGD (Agarwal et al., 2018) is a PPDML protocol that utilizes MPC methods to honestly generate
noise and compute DP-SGD. While cpSGD provides the full flexibility of SGD, it does not scale to
millions of users as it relies on expensive MPC methods. Another recent PPDML work (Truex et al.,
2019) relies on a combination of MPC and DP methods. This work, however, also does not scale to
millions of users.

Another line of research aims for the stronger privacy goal of protecting a user’s entire input (called
local DP) during distributed learning (Balle et al., 2020b; Girgis et al., 2021). Due to the strong
privacy goal, federated learning with local DP tends to achieve weaker accuracy. With Cor. 9,
evaluated in Fig. 5 in Appx. A, we show how Secure Distributed DP-Helmet achieves a comparable
guarantee via group privacy: given enough users, any user can protect their entire dataset at once
while we still reach good accuracy.

For DP training of SVMs, there exist other methods, such as objective perturbation and gradient
perturbation. When performed under MPC-based distributed training, both methods would require a
significantly higher number of MPC invocations; hence, they are unsuited for the goals of this work.
Appx. D.2 discusses those approaches in detail.

D.2 DIFFERENTIALLY PRIVATE EMPIRICAL RISK MINIMIZATION

On differentially private empirical risk minimization for convex loss functions (Chaudhuri et al.,
2011), which is utilized in this work, the literature discusses three directions: output perturbation,
objective perturbation, and gradient perturbation. Output perturbation (Chaudhuri et al., 2011; Wu
et al., 2017) estimates a sensitivity on the final model without adding noise, and only in the end adds
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noise that is calibrated to this sensitivity. We rely on output perturbation because it enables us to only
have a single invocation of an MPC protocol at the end to merge the models while still achieving the
same low sensitivity as if the model was trained at a trustworthy central party that collects all data
points, trains a model and adds noise in the end.

Objective perturbation (Chaudhuri et al., 2011; Kifer et al., 2012; Iyengar et al., 2019; Bassily et al.,
2019) adds noise to the objective function instead of adding noise to the final model. In principle,
MPC could also be used to emulate the situation that a central party as above trains a model via
objective perturbation. Yet, in that case, each party would have to synchronize with every other party
far more often, as no party would be allowed to learn how exactly the objective function would be
perturbed. That would result in far higher communication requirements.

Concerning gradient perturbation (Bassily et al., 2014; Wang et al., 2017; Feldman et al., 2018;
Bassily et al., 2019; Feldman et al., 2020), recent work has shown tight privacy bounds. In order to
achieve the same low degree of required noise as in a central setting, MPC could be utilized. Yet,
for SGD also multiple rounds of communication would be needed as the privacy proof (for convex
optimization) does not take into account that intermediary gradients are leaked. Hence, the entire
differentially private SGD algorithm for convex optimization would have to be computed in MPC,
similar to cpSGD (see above).

D.3 TRUSTWORTHY DISTRIBUTED NOISE GENERATION.

One core requirement of SMPC-based distributed learning is honestly generated and unleakable
noise as otherwise, our privacy guarantees would not hold anymore. There is a rich body of work on
distributed noise generation (Moran et al., 2009; Dwork et al., 2006a; Kairouz et al., 2015b; 2021;
Goryczka & Xiong, 2015). So far, however, no distributed noise generation protocol scales to millions
of users. Thus, we use a simple, yet effective technique: we add enough noise if at least a fraction of
them (say t = 50%) are not colluding to violate privacy by sharing the noise they generate with each
other.

E EXPERIMENTAL SETUP

We leveraged 5-repeated 6-fold stratified cross-validation for all experiments unless stated differently.
Privacy Accounting has been undertaken either by using the privacy bucket (Meiser & Mohammadi,
2018; Sommer et al., 2019) toolbox2 or, for Gaussians without subsampling, with Sommer et al.
(2019, Theorem 5) where both can be extended to multivariate Gaussians (see Appx. N). We note
that with either of these tactics, ε ∈ O(|K|1/2). The δ parameter of differential privacy has been set
to δ = 10−5 if not stated otherwise, which is for the CIFAR-10 and CIFAR-100 dataset always below
1/n, where n is the sum of the size of all local datasets.

Concerning computation resources, for our CIFAR-10 experiments, we trained 1000 DP_SVM_SGD
with 50 data points each, which took 10 minutes on a machine with 2x Intel Xeon Platinum 8168,
24 Cores @2.7 GHz with an Nvidia A100 and allocated 16GB RAM.

For DP_SVM_SGD-based experiments, we utilize the strongly convex projected stochastic gradient
descent algorithm (PSGD) as used by Wu et al. (2017). More specifically, we chose a batch size
of 20, the Huber loss with a smoothness parameter h = 0.1. Furthermore for CIFAR-10, we
chose a hypothesis space radius R ∈ { 0.04, 0.05, 0.06, 0.07, 0.08 }, a regularization parameter
Λ ∈ { 10, 100, 200 }, and trained for 500 epochs; for the variant where we protect the whole local
dataset, we have chosen a different Λ ∈ { 0.5, 1, 2, 5 } and R ∈ { 0.06, 0.07 }. For CIFAR-100,
we chose a chose a hypothesis space radius R ∈ { 0.04, 0.06, 0.08 }, a regularization parameter
Λ ∈ { 3, 10, 30, 100 }, and trained for 150 epochs.

For DP_Softmax_SLP_SGD-based experiments, we utilize the strongly convex projected stochastic
gradient descent algorithm (PSGD) as used by Wu et al. (2017) with a batch size of 20. Further-
more for CIFAR-10, we chose a hypothesis space radius R ∈ { 0.1, 0.4, 0.6, 1.0 }, a regularization
parameter Λ ∈ { 1, 3, 10, 30 }, and trained for 150 epochs; for the variant where we protect the
whole local dataset, we have chosen a different Λ ∈ { 0.5, 1 } and R ∈ { 1, 3 }. For CIFAR-100,

2accessible at https://github.com/sommerda/privacybuckets, MIT license
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we chose a chose the following hypothesis space radius and regularization parameter combinations:
(R,Λ) ∈ { (0.01, 100), (0.03, 30), (0.03, 100), (0.1, 10), (0.1, 30), (0.3, 3), (0.3, 10), (1, 1), (1, 3) },
and trained for 150 epochs.

For the strongly-biased non-iid experiments of Tbl. 2, we reported the results of the following hyper-
parameters: (CIFAR10, DP_SVM_SGD, regular & non-iid) R = 0.06,Λ = 100 for the dataset mul-
tiplier 1x and R = 0.06,Λ = 10 for the dataset multiplier 67x; (CIFAR10, DP_Softmax_SLP_SGD,
regular) R = 1.0,Λ = 1 for both dataset multipliers 1x, 67x; (CIFAR10, DP_Softmax_SLP_SGD,
non-iid) R = 0.6,Λ = 3 for both dataset multipliers 1x, 67x; (CIFAR100, DP_Softmax_SLP_SGD,
regular) R = 1.0,Λ = 3 for dataset multiplier 1x and R = 1.0,Λ = 1 for both dataset multiplier
67x; (CIFAR100, DP_Softmax_SLP_SGD, non-iid) R = 1.0,Λ = 3 for both dataset multipliers 1x,
67x.

In every experiment, we chose for each parameter combination the best performing regularization
parameter Λ as well as R, i.e. those values that lead to the best mean accuracy. This is highly
important, as the regularization parameter not only steers the utility but also the amount of noise
needed to the effect where there is a sweet spot for each noise level where the amount of added noise
is on the edge of still being bearable.

