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Abstract

With increased accessibility of machine gen-
erated texts, the need for their evaluation has
also increased. There are two types of text gen-
eration task for which evaluation is required.
In open-ended generation tasks (OGTs), the
model generates de novo text without any in-
put on which to base it. Examples include
story generation. In reflective generation tasks
(RGTs), the model output is generated to re-
flect an input sequence. An example is ma-
chine translation. Evaluation of RGTs is well-
researched, and typically uses metrics that com-
pare one or more gold-standard references to
the model output. Evaluation of OGTs is less
well-researched, and reference-based evalua-
tions are more challenging: as the task is not
seeking to reflect an input, there are usually no
references. In this paper, we propose a theory
of evaluation that covers both RGT and OGT
evaluation. Based on this theory, we propose
an output-oriented reference generation method
for OGTs, develop an automatic language qual-
ity evaluation method for OGTs, and review
previous literature from this new perspective.
Our experiments demonstrate the effectiveness
of these methods across informal texts, formal
texts, and domain-specific texts. We conduct a
meta-evaluation to compare existing and pro-
posed metrics, finding that our approach better
aligns with human judgement.

1 Introduction

Natural language generation (NLG) has progressed
significantly in the last decade. This progress has
been made through the use of encoder-decoder
(Lewis et al., 2019) and decoder only architectures
(Brown et al., 2020; Touvron et al., 2023). In the
last few years, the use of these transformer-based
architectures (Vaswani et al., 2017) and increased
compute capacity to create generative Large Lan-
guage Models (LLMs) such as Brown et al. (2020);
Touvron et al. (2023) has attracted attention from
both academia and the public. However, the lack

of good evaluation metrics for generated text has
limited the ability to make informed choices of
the best machine generated candidates from one or
multiple LLMs.

NLG tasks can be categorised into one of two
types: reflective generation tasks (RGTs) and open-
ended generation tasks (OGTs). In RGTs, the
model output is a reflection of the information in
the input. The output is restricted by the input,
and its content must be faithful to the input. Such
tasks include machine translation and summarisa-
tion. OGTs generate new information that does
not exist in the input. Examples of such tasks in-
clude story generation and synthetic medical report
generation.

Many studies (Sellam et al., 2020; Zhang et al.,
2019; Papineni et al., 2002; Rei et al., 2020; Stano-
jevi¢ and Sima’an, 2014; Banerjee and Lavie, 2005)
on RGT evaluation focus on comparing the simi-
larity between pre-written human references and
machine-generated outputs. However, these meth-
ods often consider only the similarity metric used
and overlook the choice of references, which may
not necessarily give an accurate final evaluation
of the synthetic text quality. OGT evaluation is a
less researched area, due to the difficulty of creat-
ing pre-written human references (Yue et al., 2022).
Much research on OGT evaluation has instead com-
pared the distributional similarity between corpora
of synthetic text and corpora of real text in the tar-
get domain, using for example statistical methods
such as perplexity (Bhandari et al., 2020) or self-
BLEU (Zhu et al., 2018) to measure this similarity.
Other researchers such as Pillutla et al. (2021) es-
timate the underlying model distribution from the
corpora and measure the distance between this and
the real text distribution using Kullback-Leibler
(KL) divergence.

These evaluation approaches have two major
problems: (1) in OGT evaluation, they are unable
to provide a measure of the text quality of each



individual text; (2) there is no common conceptual
framework or way of communicating and compar-
ing evaluation metrics between these two text gen-
eration paradigms. This prevents us from using
the more thoroughly researched RGT evaluation
methods in OGT and drawing useful conclusions
across the two tasks.

This paper provides such a common concep-
tual framework, bridging between evaluations of
RGT and OGT. Based on this framework, we de-
velop a new evaluation method for OGTs that as-
sesses individual text quality without recourse to
any reference. We call this evaluation method AR-
GENT (Automated Reference-free Evaluation of
GENerated Text). In order to compare the exist-
ing OGT evaluation metrics, such as Self-BLEU
and Mauve, with our own metrics, we develop a
comparison between evaluation metrics, i.e. an
evaluation of the evaluation metrics, which we re-
fer to as a meta-evaluation.

The contributions of this paper are:

e A unified theoretical view of generative text

evaluation.

o ARGENT: a reference-free solution for auto-

matic OGT language quality evaluation.

e Comparisons of evaluation metrics, i.e. meta-

evaluations, with different text types.

e An output-oriented reference generation

method for OGTs.

e A short review of the literature on generative

model evaluation, from a new perspective.

2 Unified Theory for Generative Task
Evaluation

To illustrate the importance of reference choice in
evaluating generative tasks, we consider the follow-
ing simple task, translation of the French sentence
"C’est vraiment un homme intelligent" into English.
Let us assume that we are comparing two models.
Model 1 output is "He truly a smart man". This is
largely correct, but missing the verb. Model 2 out-
put is "He truly is a clever dog", with the noun com-
pletely wrong. Table 1 lists a set of possible correct
translations (references) and the scores from dif-
ferent metrics comparing the outputs against these
references. From the table, we can see: 1) Evalu-
ation metrics can vary significantly based on the
references used. If the last reference is used for
evaluation, then with all three metrics, "He truly
is a clever dog" will be picked as a better answer.
2) With BERTScore, the differences between ref-

erences are smaller than with BLEU and ROUGE.
This demonstrates that better metrics, such as those
that take in to account semantics, can reduce vari-
ability caused by different references and thus may
alleviate the problems caused by these.

