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ABSTRACT

Deepfake technology, powered by advanced generative models like GANs and dif-
fusion models, has raised serious ethical and security concerns due to its potential
for misuse in creating realistic yet deceptive content. These generative models are
becoming increasingly sophisticated, making it harder for humans to distinguish
real images from generated ones. This highlights the need for reliable machine-
based detection. However, current detection methods face significant challenges in
generalization, particularly when dealing with different generative models (cross-
generator) and diverse image scenarios (cross-dataset), such as faces, landscapes,
and objects, limiting their applicability across various contexts. To address this
challenge, we identified that the color dependency can often be unnecessary and
may even impede deepfake detection performance. Building on this insight, we
introduce Adaptive Gray (AG), a novel approach designed to improve classifier
generalization by compressing the RGB channels of images. Our experiments
on the large-scale GenImage dataset demonstrate that Adaptive Gray achieves the
highest improvement of 19.9% in average ACC, 22.0% in AP, and 20.1% in TPR
(at FPR=5%), consistently outperforming state-of-the-art classifiers. Meanwhile,
inference efficiency improved by at most 1 ×104 times.

1 INTRODUCTION

The rapid proliferation of hyper-realistic images generated by advanced models like diffusion mod-
els Dhariwal & Nichol (2021); Ho et al. (2020); Nichol & Dhariwal (2021); Rombach et al. (2021);
Mid (2022) poses growing societal threats, as humans increasingly struggle to distinguish synthetic
content from genuine material Frank et al. (2024). Regulatory responses are emerging accordingly;
for example, in September 2025 New South Wales (Australia) amended the Crimes Act 1900 to crim-
inalise the creation and sharing of sexually explicit deepfakes depicting real persons, with penalties
up to three years’ imprisonment (NSW, 2025). This highlights an urgent need for robust automated
deepfake detection.

Despite significant research, current State-of-the-Art (SOTA) deepfake detection methods often fail
to generalize effectively across unseen generative models (cross-generator) or diverse image do-
mains (cross-dataset, e.g., faces vs. landscapes) Sha et al. (2023); Tan et al. (2024); Wang et al.
(2023). Our in-depth analysis reveals that while some SOTA approaches show promise in con-
strained settings, their performance in real-world, dynamic scenarios remains unsatisfactory. This
critical limitation stems from their failure to capture intrinsic, robust distinctions between real and
synthetic images.

Our Work. We identify a crucial and often overlooked bottleneck hindering deepfake detection
generalization: the detrimental impact of an over-reliance on color dependency. Our systematic
empirical analysis reveals that conventional RGB representations, despite their information rich-
ness, introduce excessive color-dependent redundancy and noise. This noise can mislead classifiers,
causing them to learn spurious correlations rather than robust, intrinsic generative artifacts. Con-
sequently, models trained on full-color images struggle to adapt when color statistics shift across
diverse datasets or novel generative models. Our key insight is that intelligently collapsing these
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Figure 1: Qualitative comparison of artifacts in generated images before and after AG processing.
The top row shows original RGB images, while the bottom row displays the same images after our
proposed Adaptive Gray (AG) transformation. Notably, AG processing significantly enhances the
visibility of texture-based artifacts inherent in generated images (e.g., ADM Dhariwal & Nichol
(2021), IDDPM Nichol & Dhariwal (2021)) while suppressing color-dependent noise. This visual
transformation makes distinguishing features more apparent and substantially improves classifier
separation ability, particularly across diverse generative models.

color channels based on their intrinsic statistical differences can amplify hidden generative artifacts
and reveal more general distinguishing features.

Inspired by this pivotal insight, we propose Adaptive Gray (AG), a novel, lightweight, and inter-
pretable method. AG is designed to mitigate problematic color dependency and enhance generaliza-
tion by intelligently transforming RGB images into a specialized grayscale representation. Unlike
fixed grayscale conversions, AG learns optimal, data-driven coefficients to linearly combine RGB
channels through an adaptive training process. This allows AG to effectively suppress irrelevant
color details and accentuate subtle, texture-based artifacts unique to synthetic images, as visually
demonstrated in Figure 1.

We conduct extensive experiments demonstrating AG’s superior effectiveness and efficiency. Eval-
uated on challenging benchmark datasets like GenImage Zhu et al. (2024), AG consistently outper-
forms SOTA classifiers, achieving remarkable average improvements of 19.9% ACC, 22.0% AP, and
20.1% TPR@FPR=5%. Furthermore, AG significantly boosts inference efficiency by over 1 × 104

times. Our work not only highlights a fundamental challenge in deepfake detection but also offers a
powerful, generalizable solution validated by substantial empirical gains.

