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ABSTRACT

In this paper, we introduce a new transfer learning approach called Adaptive
Weight-space Ensembling (AWE) that effectively adapts large pre-trained models
for downstream tasks with limited fine-tuning data. Traditional transfer learning
methods often struggle or become infeasible in scenarios with only a few examples
per class, particularly when a validation set is needed. AWE overcomes these chal-
lenges by adapting the weight-space ensembling technique, originally developed
for large-scale data, to suit few-shot settings without requiring a validation set.
By identifying patterns in oracle weight-space ensembling, we create an adaptive
ensembling method that can be easily implemented in real-world applications.
Our approach outperforms existing state-of-the-art methods by more than 2% on
average in standard few-shot setting benchmarks.

1 INTRODUCTION

Vision-language models (VLM), e.g., CLIP Radford et al. (2021), have been widely successful in
zero-shot inference for computer vision tasks. However, their granularity for fine-grained downstream
tasks can be limited. Fine-grained datasets present a challenge for zero-shot inference, as extracting
relevant discriminative features from a language prompt alone can be difficult, for example A318
and A319 aircrafts from the FGVC Aircrafts dataset Maji et al. (2013). Failure to find discriminative
features from text could be due to a lack of examples from that specific task during pre-training,
insufficient textual information in the pre-training dataset, or limited model capacity. This can lead to
the VLM failing to encode necessary discriminative visual features, causing fine-grained semantic
information to be lost. In these scenarios, a small number of labeled examples per class can be highly
valuable when used to update the weights of the VLM, allowing it to identify useful discriminative
features that may not have been learned during pre-training and providing a significant performance
improvement.

Updating the weights of VLMs, however, can lead to regressions in target distribution performance
when only a small number of shots (i.e. examples) per class is available. Additionally, updating
the weights also leads to reduced robustness (specifically lower out-of-distribution accuracy) on
downstream tasks Radford et al. (2021); Miller et al. (2021); Wortsman et al. (2022b). These two
drawbacks have led recent research to largely avoid end-to-end fine-tuning of VLMs for few-shot
learning and instead focus on approaches such as query-key caching Gao et al. (2021); Zhang et al.
(2021) and prompt learning Zhou et al. (2021); Zhu et al. (2022) that do not update the visual encoder
model of VLMs.

Methods that rely on frozen zero-shot feature extraction, such as caching and prompting, are limited
by the fixed feature extractor when applied to fine-grained datasets. Although this may be expected at
a large number of shots, we observe that this happens even at few-shots (see Top Left of Figure 1)
when as little as eight shots are used. This raises a natural question:

Can we lift the zero-shot bottleneck while avoiding drawbacks of training on very few shots per class?

In this work, we propose an Adaptive Weight-space Ensembling (AWE) approach for end-to-end
fine-tuned models that indeed achieves the benefits of fine-tuning on few shots without the drawbacks.
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Figure 1: (Top left) Approaches for few-shot learning, such as prompting and caching, can only
be as effective as the pre-trained representation of images allows, which can result in sub-optimal
performance for fine-grained datasets where discriminative visual features relevant for classification
may not be encoded. (Top Right) By using weight-space interpolation, we can reap the benefits of end-
to-end fine-tuning without the drawbacks in few-shot learning. (Bottom left) Visual representation of
our method, adaptive weight-space ensembling (AWE). See Section 3.2 for details. (Bottom right)
In-distribution (ID) performance of weight-space interpolations for multiple few-shot settings.

2 ADAPTIVE WEIGHT-SPACE ENSEMBLING FOR FEW-SHOT LEARNING

Figure 2: (Left) Few-shot FGVC Aircraft perfor-
mance of linear probing, end-to-end fine-tuning
and their respective oracle weight-space interpola-
tion. (Right) ID ImageNet performance of WiSE-
FT versus average OOD performance on a number
of distribution shifts (ImageNetA, R, Sketch, V2).

Background Recently, Wortsman et al.
(2022b) have demonstrated the decrease in
effective robustness Taori et al. (2020); Miller
et al. (2021); Cherti et al. (2022) often associ-
ated with end-to-end fine-tuning of pre-trained
models can be mitigated by using weight-space
interpolation between the fine-tuned model and
its zero-shot initialization.

θWiSE = (1− α)θzero-shot + αθfine-tuned (1)

These models are referred to as WeIght-Space
Ensembles for Fine-Tuning (WiSE-FT), or
WiSE-LP for linear probed models.

Figure 2 (Left) presents the performance of ora-
cle1 WiSE-LP and WiSE-FT models in the few-
shot setting along with their respective end-to-
end fine-tuned and linear probed model. The results indicate that interpolation between a fine-tuned
model and its zero-shot initialization mitigates the decline in performance commonly observed with
end-to-end fine-tuning in low-data scenarios and yields significant improvements over the zero-shot
model.

