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Abstract
With increased accessibility of machine gen-001
erated texts, the need for their evaluation has002
also increased. There are two types of text gen-003
eration task for which evaluation is required.004
In open-ended generation tasks (OGTs), the005
model generates de novo text without any in-006
put on which to base it. Examples include007
story generation. In reflective generation tasks008
(RGTs), the model output is generated to re-009
flect an input sequence. An example is ma-010
chine translation. Evaluation of RGTs is well-011
researched, and typically uses metrics that com-012
pare one or more gold-standard references to013
the model output. Evaluation of OGTs is less014
well-researched, and reference-based evalua-015
tions are more challenging: as the task is not016
seeking to reflect an input, there are usually no017
references. In this paper, we propose a theory018
of evaluation that covers both RGT and OGT019
evaluation. Based on this theory, we propose020
an output-oriented reference generation method021
for OGTs, develop an automatic language qual-022
ity evaluation method for OGTs, and review023
previous literature from this new perspective.024
Our experiments demonstrate the effectiveness025
of these methods across informal texts, formal026
texts, and domain-specific texts. We conduct a027
meta-evaluation to compare existing and pro-028
posed metrics, finding that our approach better029
aligns with human judgement.030

1 Introduction031

Natural language generation (NLG) has progressed032

significantly in the last decade. This progress has033

been made through the use of encoder-decoder034

(Lewis et al., 2019) and decoder only architectures035

(Brown et al., 2020; Touvron et al., 2023). In the036

last few years, the use of these transformer-based037

architectures (Vaswani et al., 2017) and increased038

compute capacity to create generative Large Lan-039

guage Models (LLMs) such as Brown et al. (2020);040

Touvron et al. (2023) has attracted attention from041

both academia and the public. However, the lack042

of good evaluation metrics for generated text has 043

limited the ability to make informed choices of 044

the best machine generated candidates from one or 045

multiple LLMs. 046

NLG tasks can be categorised into one of two 047

types: reflective generation tasks (RGTs) and open- 048

ended generation tasks (OGTs). In RGTs, the 049

model output is a reflection of the information in 050

the input. The output is restricted by the input, 051

and its content must be faithful to the input. Such 052

tasks include machine translation and summarisa- 053

tion. OGTs generate new information that does 054

not exist in the input. Examples of such tasks in- 055

clude story generation and synthetic medical report 056

generation. 057

Many studies (Sellam et al., 2020; Zhang et al., 058

2019; Papineni et al., 2002; Rei et al., 2020; Stano- 059

jević and Sima’an, 2014; Banerjee and Lavie, 2005) 060

on RGT evaluation focus on comparing the simi- 061

larity between pre-written human references and 062

machine-generated outputs. However, these meth- 063

ods often consider only the similarity metric used 064

and overlook the choice of references, which may 065

not necessarily give an accurate final evaluation 066

of the synthetic text quality. OGT evaluation is a 067

less researched area, due to the difficulty of creat- 068

ing pre-written human references (Yue et al., 2022). 069

Much research on OGT evaluation has instead com- 070

pared the distributional similarity between corpora 071

of synthetic text and corpora of real text in the tar- 072

get domain, using for example statistical methods 073

such as perplexity (Bhandari et al., 2020) or self- 074

BLEU (Zhu et al., 2018) to measure this similarity. 075

Other researchers such as Pillutla et al. (2021) es- 076

timate the underlying model distribution from the 077

corpora and measure the distance between this and 078

the real text distribution using Kullback-Leibler 079

(KL) divergence. 080

These evaluation approaches have two major 081

problems: (1) in OGT evaluation, they are unable 082

to provide a measure of the text quality of each 083
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individual text; (2) there is no common conceptual084

framework or way of communicating and compar-085

ing evaluation metrics between these two text gen-086

eration paradigms. This prevents us from using087

the more thoroughly researched RGT evaluation088

methods in OGT and drawing useful conclusions089

across the two tasks.090

This paper provides such a common concep-091

tual framework, bridging between evaluations of092

RGT and OGT. Based on this framework, we de-093

velop a new evaluation method for OGTs that as-094

sesses individual text quality without recourse to095

any reference. We call this evaluation method AR-096

GENT (Automated Reference-free Evaluation of097

GENerated Text). In order to compare the exist-098

ing OGT evaluation metrics, such as Self-BLEU099

and Mauve, with our own metrics, we develop a100

comparison between evaluation metrics, i.e. an101

evaluation of the evaluation metrics, which we re-102

fer to as a meta-evaluation.103

The contributions of this paper are:104

• A unified theoretical view of generative text105

evaluation.106

• ARGENT: a reference-free solution for auto-107

matic OGT language quality evaluation.108

• Comparisons of evaluation metrics, i.e. meta-109

evaluations, with different text types.110

• An output-oriented reference generation111

method for OGTs.112

• A short review of the literature on generative113

model evaluation, from a new perspective.114

2 Unified Theory for Generative Task115

Evaluation116

To illustrate the importance of reference choice in117

evaluating generative tasks, we consider the follow-118

ing simple task, translation of the French sentence119

"C’est vraiment un homme intelligent" into English.120

Let us assume that we are comparing two models.121

Model 1 output is "He truly a smart man". This is122

largely correct, but missing the verb. Model 2 out-123

put is "He truly is a clever dog", with the noun com-124

pletely wrong. Table 1 lists a set of possible correct125

translations (references) and the scores from dif-126

ferent metrics comparing the outputs against these127

references. From the table, we can see: 1) Evalu-128

ation metrics can vary significantly based on the129

references used. If the last reference is used for130

evaluation, then with all three metrics, "He truly131

is a clever dog" will be picked as a better answer.132

2) With BERTScore, the differences between ref-133

erences are smaller than with BLEU and ROUGE. 134

This demonstrates that better metrics, such as those 135

that take in to account semantics, can reduce vari- 136

ability caused by different references and thus may 137

alleviate the problems caused by these. 138

References BLEU ROUGE-L BERTScore

Candidate 1:He truly a smart man

He truly is a smart man 82.24 90.91 96.14
He really is a smart guy 45.42 54.55 93.62