Contributions. Our main contributions are summarized as follows:

• We uncover and systematically analyze a critical, overlooked factor affecting deepfake de-
tection generalization: the detrimental impact of color dependency.

• Inspired by this insight, we propose Adaptive Gray (AG), a novel, lightweight, and in-
terpretable method designed to mitigate color dependency by learning optimal grayscale
transformations.

• We conduct extensive experiments demonstrating AG’s superior effectiveness, robustness,
generalization, and remarkable inference efficiency across challenging datasets, reinforcing
our initial hypothesis.

2 RELATED WORKS

The detection of generated images has been widely explored in recent years McCloskey & Albright
(2018; 2019); Guo et al. (2018). As GANs and diffusion-based models have advanced, distinguish-
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Figure 2: The distribution visualization before and after gray processing. (a) and (b) show dataset
distribution changes before and after gray compression. (c) and (d) evaluate real/fake detection
using ADM Dhariwal & Nichol (2021)-generated images, and (e) and (f) use DDPM Ho et al.
(2020)-generated images—both comparing results before and after gray processing.

ing synthetic images from real ones has become increasingly difficult Karras et al. (2019); Brock
(2018); Sauer et al. (2021).

Most existing methods focus on spatial artifacts introduced by generative models Yu et al. (2019);
Marra et al. (2019); Ricker et al. (2024); Wang et al. (2020); Sarkar et al. (2024); Wang et al.
(2023); Sha et al. (2023). For example, Wang et al. (2020) utilized deep neural networks to learn
the distinguishing artifacts in generated images. However, their approach heavily relied on large
amounts of GAN-generated images from diverse datasets. Sarkar Sarkar et al. (2024) conducted
a noteworthy study focusing on the coherence of lines and shadows in images, providing insights
into how physical inconsistencies could reveal generated content. DIRE Wang et al. (2023) used
reconstruction residuals for detection, but its reliance on expensive image reconstruction made it
impractical for large-scale detection tasks.

For fake face detection, researchers focus on identifying some representative artifacts based on the
distinct features of facial images Rossler et al. (2019); Haliassos et al. (2021); Wang & Deng (2021).
For example, Haliassos Haliassos et al. (2021) directed their work towards specific facial regions,
such as the eyes and mouth, enhancing generated face detection by focusing on these distinctive
areas. Wang Wang & Deng (2021) improved fake face detection by employing an attention-based
data augmentation method to guide the detector to explore representative facial regions.

Although these studies in deepfake detection have yielded promising results when training and test-
ing on fake images from the same distribution, they still struggle to generalize detectors to fake
images from different distributions, whether generated by different models or sourced from differ-
ent datasets. For example, Jeong Jeong et al. (2022) strengthened model performance by generating
unique fingerprints for classification. Chen Chen et al. (2022) adopted adversarial training methods,
enhancing model generalization and detection accuracy. Tan Tan et al. (2024) exploited upsampling
artifacts through Neighboring Pixel Relationships (NPR), but their method struggled with datasets
featuring diverse image distributions, as shown by our own experiments. While these approaches
attempt to improve the generalization of deepfake detection for cross-model generalization, none of
them focus on the challenge of cross-dataset generalization in deepfake detection.

Unlike previous methods, our method uniquely focuses on reducing color dependency in fake image
detection, which allows us to avoid the need for computing new data representation features during
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inference, as required by Wang Wang et al. (2023) and Tan Tan et al. (2024), thereby improving ef-
ficiency in the inference. Additionally, this streamlined approach significantly enhances the model’s
generalization capability (explained in Section 3.1).

3 METHODOLOGY

In this section, we introduce Adaptive Gray (AG), a novel approach designed to enhance the gen-
eralization capabilities of deepfake detection models. Our methodology is fundamentally driven
by a critical empirical observation: the often-detrimental impact of color dependency on model
performance across diverse generative models and datasets. We begin by detailing the systematic
analysis that led to this core insight, followed by the technical design of AG, which is engineered
to effectively mitigate this issue through an adaptive, data-driven grayscale transformation process.
Finally, we elaborate on the co-adaptive training strategy that enables AG to learn optimal image
representations for robust deepfake detection.

3.1 EMPIRICAL EVIDENCE FOR COLOR DEPENDENCY

Our work is premised on the hypothesis that an unnecessary reliance on color information within
deepfake detection models significantly hinders their generalization capability. To rigorously val-
idate this, we conducted a series of empirical analyses, focusing on how a simplified, grayscale
representation of images affects key aspects of deepfake detection performance. Specifically, we
aimed to address two core propositions:

• Hypothesis 1 (H1): Removing color dependency, through grayscale processing, will re-
duce the intrinsic variability between deepfake datasets (i.e., real and synthetic images
from different sources) and enhance the separability between real and generated images
within these datasets, thereby improving cross-dataset generalization.