References BLEU ROUGE-L BERTScore

Candidate 1:He truly a smart man

He truly is a smart man 82.24 90.91 96.14
He really is a smart guy 45.42 54.55 93.62
He really is an intelligent guy ~ 18.18 0.50 93.30
He truly is a clever man 49.45 72.73 94.98
Candidate 2: He truly is a clever dog
He truly is a smart man 55.68 66.67 94.72
He really is a smart guy 37.95 50.00 92.98
He really is an intelligent guy ~ 26.04 33.33 92.62
He truly is a clever man 82.94 83.33 95.45

Table 1: Scores of two translation candidates against
different references with different metrics

Evaluating language generation is very differ-
ent from evaluating traditional classification and
regression tasks. This is because language gener-
ation does not have a finite list of possible output
classes, as is found with classification: in the trans-
lation example above, there are multiple possible
correct outputs. Additionally, language generation
does not have a straightforward measurable scale
of output like the continuous numerical scale used
in regression. Thus, one cannot measure the perfor-
mance directly against the references. In addition,
most language generation tasks do not have one
correct answer, with many not even having a finite
list of acceptable answers.

In any evaluation of a text generation model, we
have:

o Output - the text generated by the model, e.g.
the candidate translation in a machine transla-
tion task.

o Reference space - the set of all possible gold-
standard references, or possible ground truth
texts. These are all texts that are correct an-
swers to the generation problem. In a machine
translation task, these would be all possible
correct translations. In a synthetic document
generation task, they would be all possible
correct documents.

o Reference - a single text sampled from the
reference space.

o Similarity score - a measure of the similarity
between the output and a reference.

Let us use Y to denote the set of all the possible



gold-standard references, and ¥ to denote the out-
put of the model. The evaluation of output ¥ can
be defined as

E = max(fsimitariy¥, Y1), VY; € Y) (D

where fimilariry 15 the similarity score function used
by the evaluation metric, e.g. BLEU, ROUGE,
BERTscore.

Key points to consider with respect to this defi-

nition are:

e In some literature, evaluation and similarity
scores are conflated. However, the ability
of an evaluation to differentiate between two
models also depends on the references used,
as demonstrated in the machine translation ex-
ample above. In this paper, we use the term
evaluation to refer to the combination of the
way in which references are selected, and the
similarity score used.

e For any similarity score in a given evalua-
tion, there exists a set of possible answers,
one between the model output and each pos-
sible reference. The similarity score for the
true evaluation of this output is defined by the
maximum, i.e. the score between the output
and the most similar reference.

e Some similarity scores are better than others.
For example, a score which takes in to account
the grammatical structure and semantics of a
text will be better than one which only takes
into account word frequency. The best pos-
sible, or perfect, similarity score is the one
that comes closest to human judgement of the
similarity between two texts.

e This definition covers both reflective genera-
tion and open ended generation. The differ-
ence between them is the size of the reference
space. Reflective generation has a restricted
reference space while open ended generation
has more flexibility, giving a larger reference
space.

We further illustrate the effects of references and

similarity metrics in Appendix A.

3 Auto-Evaluation for Language Quality

The large reference space in evaluation of open-
ended generation leads to a problem. How do we
find the closest reference? One solution is to use
output-oriented human annotation in which a hu-
man judge corrects errors in an output by making
the minimum number of changes, to give an error-
free text that is the closest reference to the output.
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Figure 1: Relationships between different evaluation
methods and experimental work presented in this paper

The output-reference pair can then be used in an
evaluation. This technique has been applied for
RGTs, such as machine translation, where it has
been shown to gives scores more aligned with hu-
man judgement than pre-written references with
a translation edit rate metric (Snover et al., 2006).
Our unified evaluation theory suggests that a sim-
ilar technique could also be used in OGTs, and
that such an output-oriented reference annotation
method could provide more accurate evaluations.

Such output-oriented evaluation is, however,
expensive and does not scale. We could over-
come this with an automated evaluation, but auto-
evaluation may itself vary in quality, with some
methods providing results that are closer to those
of a perfect evaluation than others. We there-
fore need to consider ways in which we might
measure the quality of auto-evaluations. The re-
mainder of this paper discusses a new reference-
free auto-evaluation method, ARGENT, and meta-
evaluations of this and existing methods under dif-
ferent dataset conditions. Figure 1 shows the re-
lationships between evaluation, generative evalua-
tion theory, auto-evaluation, and the experiments
reported in this paper.