He really is an intelligent guy 18.18 0.50 93.30
He truly is a clever man 49.45 72.73 94.98

Candidate 2: He truly is a clever dog

He truly is a smart man 55.68 66.67 94.72
He really is a smart guy 37.95 50.00 92.98

He really is an intelligent guy 26.04 33.33 92.62
He truly is a clever man 82.94 83.33 95.45

Table 1: Scores of two translation candidates against
different references with different metrics

Evaluating language generation is very differ- 139

ent from evaluating traditional classification and 140

regression tasks. This is because language gener- 141

ation does not have a finite list of possible output 142

classes, as is found with classification: in the trans- 143

lation example above, there are multiple possible 144

correct outputs. Additionally, language generation 145

does not have a straightforward measurable scale 146

of output like the continuous numerical scale used 147

in regression. Thus, one cannot measure the perfor- 148

mance directly against the references. In addition, 149

most language generation tasks do not have one 150

correct answer, with many not even having a finite 151

list of acceptable answers. 152

In any evaluation of a text generation model, we 153

have: 154

• Output - the text generated by the model, e.g. 155

the candidate translation in a machine transla- 156

tion task. 157

• Reference space - the set of all possible gold- 158

standard references, or possible ground truth 159

texts. These are all texts that are correct an- 160

swers to the generation problem. In a machine 161

translation task, these would be all possible 162

correct translations. In a synthetic document 163

generation task, they would be all possible 164

correct documents. 165

• Reference - a single text sampled from the 166

reference space. 167

• Similarity score - a measure of the similarity 168

between the output and a reference. 169

Let us use Y to denote the set of all the possible 170
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gold-standard references, and Ŷ to denote the out-171

put of the model. The evaluation of output Ŷ can172

be defined as173

E = max( fsimilarity(Ŷ ,Yi),∀Yi ∈ Y) (1)174

where fsimilarity is the similarity score function used175

by the evaluation metric, e.g. BLEU, ROUGE,176

BERTscore.177

Key points to consider with respect to this defi-178

nition are:179

• In some literature, evaluation and similarity180

scores are conflated. However, the ability181

of an evaluation to differentiate between two182

models also depends on the references used,183

as demonstrated in the machine translation ex-184

ample above. In this paper, we use the term185

evaluation to refer to the combination of the186

way in which references are selected, and the187

similarity score used.188

• For any similarity score in a given evalua-189

tion, there exists a set of possible answers,190

one between the model output and each pos-191

sible reference. The similarity score for the192

true evaluation of this output is defined by the193

maximum, i.e. the score between the output194

and the most similar reference.195

• Some similarity scores are better than others.196

For example, a score which takes in to account197

the grammatical structure and semantics of a198

text will be better than one which only takes199

into account word frequency. The best pos-200

sible, or perfect, similarity score is the one201

that comes closest to human judgement of the202

similarity between two texts.203

• This definition covers both reflective genera-204

tion and open ended generation. The differ-205

ence between them is the size of the reference206

space. Reflective generation has a restricted207

reference space while open ended generation208

has more flexibility, giving a larger reference209

space.210

We further illustrate the effects of references and211

similarity metrics in Appendix A.212

3 Auto-Evaluation for Language Quality213

The large reference space in evaluation of open-214

ended generation leads to a problem. How do we215

find the closest reference? One solution is to use216

output-oriented human annotation in which a hu-217

man judge corrects errors in an output by making218

the minimum number of changes, to give an error-219

free text that is the closest reference to the output.220

                                                             True evaluation   Reference closest to
the candidate

perfect similarity
metrics

                                                             An evaluation    Reference(s) Similarity Metrics

   Pre-written

      Output-oriented

BLEU
ROUGE

BERT score
BLEURT

                                                               Auto-evaluation  
Rerence: real text

candidate: corrupted
real text

BLEURT, corruption
count based

Real Webtext
train/dev

+ Corrupted texts

Clinical train/dev
+ Corrupted Texts

Train

Test
Test

Webtext test + synthetic
+ annotation

Pairs of Academic paper +
Synthetic Synthetic data only Hold out clinical text

Spearsman Correlation
machine ranking & 

human ranking 

Real text detection Accuracy Area size of pick up graph

Language Quality 
auto-evaluation

Generative evaluation
Theory

Previous works

Figure 1: Relationships between different evaluation
methods and experimental work presented in this paper