• Hypothesis 2 (H2): Removing color dependency will improve the separability of real
and generated images across various individual generative models, leading to better cross-
generator generalization.

To conduct this foundational analysis, we employed a standard grayscale conversion based
on the BT.601 luminance formula as a control mechanism. For an input RGB image x =
[x(R),x(G),x(B)], where x(R), x(G), and x(B) represent the red, green, and blue channels respec-
tively, the grayscale image xgray is computed as:

xgray = 0.299 · x(R) + 0.587 · x(G) + 0.114 · x(B) (1)

This initial grayscale conversion serves to isolate the impact of color information, allowing us to
observe if its removal fundamentally benefits deepfake distinction.

Verifying Hypothesis 1 (H1). To assess the impact on cross-dataset variability and separability, we
analyzed the distributions of original RGB and grayscale images from three diverse datasets: Dif-
fusionForensics Wang et al. (2023), GenImage Zhu et al. (2024), and COCO Lin et al. (2014). We
utilized UMAP (Uniform Manifold Approximation and Projection) McInnes et al. (2018) to map
high-dimensional image features into a two-dimensional space for visualization. As depicted in
Figure 2 (a) and (b), our observations revealed that after grayscale processing, the feature distribu-
tions of these datasets became noticeably more aligned. This suggests that the elimination of color
dependency reduces the inherent inter-dataset variability. More importantly, to quantify the sepa-
rability between real and generated images, we employed two metrics: Density Overlap Li et al.
(2021) and Maximum Mean Discrepancy (MMD) Cheng & Xie (2021). Lower density overlap and
higher MMD values indicate better separation. Our results (illustrated in Figure 2 (c) and (d), cor-
responding to real/generated image separation) unequivocally demonstrated that grayscale images
significantly increased the separation between real and generated image distributions. This finding
strongly supports H1, indicating that color often introduces distracting information that impedes
effective cross-dataset generalization.

Verifying Hypothesis 2 (H2). To investigate the effect on cross-generator generalization, we con-
ducted similar experiments by analyzing image distributions from various generative models. Fo-
cusing on the DDPM Ho et al. (2020) generator as a representative example, we compared the
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UMAP distributions of real and generated images before and after grayscale processing. As shown
in Figure 2 (e) and (f), grayscale conversion led to a more pronounced separation between real and
generated image distributions for this specific generator, consistently indicated by lower Density
Overlap and higher MMD scores. This consistent improvement across different generators further
substantiates H2, highlighting that generative models leave distinct, non-color-dependent artifacts
that become more salient when color information is removed.

Our empirical analysis strongly suggests that excessive reliance on color dependency within deep-
fake detection models significantly compromises their generalization capability. Grayscale process-
ing, by mitigating this dependency, reveals more generalizable distinguishing features between real
and generated images, laying the groundwork for improved detection across diverse scenarios.

3.2 ADAPTIVE GRAY (AG) FRAMEWORK

Step 1: Image transformation Step 2: Detection processes

Real

Fake

RGB channels  Gray image

c

 B. Adaptive kernel 

c

A. Original kernel  

Optimize

Transform

Transform

Binary classifier

Figure 3: Pipeline of AG Training. AG is optimized from the original grayscale (OG) parameters.
The adaptive training process iteratively adjusts both the AG kernel and binary classifier to improve
detection performance.

Inspired by the empirical evidence that color dependency significantly impedes deepfake detection
generalization, we propose Adaptive Gray (AG). Unlike conventional methods that rely on fixed
color-to-grayscale conversion coefficients (as used in our empirical analysis), AG introduces a novel,
data-driven approach to learn the optimal linear combination of RGB channels. This adaptive trans-
formation is designed to effectively suppress misleading color information while accentuating the
subtle, intrinsic textural artifacts that are highly indicative of synthetic origins.

The core idea of AG is to allow the deepfake classifier to actively participate in defining the most
discriminative grayscale representation. As intuitively illustrated in Figure 1, AG processing ampli-
fies these subtle texture-based artifacts that are typically obscured by color variations in generated
images, thereby making the distinguishing features more salient for the classifier. The ”Adaptive”
nature of our framework stems from an adaptive training process that jointly optimizes both the
image transformation (grayscale conversion parameters) and the subsequent detection stages.