3.1 ARGENT : Pre-trained Auto-evaluation
on Corrupted Texts

To understand auto-evaluation, consider formula 1
as an evaluation model. Given a set of all possible
references, and the output from some NLP genera-



tive model, this evaluation model will provide an
evaluation score. However, it is not usually pos-
sible to create a set of all possible references. It
is also hard to directly work out which reference,
from all the possible references, gives the maxi-
mum score for a given output.

If, for some NLP task, we were able to create a
set of proxies for model outputs, and if we know
the evaluation score for these proxies in advance,
we can envisage training an evaluation model on
these proxies and their scores. This model would
then be able to predict the evaluation score on pre-
viously unseen output for the same NLP task. Once
trained, this evaluation model - ARGENT - would
be able to predict an evaluation score without hav-
ing seeing any reference. In order to create such a
set of proxy outputs and their evaluation scores, we
reverse reference generation. Rather than generate
a reference for an output, we generate a likely out-
put from a real text reference, by corrupting the real
text in some way. This will give us a proxy model
output paired with a reference which approximates
the output. Moreover, the degree to which the ref-
erence approximates the output will depend on the
amount of corruption, and can therefore be varied
and quantified, providing a metric that describes
how well the proxy output matches the reference,
i.e. an evaluation score for the proxy output.

Text corruption Text corruption methods need to
align with variation in language quality in gener-
ated text. In this regard, we propose two text cor-
ruption methods, an inflection method and a local
shuffling method.

In the inflection method, the tokens in each
sequence are inflected to different part-of-speech
(POS) forms. For example, in the sentence "I like
books", the token "books" is a plural noun. We can
inflect it to a past tense verb "booked" to create the
corrupted sentence "I like booked". In the work
described in this paper, we use SpaCY POS tags'
and we use the tagger module! and lemminflecc-
tion module” from SpaCy. In some cases, it is not
possible to inflect a word. To overcome this, we re-
strict the tokens that are considered in this process
to have POS tags in the list’.

In the local shuffling method, we slide a window
of variable length across the text and shuffle the
tokens within this window. The window length is

Thttps://spacy.io/api/tagger

Zhttps://spacy.io/universe/project/lemminflect

33, JIR, JJS, NN, NNS, NNP, NNPS, RB, RBR, RBS, VB,
VBD, VBG, VBN, VBP and VBZ

drawn randomly from a given range. When corrup-
tion and shuffling are both performed on the same
text, we refer to this as shufflection.

The pseudo-code for inflection and local shuf-
fling of a single report can be found in Appendix B,
Algorithms 1 and 2. To generate a dataset with vary-
ing quality, the corruption rate is varied for each
report in the dataset. In the experiments reported,
the probabilities for corruption of each report are
drawn randomly from a pre-defined range. The
pseudo code for this process can be found in Ap-
pendix B, Algorithm 3.

Score generation We explore two methods for gen-
erating scores for corrupted output texts. In the first,
the corruption score is calculated from the propor-
tion of the total number of corruptions made across
all corruption processes. For text length N, number
of corruption methods K, and original token state
k=0, the corruption score and text quality score is
defined as:

K
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The second method is based on the BLEURT
score, a state-of-the-art metric for comparing candi-
dates and references in machine translation, which
is trained on human judgements, and which uses
context embeddings (Sellam et al., 2020). In AR-
GENT, we use BLEURT to assign a score to each
reference paired with its corrupted proxy output.
In both the BELURT based and corruption count
based scoring methods, we use the score as the la-
bel when training the auto-evaluation model on the
proxy outputs.

3.2 Meta-evaluation of evaluation models

For text generation datasets with human annotation,
we can use the correlation between auto-evaluation
and human evaluation to measure the performance
of auto-evaluation models. Human annotation is,
however, a difficult task that can result in inconsis-
tent data (Clark et al., 2021; Karpinska et al., 2021).
Given that synthetic text generators are trained on
real data, with an objective to mimic real data, it
can be assumed that the language quality score of a
real text should be no less than that of the synthetic
text. With this assumption, we can build test tasks
without human annotation.

In some limited text generation cases, a set of
pairwise real and synthetic texts do exist. For ex-



ample, Liyanage et al. (2022) pairs real texts with
versions in which a few sentences are substituted
by generated texts. These are used to train gener-
ated text detection models. In evaluation, model
scores between the real and these semi-synthetic
texts are compared. A true positive exists if the real
text score is greater than that of the semi-synthetic
text score.

For cases in which no such pairs exist, we pro-
pose a batch level approach. A batch of of texts,
say 100, are selected, among which 90% are syn-
thetic and 10% are real. All texts in the batch are
ranked by their auto-evaluation scores. The top k%
of ranked texts are then sampled, with k varying
from 1 to 100. For each k, the number of real texts
found in this top k% is calculated, as a percent-
age of the total number of real texts. We refer to
this as the pick-up rate, i.e. the rate at which the
auto-evaluation is able to pick the real texts. An
example pick-up rate graph is shown in Figure 2,
where the x axis gives the top k% samples of the
ranking, and the y axis gives the pick-up rate of
real texts among the top k% samples. For a 90%
to 10% split of synthetic to real texts, the best case
is when all real texts are placed in the top 10% of
the ranking, which corresponds to the upper bound
line in the graph. In the worst case, all real texts
would be placed in the bottom 10% of the ranking,
which is shown by the lower bound line. If we were
to rank the texts randomly, there is a probability
that 10% of real texts would be picked up at every
decile, which is represented by the diagonal line
in the graph. For an auto-evaluation model, the
area between its curve and the lower bound reflects
how good the auto-evaluation model is. We define
a performance metric, given by the area under the
model curve as a percentage of the area between
the upper and lower bounds. As the model curve
is discrete from O to 100, the area is calculated by
summation of the height above the lower bound
line at each discrete point. The diagonal random
ranking line defines an area half that between the
bounds, and therefore an evaluation score of 50%.