The output-reference pair can then be used in an 221

evaluation. This technique has been applied for 222

RGTs, such as machine translation, where it has 223

been shown to gives scores more aligned with hu- 224

man judgement than pre-written references with 225

a translation edit rate metric (Snover et al., 2006). 226

Our unified evaluation theory suggests that a sim- 227

ilar technique could also be used in OGTs, and 228

that such an output-oriented reference annotation 229

method could provide more accurate evaluations. 230

Such output-oriented evaluation is, however, 231

expensive and does not scale. We could over- 232

come this with an automated evaluation, but auto- 233

evaluation may itself vary in quality, with some 234

methods providing results that are closer to those 235

of a perfect evaluation than others. We there- 236

fore need to consider ways in which we might 237

measure the quality of auto-evaluations. The re- 238

mainder of this paper discusses a new reference- 239

free auto-evaluation method, ARGENT, and meta- 240

evaluations of this and existing methods under dif- 241

ferent dataset conditions. Figure 1 shows the re- 242

lationships between evaluation, generative evalua- 243

tion theory, auto-evaluation, and the experiments 244

reported in this paper. 245

3.1 ARGENT : Pre-trained Auto-evaluation 246

on Corrupted Texts 247

To understand auto-evaluation, consider formula 1 248

as an evaluation model. Given a set of all possible 249

references, and the output from some NLP genera- 250
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tive model, this evaluation model will provide an251

evaluation score. However, it is not usually pos-252

sible to create a set of all possible references. It253

is also hard to directly work out which reference,254

from all the possible references, gives the maxi-255

mum score for a given output.256

If, for some NLP task, we were able to create a257

set of proxies for model outputs, and if we know258

the evaluation score for these proxies in advance,259

we can envisage training an evaluation model on260

these proxies and their scores. This model would261

then be able to predict the evaluation score on pre-262

viously unseen output for the same NLP task. Once263

trained, this evaluation model - ARGENT - would264

be able to predict an evaluation score without hav-265

ing seeing any reference. In order to create such a266

set of proxy outputs and their evaluation scores, we267

reverse reference generation. Rather than generate268

a reference for an output, we generate a likely out-269

put from a real text reference, by corrupting the real270

text in some way. This will give us a proxy model271

output paired with a reference which approximates272

the output. Moreover, the degree to which the ref-273

erence approximates the output will depend on the274

amount of corruption, and can therefore be varied275

and quantified, providing a metric that describes276

how well the proxy output matches the reference,277

i.e. an evaluation score for the proxy output.278

279 Text corruption Text corruption methods need to280

align with variation in language quality in gener-281

ated text. In this regard, we propose two text cor-282

ruption methods, an inflection method and a local283

shuffling method.284

In the inflection method, the tokens in each285

sequence are inflected to different part-of-speech286

(POS) forms. For example, in the sentence "I like287

books", the token "books" is a plural noun. We can288

inflect it to a past tense verb "booked" to create the289

corrupted sentence "I like booked". In the work290

described in this paper, we use SpaCY POS tags1291

and we use the tagger module1 and lemminflecc-292

tion module2 from SpaCy. In some cases, it is not293

possible to inflect a word. To overcome this, we re-294

strict the tokens that are considered in this process295

to have POS tags in the list3.296

In the local shuffling method, we slide a window297

of variable length across the text and shuffle the298

tokens within this window. The window length is299

1https://spacy.io/api/tagger
2https://spacy.io/universe/project/lemminflect
3JJ, JJR, JJS, NN, NNS, NNP, NNPS, RB, RBR, RBS, VB,

VBD, VBG, VBN, VBP and VBZ

drawn randomly from a given range. When corrup- 300

tion and shuffling are both performed on the same 301

text, we refer to this as shufflection. 302

The pseudo-code for inflection and local shuf- 303

fling of a single report can be found in Appendix B, 304

Algorithms 1 and 2. To generate a dataset with vary- 305

ing quality, the corruption rate is varied for each 306

report in the dataset. In the experiments reported, 307

the probabilities for corruption of each report are 308

drawn randomly from a pre-defined range. The 309

pseudo code for this process can be found in Ap- 310

pendix B, Algorithm 3. 311

312Score generation We explore two methods for gen- 313

erating scores for corrupted output texts. In the first, 314

the corruption score is calculated from the propor- 315

tion of the total number of corruptions made across 316

all corruption processes. For text length N, number 317

of corruption methods K, and original token state 318

k=0, the corruption score and text quality score is 319

defined as: 320

S corruption =

K∑
k=1

N∑
i=1

(xk
i , xk−1

i )/KN (2) 321

S quality = 1 − S corruption (3) 322

The second method is based on the BLEURT 323

score, a state-of-the-art metric for comparing candi- 324

dates and references in machine translation, which 325

is trained on human judgements, and which uses 326

context embeddings (Sellam et al., 2020). In AR- 327

GENT, we use BLEURT to assign a score to each 328

reference paired with its corrupted proxy output. 329

In both the BELURT based and corruption count 330

based scoring methods, we use the score as the la- 331

bel when training the auto-evaluation model on the 332

proxy outputs. 333

3.2 Meta-evaluation of evaluation models 334

For text generation datasets with human annotation, 335

we can use the correlation between auto-evaluation 336

and human evaluation to measure the performance 337

of auto-evaluation models. Human annotation is, 338

however, a difficult task that can result in inconsis- 339

tent data (Clark et al., 2021; Karpinska et al., 2021). 340

Given that synthetic text generators are trained on 341

real data, with an objective to mimic real data, it 342

can be assumed that the language quality score of a 343

real text should be no less than that of the synthetic 344

text. With this assumption, we can build test tasks 345

without human annotation. 346

In some limited text generation cases, a set of 347

pairwise real and synthetic texts do exist. For ex- 348
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ample, Liyanage et al. (2022) pairs real texts with349