For the federated learning experiments, we utilized the opacus3 PyTorch library (Yousefpour et al.,
2021), which implements DP-SGD (Abadi et al., 2016). We loosely adapted our hyperparameters
to the ones reported by Tramèr & Boneh (2021) who already evaluated DP-SGD on SimCLR’s
embeddings for the CIFAR-10 dataset. In detail, the neural network is a single-layer perceptron which
has the following configuration: (CIFAR-10) 61,450 trainable parameters on a 6 144 d input and 10 d
output as well as (CIFAR-100) 614,500 trainable parameters on a 6,144 d input and 100 d output.
The loss function is the categorical cross-entropy on a softmax activation function and training has
been performed with stochastic gradient descent. Furthermore, we set the learning rate to 4, the
Poisson sample rate q := 1024/50000 which in expectation samples a batch size of 1024, trained for 40
epochs, and norm-clipped the gradients with a clipping bound c := 0.1.

In the distributed training scenario, instead of running an end-to-end experiment with full MPC
clients, we evaluate a functionally equivalent abstraction without cryptographic overhead. In our
experiments, we randomly split the available data points among the users and emulated scenarios
where not all data points were needed by taking the first training data points. However, the validation
size remained constant. Moreover, for DP-SGD-based federated learning, we kept a constant batch
size whenever enough data is available i.e. increased the sampling rate as follows: q′ := 1024/20000
for 20000, q′′ := 1024/5000 for 5000, and q′′ := 1023/1024 for 500 available data points (|U| · N ).
For DP-SGD-based FL, we emulated a higher number of users by dividing the noise multiplier σ
by |U|1/2 to the benefit of DP-FL. The justification for dividing by |U|1/2 is that in FL the model
performance is not expected to differ as the mean of the gradients of one user is the same as the mean
of gradients from different users: SGD computes, just as FL, the mean of the gradients. Yet, the noise
will increase by a factor of |U|1/2. Hence, we optimistically assume that everything stays the same,
just the noise increases by a factor of |U|1/2.

F PRE-TRAINING VISUALISATION

G EXTENDED ABLATION STUDY (CENTRALIZED SETTING)

G.1 SETUP OF THE ABLATION STUDY

For DP_SVM_SMO-based experiments, we used the liblinear (Fan et al., 2008) library via the
Scikit-Learn method LinearSVC4 for classification. Liblinear is a fast C++ implementation that uses
the SVM-agnostic sequential minimal optimization (SMO) procedure. However, it does not offer a
guaranteed and private convergence bound.

3accessible at https://github.com/pytorch/opacus/, Apache-2.0 license
4https://scikit-learn.org/stable/modules/generated/sklearn.svm.

LinearSVC.html, BSD-3-Clause license
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Figure 7: 2-d projection of the CIFAR-10 dataset via t-SNE (Van der Maaten & Hinton, 2008) with
colored labels. Note that t-SNE is defined on the local neighborhood thus global patterns or structures
may be arbitrary.
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Figure 8: Classification accuracy compared to the privacy budget ε of DP_SVM_SGD (cf. Sec. 3.1),
DP_SVM_SMO where only the optima are perturbed, DP-SGD (1-layer perceptron) (Abadi et al.,
2016), and AMP (SVM with objective perturbation) (Iyengar et al., 2019) on CIFAR-10 benchmark
dataset (left: δ = 10−5, right: δ = 2 · 10−8 ≪ 1/dataset_size). For comparison, we report a non-private
SVM baseline.

More specifically, we used the L2-regularized hinge loss, an SMO convergence tolerance of
tol := 2 · 10−12 with a maximum of 10,000 iterations which were seldom reached, and a log-
arithmically spaced inverse regularization parameter C ∈

{
{ 3, 6 } · 10−8, { 1, 2, 3, 6 } · 10−7,

{ 1, 2, 3, 6 } · 10−6, { 1, 2, 3, 6 } · 10−5, { 1, 2 } · 10−4
}

. To better fit with the LinearSVC imple-
mentation, the original loss function is rescaled by 1/Λ and C is set to 1/Λ · n with n as the number
of data points. Furthermore, for distributed DP_SVM_SMO training we extended the range of the
hyperparameter C – whenever appropriate – up to 3 · 10−3 which becomes relevant in a scenario
with many users and few data points per user. Similar to DP_SVM_SGD-based experiment, the best
performing regularization parameter C was selected for each parameter combination.

The non-private reference baseline uses a linear SVM optimized via SMO with the hinge loss and an
inverse regularization parameter C = 2 (best performing of C ∈

{
≤ 5 · 10−5, 0.5, 1, 2

}
).

For the ablation study, we also included the Approximate Minima Perturbation (AMP) algorithm5

(Iyengar et al., 2019) which resembles an instance of objective perturbation. There, we used a (80–20)-
train-test split with 10 repeats and the following hyperparameters: L ∈ { 0.1, 1.0, 34.854 }, eps_frac
∈ { .9, .95, .98, .99 }, eps_out_frac ∈ { .001, .01, .1, .5 }. We selected (L = 1, eps_out_frac =
0.001, eps_frac = 0.99) as a good performing parameter combination for AMP. For better perfor-
mance, we resembled the GPU-capable bfgs_minimize from the Tensorflow Probability package. To

5reference implementation by the authors: https://github.com/sunblaze-ucb/
dpml-benchmark, MIT license
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provide better privacy guarantees, we leveraged the results of Kairouz et al. (2015a); Murtagh &
Vadhan (2016) for tighter composition bounds on arbitrary DP mechanisms.

G.2 RESULTS OF THE ABLATION STUDY

For the extended ablation study, we considered the centralized setting (only 1 user) and compare
different algorithms as well as different values for the privacy parameter δ. The results are depicted
in Fig. 8 and display five algorithms: firstly, the differentially private Support Vector Machine with
SGD-based training DP_SVM_SGD (cf. Sec. 3.1), secondly, the differentially private Softmax-
activated single-layer perceptron with SGD-based training DP_Softmax_SLP_SGD (cf. Sec. 4.1),
thirdly, a similar differentially private SVM but with SMO-based training which does not offer
a guaranteed and private convergence bound, fourthly, differentially private Stochastic Gradient
descent (DP-SGD) (Abadi et al., 2016) applied on a 1-layer perceptron with the cross-entropy
loss, and fifthly, approximate minima perturbation (AMP) (Iyengar et al., 2019) which is based
upon an SVM with objective perturbation. Note that, only DP_SVM_SMO, DP_SVM_SGD, and
DP_Softmax_SLP_SGD have an output sensitivity and are thus suited for this efficient Secure
Distributed DP-Helmet scheme.

While all algorithms come close to the non-private baseline with rising privacy budgets ε, we observe
that although DP-SGD performs best, DP_SVM_SMO and DP_Softmax_SLP_SGD come consid-
erably close, DP_SVM_SGD has a disadvantage above DP_SVM_SMO of about a factor of 2, and
AMP a disadvantage of about a factor of 4. We suspect that DP-SGD is able to outperform the variants
other than DP_Softmax_SLP_SGD as it directly optimizes for the multi-class objective via the cross-
entropy loss while others are only able to simulate it via the one-vs-rest (ovr) SVM training scheme.
Additionally, DP-SGD has a noise-correcting property from its iterative noise application. The inher-
ently multi-class DP_Softmax_SLP_SGD performs better than ovr-based DP_SVM_SGD indicating
that a joint learning of all classes can boost performance. DP_Softmax_SLP_SGD additionally has a
privacy advantage as it does not need to rely on sequential composition as it has an output sensitivity
for all classes which is another factor that can lead to the boost of DP_Softmax_SLP_SGD above
DP_SVM_SGD. Although DP_SVM_SMO has an output sensitivity as well and renders better than
DP_SVM_SGD, it does not offer a privacy guarantee when convergence is not reached. In the case of
AMP, we have an inherent disadvantage of about a factor of 3 due to an unknown output distribution,
and thus bad composition results in the multi-class SVM. Here, the privacy budget of AMP roughly
scales linearly with the number of classes.