Figure 2 (Right) presents the performance of models that have been end-to-end fine-tuned on few-shot
ImageNet and evaluated on both in-distribution and a collection of out-of-distribution datasets. We
see that the appropriate choice of α not only improves in-distribution performance but also curbs
the decline in out-of-distribution performance commonly observed with end-to-end fine-tuning. The
figure also illustrates the WiSE-FT interpolation curves achieved when tuning α across different
numbers of shots.

1We refer to oracle WiSE-FT/LP when the mixing coefficient α is found using an oracle validation set in
addition to the k-shots used for training, which is not possible in practice.
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Figure 3: Oracle and predicted mixing coefficients
for few-shot learning settings up to 128-shots. The
predicted α are from the procedure described in
Section 3.2. The heatmap beneath each plot shows
the performance degradation from the best optimal
α for each number of shots.

Inferring α from k-shots We’ve shown that
WiSE significantly enhances the performance of
fine-tuned VLMs in the few-shot setting. The
key of the improvement relies on the correct se-
lection of the mixing coefficient α. However,
the use of WiSE for few-shot learning is limited
by the absence of validation data which is, at
least naively, needed to select α. Fortunately,
we have identified a simple pattern in the be-
havior of optimal α that allows us to efficiently
approximate it. In particular, we have found that
the optimal α approximately follows a mono-
tonically increasing log-linear relationship as a
function of the number of labeled examples per
class until saturation close to α = 1 is reached.
This relationship is illustrated in Figure 3 for
11 datasets. This regularity allows us to predict
the optimal α at k-shots efficiently by choosing
points spread out uniformly on a log scale and
extrapolating from the trend at fewer shots.

Specifically, our AWE procedure for approximating α from k-shots per class follows the following
simple steps: 1) fine-tune on (k/4)-shots, validate on (3k/4)-shots, and find the optimal α′

k/4. 2)
fine-tune on (k/2)-shots, validate on (k/2)-shots, and find the optimal α′

k/2. 3) fit a log-linear curve
with α′

k/4 and α′
k/2 and extrapolate to α′

k. 4) fine-tune on k-shots and ensemble models using α′
k.

It is important to note that this method for determining α has a lower limit of 3-shots per class. In the
case where k = 2, we instead approximate α by doing 1-shot training and validating on the remaining
example and select the choice of α that gives the best validation performance. In the case k = 1 shot,
we lack sufficient samples for any validation scheme, so we instead propose to consider the oracle α
at k = 1 for other auxiliary datasets (in Section 3 we average over 10 remaining datasets). Figure 3
illustrates that AWE accurately captures the general trend of the optimal α for all datasets.

3 EXPERIMENTS

Datasets, procedure & baselines We focus our evaluation on 11 datasets: ImageNet Deng et al.
(2009), StandfordCars Krause et al. (2013), UCF101 Soomro et al. (2012), Caltech101 Fei-Fei
et al. (2004), Flowers102 Nilsback & Zisserman (2008), SUN397 Xiao et al. (2010), DTD Cimpoi
et al. (2014), EuroSAT Helber et al. (2019), FGVCAircraft Maji et al. (2013), OxfordPets Parkhi
et al. (2012), and Food101 Bossard et al. (2014). Our evaluation focuses on incorporating standard
(ImageNet), diverse (7 from VTAB), and challenging (3 explicitly fine-grained) datasets. Although
other benchmarks exist in the literature, such as MiniImageNet or TieredImageNet, we believe that
for our work, they do not adequately reflect performance in real deployment scenarios. For the
main results, each dataset is evaluated with training sets of 1, 2, 4, 8, 16 samples per class and
evaluate models on the complete test set. Each experiments is repeated 5 times with different seeds
and we report the average performance. Unless specified otherwise, we use the OpenCLIP Ilharco
et al. (2021) ViT-B/32 pretrained on the Laion2B Schuhmann et al. (2022) dataset. We compare
our method with 8 baselines: (1) Zero-shot CLIP, (2) Linear Probed CLIP model, (3) Fine-tuned
CLIP, (4) CLIP-Adapter Gao et al. (2021), (5) Tip-Adapter, (6) Tip-Adapter-F Zhang et al. (2021),
(7) CoOp Zhou et al. (2021), and (8) ProGrad Zhu et al. (2022). Further description of baselines can
be found in Appendix B.

Few-shot learning results Figure 4 presents a comparison of our method against the above
baselines on 11 datasets. The results show that our method outperforms all baselines in terms of
average performance across all few-shot settings. AWE gives a 2-2.5% improvement over Tip-
Adapter-F, the best-performing baseline, with full fine-tuning typically outperforming linear probing
by about 0.5%. More closely inspecting individual datasets, AWE typically outperforms baselines
but there are a few exceptions such as Caltech101 or Food101 at lower number of shots.
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Figure 4: Main results of AWE compared to baselines on our 11 datasets with OpenCLIP Ilharco et al.
(2021) ViT-B/32. On the top left, we see that AWE is only marginally below oracle performance and
that AWE outperforms the studied baselines at all shots on the averaged over all datasets.