4 Experiments

Data and metrics To test our theory, we carried
out experiments on three different type of texts:
formal, informal and domain-specific. The details
of datasets used for each type can be found in
the corresponding subsections below. We report
correlation, accuracy and pick-up graph area for
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Figure 2: Example pick-up rate graph

different tasks and datasets as discussed below.

Auto-evaluation models:  Unless specified
otherwise, all auto-evaluation ARGENT models
reported in this paper are based on BERT-base
cased (12 layers, 768 hidden units, 12 heads)
(Devlin et al., 2018). We pre-train ARGENT
models on corrupted texts and deploy on test tasks
that consists of either machine generated text or
real text without fine-tuning on this test data. For
pre-training, we use batch size 32, learning rate
le-5, and 3 training epochs. The model has about
110M parameters, and was trained on a single
A100 GPU.

Pre-training dataset: Unless specified otherwise,
all pre-training datasets are built using inflection
and shuffling on real text. We conducted grid
search of the inflection and shuffling probability
ranges of 0.2, 0.4, 0.6, 0.8, 1.0 for each pre-training
dataset, and we use the combination of the two
best performing probability ranges of each method
for shufflection. The scores for each corrupted text
are calculated using both corruption count based
scoring and BLEURT based scoring.

4.1 Informal Text Evaluation: WebText

Dataset and Metrics Evaluation of informal text
used the WebText dataset *. For ARGENT train-
ing, we use the training and validation data splits
provided in WebText. We use the WebText test
data previously annotated and reported with Mauve,
which includes synthetic data generated by eight
different generative models (Pillutla et al., 2021).
In this test dataset, the annotation is done by pair-

“https://github.com/openai/gpt-2-output-dataset



wise text comparison on three criteria: human-like,
sensible, and interesting. The pairwise preference
annotations are then aggregated into a ranking by
fitting a Bradley-Terry (BT) model to the output
from the eight generative models. (Marden, 1996;
Pillutla et al., 2021).

We test ARGENT models across texts generated
by all eight generative models, as provided in the
Mauve test set. In order to provide a score com-
parable to those reported in Pillutla et al. (2021),
we create an auto-evaluation ranking by averaging
the scores assigned to texts generated from each of
the eight models. We then calculate the Spearman
rank correlation between the human judgements
provided by the test set and our machine rankings,
ranging from -1 to 1, with a higher positive value
indicating stronger positive correlation, as is used
in the Mauve paper (Pillutla et al., 2021). How-
ever, we need to treat this performance metric with
caution, because the correlation is based on the
ranking of only eight generative models, an insuffi-
cient sample size to give a reliable correlation.

Results Table 2 compares the Spearman correla-
tions of ARGENT to those from six previously pub-
lished evaluation models. We report the best per-
forming ARGENT model, which is based on shuf-
fling with probability range 0-0.8 and count-based
score (see Appendix C Table 5 for performance of
other models). From the results, we can see that
ARGENT achieved the second-best performance
for every criteria, just behind the Mauve model.
Mauve, however, has two drawbacks compared
to our auto-evaluation model. First, it requires a
human-generated corpus. Second, it creates a sin-
gle score for the model generating the test corpus,
whereas ARGENT is creating an individual score
for each report in that corpus, which we have av-
eraged for the purpose of comparison to Mauve.
The Sensible criterion is the closest criterion to lan-
guage quality evaluation, on which ARGENT is
comparable to Mauve. The Human-like criterion
can also reflect language quality. Mauve benefits
from directly measuring the distribution similarity
between human text and machine generated text,
whereas ARGENT, as a zero-shot learning model,
is trained on corrupted data that is different from
the synthetic data used for testing.

4.2 Formal Text Evaluation: Synthetic
Academic Publications

Data and Metrics We use the fully generated aca-
demic papers dataset from Liyanage et al. (2022)

to evaluate performance on formal text. There are
100 papers in the corpus. We provide comparisons
between ARGENT, trained on WebText data, to
other models reported in Liyanage et al. (2022),
including results for BERT-based models trained
on news headlines (Brown et al., 2020) . The use of
an auto-evaluation model trained on WebText data
to evaluate a very different type of text illustrates
ARGENT’s ability to adapt to different types of
text.

Results The best result was achieved by AR-
GENT, using inflection with probability 0-0.6 and
BLEURT scoring. This is shown in Table 3 along
with those of other studies in the literature. Results
for other configurations of our method are given in
Appendix D Table 6.