For DP-SGD, DP_SVM_SGD, DP_Softmax_SLP_SGD, and DP_SVM_SMO, Fig. 8 shows that a
smaller and considerably more secure privacy parameter δ ≪ 1/dataset_size is supported although
reflecting on the reported privacy budget ε.

H PROOF OF LEM. 6

We recall Lem. 6:

Lemma 6 (Sensitivity of Secure Distributed DP-Helmet). For a configuration ζ, Secure Distributed
DP-Helmet(ζ) of Alg. 2 without noise, avgi(T (D

(i))), has a sensitivity of s · 1/|U| for each class
k ∈ K.

Proof. Without loss of generality, we consider one arbitrary class k ∈ K. We know that T is an
s-sensitivity bounded algorithm thus

s = max
D

(i)
0 ∼D

(i)
1

∣∣∣T (D(i)
0 , ξ, k)− T (D

(i)
1 , ξ, k)

∣∣∣ (5)

with D
(i)
0 and D

(i)
1 as 1-neighboring datasets. For instance, for T = SVM_SGD we have s =

2(c+RΛ)
NΛ (cf. Lem. 2).

By Alg. 2, we take the average of multiple local models, i.e. avgi(T (D
(i))) =

1
|U|

∑|U|
i=1 T (D

(i), ξ,K). The challenge element – i.e. the element that differs between D
(i)
0 and D

(i)
1

– is only contained in one of the |U| models. By the application of the parallel composition theorem,
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we know that the sensitivity reduces to

max
D

(i)
0 ∼D

(i)
1 ,∀i=0,...,|U|

∣∣∣∣∣∣ 1

|U|

|U|∑
i=1

T (D
(i)
0 , ξ, k)− 1

|U|

|U|∑
i=1

T (D
(i)
1 , ξ, k)

∣∣∣∣∣∣ = s · 1

|U|
.

Hence, the constant 1/|U| factor reduces the sensitivity by a factor of 1/|U|.

I PROOF OF LEM. 7

We recall Lem. 7:

Lemma 7. For configuration ζ and noise scale σ̃: 1
|U|

∑|U|
i=1 N (0, (σ̃ · 1/√|U|)2) = N (0, (σ̃ · 1/|U|)2).

Proof. We have to show that

1
|U |

∑|U |
i=1 N (0, (σ̃ · 1√

|U|
)2) = N (0, (σ̃ · 1

|U| )
2). (6)

It can be shown that the sum of normally distributed random variables behaves as follows: Let
X ∼ N (µX , σ2

X) and Y ∼ N (µY , σ
2
Y ) two independent normally-distributed random variables,

then their sum Z = X + Y equals Z ∼ N (µX + µY , σ
2
X + σ2

Y ) in the expectation.

Thus, in this case, we have

1
|U |

∑|U |
i=1 N (0, (σ̃ · 1√

|U|
)2) = 1

|U |N (0, |U | · (σ̃ · 1/√|U|)2) = 1
|U |N (0, σ̃2).

As the normal distribution belongs to the location-scale family, we get N (0, (σ̃ · 1/|U|)2).

J PROOF OF THM. 8

We state the full version of Thm. 8:

Theorem 8 (Main Theorem, full). For a configuration ζ as in Def. 5, a maximum fraction of dropouts
ρ ∈ [0, 1], and a maximum fraction of corrupted clients γ ∈ [0, 1]. Assume that secure summation
πSecSum exists as in Def. 18.

Then Secure Distributed DP-Helmet(ζ) (cf. Alg. 2) satisfies computational (ε, δ + ν1)-DP with
ε ≥

√
2 ln 1.25/(δ/|K|) · |K| · 1/σ, for ν1 := (1 + exp(ε)) · ν(η) and a function ν negligible in the

security parameter η used in πSecSum.

Proof. We first show (ε, δ)-DP for a variant M1 of Secure Distributed DP-Helmet that uses the ideal
summation protocol F instead of πSecSum. We conclude that for Secure Distributed DP-Helmet
(abbreviated as M2) which uses the real secure summation protocol πSecSum for some negligible
function ν1 (ε, δ + ν1)-DP holds.

Recall that we assume at least t · |U| many honest users. As we solely rely on the honest t · |U| to
contribute correctly distributed noise to the learning algorithm T , we have for each class similar to
Lem. 7

1

|U|

t·|U|∑
i=1

N (0, (σ̃ · 1√
|U|

)2) =

t·|U|∑
i=1

N (0, (σ̃ · 1

|U|
√
|U|

)2)

= N (0, (σ̃ ·
√
t · |U|

|U|
√
|U|

)2) = N (0, (σ̃ ·
√
t

|U|
)2).

Hence, we scale the noise parameter σ̃ with 1/
√
t and get

1

|U|

t|U|∑
i=1

N (0, (σ̃ · 1√
t
· 1√

|U|
)2) = N (0, (σ̃ · 1

|U|
)2).
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By Lem. 6, Lem. 7, and Lem. 3, we know that M1 satisfies (ε, δ)-DP (with the parameters as
described above).

Considering an unbounded attacker A, we know that for any pair of neighboring data sets D,D′ the
following holds

Pr [A (M1(D)) = 1] ≤ exp(ε) Pr [A (M1(D
′)) = 1] + δ

If πSecSum is a secure summation protocol, there is a negligible function ν such that for any
neighboring data sets D,D′ (differing in at most one element) the following holds w.l.o.g.:

Pr [A (M2(D)) = 1]− ν(η) ≤Pr [A (SimF (M1(D))) = 1] . (7)

For the attacker A′ that first applies Sim and then A, we get:

Pr [A (M2(D)) = 1]− ν(η) ≤ exp(ε) Pr [A (SimF (M1(D
′))) = 1] + δ (8)

≤ exp(ε) (Pr [A (M2(D
′)) = 1] + ν(η)) + δ (9)

thus we have

Pr [A (M2(D)) = 1] ≤ exp(ε) Pr [A (M2(D
′)) = 1] + δ + (1 + exp(ε)) · ν(η). (10)

From a similar argumentation it follows that

Pr [A (M2(D
′)) = 1] ≤ exp(ε) Pr [A (M2(D)) = 1] + δ + (1 + exp(ε)) · ν(η) (11)

holds.

Hence, with ν1 := (1 + exp(ε)) · ν(η) the mechanism Secure Distributed DP-Helmet mechanism
M2 which uses πSecSum is (ε, δ+ ν1)-DP. As ν is negligible and ε is constant, ν1 is negligible as well.

Corollary 22. Given a configuration ζ, a maximum fraction of dropouts ρ ∈ [0, 1], and a max-
imum fraction of corrupted clients γ ∈ [0, 1], if secure authentication encryption schemes and
authenticated key agreement protocol exist, then Secure Distributed DP-Helmet(ζ) (cf. Alg. 2) in-
stantiated with πSecSum = πSecAgg (Bell et al., 2020) satisfies computational (ε, δ + ν1)-DP with
ε ≥

√
2 ln 1.25/(δ/|K|) · |K| · 1/σ, for ν1 := (1 + exp(ε)) · ν(η) and a function ν negligible in the

security parameter η used in secure summation.