versions in which a few sentences are substituted350

by generated texts. These are used to train gener-351

ated text detection models. In evaluation, model352

scores between the real and these semi-synthetic353

texts are compared. A true positive exists if the real354

text score is greater than that of the semi-synthetic355

text score.356

For cases in which no such pairs exist, we pro-357

pose a batch level approach. A batch of of texts,358

say 100, are selected, among which 90% are syn-359

thetic and 10% are real. All texts in the batch are360

ranked by their auto-evaluation scores. The top k%361

of ranked texts are then sampled, with k varying362

from 1 to 100. For each k, the number of real texts363

found in this top k% is calculated, as a percent-364

age of the total number of real texts. We refer to365

this as the pick-up rate, i.e. the rate at which the366

auto-evaluation is able to pick the real texts. An367

example pick-up rate graph is shown in Figure 2,368

where the x axis gives the top k% samples of the369

ranking, and the y axis gives the pick-up rate of370

real texts among the top k% samples. For a 90%371

to 10% split of synthetic to real texts, the best case372

is when all real texts are placed in the top 10% of373

the ranking, which corresponds to the upper bound374

line in the graph. In the worst case, all real texts375

would be placed in the bottom 10% of the ranking,376

which is shown by the lower bound line. If we were377

to rank the texts randomly, there is a probability378

that 10% of real texts would be picked up at every379

decile, which is represented by the diagonal line380

in the graph. For an auto-evaluation model, the381

area between its curve and the lower bound reflects382

how good the auto-evaluation model is. We define383

a performance metric, given by the area under the384

model curve as a percentage of the area between385

the upper and lower bounds. As the model curve386

is discrete from 0 to 100, the area is calculated by387

summation of the height above the lower bound388

line at each discrete point. The diagonal random389

ranking line defines an area half that between the390

bounds, and therefore an evaluation score of 50%.391

4 Experiments392

Data and metrics To test our theory, we carried393

out experiments on three different type of texts:394

formal, informal and domain-specific. The details395

of datasets used for each type can be found in396

the corresponding subsections below. We report397

correlation, accuracy and pick-up graph area for398

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

model
random
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lower

Figure 2: Example pick-up rate graph

different tasks and datasets as discussed below. 399

400

Auto-evaluation models: Unless specified 401

otherwise, all auto-evaluation ARGENT models 402

reported in this paper are based on BERT-base 403

cased (12 layers, 768 hidden units, 12 heads) 404

(Devlin et al., 2018). We pre-train ARGENT 405

models on corrupted texts and deploy on test tasks 406

that consists of either machine generated text or 407

real text without fine-tuning on this test data. For 408

pre-training, we use batch size 32, learning rate 409

1e-5, and 3 training epochs. The model has about 410

110M parameters, and was trained on a single 411

A100 GPU. 412

413Pre-training dataset: Unless specified otherwise, 414

all pre-training datasets are built using inflection 415

and shuffling on real text. We conducted grid 416

search of the inflection and shuffling probability 417

ranges of 0.2, 0.4, 0.6, 0.8, 1.0 for each pre-training 418

dataset, and we use the combination of the two 419

best performing probability ranges of each method 420

for shufflection. The scores for each corrupted text 421

are calculated using both corruption count based 422

scoring and BLEURT based scoring. 423

4.1 Informal Text Evaluation: WebText 424

Dataset and Metrics Evaluation of informal text 425

used the WebText dataset 4. For ARGENT train- 426

ing, we use the training and validation data splits 427

provided in WebText. We use the WebText test 428

data previously annotated and reported with Mauve, 429

which includes synthetic data generated by eight 430

different generative models (Pillutla et al., 2021). 431

In this test dataset, the annotation is done by pair- 432

4https://github.com/openai/gpt-2-output-dataset
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wise text comparison on three criteria: human-like,433