3.2.1 FORMALIZING THE ADAPTIVE GRAYSCALE TRANSFORMATION

We define the adaptive grayscale function, G(x;w), which transforms an input RGB image x ∈
RH×W×3 (with height H , width W , and 3 color channels) into a single-channel grayscale image
x′ ∈ RH×W . This transformation is a linear combination of the input image’s red, green, and blue
channels:

x′ = G(x;w) = wR · x(R) + wG · x(G) + wB · x(B) (2)

Here, w = [wR, wG, wB ] represents the learnable parameters (weights) for the grayscale trans-
formation. Unlike the fixed coefficients in standard grayscale methods like BT.601 (Eq. 1), these
parameters wR, wG, wB are not predetermined. Instead, they are dynamically optimized during the
training process to best suit the deepfake detection task. The resulting image x′ is what we refer to
as the Adaptive Gray (AG) image.
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3.2.2 CO-ADAPTIVE TRAINING ALGORITHM

The effectiveness of AG lies in its co-adaptive training process, where the grayscale transformation
parameters w and the deepfake binary classifier parameters θ are optimized in an alternating manner.
This allows the grayscale conversion to adapt to the classifier’s needs, and vice-versa, fostering a
representation that maximizes separability between real and fake images. The training pipeline is
illustrated in Figure 3, and the adaptive training process can be formally expressed as follows:

Let L(y, t) be the classification loss function (e.g., Binary Cross-Entropy), where y is the predicted
probability from the classifier and t is the true binary label (real or fake). Let f(·; θ) denote the
deepfake binary classifier with parameters θ.

Step 1: Optimize Classifier Parameters (θ) In this step, the AG parameters w are held fixed. The
classifier f is then trained on the images already transformed by the current w, with the objective of
minimizing the classification loss:

min
θ

L(f(G(x;w); θ), t) (3)

This step enables the classifier to learn how to best classify images given the current adaptive
grayscale representation, adapting its features to the information exposed by G(x;w).

Step 2: Optimize Adaptive Grayscale Parameters (w) Subsequently, the classifier parameters θ
are fixed. The AG parameters w are then optimized to further minimize the same classification loss,
effectively learning how to transform the input images to make them most discriminative for the
fixed classifier:

min
w

L(f(G(x;w); θ), t) (4)

This crucial step allows the AG kernel to dynamically adjust its channel weights, pushing the
grayscale transformation towards a representation that highlights the most salient generative arti-
facts, thereby improving the overall model’s generalization without requiring complex architectures
or large additional parameters.

This alternating optimization process, typically performed over several training cycles, ensures that
both the image representation and the classification model co-evolve, leading to a fine-tuned system
that is highly effective and generalizable for deepfake detection.

4 EXPERIMENT SETUP

In this section, we introduce the experiment setup, including the datasets, models, baselines, metrics
and implementation details.

Train Datasets. Following Wang et al. (2023), we use DiffusionForensics for training. Real images
come from the bedroom category of LSUN (Yu et al., 2015). In total, the dataset contains 40,000
real images in the training set. Generated images are produced by ADM (Dhariwal & Nichol, 2021)
in the same category (40k).

Test Datasets. Following previous studies Wang et al. (2023); Zhu et al. (2024); Tan et al.
(2024), we employed two types of test datasets in our study. (1) The first is the test dataset from
LSUN bedroom subset of the DiffusionForensics Wang et al. (2023) dataset Wang et al. (2023),
which serves as an in-distribution dataset. This test set includes 1,000 real bedroom images, along
with 1,000 generated images from each of the various generators trained on this dataset, including
ADM Dhariwal & Nichol (2021), DDPM Ho et al. (2020), IDDPM Nichol & Dhariwal (2021),
IF Saharia et al. (2022), Midjourney Mid (2022), PNDM Liu et al. (2022), ProGAN Karras et al.
(2018), SD Rombach et al. (2021), and VQDM Gu et al. (2022). (2) The second is the GenImage
dataset Zhu et al. (2024), used to evaluate cross-dataset generalization capability. GenImage Zhu
et al. (2024) is specifically designed to assess the generalization performance of deepfake detection
models and includes 6,000 real images and 6,000 high-quality generated images, covering 1,000
image categories for each of the generative models. Notably, it features images generated by various
SOTA diffusion models, including Wukong Wuk (2022), Midjourney Mid (2022), VQDM Gu et al.
(2022), and Stable Diffusion Rombach et al. (2021).
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Table 1: The in-distribution performance of deepfake tasks. Bold and underline indicate the best
and the second-best performance, respectively.

Methods In-distribution Performance
ACC AP TPR

ResNet 90.05 93.26 96.70
DIRE 95.10 99.95 99.70
NPR 88.60 99.80 97.80
DE-FAKE 91.45 94.28 80.30
OG 99.95 99.99 99.99
AG 99.95 100.00 100.00

Baselines. In this study, we primarily compare our method against three baselines: NPR Tan et al.
(2024), DIRE Wang et al. (2023), and DE-FAKE Sha et al. (2023), which represent state-of-the-art
approaches in deepfake detection. These three methods are among the latest and most advanced
techniques, each demonstrating high detection performance in their respective experiments. Unless
otherwise noted, we use authors’ official code/checkpoints or faithful re-implementations with the
hyperparameters reported in the original papers to ensure fairness.