Alpha approximation Our results indicate that our approximation of the mixing coefficient α
maintains most of the performance improvements provided by the oracle WiSE methodology, which
leveraged a validation set. Specifically, across 11 datasets, our approximation technique is within
0.5% of AWE-LP and within less than 0.3% for AWE-FT absolute error compared with the oracle
averaged over 1, 2, 4, 8, and 16 shots. Appendix G compares AWE with other naive α approximations.

Extended few-shots learning results In Figure 8, we present the results for the best-performing
baseline, Tip-Adapter-F, as well as AWE on few-shot settings above 16-shots on average performance
of the 11 datasets. We observe that AWE with linear probing converges towards the performance of
Tip-Adapter-F, and both tend towards standard linear probing performance, as the number of shots
increases, supporting the hypothesis that all of these approaches may share a similar bottleneck at
higher number of shots. Meanwhile AWE-FT continues to improve at higher numbers of shots and
achieves greater than 2.5% improvement over all frozen feature methods at 32 shots and above.

Visual Backbone architecture In Table 3, we evaluated the performance of AWE and baselines
across various visual backbone architectures, including ResNet50, ResNet101, ViT-B/32, and ViT-
B/16 from Radford et al. (2021), and ViT-B/32 from Ilharco et al. (2021). We found that AWE
scales better with backbone architecture size, with a 1% improvement over the second-best baseline
on ResNet50 Radford et al. (2021) increasing to more than 4% improvement over the second-best
baseline on ViT-B/16 Radford et al. (2021). One might have expected that zero-shot feature bottleneck
would progressively improve as zero-shot feature extraction improves with model size. However, we
found that the opposite is true; end-to-end fine-tuning yields improved results at larger scales.

4 CONCLUSION

We present AWE, a method that leverages weight-space ensembling to improve the performance
of the image-encoder in VLMs in the few-shot learning regime. Crucial to the performance of our
method is the tuning of a scalar mixing coefficient, α. Via a series of experiments we identify a robust
phenomena whereby the oracle choice of α monotonically increases with the amount of fine-tuning
data. We leverage this to propose a simple strategy for approximately infering α which performs
competitively with the oracle choice, and achieves state-of-the-art performance averaged across 11
benchmark datasets.
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A BACKGROUND

In this section we lay the conceptual groundwork for our method and provide relevant background
about VLMs and weight-space ensembles.

Zero-shot visual-language model Many VLM-type models have been proposed in recent years:
CLIP Radford et al. (2021); Ilharco et al. (2021), ALIGN Jia et al. (2021), and BASIC Pham et al.
(2021). In this work we follow prior convention and focus on CLIP-type models. CLIP consists of
a vision and language encoders, g and h, which are trained simultaneously over data consisting of
image-caption pairs {(x1, c1), . . . , (xN , sN )} to maximize cosine similarity ⟨g(xi), h(si)⟩ of aligned
pairs relative to unaligned pairs. This yields a representation space that is shared between the visual
and language encoders. Given a new downstream classification task, we can leverage this dual
encoder architecture for zero-shot inference, i.e. perform classification without any downstream
examples. This is done by computing the similarity ⟨g(xj), h(pk)⟩ between incoming image samples
xj and all prompted class description pk, where pk =’photo of a {ck}’, where ck ∈ C and C is
the set of considered classes {c1, . . . , cK}. Classification can then be made by choosing the most
similar class. Equivalently, this can be done by constructing a matrix Wzero-shot classifier ∈ Rd×k with
column h(pk)k∈1..K , where d is the representation space. Visual-encoder representation can then be
propagated through Wzero-shot classifier as you would a linear classification layer and obtain logits. This
is referred to as zero-shot CLIP, as no image samples are used to construct the final classification
layer.

Weight-space ensembles Traditional output-space ensembles are built by averaging the outputs
of multiple expert models Bauer & Kohavi (1999); Breiman (1996); Dietterich (2000). Output-
space ensembles are known to improve performance and general robustness through diversity of
prediction Freund & Schapire (1997); Lakshminarayanan et al. (2017) but their principal drawback is
that the compute required to perform inference is multiplied by the number of constituent models.
Recently, Wortsman et al. (2022a) showed that multiple models fine-tuned on task-specific data from
a common zero-shot initialization could improve their performance by simply averaging their weights