sensible, and interesting. The pairwise preference434

annotations are then aggregated into a ranking by435

fitting a Bradley-Terry (BT) model to the output436

from the eight generative models. (Marden, 1996;437

Pillutla et al., 2021).438

We test ARGENT models across texts generated439

by all eight generative models, as provided in the440

Mauve test set. In order to provide a score com-441

parable to those reported in Pillutla et al. (2021),442

we create an auto-evaluation ranking by averaging443

the scores assigned to texts generated from each of444

the eight models. We then calculate the Spearman445

rank correlation between the human judgements446

provided by the test set and our machine rankings,447

ranging from -1 to 1, with a higher positive value448

indicating stronger positive correlation, as is used449

in the Mauve paper (Pillutla et al., 2021). How-450

ever, we need to treat this performance metric with451

caution, because the correlation is based on the452

ranking of only eight generative models, an insuffi-453

cient sample size to give a reliable correlation.454

455 Results Table 2 compares the Spearman correla-456

tions of ARGENT to those from six previously pub-457

lished evaluation models. We report the best per-458

forming ARGENT model, which is based on shuf-459

fling with probability range 0-0.8 and count-based460

score (see Appendix C Table 5 for performance of461

other models). From the results, we can see that462

ARGENT achieved the second-best performance463

for every criteria, just behind the Mauve model.464

Mauve, however, has two drawbacks compared465

to our auto-evaluation model. First, it requires a466

human-generated corpus. Second, it creates a sin-467

gle score for the model generating the test corpus,468

whereas ARGENT is creating an individual score469

for each report in that corpus, which we have av-470

eraged for the purpose of comparison to Mauve.471

The Sensible criterion is the closest criterion to lan-472

guage quality evaluation, on which ARGENT is473

comparable to Mauve. The Human-like criterion474

can also reflect language quality. Mauve benefits475

from directly measuring the distribution similarity476

between human text and machine generated text,477

whereas ARGENT, as a zero-shot learning model,478

is trained on corrupted data that is different from479

the synthetic data used for testing.480

.481 4.2 Formal Text Evaluation: Synthetic482

Academic Publications483

Data and Metrics We use the fully generated aca-484

demic papers dataset from Liyanage et al. (2022)485

to evaluate performance on formal text. There are 486

100 papers in the corpus. We provide comparisons 487

between ARGENT, trained on WebText data, to 488

other models reported in Liyanage et al. (2022), 489

including results for BERT-based models trained 490

on news headlines (Brown et al., 2020) . The use of 491

an auto-evaluation model trained on WebText data 492

to evaluate a very different type of text illustrates 493

ARGENT’s ability to adapt to different types of 494

text. 495

496Results The best result was achieved by AR- 497

GENT, using inflection with probability 0-0.6 and 498

BLEURT scoring. This is shown in Table 3 along 499

with those of other studies in the literature. Results 500

for other configurations of our method are given in 501

Appendix D Table 6. 502

Model Accuracy

Bag of ngrams 1-3, MNBA (1) 19.7
Bag of ngrams 1-3, PACA (2) 31.8
Bag of ngrams 1-3, MCH (3) 19.7
Bag of ngrams 1-3, SVM (4) 39.7
LSTM model (Maronikolakis et al., 2020) 59.1
Bi-LSTM (Maronikolakis et al., 2020) 40.9
BERT (Maronikolakis et al., 2020) 52.5
DistillBERT (Maronikolakis et al., 2020) 62.5
ARGENT 97.0

Table 3: Performance of different evaluation models
on academic publications. Liyanage et al. (2022) used
Bag of ngrams as features for (1) MNBA - Multinomial
Naive Bayes Algorithm (2) PACA - Passive Aggressive
Classifier Algorithm (3) MCH - Multinomial Classifier
with Hyperparameter (4) SVM - Support Vector Ma-
chine

4.3 Domain-specific Text Evaluation: Clinical 503

Text 504

Data and Metrics To test ARGENT performance 505

on domain-specific text, we generated synthetic re- 506

ports using BioGPT (Luo et al., 2022) trained on 507

clinical reports from a large secondary healthcare 508

provider (this work is currently under review). We 509

have chosen to use clinical text because real texts 510

are often difficult to obtain in a healthcare setting, 511

for privacy and ethical reasons. Synthetic clinical 512

text can therefore be useful for NLP development, 513

pre-training, and in education. We generated 97152 514

reports, with 92652 used for training and 4500 held 515

back for testing. There are five types of clinical 516

reports. Details of these types and the training and 517

validation splits can be found in Appendix E Table 518
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Metric Gen. PPL Zipf Coef. REP Distinct-4 Self-BLEU Mauve ARGENT

Human-like 81.0 83.3 -16.7 73.8 59.5 95.2 85.7
Sensible 73.8 69.0 -7.10 59.5 52.4 85.7 81.0

Interesting 64.3 52.4 -14.3 52.4 40.5 81.0 73.8

Table 2: Performance of different evaluation models on WebText (1) Generative perplexity (Fan et al., 2018) (2)
Zipf Coefficient (Holtzman et al., 2019) (3) Repetition (Pillutla et al., 2021) (4) Distinct 4 n-grams (Pillutla et al.,
2021) (5) Self-BLEU (Zhu et al., 2018) (6) auve (Pillutla et al., 2021)

7. For testing, we calculated the area size of pick-519

up rate graphs on 10 different sets of reports for520

each type, each set consisting 10 real reports and 90521

synthetic reports. We report overall performance522

here. Results for individual report types are given523

in Appendix E.524

525 Results The grid search of probability ranges for526

each evaluation method can be found in Appendix527

E Table 8. For the inflection with count-based528

score, the best probability range is 0-0.4; for in-529

flection with BLEURT scoring, the best probability530

range 0-1.0; shuffling count based, 0-0.4; shuffling531

BLEURT-based, 0-1.0; shufflection count-based,532

shuffling 0-0.6 and inflection 0-1.0; shufflection533

BLEURT-based, shuffling 0-0.8 and inflection 0-534

1.0. Table 4 shows the best overall results for each535

ARGENT model. The best performing model is the536

shuffling model with a count based score, at 79.3%537

(>50%). This experiment shows that ARGENT can538

be effectively used in this domain-specific setting.539

ARGENT models Score

Inflection_count 68.1±2.4
shuffling_count 79.3±2.6

shufflection_count 67.7±3.5
Inflection_bleurt 58.7±5.8
shuffling_bleurt 56.8±6.4

shufflection_bleurt 59.4±6.1

Table 4: Performance of different ARGENT auto-
evaluation models on clinical reports