Metrics. We selected evaluation metrics that align with previous research Wang et al. (2020); Tan
et al. (2024); Ricker et al. (2024); Qian et al. (2020); Sinitsa & Fried (2024) while considering
real-world applicability. Common metrics such as Average Precision (AP) Wang et al. (2020); Tan
et al. (2024); Ricker et al. (2024) and Average Accuracy (ACC) Tan et al. (2024); Qian et al. (2020);
Sinitsa & Fried (2024) provide a comprehensive view of classifier performance. While AP evaluates
performance across varying thresholds, real-world applications often lack prior knowledge of criti-
cal factors such as the true label of the image, the generative model used, and specific requirements
(e.g., prioritizing either minimizing false positives or false negatives). As noted by Carlini Carlini
et al. (2022) and other researchers Ho et al. (2017); Kantchelian et al. (2015); Kolter & Maloof
(2006), evaluating models at lower False Positive Rates (FPR) provides a more realistic assessment.
In line with Ricker Ricker et al. (2024), we included the True Positive Rate (TPR) at a fixed FPR,
setting FPR to 5% to balance sensitivity with the minimization of false positives, ensuring a practi-
cal threshold for generative image detection.Threshold calibration and scoring. We select a single
global decision threshold on a held-out validation split from the training domain (LSUN bedroom,
ADM) to achieve 5% FPR. This fixed threshold is then used to report TPR@5%FPR and ACC on
all test sets (in-distribution, cross-generator, cross-dataset). AP is threshold-free.

Implementation details. We used ResNet50 He et al. (2016) as the backbone model for our clas-
sifier. We optimized the training process using the Adam optimizer with a learning rate of 10−4.
The batch size was set to 32, and training was conducted over 400 epochs, with the best model
evaluated. For image preprocessing, we resized images to 224x224 pixels without additional data
augmentation. Unlike prior work Wang et al. (2020), which shows that data augmentation can
improve performance, we omitted it to directly assess the method’s inherent generalization. All
experiments were run on an Ubuntu server with an NVIDIA GeForce RTX 2080 Ti GPU.

5 EVALUATION

In this section, we present comprehensive experimental results that empirically validate our central
hypothesis regarding the detrimental impact of color dependency on deepfake detection generaliza-
tion, and demonstrate the superior efficacy of our Adaptive Gray (AG) method in addressing this
challenge. We detail our experimental setup, followed by an in-depth analysis of AG’s performance
across various crucial aspects: in-distribution performance, cross-generator generalization, cross-
dataset generalization, robustness to unseen perturbations, inference efficiency, an ablation study
clarifying the role of adaptive learning, and a qualitative analysis.

5.1 IN-DISTRIBUTION PERFORMANCE

For fair evaluation, all models were trained and tested on in-distribution data from the same gen-
erative model (ADM Dhariwal & Nichol (2021)) and image category (LSUN bedroom Yu et al.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: The cross-generator performance of deepfake tasks. Results demonstrate the superior gen-
eralization capabilities of AG and OG methods.

Methods DDPM IDDPM IF Midjourney Methods Mean
ACC AP TPR ACC AP TPR ACC AP TPR ACC AP TPR ACC AP TPR

ResNet 56.56 48.81 11.07 50.00 51.11 5.7 50.00 38.74 0 92.91 94.40 98.00 ResNet 56.18 55.18 17.95DIRE 93.72 99.26 98.60 94.90 99.74 99.20 50.00 47.85 5.10 91.18 90.91 89.50
NPR 93.97 99.93 98.80 91.80 99.80 99.40 92.67 98.10 99.75 91.60 91.90 97.20 DIRE 82.67 87.66 74.68DE-FAKE 90.16 92.31 77.73 93.20 96.33 99.96 72.20 82.08 28.50 83.27 13.62 2.00
OG 99.32 99.96 99.74 99.45 99.99 99.80 66.55 88.24 54.30 90.09 6.06 0 NPR 91.21 97.92 95.19AG 99.96 100 99.94 99.95 100 99.90 97.40 99.99 99.90 94.91 98.02 99.00

Methods PNDM ProGAN SD VQDM DE-FAKE 76.96 74.68 42.46ACC AP TPR ACC AP TPR ACC AP TPR ACC AP TPR
ResNet 50.00 42.55 3.50 50.00 54.93 10.50 50.00 69.31 14.40 50.00 41.65 0.40