Model Accuracy
Bag of ngrams 1-3, MNBA (1) 19.7
Bag of ngrams 1-3, PACA (2) 31.8
Bag of ngrams 1-3, MCH (3) 19.7
Bag of ngrams 1-3, SVM (4) 39.7
LSTM model (Maronikolakis et al., 2020) 59.1
Bi-LSTM (Maronikolakis et al., 2020) 40.9
BERT (Maronikolakis et al., 2020) 52.5
DistillBERT (Maronikolakis et al., 2020) 62.5
ARGENT 97.0

Table 3: Performance of different evaluation models
on academic publications. Liyanage et al. (2022) used
Bag of ngrams as features for (1) MNBA - Multinomial
Naive Bayes Algorithm (2) PACA - Passive Aggressive
Classifier Algorithm (3) MCH - Multinomial Classifier
with Hyperparameter (4) SVM - Support Vector Ma-
chine

4.3 Domain-specific Text Evaluation: Clinical
Text

Data and Metrics To test ARGENT performance
on domain-specific text, we generated synthetic re-
ports using BioGPT (Luo et al., 2022) trained on
clinical reports from a large secondary healthcare
provider (this work is currently under review). We
have chosen to use clinical text because real texts
are often difficult to obtain in a healthcare setting,
for privacy and ethical reasons. Synthetic clinical
text can therefore be useful for NLP development,
pre-training, and in education. We generated 97152
reports, with 92652 used for training and 4500 held
back for testing. There are five types of clinical
reports. Details of these types and the training and
validation splits can be found in Appendix E Table



Metric Gen. PPL  Zipf Coef. REP Distinct-4 Self-BLEU Mauve ARGENT
Human-like 81.0 83.3 -16.7 73.8 59.5 95.2 85.7

Sensible 73.8 69.0 -7.10 59.5 52.4 85.7 81.0
Interesting 64.3 52.4 -14.3 52.4 40.5 81.0 73.8

Table 2: Performance of different evaluation models on WebText (1) Generative perplexity (Fan et al., 2018) (2)
Zipf Coefficient (Holtzman et al., 2019) (3) Repetition (Pillutla et al., 2021) (4) Distinct 4 n-grams (Pillutla et al.,
2021) (5) Self-BLEU (Zhu et al., 2018) (6) auve (Pillutla et al., 2021)

7. For testing, we calculated the area size of pick-
up rate graphs on 10 different sets of reports for
each type, each set consisting 10 real reports and 90
synthetic reports. We report overall performance
here. Results for individual report types are given
in Appendix E.

Results The grid search of probability ranges for
each evaluation method can be found in Appendix
E Table 8. For the inflection with count-based
score, the best probability range is 0-0.4; for in-
flection with BLEURT scoring, the best probability
range 0-1.0; shuffling count based, 0-0.4; shuffling
BLEURT-based, 0-1.0; shufflection count-based,
shuffling 0-0.6 and inflection 0-1.0; shufflection
BLEURT-based, shuffling 0-0.8 and inflection 0O-
1.0. Table 4 shows the best overall results for each
ARGENT model. The best performing model is the
shuffling model with a count based score, at 79.3%
(>50%). This experiment shows that ARGENT can
be effectively used in this domain-specific setting.

ARGENT models Score
Inflection_count  68.1+2.4
shuffling_count  79.3+2.6
shufflection_count 67.7+3.5
Inflection_bleurt  58.7+5.8
shuffling_bleurt  56.8+6.4
shufflection_bleurt 59.4+6.1

Table 4: Performance of different ARGENT auto-
evaluation models on clinical reports

5 Literature Review

In previous reviews of evaluation research such as
(Zhou et al., 2023)(Yuan et al., 2021), evaluation
has been categorised based on task type and eval-
uation method. For example, (Zhou et al., 2023)
reviewed work based on the input and output type
of the task, while (Yuan et al., 2021) classified eval-
uation methods into supervised, unsupervised and

automatic metrics. In this work, we review the
main evaluation methods described in the literature
along the two dimensions of our evaluation the-
ory: how the references are selected, and how the
similarity score is defined.

5.1 Gold-standard reference selection

There are generally two types of references in
RGT evaluation: pre-written human references and
output-oriented references.

Pre-written references Most studies use pre-
written human references, often using multiple ref-
erences to reduce inaccuracy. Many shared-task
evaluation datasets provide such references. For ex-
ample, the WMT dataset’, a widely-used machine
translation evaluation benchmark, provides a set of
gold standard references for each translation task,
which is used by studies such as BERTScore(Zhang
et al., 2019), BLEURT(Sellam et al., 2020) and
BartScore(Yuan et al., 2021). There is little re-
search on justifying pre-written reference selection.