This follows directly from Thm. 8, as by Thm. 19, we know that πSecAgg(s1, . . . , sn) securely emulates
F (w.r.t. an unbounded attacker).

K PROOF OF COR. 10

We recall Cor. 10:

Corollary 10 (User-level sensitivity). Given a learning algorithm T , we say that T is R-norm
bounded if for any input dataset D with N = |D|, any hyperparameter ξ, and all classes k ∈ K,
∥T (D, ξ, k)∥ ≤ R. Any R-norm bounded learning algorithm T has a sensitivity s = 2R. In
particular, T + N (0, (σ · s · Id)2) satisfies (ε, δ), Υ-group differential privacy with Υ = N and
ε ≥

√
2 ln 1.25/(δ/|K|) · |K| · 1/σ, where N (0, (σ · s · Id)2) is spherical multivariate Gaussian noise

and σ a noise multiplier.

Proof. We know that the sensitivity of the learning algorithm T is defined as s =
maxD∼D′∥T (D, ξ, k) − T (D′, ξ, k)∥ for Υ-neighboring datasets D,D′. Thus, in our case we
have s = 2R since any T (_, ξ, k) ∈ [−R,R]. As this holds independent on the dataset and by Lem. 3
and by Lem. 24, we can protect any arbitrary number of data points per user, i.e. we have Υ-group
DP.
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L NON-INTERACTIVE BLIND AVERAGE

Corollary 23 (Averaged Representer theorem). Given a configuration ζ, if on D(i) locally learning
algorithm T admits a solution of the form T (D(i), ξ, k) =

∑N
j=1 α

(i)
j x

(i)
j (cf. Thm. 20) then the

average of these locally trained models avgi(T (D
(i))) admits a solution of the form T (℧, ξ, k) =

1
|U|

∑|U|
i=1

∑N
j=1 α

(i)
j x

(i)
j .

Proof.
avgi(T (D

(i))) = 1
|U|

∑|U|
i=1 T (D

(i)) = 1
|U|

∑|U|
i=1

∑N
j=1 α

(i)
j x

(i)
j .

L.1 PROOF OF LEM. 13

We recall Lem. 13:

Lemma 13 (Support Vectors of averaged SVM). Given a configuration ζ as in Def. 5, a locally
trained model of learning algorithm T , where T (D(i), ξ, k) = argminf

1
N

∑
(x,y)∈D(i) max(0, 1−

fTxy · (1[y = k]− 1[y ̸= k])) +Λ ∥f∥2 comprises a hinge-loss linear SVM, has the support vectors

V (i) =
{
(x, y) ∈ D(i) | T (D(i))Txy ≤

∥∥T (D(i))
∥∥−1

}
. Then, the average of these locally trained

models avgi(T (D
(i))) has the support vectors V =

⋃|U|
i=1 V

(i).

Proof. A learning problem that is based on a hinge-loss SVM fulfills the representer theorem
requirements due to the L2-regularized ERM objective function. In fact, if a data point xj is a
support vector, i.e. xj ∈ V , then after successful training its corresponding αj is restricted by
0 < αj ≤ Λ ∧ yj = 1 or 0 > αj ≥ −Λ ∧ yj = −1, or αj = 0 (Ma & Ng, 2020, Equation 28-30).

Thus, we denote V (i) =
{
x
(i)
j ∈ D(i) | α(i)

j ̸= 0
}

. By Cor. 23, we have that the average of locally

trained models avgi(T (D
(i))) = 1

|U|
∑|U|

i=1

∑N
j=1 α

(i)
j x

(i)
j . Since the local datasets are disjoint we

simplify 1
|U|

∑|U|
i=1

∑N
j=1 α

(i)
j x

(i)
j = 1

|U|
∑|℧|

j=1 αjxj for the combined local datasets ℧ =
⋃|U|

i=1 D
(i)

and a flattened α =
[
α
(1)
1 . . . α

(1)
N α

(2)
1 . . . α

(|U|)
N

]
. A model which is represented by

1
|U|

∑|℧|
j=1 αjxj has the support vectors V = {xj ∈ ℧ | αj ̸= 0 } =

⋃|U|
i=1 V

(i), as the support vector

characteristic is uniquely determined by α and each local α(i)
j is element of α and responsible for the

same data point.

L.2 PROOF OF THM. 14

We recall Thm. 14:

Theorem 14 (Averaging locally trained SVM converges to a global SVM). Given a configuration
ζ as in Def. 5, there exists a regularization parameter Λ such that the average of locally trained
models avgi(T (D

(i))) with a hinge-loss linear SVM as objective function J trained with projected
subgradient descent using weighted averaging (PGDWA), T = HINGE_SVM_PGDWA, converges
with the number of local iterations M to the best model for the combined local datasets ℧, i.e.

E
[
J (avgi(HINGE_SVM_PGDWA(D(i))),℧, _)− inff J (f,℧, _)

]
∈ O(1/M).

Proof. First (1), we show that there exists a regularization parameter Λ for which the converged
global model equals the average of the converged locally trained models: T (℧) = avgi(T (D

(i))).
Second (2), we show that both the global and the local models converge with rate O(1/M).

Note that we assume that each data point xj is structured as [1, xj,1, . . . , xj,p] to include the inter-

cept. We also denote the flattened α(avg_loc) =
[
α
(1)
1 . . . α

(1)
N α

(2)
1 . . . α

(|U|)
N

]
as the dual

coefficients of the averaged local SVM and α(glob) as the dual coefficients of the global SVM.
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(1) By Lem. 13 we know for the combined local datasets ℧ =
⋃|U|

i=1 D
(i) that

avgi(T (D
(i))) =

1

|U|N

|℧|∑
j=1

α
(avg_loc)
j xj =

1

|℧|

|℧|∑
j=1

α
(avg_loc)
j xj .

Note that we assume a scaled parameter per local SVM: T (D(i)) = 1
N

∑N
j=1 αjxj . Without this

assumption, we would not average the local SVMs but instead compute their sum.

For the global model, we write by the representer theorem

T (℧) =
1

|℧|

|℧|∑
j=1

α
(glob)
j xj .

Thus, by parameter comparison we have that T (℧) = avgi(T (D
(i))) if ∀j α(glob)

j = α
(avg_loc)
j . By the

characteristic of a hinge-loss linear SVM, we know that any αj has the value αj = Λyj if a data point
is a support vector inside the margin (Ma & Ng, 2020, Equation 28-30). Hence, ∀j α(glob)

j = α
(avg_loc)
j

if the margin is large enough that for both SVMs all data points are inside the margin. Since the
margin of a hinge-loss linear SVM is the inverse of the parameter norm, ∥T (℧)∥−1, and the parameter
norm gets smaller with an increased regularization parameter Λ by the definition of the objective
function 1

N

∑
(x,y)∈D(i) max(0, 1 − yfTx) + Λ ∥f∥2, we derive that there exists a regularization

parameter Λ which is large enough s.t. all data points are within the margin.

(2) By Lacoste-Julien et al. (2012), we know that a hinge-loss linear SVM converges to the optima
with rate O(M−1), if we use projected subgradient descent using weighted averaging (PGDWA) as
an optimization algorithm, i.e.

E
[
J (avgi(HINGE_SVM_PGDWA(D(i))),℧, _)− inff J (f,℧, _)

]
∈ O(1/M).