OG 85.28 83.42 18.07DIRE 92.45 97.87 89.70 94.00 98.78 95.90 50.00 66.99 20.20 95.10 99.87 99.30
NPR 91.20 99.99 99.90 76.67 95.65 67.50 93.80 98.40 99.30 98.00 99.57 99.70
DE-FAKE 88.25 93.14 73.10 78.15 86.14 41.70 55.15 67.96 7.70 55.30 65.89 9.00

AG 97.10 99.73 99.71OG 99.00 99.96 99.80 85.70 98.28 91.00 57.15 76.98 29.40 84.95 97.89 87.90
AG 99.90 100 99.70 97.85 99.98 99.90 87.35 99.88 99.90 99.45 99.95 99.40

Table 3: The cross-dataset performance of deepfake tasks. AG demonstrates superior generalization
across diverse image categories and generative models.

Methods Wukong Midjourney VQDM SD Mean
ACC AP TPR ACC AP TPR ACC AP TPR ACC AP TPR ACC AP TPR

ResNet 41.08 41.69 0.12 48.15 44.95 1.65 51.22 51.20 6.45 46.64 40.60 0.08 46.77 44.61 2.08
DIRE 53.57 70.12 12.85 53.43 70.56 11.97 54.10 68.92 15.65 54.75 76.05 23.46 53.96 71.41 15.98
NPR 50.00 55.11 11.33 50.00 46.75 2.93 50.00 45.87 4.97 50.00 59.11 11.49 50.00 51.71 7.68
DE-FAKE 50.20 52.19 5.48 52.63 57.61 8.30 61.18 68.99 23.35 51.16 53.53 6.33 53.79 58.08 10.87
OG 49.78 51.29 4.87 54.83 60.85 14.15 63.40 76.13 25.15 51.82 57.37 8.45 54.96 61.41 13.16
AG 54.92 66.20 16.85 64.33 78.60 36.65 59.78 75.99 28.47 60.57 74.19 29.15 59.90 73.75 27.78

(2015)). As shown in Table 1, our AG method achieves outstanding in-distribution performance
(ACC 99.95%, AP 100.00%, TPR 100.00%), closely followed by the Original Gray (OG) method
(ACC 99.95%, AP 99.99%, TPR 99.99%). While most compared methods show high accuracy in
this setting, our results establish a strong baseline for AG’s foundational capabilities before assessing
its critical generalization performance.

5.2 CROSS-GENERATOR PERFORMANCE

We conducted cross-generator experiments to analyze generalization capabilities. Models, trained
on ADM-generated and LSUN bedroom real images, were evaluated on various unseen generative
models within the DiffusionForensics dataset Wang et al. (2023) (fixed ’bedroom’ category).

Table 2 strikingly validates our Hypothesis 2 (H2) from Section 3.1. Our OG method, applying sim-
ple fixed grayscale transformation, demonstrates a substantial leap in cross-generator generalization
over baseline ResNet50 and even some SOTA methods. This supports our assertion that mitigating
color dependency significantly enhances generalization to novel generators. Building on this, our
AG method further elevates performance, consistently achieving the highest average ACC, AP, and
TPR values. AG is uniquely the only method where its mean ACC, AP, and TPR all exceed 97%,
often reaching 100% accuracy for individual generators. This superior performance of AG over OG
underscores the effectiveness of adaptively learning optimal grayscale coefficients to best isolate
generative artifacts.

In contrast, SOTA methods like DIRE Wang et al. (2023), DE-FAKE Sha et al. (2023), and NPR Tan
et al. (2024) show varied cross-generator performance. Their fluctuations, contrasted with the con-
sistent gains from OG and AG, highlight the persistent challenge of generalization when relying
heavily on color-rich feature spaces. Our findings strongly suggest that addressing color depen-
dency is a crucial step towards robust cross-generator detection.

5.3 CROSS-DATASET PERFORMANCE

Building on cross-generator insights, we conducted cross-dataset testing to rigorously evaluate gen-
eralization under more challenging conditions. This involved diversifying test sets across both im-
age categories (e.g., ’bedroom’ to faces, landscapes) and generative models, exposing classifiers to
a broader range of real-world data variations.
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Figure 4: Robustness to unseen perturbations. Figure (a) illustrates performance against Gaussian
blur, and Figure (b) shows performance against JPEG compression for AG, NPR, DE-FAKE, and
DIRE. We evaluate the average AP of all methods on GenImage, using images from BigGAN,
Midjourney, Stable Diffusion, and Wukong models.