5 Literature Review540

In previous reviews of evaluation research such as541

(Zhou et al., 2023)(Yuan et al., 2021), evaluation542

has been categorised based on task type and eval-543

uation method. For example, (Zhou et al., 2023)544

reviewed work based on the input and output type545

of the task, while (Yuan et al., 2021) classified eval-546

uation methods into supervised, unsupervised and547

automatic metrics. In this work, we review the 548

main evaluation methods described in the literature 549

along the two dimensions of our evaluation the- 550

ory: how the references are selected, and how the 551

similarity score is defined. 552

5.1 Gold-standard reference selection 553

There are generally two types of references in 554

RGT evaluation: pre-written human references and 555

output-oriented references. 556

557Pre-written references Most studies use pre- 558

written human references, often using multiple ref- 559

erences to reduce inaccuracy. Many shared-task 560

evaluation datasets provide such references. For ex- 561

ample, the WMT dataset5, a widely-used machine 562

translation evaluation benchmark, provides a set of 563

gold standard references for each translation task, 564

which is used by studies such as BERTScore(Zhang 565

et al., 2019), BLEURT(Sellam et al., 2020) and 566

BartScore(Yuan et al., 2021). There is little re- 567

search on justifying pre-written reference selection. 568

569Output-oriented References Some studies use 570

output-oriented references, which may be referred 571

to as human-in-the-loop or human-targeted ref- 572

erences(Snover et al., 2006). For example, in 573

Snover et al. (2006), references are made by man- 574

ually editing the model output until it is fluent 575

and has the same meaning as the input sentence. 576

A similarity scores is calculated on these human- 577

corrected references and on pre-written references 578

using Translation Edit Rate (TRE) (Przybocki et al., 579

2006), BLEU (Papineni et al., 2002) and METEOR 580

(Banerjee and Lavie, 2005) metrics. Scores when 581

using human-targeted references shows higher cor- 582

relation with human judgement for all three metrics. 583

This is in line with our unified generative evalua- 584

tion theory. As far as we are aware, application to 585

OGTs has not been discussed in the literature 586

5https://www.statmt.org/wmt22/metrics/index.html
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5.2 Similarity Metrics587

There are far more studies on similarity metrics,588

both supervised by training on human judgement589

as a regression problem, and unsupervised when590

based on matching or overlapping between syn-591

thetic text and references. Features used in the592

metrics may be statistical or embedding based.593

594 Unsupervised metrics For statistical based fea-595

tures, BLEU (Papineni et al., 2002) and ROUGE596

(Lin, 2004) compare text similarity by counting597

overlapping n-grams. Przybocki et al. (2006) uses598

edit distance to measure the dissimilarity between599

the output and the reference. Embedding-based600

unsupervised metrics, on the other hand, use neu-601

ral networks to embed texts into vector space and602

compare the similarity of these vectors between603

output sequences and references. For example,604

BERTScore (Devlin et al., 2018) uses a BERT605

model to generate token embeddings, and then cal-606

culates precision, recall and F1 score based on the607

dot product between output token embedding and608

reference token embedding. MoverScore calculates609

the distance between output and reference embed-610

dings (Zhao et al., 2019).611

612 Supervised metrics A good supervised model613

should have a high alignment with the human judge-614

ment test set. Using statistical features, Stanojević615

and Sima’an (2014) combines simple features in a616

linear model and tunes it with human judgements.617

On the embedding side, the BLEURT (Papineni618

et al., 2002) model uses a BERT model to encode619

the output and reference sequences, and provides620

a similarity score based on a prediction of human621

judgement based on vector representations. Rei622

et al. (2020) uses the XLM-RoBERTa (Lample and623

Conneau, 2019) encoder with pooling layers to tune624

with a human ranking.625

5.3 Other evaluations626

Proxy metrics Proxy metrics compare specific as-627

pects of the text such as entity and relation coverage628

(Goodrich et al., 2019) and text length distribution629

(Yue et al., 2022) to reflect the text similarity. These630

metrics only focus on specific properties of the gen-631

erated texts.632

633 Corpus Level metrics Aggregated metrics at the634

corpus level are widely used in OGT due to the635

challenge of obtaining human references. Statistics-636

based measures compare the model distribution637

with human distribution based on corpus statistics,638

such as the amount of repetition (Holtzman et al.,639

2019), the diversity of n-grams in the generated text 640

(Self-BLEU) (Zhu et al., 2018), generation perplex- 641

ity to measure how well the generated texts align 642

with human language patterns (Fan et al., 2018), 643

and distribution divergence (Pillutla et al., 2021), 644

which measures the KL divergence between human 645

language distribution and model language patterns. 646

These metrics can give a score to the model that 647

generated such a corpus, but cannot give a quality 648

score for each document. 649

650This work ARGENT is, as far as we are aware, 651

unique in the literature. Rather than find a reference 652

for a given text, we pre-train a model on a dataset 653

constructed from pairs of model output proxy and 654

their most similar references, and their similarity 655

scores. The model learns the mapping from output 656

proxy directly to the similarity score without see- 657

ing the underlying reference. During application, 658

ARGENT transfers this ability to an unseen text 659

generation model output text, and assigns a score 660

that reflects the quality of the generated text. 661

6 Conclusion 662

In this work, we have proposed a unified theory for 663

machine generated text evaluation, that works both 664

for RGT and OGT. We pointed out the lack of fo- 665

cus on gold-standard reference selection and have 666

suggested an output-oriented reference annotation 667

method for OGTs based on existing RGT output 668

correction methods. We have developed ARGENT, 669

a novel auto-evaluation method on OGT language 670

quality evaluation that requires no human annota- 671

tion. We have used this auto-evaluation model on 672

different text types and compared it to other com- 673

monly used methods. These experiments show that 674

ARGENT out performs all other methods with the 675

exception of Mauve with web text, to which it is 676

ranked second. In comparison to Mauve, however, 677

ARGENT does not require a human corpus, and is 678

able to provide a score for individual texts, rather 679

than for the model generating those texts. Finally, 680

we reviewed previous works along axes of refer- 681

ence selection and the use of similarity metrics. 682

7 Limitations 683

This paper provides a text corruption pre-training 684

framework as a proxy for synthetic text, but only 685

explores the use of inflection and local shuffling 686

as corruption methods. If corruption methods can 687

be targeted at specific task evaluation criteria and 688

at the mistakes actually made in synthetic texts, 689
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auto-evaluation model could be improved.690