Output-oriented References Some studies use
output-oriented references, which may be referred
to as human-in-the-loop or human-targeted ref-
erences(Snover et al., 2006). For example, in
Snover et al. (2006), references are made by man-
ually editing the model output until it is fluent
and has the same meaning as the input sentence.
A similarity scores is calculated on these human-
corrected references and on pre-written references
using Translation Edit Rate (TRE) (Przybocki et al.,
2006), BLEU (Papineni et al., 2002) and METEOR
(Banerjee and Lavie, 2005) metrics. Scores when
using human-targeted references shows higher cor-
relation with human judgement for all three metrics.
This is in line with our unified generative evalua-
tion theory. As far as we are aware, application to
OGTs has not been discussed in the literature

Shttps://www.statmt.org/wmt22/metrics/index.html



5.2 Similarity Metrics

There are far more studies on similarity metrics,
both supervised by training on human judgement
as a regression problem, and unsupervised when
based on matching or overlapping between syn-
thetic text and references. Features used in the
metrics may be statistical or embedding based.

Unsupervised metrics For statistical based fea-
tures, BLEU (Papineni et al., 2002) and ROUGE
(Lin, 2004) compare text similarity by counting
overlapping n-grams. Przybocki et al. (2006) uses
edit distance to measure the dissimilarity between
the output and the reference. Embedding-based
unsupervised metrics, on the other hand, use neu-
ral networks to embed texts into vector space and
compare the similarity of these vectors between
output sequences and references. For example,
BERTScore (Devlin et al., 2018) uses a BERT
model to generate token embeddings, and then cal-
culates precision, recall and F1 score based on the
dot product between output token embedding and
reference token embedding. MoverScore calculates
the distance between output and reference embed-
dings (Zhao et al., 2019).

Supervised metrics A good supervised model
should have a high alignment with the human judge-
ment test set. Using statistical features, Stanojevic¢
and Sima’an (2014) combines simple features in a
linear model and tunes it with human judgements.
On the embedding side, the BLEURT (Papineni
et al., 2002) model uses a BERT model to encode
the output and reference sequences, and provides
a similarity score based on a prediction of human
judgement based on vector representations. Rei
et al. (2020) uses the XLM-RoBERTa (Lample and
Conneau, 2019) encoder with pooling layers to tune
with a human ranking.

5.3 Other evaluations

Proxy metrics Proxy metrics compare specific as-
pects of the text such as entity and relation coverage
(Goodrich et al., 2019) and text length distribution
(Yue et al., 2022) to reflect the text similarity. These
metrics only focus on specific properties of the gen-
erated texts.

Corpus Level metrics Aggregated metrics at the
corpus level are widely used in OGT due to the
challenge of obtaining human references. Statistics-
based measures compare the model distribution
with human distribution based on corpus statistics,
such as the amount of repetition (Holtzman et al.,

2019), the diversity of n-grams in the generated text
(Self-BLEU) (Zhu et al., 2018), generation perplex-
ity to measure how well the generated texts align
with human language patterns (Fan et al., 2018),
and distribution divergence (Pillutla et al., 2021),
which measures the KL divergence between human
language distribution and model language patterns.
These metrics can give a score to the model that
generated such a corpus, but cannot give a quality
score for each document.

This work ARGENT is, as far as we are aware,
unique in the literature. Rather than find a reference
for a given text, we pre-train a model on a dataset
constructed from pairs of model output proxy and
their most similar references, and their similarity
scores. The model learns the mapping from output
proxy directly to the similarity score without see-
ing the underlying reference. During application,
ARGENT transfers this ability to an unseen text
generation model output text, and assigns a score
that reflects the quality of the generated text.

6 Conclusion

In this work, we have proposed a unified theory for
machine generated text evaluation, that works both
for RGT and OGT. We pointed out the lack of fo-
cus on gold-standard reference selection and have
suggested an output-oriented reference annotation
method for OGTs based on existing RGT output
correction methods. We have developed ARGENT,
a novel auto-evaluation method on OGT language
quality evaluation that requires no human annota-
tion. We have used this auto-evaluation model on
different text types and compared it to other com-
monly used methods. These experiments show that
ARGENT out performs all other methods with the
exception of Mauve with web text, to which it is
ranked second. In comparison to Mauve, however,
ARGENT does not require a human corpus, and is
able to provide a score for individual texts, rather
than for the model generating those texts. Finally,
we reviewed previous works along axes of refer-
ence selection and the use of similarity metrics.

7 Limitations

This paper provides a text corruption pre-training
framework as a proxy for synthetic text, but only
explores the use of inflection and local shuffling
as corruption methods. If corruption methods can
be targeted at specific task evaluation criteria and
at the mistakes actually made in synthetic texts,



auto-evaluation model could be improved.

The experiments in this work only focus on lan-
guage quality of texts. More advanced generative
models have less language problems, but face other
problems such as machine-like responses and hal-
lucination. Expansion of corruption retraining to-
wards these issues could be of interest.

We have not carried out experiments on output-
oriented human annotation due to the time and
labour costs. Work on output-oriented references
using up-to-date similarity metrics and covering
a broader range of datasets is expected to further
support this theory.

8 Ethical Considerations

As this is a work on the evaluation of generated text
quality, rather than the generation of text itself, it
has minimal ethical impact. The possible impacts
of this work are

e We have provided a new evaluation paradigm
with which researchers can work.

e The ARGENT evaluation model provides a
measure of the language quality of generated
text, thus enabling better decisions on which
generated texts to use for a given use case.

e ARGENT only considers language quality,
and not the content of generated text. In any
text generation task, content should also be
considered.