Table 3 emphatically confirms Hypothesis 1 (H1) from Section 3.1 and highlights AG’s superior
generalization. The OG method, by simply removing fixed color dependency, again shows notable
improvement over baselines and SOTA methods, corroborating our finding that color information
significantly impedes cross-dataset generalization. Crucially, our AG method consistently achieves
the highest overall results in this demanding scenario, with average ACC of 59.90%, AP of 73.75%,
and TPR of 27.78%. These represent substantial relative improvements (up to 19.9% ACC, 22.04%
AP, and 20.10% TPR) compared to the best SOTA methods, underscoring AG’s remarkable robust-
ness to diverse content and models.

In summary, AG consistently outperforms or remains highly competitive with other SOTA detection
methods Wang et al. (2023); Tan et al. (2024); Sha et al. (2023) across all testing scenarios—in-
distribution, cross-generator, and especially the challenging cross-dataset conditions. These results
not only demonstrate AG’s superior practical utility but also provide strong empirical validation
for our core hypothesis that mitigating color dependency is fundamental for achieving robust and
generalizable deepfake detection.

5.4 ROBUSTNESS TO UNSEEN PERTURBATIONS

Robustness to common image perturbations is crucial for real-world deepfake detection, as images
often undergo degradations. We evaluated AG against DIRE Wang et al. (2023), NPR Tan et al.
(2024), and DE-FAKE Sha et al. (2023) under Gaussian blur (σ = 1, 2, 3) and JPEG compression
(quality 65, 30), following previous studies Wang et al. (2023).

As shown in Figure 4, AG consistently outperforms baselines across all blur and compression levels.
For Gaussian blur, AG maintains high and stable Average Precision (AP). Under JPEG compression,
AG exhibits significantly less performance degradation; specifically, while DIRE experiences a sub-
stantial AP drop at JPEG quality 30, AG remains remarkably resilient. This outcome reinforces
our core hypothesis: AG’s adaptive grayscale processing reduces reliance on superficial color infor-
mation, making it inherently more resilient to common image degradations that often corrupt color
channels. Its focus on robust, underlying texture-based artifacts is key to this enhanced robustness.

6 CONCLUSION

In this work, we tackled the challenge of enhancing binary deepfake classifiers’ generalization by
reducing color dependency in real vs. generated image detection. We proposed that color dis-
crepancies can hinder detection accuracy, leading to the development of our grayscale processing
framework, Adaptive Gray (AG). Through adaptive training of both grayscale parameters and the
classifier, AG demonstrated superior generalization across datasets and testing conditions, outper-
forming SOTA methods. Our findings suggest that focusing on texture over color can improve
detection resilience, offering a promising direction for generalizable detection systems applications.

9
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A APPENDIX

A.1 EFFICIENCY EVALUATION

Table 4: Inference Time Comparison of Different Methods.

Method Average Inference Time per Image (s)
DIRE 269.50
DE-FAKE 12.12
NPR 8.66 ×10−3

AG (Ours) 6.12 ×10−3

Our AG method significantly outperforms most contemporary approaches in inference speed. As
Table 4 shows, AG achieves the fastest average inference time at 6.12 ×10−3 seconds per image,
closely followed by NPR (8.66 ×10−3 s). In contrast, DE-FAKE takes 12.12 seconds, and DIRE
incurs a notably long 269.50 seconds per image.

AG’s remarkable efficiency stems from its simple, linear processing during inference. Once w is
learned, image transformation involves only straightforward multiplication and addition, approxi-
mating the speed of a standard ResNet50 classifier He et al. (2016). This contrasts sharply with DE-
FAKE’s multi-component pipeline (CLIP encoders, large classifier, optional BLIP for captioning)
and DIRE’s computationally intensive diffusion model reconstruction, both of which are impractical
for real-time or large-scale applications.
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Table 5: Cross-generator performance comparison including AG + DIRE. Bold and underline denote
the best and second-best utility, respectively.

Methods Cross-generator Performance
ACC AP TPR

ResNet 56.18 55.18 17.95
OG 85.28 83.42 18.07
DIRE + AG 92.76 97.51 90.47
AG 97.10 99.73 99.71

Table 6: Cross-dataset performance comparison including AG + DIRE.

Methods Cross-dataset Performance
ACC AP TPR

ResNet 46.77 44.61 2.08
OG 54.96 61.41 13.16
DIRE + AG 58.74 67.23 0
AG 59.90 73.75 27.78

Combined with its strong generalization, AG’s exceptional efficiency positions it as a practical,
deployable solution for real-time deepfake detection and high-volume image analysis, alleviating
common computational bottlenecks.