The experiments in this work only focus on lan-691

guage quality of texts. More advanced generative692

models have less language problems, but face other693

problems such as machine-like responses and hal-694

lucination. Expansion of corruption retraining to-695

wards these issues could be of interest.696

We have not carried out experiments on output-697

oriented human annotation due to the time and698

labour costs. Work on output-oriented references699

using up-to-date similarity metrics and covering700

a broader range of datasets is expected to further701

support this theory.702

8 Ethical Considerations703

As this is a work on the evaluation of generated text704

quality, rather than the generation of text itself, it705

has minimal ethical impact. The possible impacts706

of this work are707

• We have provided a new evaluation paradigm708

with which researchers can work.709

• The ARGENT evaluation model provides a710

measure of the language quality of generated711

text, thus enabling better decisions on which712

generated texts to use for a given use case.713

• ARGENT only considers language quality,714

and not the content of generated text. In any715

text generation task, content should also be716

considered.717

The use of clinical reports was approved by718

(redacted for anonymisation), with facility for pa-719

tient opt-out. The reports were stored and pro-720

cessed in an approved, secure environment by au-721

thorised researchers. We do not report any individ-722

ual data from the reports.723

The use of Mauve annotated data (Pillutla et al.,724

2021) and synthetic academic data (Liyanage et al.,725

2022) are under GNU licence 2.0. BLEU (Papineni726

et al., 2002) code is under BSD 3-Clause. ROUGE727

(Lin, 2004) and BLEURT (Sellam et al., 2020) code728

are under Apache 2.0. BERTScore (Zhang et al.,729

2019) code is under MIT. All with intended use.730
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A Effects of references and similarity functions 869

The illustrative graph 3 visualises the effects of references and similarity functions. The graph shows a toy 870

2-D version of space where the Euclidean distance between two points in this graph represents the the 871

similarity score between them defined by some similarity function. In each space, blue dots represent all 872

the gold-standard references, and two candidates of machine output are marked by green and red. In this 873

graph, we can see that the red point is an worse candidate compare to red. But if we chose the left most 874

reference, then the red point would have a higher score. For example, this can the case in our example 875

where "He truly is a clever dog" translation scores higher with certain references. But according to our 876

evaluation theory, the score of the green candidate should be defined by the blue dot closes to it which is 877

the one right on top of it, and the score of the red candidate is defined by the closest blue dot on its right. 878

This will give us a correct judgement that the green candidate is a better candidate than the red one. 3(b) 879

shows a space using better similarity function for example, BERT score versus BLEU. we can see that 880

this similarity function has better ability to cluster the acceptable references closer than 3(a), This reduces 881

the variability in the scores due to different reference choices. In this graph, if we chose the reference on 882

the left, the distance to the red dot is not so close compared to that to the green one. But this may not 883

solve the problem. The selection of closest reference is still not replaceable in most tasks especially larger 884

the reference space. 885

references
candidite 1
candidite 2

(a) some similarity function space

references
candidite 1
candidite 2

(b) a better similarity function space

Figure 3: Illustration of effects of reference points and similarity function
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B Text Corruption Methods886

Algorithm 1 Token Inflection
Define pos_list, inflection_probability, initialise inflected_text← empty string ""
for current_token in text do

if draw from inflection_probability then
current_pos← pos_tagger(sentence, current_token)
inflected_pos← pos_list - current_pos
inflected_token← inflection(token, inflected_pos)
inflected_text← inflected_text+" "+inflected_token

end if
end for
return inflected_text

Algorithm 2 Token shuffling
Define window_range, shuffling_probability, initialise shuffled_text← empty string "", remain_text←
text
while len(remain_text)>0 do

if draw from shuffling_probability then
draw win_length from window_range
curr_text←remain_text[:win_length]
shuffled_text← shuffled_text +" "+ shuffle(current_text)
remain_text← remain_text-curr_text

end if
end while
return shuffled_text

Algorithm 3 Text Corruption with corruption count based score
Define corruption method set K, prob range prange, initialise corr_data
for text n in N do

initialise corr_count = 0
for corruption method k in K do

prob← random(0, prob_range)
corr_text = corr_method_k(text, prob)
for i in text length do

if corr_text[i] != text[i] then
corr_count← corr_count + 1

end if
end for

end for
score = 1-corr_count/len(K)*N
corr_data append (corr_text, score)

end for
return corr_data
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C Hyper-parameter tuning for WebText evaluation 887

Score Prob Inflection Shuffling
Human-like Sensible Interesting Human-like Sensible Interesting

Count

0-0.2 83.3 71.4 69.0 0-0.2 85.7 81.0
0-0.4 83.3 71.4 69.0 78.6 76.2 61.9
0-0.6 69.0 57.1 45.2 81.0 73.8 66.7
0-0.8 83.3 76.2 69.0 85.7 81.0 73.8
0-1.0 66.7 52.4 54.8 81.0 78.6 66.7

BLEURT

0-0.2 -47.6 -52.4 -61.9 -40.0 -45.0 -51.7
0-0.4 47.6 35.7 35.7 -59.5 -64.3 -81.0
0-0.6 64.3 54.8 52.4 -9.52 -14.3 -40.5
0-0.8 81.0 73.8 66.7 -90.5 -90.5 -97.6
0-1.0 81.0 73.8 66.7 -38.1 -40.0 -57.1

Shufflection (Prob: Shuffling, Inflection)

Count

0-0.2, 0-0.4 88.1 78.6 76.2 86.7 80.0 3 76.7
0-0.2, 0-0.8 88.1 78.6 76.2 70 61.7 60
0-0.8, 0-0.4 88.1 78.6 76.2 79.9 71.7 66.7
0-0.8, 0-0.8 85.7 76.2 71.4 78.36 70.0 63.3