M GROUP PRIVACY REDUCTION OF MULTIVARIATE GAUSSIAN

Lemma 24. Let pdfN (A,B)[x] denote the probability density function of the multivariate Gaussian
distribution with location and scale parameters A,B which is evaluated on an atomic event x. For
any atomic event x, any covariance matrix Σ, any group size k ∈ N, and any mean µ, we get

pdfN (0,k2Σ)[x]

pdfN (µ,k2Σ)[x]
=

pdfN (0,Σ)[x/k]

pdfN (µ/k,Σ)[x/k]
. (12)

Proof.

pdfN (0,k2Σ)[x]

pdfN (µ,k2Σ)[x]
=

1
det(2πk2Σ) exp(−

1
2x

T k2Σ−1x)

1
det(2πk2Σ) exp(−

1
2 (x− µ)T k2Σ−1(x− µ)︸ ︷︷ ︸
=xT k2Σ−1x−µT k2Σ−1x−xT k2Σ−1µ+µT k2Σ−1µ

)
(13)

=exp(−1

2
(−µT k2Σ−1x− xT k2Σ−1µ+ µT k2Σ−1µ)) (14)

=exp(−1

2
k2 · (−µTΣ−1x− xTΣ−1µ+ µTΣ−1µ)) (15)

for µ1 := µ/k

=exp(−1

2
· k(−µT

1 Σ
−1x− xTΣ−1µ1 + µT

1 Σ
−1µ1/k)) (16)
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for x1 := x/k

=exp(−1

2
· (−µT

1 Σ
−1x1 − xT

1 Σ
−1µ1 + µT

1 Σ
−1µ1)) (17)

=exp(−1

2
· (−µT

1 Σ
−1x1 − xT

1 Σ
−1µ1 + µT

1 Σ
−1µ1)) (18)

=

1
det(2πΣ) exp(−

1
2x

T
1 Σ

−1x1)

1
det(2πΣ) exp(−

1
2 (x1 − µ1)T k2Σ−1(x1 − µ1))

(19)

=
pdfN (0,Σ)[x/k]

pdfN (µ/k,Σ)[x/k]
(20)

As the Gaussian distribution belongs to the location-scale family, Lem. 24 directly implies that the
(ε, δ)-DP guarantees of using N (0, k2 Σ) noise for sensitivity k and using N (0,Σ) for sensitivity 1
are the same.

N REPRESENTING MULTIVARIATE GAUSSIANS AS UNIVARIATE GAUSSIANS

For the sake of completeness, we rephrase a proof that we first saw in Abadi et al. (2016) that argues
that sometimes the multivariate Gaussian mechanism can be reduced to the univariate Gaussian
mechanism.

Lemma 25. Let pdfN (µ,diag(σ2)) denote the probability density function of a multivariate (p ≥ 1)
spherical Gaussian distribution with location and scale parameters µ ∈ Rp, σ ∈ Rp

+. Let Mgauss,p,q

be the p dimensional Gaussian mechanism D 7→ q(D) + N (0, σ2 · Ip) for σ2 > 0 of a function
q : D → Rp, where D is the set of datasets. Then, for any p ≥ 1, if q is s-sensitivity-bounded, then for
any p ≥ 1, there is another s-sensitivity-bounded function q′ : D → R such that the following holds:
for all ε ≥ 0, δ ∈ [0, 1] if Mgauss,1,q′ satisfies (ε, δ)-ADP, then Mgauss,p,q satisfies (ε, δ)-ADP.

Proof. First observe that for any s-sensitivity-bounded function q′′, two adjacent inputs D,D′

(differing in one element) with ∥q′′(D) − q′′(D′)∥2 = s are worst-case inputs. As a spherical
Gaussian distribution (covariance matrix Σ = σ2 · Ip×n) is rotation invariant, there is a rotation
such that the difference only occurs in one dimension and has length s. Hence, it suffices to analyze
a univariate Gaussian distribution with sensitivity s. Hence, the privacy loss distribution of both
mechanisms (for the worst-case inputs) is the same. As a result, for all ε ≥ 0, δ ∈ [0, 1] (i.e. the
privacy profile is the same) if (ε, δ)-ADP holds for the univariate Gaussian mechanism it also holds
for the multivariate Gaussian mechanism.

O STRONG CONVEXITY OF CE LOSS

Theorem 26. Let J denote the objective function J (f,D) := Λ
2

∑K
k=1(f

T f)k +
1
N

∑
(x,y)∈D LCE(y, f

Tx) with the cross-entropy loss LCE(y, z) := −
∑K

k=1 yk log
exp(zk)∑K
j=1 exp(zj)

and parameters f ∈ Rd+1,K , dataset D where (x, y) ∈ D with data points x ∈ Rd+1 structured as
[1 x1 . . . xd] and labels y ∈ { 0, 1 }K , number of classes K, and regularization parameter Λ.
J is Λ-strongly convex.

Proof. J is µ-strongly convex if J − µ
2 ∥f∥ is convex. In our case, with µ = Λ, it remains to be

shown show that the cross entropy loss LCE(y, z) is convex, since a linear layer like fTx represents
an affine map which preserves convexity (Bertsekas, 2009).

It is known that the cross entropy loss is convex by a simple argumentation: If the Hessian is positive
semidefinite LCE(y, z) ⪰ 0 then LCE is convex. By the Gershgorin’s circle theorem is a symmetric
diagonally dominant matrix positive semi-definite if the diagonals are non-real.
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Since the second derivative of the cross-entropy loss is ∂2

∂zp∂zq
LCE = sp(1[p=q] − sq) for the softmax

probabilities sp =
exp(zp)∑K
j=1 exp(zj)

, we conclude that the diagonals are non-negative since sp(1− sp)

for 0 ≤ sp ≤ 1 is always non-negative. The Hessian is diagonal dominant, if for every row p the
absolute value of the diagonal entry is larger or equal the sum of the absolute values of all other row
entries. In our case, we have

∀p |sp(1− sq)| ≥
K∑

q=1,q ̸=p

|sp(−sq)| ⇐⇒ ∀p (1− sq) ≥
K∑

q=1,q ̸=p

sq ⇐⇒ ∀p (1− sq) ≥ (1− sp).

P LIPSCHITZNESS OF CE LOSS

Theorem 27. Let J denote the objective function J (f,D) := Λ
2

∑K
k=1(f

T f)k +
1
N

∑
(x,y)∈D LCE(y, f

Tx) with the cross-entropy loss LCE(y, z) := −
∑K

k=1 yk log
exp(zk)∑K
j=1 exp(zj)

and parameters f ∈ Rd+1,K , dataset D where (x, y) ∈ D with data points x ∈ Rd+1 structured as
[1 x1 . . . xd] and labels y ∈ { 0, 1 }K , number of classes K, and regularization parameter Λ.
J is L-Lipschitz with L = ΛR+

√
2c where ∥x∥ ≤ c and ∥f∥ ≤ R.

Proof. In the following, we abbreviate d′ := d+ 1, flatten f ∈ Rd′K and notate z := (x, y).

The Lipschitz continuity is defined as:

supz∈D,f,f ′
∥J (f,z)−J (f ′,z)∥

∥f−f ′∥ ≤ L.

We first (1) show

supz∈D,f,f ′
∥J (f,z)−J (f ′,z)∥

∥f−f ′∥ ≤ supz∈D,f ∥∇fJ (f, z)∥

using the mean value theorem and subsequently (2) bound supz∈D,f ∥∇fJ (f, z)∥ ≤ L.

(1) Recall that the multivariate mean value theorem states that for some function g : G 7→ R on an
open subset G ∈ Rn, some x, y ∈ G and some c ∈ [0, 1], we have

g(y)− g(x) = ⟨∇g((1− c)x+ cy), y − x⟩ .