A.2 ABLATION STUDY: THE IMPACT OF ADAPTIVE GRAYSCALE LEARNING

Our methodology posits that both basic grayscale processing and adaptive learning of its coefficients
enhance deepfake detection generalization. To dissect these contributions, we address two research
questions (RQs) related to our empirical hypotheses (H1 and H2) from Section 3.1:

• RQ1: Basic Grayscale Efficacy Does fixed grayscale compression improve generalization
by retaining relevant features?

• RQ2: Value of Adaptive Learning: Does optimizing grayscale parameters (AG) further
enhance generalization beyond fixed grayscale, suggesting a more discriminative compres-
sion learned by machines?

To verify RQ1, we evaluated the Original Gray (OG) method, which uses standard BT.601 grayscale
conversion (Eq. 1) without adaptive training. As shown in Table 2 and Table 3, even fixed OG
processing notably improved generalization. Specifically, in cross-generator testing, OG achieved
approximate increases of 29% in ACC and 28% in AP over baseline ResNet50 He et al. (2016). In
cross-dataset testing, OG still gained about 8% in ACC and 16% in AP compared to the baseline.
These findings strongly support RQ1, confirming that simply mitigating color dependency through
grayscale inherently enhances generalization by retaining critical texture-based features.

To verify RQ2, we compared OG and AG to see if optimizing grayscale parameters further enhances
generalization. This addresses whether machine learning can discover a more optimal grayscale ker-
nel. Results from Table 2 and Table 3 unequivocally confirm that adaptively training AG parameters
substantially improves classifier generalization beyond fixed OG. In cross-generator testing, AG sur-
passed OG with approximate increases of 12% in ACC, 16% in AP, and a remarkable 82% in TPR.
Similarly, for cross-dataset testing, AG demonstrated superior generalization with gains of about
5% in ACC, 12% in AP, and 15% in TPR over OG. These results strongly support RQ2, indicating
that the co-adaptive training process enables AG to learn a more discriminative representation by
optimizing the grayscale kernel for more accurate deepfake distinction.

A.3 EXPLORATORY ANALYSIS: INTEGRATING ADAPTIVE GRAY WITH DIRE

We explored combining Adaptive Gray (AG) with DIRE Wang et al. (2023), a method leveraging
diffusion model reconstruction error to distinguish real from generated images. Real images typi-
cally show larger reconstruction errors.
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(a) Real

(b) DDPM (c) PNDM (e)iDDPM

Figure 5: Frequency-domain analysis using Fast Fourier Transform (FFT) on AG grayscale images,
showcasing distinct characteristics between real and generated images. (a) Real images typically
demonstrate a richer frequency spectrum with organized noise patterns aligned with natural object
structures. In contrast, generated images from models such as DDPM and PNDM exhibit more
irregular and artificial frequency distributions. This comparison highlights that FFT-based analysis
on AG-transformed images effectively enhances the separability of real from generated content in
deepfake detection, by making subtle generative artifacts more visually apparent in the frequency
domain.

However, as Tables 5 and 6 show, integrating AG with DIRE did not enhance generalization; instead,
it led to increased instability and performance degradation. In cross-generator tests, DIRE+AG
decreased average ACC, AP, and TPR by approximately 6%, 2%, and 9% respectively, compared to
AG alone. Performance dropped even more sharply in cross-dataset tests, with TPR plummeting to
zero at FPR=5%, indicating complete failure in that demanding scenario.

We hypothesize this arises from a fundamental incompatibility in information processing. DIRE’s
reconstruction already significantly reduces image content, losing shape, texture, and color. Apply-
ing AG’s grayscale compression to these already feature-reduced residuals likely compounds this
effect, excessively ”over-filtering” meaningful features and diminishing overall performance. This
suggests that while both methods effectively identify generative artifacts individually, their sequen-
tial application can be detrimental.

A.4 QUALITATIVE ANALYSIS OF AG

To further illuminate AG’s underlying mechanisms and properties, we performed a qualitative
frequency-domain analysis using Fast Fourier Transform (FFT) on AG-transformed images, fol-
lowing our quantitative results confirming AG’s effectiveness through reduced color dependency.
This analysis aimed to visually and analytically explain how AG enhances discriminative power.

As illustrated in Figure 5, AG processing reveals distinct low-level frequency characteristics. Real
images, after AG transformation, exhibit a richer, more organized frequency spectrum with noise
patterns aligning with natural structures. Conversely, generated images (e.g., ADM, DDPM) display
irregular, chaotic, or unnatural frequency distributions. These irregularities are subtle generative ar-
tifacts that become significantly more pronounced and detectable in the grayscale frequency domain,
often obscured by complex color patterns in RGB space. This strongly supports our hypothesis: AG
effectively accentuates intrinsic, non-color-dependent artifacts for generalized deepfake detection.
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