The use of clinical reports was approved by
(redacted for anonymisation), with facility for pa-
tient opt-out. The reports were stored and pro-
cessed in an approved, secure environment by au-
thorised researchers. We do not report any individ-
ual data from the reports.

The use of Mauve annotated data (Pillutla et al.,
2021) and synthetic academic data (Liyanage et al.,
2022) are under GNU licence 2.0. BLEU (Papineni
et al., 2002) code is under BSD 3-Clause. ROUGE
(Lin, 2004) and BLEURT (Sellam et al., 2020) code
are under Apache 2.0. BERTScore (Zhang et al.,
2019) code is under MIT. All with intended use.
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A Effects of references and similarity functions

The illustrative graph 3 visualises the effects of references and similarity functions. The graph shows a toy
2-D version of space where the Euclidean distance between two points in this graph represents the the
similarity score between them defined by some similarity function. In each space, blue dots represent all
the gold-standard references, and two candidates of machine output are marked by green and red. In this
graph, we can see that the red point is an worse candidate compare to red. But if we chose the left most
reference, then the red point would have a higher score. For example, this can the case in our example
where "He truly is a clever dog" translation scores higher with certain references. But according to our
evaluation theory, the score of the green candidate should be defined by the blue dot closes to it which is
the one right on top of it, and the score of the red candidate is defined by the closest blue dot on its right.
This will give us a correct judgement that the green candidate is a better candidate than the red one. 3(b)
shows a space using better similarity function for example, BERT score versus BLEU. we can see that
this similarity function has better ability to cluster the acceptable references closer than 3(a), This reduces
the variability in the scores due to different reference choices. In this graph, if we chose the reference on
the left, the distance to the red dot is not so close compared to that to the green one. But this may not
solve the problem. The selection of closest reference is still not replaceable in most tasks especially larger
the reference space.
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Figure 3: Illustration of effects of reference points and similarity function
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B Text Corruption Methods

Algorithm 1 Token Inflection
Define pos_list, inflection_probability, initialise inflected_text « empty string
for current_token in text do
if draw from inflection_probability then
current_pos < pos_tagger(sentence, current_token)
inflected_pos « pos_list - current_pos
inflected_token <« inflection(token, inflected_pos)
inflected_text « inflected_text+" "+inflected_token
end if
end for
return inflected_text

nn

Algorithm 2 Token shuffling
Define window_range, shuffling_probability, initialise shuffled_text « empty string
text
while len(remain_text)>0 do
if draw from shuffling_probability then
draw win_length from window_range
curr_texte—remain_text[:win_length]
shuffled_text < shuffled_text +" "+ shuffle(current_text)
remain_text « remain_text-curr_text
end if
end while
return shuffled_text

"nn

, remain_text «

Algorithm 3 Text Corruption with corruption count based score
Define corruption method set K, prob range p,ange, initialise corr_data
for text nin N do

initialise corr_count = 0
for corruption method k in K do
prob « random(0, prob_range)
corr_text = corr_method_k(text, prob)
for i in text length do
if corr_text[i] != text[i] then
corr_count < corr_count + 1
end if
end for
end for
score = 1-corr_count/len(K)*N
corr_data append (corr_text, score)
end for
return corr_data
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C Hyper-parameter tuning for WebText evaluation

Score Prob Inflection Shuffling
Human-like Sensible Interesting Human-like Sensible Interesting

0-0.2 83.3 71.4 69.0 0-0.2 85.7 81.0

0-0.4 83.3 71.4 69.0 78.6 76.2 61.9

Count 0-0.6 69.0 57.1 45.2 81.0 73.8 66.7
0-0.8 83.3 76.2 69.0 85.7 81.0 73.8

0-1.0 66.7 524 54.8 81.0 78.6 66.7
0-0.2 -47.6 -52.4 -61.9 -40.0 -45.0 -51.7
0-0.4 47.6 35.7 35.7 -59.5 -64.3 -81.0
BLEURT 0-0.6 64.3 54.8 52.4 -9.52 -14.3 -40.5
0-0.8 81.0 73.8 66.7 -90.5 -90.5 -97.6
0-1.0 81.0 73.8 66.7 -38.1 -40.0 -57.1

Shufflection (Prob: Shuffling, Inflection)

0-0.2,0-0.4 88.1 78.6 76.2 86.7 80.03 76.7

0-0.2,0-0.8 88.1 78.6 76.2 70 61.7 60

Count  0-0.8,0-0.4 88.1 78.6 76.2 79.9 71.7 66.7
0-0.8,0-0.8 85.7 76.2 71.4 78.36 70.0 63.3

Table 5: Hyper-parameter tuning: inflection on webtext data

Table 5 shows no great differences between shuffling and inflection. Interestingly, a BLEURT-based score
does not give a high score in most cases

D Hyper-parameter Tuning for Synthetic Academic Publications

method score 0-0.2 0-04 0-0.6 0-0.8 0-1.0

Count 58 52 59 51 52

Inflection oy EURT 85 79 97 86 80

Shuffline  Count 69 69 68 67 63
€ BLEURT 93 77 64 91 75

Table 6: Hyper-parameter tuning: synthetic academic publications

From the Table 6, we can see that the model using BLEURT-based score tends to be the best for this task,
and the difference of using inflection or shuffling method is not very significant.