In our case, we write

supz∈D,f,f ′
∥J (f,z)−J (f ′,z)∥

∥f−f ′∥

by the multivariate mean value theorem for some c ∈ [0, 1]

= supz∈D,f,f ′
|⟨∇J ((1−c)f ′−cf,z),f−f ′⟩|

∥f−f ′∥

for f ′′ := (1 − c)f ′ − cf and by the Cauchy-Schwarz inequality |⟨∇f ′′J (f ′′, z), f − f ′⟩| ≤
∥∇f ′′J (f ′′, z)∥ · ∥f − f ′∥

≤ supz∈D,f ′′ ∥∇f ′′J (f ′′, z)∥ .
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(2) We know that for 1 ≤ j ≤ d′, 1 ≤ p ≤ K the partial derivative of J is ∂
∂fp

J (f, (x, y)) =

Λflp + xl · (sp − 1[y=p]) with sp :=
exp(fpx)∑K
j=1 exp(fjx)

. Thus, we have

∥∇fJ (f, z)∥ =

√√√√ d′K∑
lp=1

(
Λflp + xl(sp − 1[y=p])

)2

=

√√√√ d′K∑
lp=1

(
Λ2f2

lp + 2Λflpxl(sp − 1[y=p]) + x2
l (sp − 1[y=p])2

)

=

√√√√Λ2 ∥f∥2 + 2Λ

d′∑
l=1

xl

K∑
p=1

flp(sp − 1[y=p]) +

d′∑
l=1

x2
l

K∑
p=1

(sp − 1[y=p])2

due to the Cauchy-Schwarz inequality, we have
∑K

p=1 flp(sp − 1[y=p]) ≤√∑K
p=1 f

2
lp

√∑K
p=1(sp − 1[y=p])2 and

∑d′

l=1 xl

√∑K
p=1 f

2
lp ≤

√∑d′

l=1 x
2
l

√∑d′K
lp=1 f

2
lp =

∥x∥2 ∥f∥2

≤

√√√√√Λ2 ∥f∥2 + 2Λ ∥x∥ ∥f∥

√√√√ K∑
p=1

(sp − 1[y=p])2 + (

d′∑
l=1

x2
l )(

K∑
p=1

(sp − 1[y=p])2)

since maxs1,...,sK

{
(sp − 1)2 +

∑K
q=1,q ̸=p s

2
q |

∑K
k=1 sk = 1 ∧ sk ≥ 0 ∀k

}
= 2 with sq = 1 ∧

sp = 0
∧K

k=1,k ̸=q sk = 0 where q ̸= p

≤
√
Λ2 ∥f∥2 + 2

√
2Λ ∥x∥ ∥f∥+ 2 ∥x∥2 = Λ ∥f∥+

√
2 ∥x∥

Thus, with ∥x∥ ≤ c, ∥f∥ ≤ R we conclude that

sup
z∈D,f,f ′

∥J (f, z)− J (f ′, z)∥
∥f − f ′∥

≤ sup
z∈D,f

∥∇fJ (f, z)∥ ≤ ΛR+
√
2c = L

Q SMOOTHNESS OF CE LOSS

Theorem 28. Let J denote the objective function J (f,D) := Λ
2

∑K
k=1(f

T f)k +
1
N

∑
(x,y)∈D LCE(y, f

Tx) with the cross-entropy loss LCE(y, z) := −
∑K

k=1 yk log
exp(zk)∑K
j=1 exp(zj)

and parameters f ∈ Rd+1,K , dataset D where (x, y) ∈ D with data points x ∈ Rd+1 structured as
[1 x1 . . . xd] and labels y ∈ { 0, 1 }K , number of classes K, and regularization parameter Λ.
J is β-smooth with β =

√
(d+ 1)KΛ2 + 0.5(Λ + c2)2 where ∥x∥ ≤ c.

Proof. In the following, we abbreviate d′ := d+ 1, flatten f ∈ Rd′K and notate z := (x, y).

β-Smoothness is defined as:

supz∈D,f,f ′
∥∇fJ (f,z)−∇f′J (f ′,z)∥

∥f−f ′∥ ≤ β.

We first (1) show

supz∈D,f,f ′
∥∇fJ (f,z)−∇f′J (f ′,z)∥

∥f−f ′∥ ≤ supz∈D,f ∥Hf (J (f, z))∥

using the mean value theorem and subsequently (2) bound supz∈D,f ∥Hf (J (f, z))∥ ≤ β.
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(1) Recall that the multivariate mean value theorem states that for some function g : G 7→ R on an
open subset G ∈ Rn, some x, y ∈ G and some c ∈ [0, 1], we have

g(y)− g(x) = ⟨∇g((1− c)x+ cy), y − x⟩ .

In our case, we write

supz∈D,f,f ′
∥∇fJ (f,z)−∇f′J (f ′,z)∥

∥f−f ′∥

= supz∈D,f,f ′

√∑d′K
i=0 (∇fi

J (f,z)−∇f′
i
J (f ′,z))2

∥f−f ′∥

by the multivariate mean value theorem for some c ∈ [0, 1] and gi(f, z) := ∇fiJ (f, z)

= supz∈D,f,f ′

√∑d′K
i=0 ⟨∇gi((1−c)f ′−cf,z),f−f ′⟩2

∥f−f ′∥

for f ′′ := (1 − c)f ′ − cf and by the Cauchy-Schwarz inequality |⟨∇gi(f
′′, z), f − f ′⟩|2 ≤

∥∇gi(f
′′, z)∥2 · ∥f − f ′∥2

≤ supz∈D,f ′′

√∑d′K
i=0

∑d′K
j=0(∇2

f ′′
i ,f ′′

j
J (f ′′, z))2

= supz∈D,f ∥Hf (J (f, z))∥ .

(2) We know that with 1 ≤ l ≤ d′, 1 ≤ p ≤ K the first-order partial derivative of J is
∂

∂flp
J (f, (x, y)) = Λflp + xl · (sp − 1[y=p]) with sp :=

exp(fT
p x)∑K

i=1 exp(fT
i x)

.

With 1 ≤ j ≤ d′, 1 ≤ q ≤ K we know that the second-order partial derivative of J is
∂2

∂flp∂fjq
J (f, (x, y)) = 1[lp=jq] · Λ + xl · xj · sp(1[p=q] − sq). Thus, we have

∥Hf (J (f, z))∥ =
√∑d′K

lp=1

∑d′K
jq=1

(
1[lp=jq] · Λ + xlxjsp(1[p=q] − sq)

)2
=

√√√√√√√
d′K∑
lp=1

(
(Λ + x2

l sp(1− sp))2 +

d′K∑
jq=1
j ̸=l

x2
l x

2
js

2
p(1− sp)2 +

d′K∑
jq=1
j ̸=l
q ̸=p

x2
l x

2
js

2
ps

2
q

)

=

√√√√√ d′K∑
lp=1

(
(Λ + x2

l sp(1− sp))2 + x2
l s

2
p

d′∑
j=1
j ̸=l

(
x2
j (1− sp)2 + x2

j

K∑
q=1
q ̸=p

s2q

))

since we have maxs1,...,sK

{∑K
q=1,q ̸=p s

2
q |

∑K
q=1,q ̸=p sq = 1− sp ∧ si ≥ 0 ∀i

}
= (1− sp)

2 due
to the maximal L2-distance given a bounded L1-distance is the maximal L2-distance in one dimension,
we conclude

=

√√√√√ d′K∑
lp=1

(
Λ2 + 2Λx2

l sp(1− sp) + x4
l s

2
p(1− sp)2 + 2x2

l s
2
p(1− sp)2

d′∑
j=1
j ̸=l

x2
j

)

≤

√√√√√d′KΛ2 +

d′K∑
lp=1

x2
l sp(1− sp)

(
2Λ + 2x2

l sp(1− sp) + 2sp(1− sp)

d′∑
j=1
j ̸=l

x2
j

)

=

√√√√d′KΛ2 + 2

d′K∑
lp=1

x2
l sp(1− sp)

(
Λ + sp(1− sp) ∥x∥2

)

≤

√√√√d′KΛ2 + 2 ∥x∥2
d′∑
l=1

x2
l

K∑
p=1

sp(1− sp)(Λ ∥x∥−2
+ sp)
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following Lem. 29 (presented and shown below) we simplify with C := Λ ∥x∥−2:
∑K

p=1 sp(1 −
sp)(C + sp) ≤ 0.25(C + 1)2

≤
√
d′KΛ2 + 0.5 ∥x∥4 (Λ ∥x∥−2

+ 1)2 =

√
d′KΛ2 + 0.5(Λ + ∥x∥2)2.