Table 5: Hyper-parameter tuning: inflection on webtext data

Table 5 shows no great differences between shuffling and inflection. Interestingly, a BLEURT-based score 888

does not give a high score in most cases 889

D Hyper-parameter Tuning for Synthetic Academic Publications 890

method score 0-0.2 0-0.4 0-0.6 0-0.8 0-1.0

Inflection
Count 58 52 59 51 52

BLEURT 85 79 97 86 80

Shuffling
Count 69 69 68 67 63

BLEURT 93 77 64 91 75

Table 6: Hyper-parameter tuning: synthetic academic publications

From the Table 6, we can see that the model using BLEURT-based score tends to be the best for this task, 891

and the difference of using inflection or shuffling method is not very significant. 892

E Hyper-parameter tuning for clinical text evaluation 893

The clinical reports include five types: Colonoscopy, Gastroscopy, Endoscopic ultrasound (EUS), Sig- 894

modoiscopy and Endoscopic Retrograde Cholangiopancreatography (ERCP). The number of training 895

and testing samples for each type can be found in Table 7. Table 8 shows that with count-based score 896

models, the performance for colonoscopy, gastroscopy and flexible sigmoidoscopy tends to be better than 897

the performance of EUS and ERPC. 898
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Model Prob Col Endo ERCP Gstr Sig Total

train 20411 2009 1348 40658 9453 243 74122
valid 3676 971 784 10263 2790 46 18530
total 24087 2980 2132 50948 12243 289 92652

Table 7: Statistics of clinical data

Score Prob Col Endo ERCP Gstr Sig Total

Inflection

Count

0-0.2 66.1±7.9 60.5±10.6 58.0±9.9 67.9±11.2 67.5±13.8 64.0±4.7
0-0.4 70.1±6.6 62.9±10.5 64.6±12.7 70.9±9.3 71.8±10.9 68.1±2.4
0-0.6 66.9±6.1 56.0±11.3 61.8±10.4 66.9±11.0 72.1±10.6 64.7±4.2
0-0.8 68.8±8.8 62.4±11.1 61.7±10.1 70.6±8.3 71.0±9.3 66.9±2.9
0-1.0 69.6±5.6 59.6±13.0 62.9±9.3 72.6±10.2 70.7±9.0 67.1±3.1

BLEURT

0-0.2 58.1±12.1 56.1±9.8 56.2±9.2 61.3±15.6 54.8±11.0 57.3±6.3
0-0.4 59.1±12.3 55.5±10.0 54.2±10.0 60.1±16.0 54.8±11.0 56.7±6.1
0-0.6 59.3±12.3 54.8±9.2 54.5±9.3 60.4±15.0 57.0±11.4 57.2±5.8
0-0.8 60.4±12.3 56.5±10.2 56.1±8.9 60.4±15.3 56.7±10.9 58.0±6.4
0-1.0 60.5±11.1 56.4±9.4 58.5±9.2 60.9±14.9 57.0±10.4 58.7±5.8

Shuffling

Count

0-0.2 66.1±8.5 63.7±11.3 62.2±10.7 69.7±13.9 67.7±12.9 65.9±3.8
0-0.4 82.9±8.2 76.3±8.0 74.0±7.6 81.6±9.8 81.7±12.0 79.3±2.6
0-0.6 74.6±5.7 60.9±10.7 67.4±8.4 73.9±12.1 73.5±10.2 70.0±2.6
0-0.8 64.9±7.8 58.4±8.5 61.2±10.1 65.4±13.8 60.5±12.5 62.1±2.6
0-1.0 71.6±8.4 66.7±10.6 67.9±10.2 75.1±13.0 68.4±13.5 69.9±3.4

BLEURT

0-0.2 54.8±14.5 55.4±9.5 58.7±8.1 59.0±15.6 53.1±10.4 56.2±6.2
0-0.6 54.2±14.1 55.7±9.4 58.8±8.6 58.6±15.6 53.9±10.5 56.2±6.2
0-0.6 54.5±14.5 55.8±10.6 59.7±6.7 58.2±15.5 53.6±10.2 56.3±6.4
0-0.8 55.7±13.1 54.8±10.2 59.2±8.1 59.5±16.1 53.7±9.6 56.6±6.0
0-1.0 54.4±13.7 55.3±10.4 59.8±8.3 59.6±15.1 55.0±10.0 56.8±6.4

Shufflection (Prob: Shuffling, Inflection)

Count

0-0.4, 0-0.4 64.6±7.4 60.2±7.4 62.1±10.0 67.1±15.4 64.8±11.4 63.8±3.2
0-0.4, 0-1.0 66.6±7.6 57.4±8.3 62.1±11.1 68.2±12.6 63.4±11.4 63.9±3.1
0-0.6, 0-0.4 66.3±6.8 59.8±9.0 60.9±9.3 66.6±13.4 64.6±10.4 63.6±3.3
0-0.6, 0-1.0 80.6±8.1 57.2±6.2 64.3±11.1 69.1±13.6 67.3±11.7 67.7±3.5

BLEURT

0-1.0, 0-1.0 58.3±11.8 56.4±10.5 59.5±74.1 59.6±16.2 57.4±10.5 58.2±6.4
0-1.0, 0-0.8 60.4±13.5 55.8±11.7 59.7±8.5 62.1±15.3 58.6±9.7 59.3±6.3
0-0.8, 0-1.0 60.5±12.2 57.1±9.9 59.2±9.0 62.0±14.2 58.1±9.9 59.4±6.1
0-0.8, 0-0.8 60.7±11.9 55.4±9.7 59.3±8.7 61.0±16.2 57.5±9.9 58.8±5.6

Table 8: Hyper-parameter tuning on clinical reports
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