E Hyper-parameter tuning for clinical text evaluation

The clinical reports include five types: Colonoscopy, Gastroscopy, Endoscopic ultrasound (EUS), Sig-
modoiscopy and Endoscopic Retrograde Cholangiopancreatography (ERCP). The number of training
and testing samples for each type can be found in Table 7. Table 8 shows that with count-based score
models, the performance for colonoscopy, gastroscopy and flexible sigmoidoscopy tends to be better than
the performance of EUS and ERPC.
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Model Prob Col Endo ERCP Gstr Sig Total

train 20411 2009 1348 40658 9453 243 74122
valid 3676 971 784 10263 2790 46 18530
total 24087 2980 2132 50948 12243 289 92652

Table 7: Statistics of clinical data

Score Prob Col Endo ERCP Gstr Sig Total

Inflection

0-0.2 66.1£7.9 60.5+10.6 58.0£9.9 67.9+11.2 67.5+13.8 64.0+4.7
0-0.4 70.1+6.6  62.9+10.5 64.6+£12.7 70.9+93 71.8+£10.9 68.1+2.4
Count 0-0.6 66.9+£6.1 56.0+11.3 61.8+104 66.9+11.0 72.1+10.6 64.7+4.2
0-0.8 68.8+8.8 62.4+11.1 61.7+£10.1 70.6£8.3 71.0£9.3 66.9+2.9
0-1.0 69.6+5.6 59.6+13.0 629493 72.6+10.2 70.7£9.0 67.1+3.1

0-0.2 58.1+12.1 56.1+9.8 56.2+9.2 61.3+£15.6 54.8+11.0 57.3£6.3
0-04 59.1+12.3 55.5+£10.0 54.2+10.0 60.1+16.0 54.8+11.0 56.7+6.1
BLEURT 0-0.6 59.3+£12.3 548492 545493 604+15.0 57.0+114 57.2+5.8
0-0.8 60.4+12.3 56.5+10.2 56.1£8.9 60.4+153 56.7+109 58.0+6.4
0-1.0 60.5+11.1 56.4+94 585192 60.9+149 57.0+£104 58.7+5.8

Shuffling

0-0.2 66.1+8.5 63.7+11.3 62.2+10.7 69.7+£13.9 67.7£12.9 65.9+3.8
0-0.4 82.9+8.2 763+8.0 74.0+7.6 81.6+£9.8 81.7+12.0 79.31+2.6
Count 0-0.6 74.6£5.7 60.9+10.7 67.4+£8.4 73.9+12.1 73.5+10.2 70.0+£2.6
0-0.8 64.9+£7.8  58.4+8.5 61.2+10.1 65.4+13.8 60.5+12.5 62.1+2.6
0-1.0 71.6£8.4 66.7£10.6 67.9+£10.2 75.1+13.0 68.4+13.5 69.9+3.4

0-0.2 54.8+14.5 554495 58.7£8.1 59.0+£15.6 53.1+104 56.2+6.2
0-0.6 54.2+14.1 55.77+94  58.8+8.6 58.6+15.6 53.9+10.5 56.2+6.2
BLEURT 0-0.6 54.5+14.5 55.8410.6 59.7£6.7 58.2+15.5 53.6+10.2 56.3+6.4
0-0.8 55.7£13.1 54.8+10.2 59.2+8.1 59.5+£16.1 53.7£9.6 56.6+6.0
0-1.0 54.4+13.7 55.3+104 59.848.3 59.6+15.1 55.0+£10.0 56.8+6.4

Shufflection (Prob: Shuffling, Inflection)

0-04,0-04 64.6£74 60.2+74 62.1+£10.0 67.1+154 64.8x11.4 63.8+3.2
0-04,0-1.0 66.6+7.6 57.4+8.3 62.1£11.1 682+12.6 634+11.4 63.9+3.1

Count 1 06,004 663468 59.8+9.0 609493 66.6+13.4 64.6:104 63.6+33
0-0.6,0-1.0 80.648.1 572462 643+11.1 69.1£13.6 673+11.7 67.7+3.5
0-10,0-1.0 583+11.8 564+10.5 59.5+74.1 59.6+162 57.4+10.5 582464

pLuRy O10-0-08 604£135 S58+117 597+85 621153 58.6:9.7 593%6.3

0-0.8,0-1.0 60.5+12.2 57.1£99 59.2+9.0 62.0+14.2 58.1+99 59.4+6.1
0-0.8,0-0.8 60.7£11.9 55.4+9.7 59.3+8.7 61.0£16.2 57.5+9.9 58.8+5.6

Table 8: Hyper-parameter tuning on clinical reports
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