Thus, with ∥x∥ ≤ c we conclude that

sup
z∈D,f,f ′

∥∇fJ (f, z)−∇f ′J (f ′, z)∥
∥f − f ′∥

≤ sup
z∈D,f

∥Hf (J (f, z))∥ ≤
√

d′KΛ2 + 0.5(Λ + c2)2 = β.

Lemma 29. Let { sp }Kp=1 denote probabilities such that
∑K

p=1 sp = 1, and C ∈ R+ a constant,
then we have

max
{ sp }K

p=1

{
K∑

p=1

sp(1− sp)(C + sp) |
K∑

p=1

sp = 1 ∧ sp ≥ 0 ∀p

}
≤ 0.25(C + 1)2

with (sp = 1
k ∧ sp′ = 0) ∀p∈∪k

i=1Pi,p′∈∪K
i=k+1Pi,P∈Sym(K), i.e. for some arbitrary but fixed dimen-

sions k : 1 ≤ k ≤ K, the solution has k-times sp = 1
k and (K − k)-times sp = 0.

Proof. We show this Lemma as follows: First, we use the Karush–Kuhn–Tucker (KKT) conditions
to find the sp’s which maximize the maximization term. Thereby, we obtain a set of four solution
candidates where we encode all sp’s in closed form and introduce two new variables k, j which serve
as a solution counter. Second, we insert the solution candidates into the maximization term and show
that the result is always bounded by 0.25(C + 1)2 by calculating the optimal front across all possible
values of the solution counters k, j.

Let f(s) :=
∑K

p=1 sp(1 − sp)(C + sp) denote the function to maximize, h(s) :=
∑K

p=1 sp − 1

the equality constraint, and gp(s) := −sp,∀p the inequality constraints. To find the constrained
maximum, we maximize the Lagrangian function Lagrange(s) = f(s) + µpgp(s) + λh(s) with µp, λ
as slack variables. This suffices since sp does not have unbounded border cases: the only valid
configuration of all sp’s is on a hyperplane (

∑
p sp = 1) bounded in all dimensions (sp ≥ 0). Using

the slack variable µp, we already cover whether its corresponding sp is on the border (µp > 0) or not
(µ = 0). Following the KKT conditions, the following conditions have to hold for the maximum:

(1) Stationarity: ∇spLagrange(s) = C + 2sp − 2Csp − 3s2p + µp − λ = 0,∀p

(2) Primal feasibility: h(s) = 0 and gp(s) ≤ 0,∀p

(3) Dual feasibility: µp ≥ 0,∀p

(4) Complementary slackness: µpgp(s) = 0,∀p

Informally, it suffices for the solution of the KKT conditions to analyze the cases where sp >
0,∀1≤p≤k for all fixed number of dimensions k : 1 ≤ k ≤ K since if sp = 0 then we have already
proved the same result for one less dimension.

Formally and without loss of generality6, we show for all fixed numbers of dimensions k : 1 ≤ k ≤ K
that for the solution of the KKT conditions it suffices to analyze the cases where sp > 0,∀1≤p≤k.
For the induction base case (k = 1 dimensional), we have s1 > 0 and thus by condition (4) µ1 = 0.
If and only if s1 = 1, we satisfy conditions (2) and (1) with λ = −C − 1. With s1 = 0 we would not
be able to satisfy the equality constraint of condition (2), i.e. ‘s1 = 1’.
For the k 7→ k + 1 induction case, we know that sp > 0,∀1≤p≤k. If sp+1 > 0, by the induction
hypothesis we know that ∀1≤p≤k+1, sp = 0. If sp+1 = 0 then by conditions (3) and (4) we have
µp+1 > 0 and thus by condition (1), µp+1 = λ − C. Inserting sp+1 = 0, µp+1 = λ − C into

6The same argumentation holds for situations where the dimensions are permuted.
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conditions (1) to (4), we obtain the same set of equations and inequalities as for the k-dimensional
case which already holds by the induction hypothesis.

We solve the KKT conditions (1) to (4) as follows: First, we solve the system of equations of condition
(1) for sp via the quadratic formula:

s±p =
−(2−2C)±

√
(2−2C)2−4(−3)(C−λ)

2(−3) = 1/3 ·
(
±
√
C2 + C − 3λ+ 1− C + 1

)
. (21)

Second, we plug s±p into the equality constraint ‘h(s) = 0’ of condition (2) and solve for λ which
gives us for some solution counter j ∈ N, 0 ≤ j ≤ k with 2j ̸= k:

h(s±) = 0

⇐⇒ (
∑j

i=1 s
+
i ) + (

∑k
i=j+1 s

−
i ) = 1

⇐⇒ j
(√

C2 + C − 3λ+ 1− C + 1
)
+ (k − j)

(
−
√
C2 + C − 3λ+ 1− C + 1

)
= 3

⇐⇒ (2j − k)
√
C2 + C − 3λ+ 1 = Ck − k + 3

⇒ C2 + C − 3λ+ 1 = (Ck−k+3)2

(2j−k)2

⇐⇒ λ = (2j−k)2(C2+C+1)−(Ck−k+3)2

3(2j−k)2 .

The solution counter j quantifies how often we plug the ‘positive’ variant of s±p into h(s±):

s± :=
[
s+1 . . . s+j s−j+1 . . . s−k

]
or any permutation of the dimensions of s±.

Note that at 2j = k, we have a special case and by the equality constraint ‘h(s) = 0’ of condition (2)

h(s±) = 0 ∧ 2j = k ⇐⇒ (
∑ k

2
p=1 s

+
p )+(

∑k
p= k

2+1 s
−
p ) = 1 ⇐⇒ k(1−C) = 3 ⇐⇒ C = k−3

k .

Thus, at 2j = k,C = k−3
k we simplify the solution in Eq. (21) to

s
±, C=k − 3/k
p = 1/3 · (±

√
(k−3)2

k2 + k−3
k − 3λ+ 1︸ ︷︷ ︸

=: 3Q

−k−3
k + 1) = ±Q+ 1

k .

If we now insert s±, C=k − 3/k
p into f(·) and maximize for all remaining variables, we find the

maximum at

maxk,j,λ

{
f(s

±, C=k − 3/k
p ) | 2j = k ∧ C = k−3

k ∧ s
±, C=k − 3/k
p ≥ 0

}
≤ maxk,j,λ

{∑ k
2
p=1(

1
k +Q)(1− ( 1k +Q))(C + ( 1k +Q))

+
∑k

p= k
2+1(

1
k −Q)(1− ( 1k −Q))(C + ( 1k −Q)) | 2j = k ∧ C = k−3

k

}
= maxk

{
k
2
1
k (1−

1
k )(

k−3
k + 1

k ) +
k
2
1
k (1−

1
k )(

k−3
k + 1

k )
}

= maxk
{
(1− 1

k )(
k−3
k + 1

k )
}
= maxk

{
k−2
k − k−2

k2

}
= maxk

{
1− 3

k + 2
k2︸ ︷︷ ︸

≤ 0.25( k−3
k +1)2 = 1− 3

k+ 9
4k2

}
.

Thus, at 2j = k, Lagrange is maximal at C = k−3
k which is always strictly below the maximum we

will show in this lemma if C = k−3
k . In the following, we continue the proof for 2j ̸= k.

Third, by plugging λ into Eq. (21) which is derived from the system of equations in condition (1) and
solving for sp we obtain the following two solution candidates for 2j ̸= k

s
(+,−)
p = 1

3

(
±
√

C2 + C − 3 (2j−k)2(C2+C+1)−(Ck−k+3)2

3(2j−k)2 + 1− C + 1
)

= 1
3

(
1− C ± Ck−k+3

2j−k

)
= (2j−k)(1−C)±(Ck−k+3)

3(2j−k) = −2Cj+Ck+2j−k±(Ck−k+3)
6j−3k

s
(+)
p = −2(k−j)C+2(k−j)−3

6(k−j)−3k , s
(−)
p = −2jC+2j−3

6j−3k .
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Observe that if we replace j̃ := k− j in s
(+)
p we get s(−)

p with j̃ instead of j. To abbreviate, we write

s
(j′)
p = −2j′C+2j′−3

6j′−3k

for j′ ∈ { j, k − j }. Because of the similar structure of s(j)p and s
(k−j)
p , restricting j by 0 ≤ 2j < k

suffices since we would otherwise count the same maximum twice. With s
(j′)
p as our solution

candidate, the equality constraint ‘h(s) = 0’ in condition (2) holds when we have (k − j) times s(j)p

and j times s(k−j)
p :

ssol :=
[
s
(k−j)
1 . . . s

(k−j)
j s

(j)
j+1 . . . s

(j)
k

]
or any permutations of the dimensions of ssol. This goes by construction of s± where the solution
counter j quantifies how often we plug in s

(+)
p into h(s(+,−)).

We next compute the second partial derivative test to determine for which parameters the solution
candidate ssol is a local maximum or minimum: We have a maximum if the Hessian of Lagrange is
positive definite and a minimum if the Hessian of Lagrange is negative definite. In our case, the second
partial derivatives of Lagrange are ∇2

spLagrange(s) = 2 − 2C − 6s and ∇sp∇sqLagrange(s) = 0 with
p ̸= q. Thus, we have a diagonal Hessian matrix. Hence, if 2− 2C − 6ssol < 0 we have a maximum
and if 2− 2C − 6ssol > 0 we have a minimum. Because of the second partial derivative test, we also
know that if the Hessian has both positive and negative eigenvalues then we have a saddle point. This
holds in our case when we have both positive and negative values on the diagonals of the Hessian, i.e.
for some p we have 2− 2C − 6ssol

p < 0 and for some q we have 2− 2C − 6ssol
q > 0. Furthermore, if

we have a zero eigenvalue this test is indecisive.

We rearrange the maximum condition for any entry of ssol (here: s(j
′)

p ) as follows:

2− 2C − 6−2j′C+2j′−3
6j′−3k < 0 ⇐⇒

{
kC − k + 3 > 0 if 0 ≤ 2j′ < k

kC − k + 3 < 0 if 2j′ > k

⇐⇒
{
C > k−3

k if 0 ≤ 2j′ < k

C < k−3
k if 2j′ > k

.

Similarly, we rearrange the minimum condition, such that

2− 2C − 6−2j′C+2j′−3
6j′−3k > 0 ⇐⇒

{
C < k−3

k if 0 ≤ 2j′ < k

C > k−3
k if 2j′ > k

.

Recall that at this point we only consider 2j ̸= k. We now distinguish three cases for the second
partial derivative test for the vector ssol: C < k−3

k , C > k−3
k , C = k−3

k .

At C < k−3
k , we write 

2− 2C − 6s
(k−j)
1 < 0

. . .

2− 2C − 6s
(k−j)
j < 0

2− 2C − 6s
(j)
j+1 > 0

. . .

2− 2C − 6s
(j)
k > 0


and at C > k−3

k , we write similarly

2− 2C − 6s
(k−j)
1 > 0

. . .

2− 2C − 6s
(k−j)
j > 0

2− 2C − 6s
(j)
j+1 < 0

. . .

2− 2C − 6s
(j)
k < 0


.

32



Under review as a conference paper at ICLR 2024

Recall the saddle point criteria as ∃p∃q 2− 2C − 6ssol
p < 0 ∧ 2− 2C − 6ssol

q > 0 and the maximum
criteria as 2− 2C − 6ssol < 0. By the above test criteria, for C ̸= k−3

k , we have a saddle point for
all j ∈ [1, k − 1] as well as a maximum for j = k ∧ C < k−3

k and for j = 0 ∧ C > k−3
k at

smax :=
[
s
(k−k)
1 . . . s

(k−k)
k

]
=

[
s
(0)
1 . . . s

(0)
k

]
= [1/k . . . 1/k] ∧ C ̸= k−3

k

since only at j ∈ { 0, k } do we have the case that either s(j)p or s(k−j)
p is present in the solution ssol.

At C = k−3
k , we have for any entry of ssol (here: s(j

′)
p )

s(j
′,C=k − 3/k)

p =
−2(k − 3)j′/k + 2j′ − 3

6j′ − 3k
=

6j′/k − 3

6j′ − 3k
=

1

k
.

Thus, although the second partial derivative test is indecisive since 2− 2C − 61/k = 0, we have at
C = k−3

k always the same solution as in smax. This renders smax for all C as the maximal solution.

Next, we plug the solution smax into f(s) and calculate the optimal front with the inequality constraint
‘gp(s) ≤ 0’ of condition (2) and across all number of dimensions k and range of the solution counter
j ∈ { 0, k }:

max
k,j

{
f(smax) | s(j)p ≥ 0 ∧ s

(k−j)
p ≥ 0 ∧ j ∈ { 0, k }

}
= max

k

{ ∑k
p=1 s

(0)
p (1− s

(0)
p )(C + s

(0)
p ) | s(0)p ≥ 0

}
= max

k

{ ∑k
p=1

1
k (1−

1
k )(C + 1

k ) |
1
k ≥ 0

}
= max

k

{
C + 1−C

k − 1
k2

}
(
for k = 2

1−C the term C + 1−C
k − 1

k2 is maximal for which we need the derivative to be zero:
d
dk (C + 1−C

k − 1
k2 ) =

C−1
k2 + 2

k3 = 0
)

= C + 1
2 (1− C)2 − 1

4 (1− C)2

= C2

4 + C
2 + 1

4 = 0.25(C + 1)2

Thus, we conclude that f(smax) is equal to or below the convex hull 0.25(C + 1)2 for any solution
counter j and any number of classes k.

Note: In this proof, we assumed k ∈ R+, however, we can restrict the number of classes k even
further: k ∈ N and k ≤ K. Yet, this restriction does not have much impact on the bound on f for
a reasonable C,K: Now, we only have K possible maxima (smax

p = { 1, 1/2, . . . , 1/K }) where for a
given C only one of these maxima are dominant. This also means that our 0.25(C + 1)2-bound is a
convex hull and only matches the maxima in a few selected points. However, already for little K
does the maximum come considerably close to the hull as shown in Fig. 9.
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Figure 9: Precise maximum of f(smax) per constant C and restricted, discretized number of classes
k ≤ K, k ∈ N versus convex hull of the maximum of f(smax) across all number of classes k ∈ R+.
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