θWSE =
1

|S|
∑
i∈S

θi, (2)

where S is the set of fine-tuned models. These averaged models are commonly referred to as
Weight-Space Ensembles (WSE). They benefit from similar performance improvements as traditional
ensembles without the overhead inference as a single set of weights is used. Additionally, Wortsman
et al. (2022b) have demonstrated the decrease in effective robustness Taori et al. (2020); Miller et al.
(2021); Cherti et al. (2022) often associated with end-to-end fine-tuning of pre-trained models can
be mitigated by using weight-space interpolation between the fine-tuned model and its zero-shot
initialization. This means that with the correct mixing coefficient α, significant improvements in
out-of-distribution (OOD) performance can be achieved while retaining the in-distribution (ID)
performance improvements obtained by fine-tuning on a task-specific distribution:

θWiSE = (1− α)θzero-shot + αθfine-tuned (3)

These models are referred to as WeIght-Space Ensembles for Fine-Tuning (WiSE-FT). Similarly, this
interpolation can also be done for Linear Probed models; we refer to these as WiSE-LP. Both WSE
and WiSE have been shown to work across multiple VLM architectures Wortsman et al. (2022b;a)
such as CLIP Radford et al. (2021), ALIGN Jia et al. (2021), and BASIC Pham et al. (2021). While
this work focuses on CLIP-like models, we expect our methodology will be transferable to other
VLM architectures.

B RELATED WORKS

B.1 FEW-SHOT LEARNING

Prompt design The ”pre-train, prompt, and predict” paradigm has become increasingly popular in
NLP and computer vision, leading to various approaches for prompt design Liu et al. (2021). These
approaches are broadly divided into two categories: discrete prompt design, which focuses on the
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engineering or mining of effective prompts Shin et al. (2020); Gao et al. (2020), and continuous
prompt design, which aims to learn a vector of tokens directly from the word embedding space without
being tied to any specific word Qin & Eisner (2021); Li & Liang (2021). In the context of VLMs, the
CoOp Zhou et al. (2021) approach looks to improve downstream performance by learning continuous
prompts. CoCoOp Zhou et al. (2022) builds upon CoOp by learning image-conditional prompts,
whereas Prograd Zhu et al. (2022) builds upon CoOp by imposing alignment between downstream
knowledge and general knowledge from the zero-shot model, providing good improvements in ID and
robustness OOD. UPL Huang et al. (2022) tries to learn prompting design through an unsupervised
approach. Our method differs from prompt design in that it aims to improve the encoded visual
features of the pre-trained model from the few-shots available.

Downstream fine-tuning While VLMs have been shown to perform well in zero-shot prediction,
i.e. without any weight updates, recent research in computer vision has demonstrated the efficacy
of fine-tuning small parts of the model. One example is CLIP-Adapter Gao et al. (2021), which
utilizes an additional learnable feature layer that is blended with the original pre-trained features.
Another approach, Tip-Adapter Zhang et al. (2021), employs training-free key-query cache models
that store the available few-shots and blend the queried value of incoming samples with the original
pre-trained features. SqVA-CLIP leverages prototype networks and knowledge distillation to enhance
the discriminative features of zero-shot CLIP. Finally, VT-CLIP builds upon CLIP by incorporating
visual guidance through text, exploring image regions, and aggregating information using an attention
mechanism.

B.2 WEIGHT-SPACE ENSEMBLES

Weight-space ensembles have been widely applied in various fields of research following the in-
troduction of the WiSE-FT Wortsman et al. (2022b) and model soups Wortsman et al. (2022a).
Branch-Train-Merge Li et al. (2022) employs a souping-like mechanism for efficient parallel training
of large language models. Matena & Raffel (2021) improve on the original model merging mechanism
with Fisher Information. Eeckt et al. (2022) alleviates catastrophic forgetting in continual automatic
speech recognition using weight-space ensembles. In the field of NLP, weight-space averaging
can be used to effectively ”patch” open-vocabulary models, aggregating new knowledge without
compromising existing knowledge Ilharco et al. (2022). Weight-space ensembles can also be used
as an iterative approach to downstream tasks by fusing multiple pre-trained models Don-Yehiya
et al. (2022) and can also improve OOD performance by averaging diverse experts or by ensembling
multiple pre-trained models Ramé et al. (2022b;a).

In the field of few-shot learning, Wortsman et al. Wortsman et al. (2022b) reported that weight-space
ensembles with linear probed models and their zero-shot initialization improves performance in
the oracle few-shot learning setting where one has access to a validation set to choose the mixing
coefficient. However, our methodology shows that a validation set is not required for using AWE-FT
at low-shots. We also build upon the previous work by demonstrating that weight-space ensembling
with end-to-end fine-tuned models performs better than linear probed models.

C EXPERIMENTAL SETUP

Implementation details We build the zero-shot CLIP models following methodology of Radford
et al. (2021)2. To create the endpoint model of the AWE-LP and WiSE-LP interpolations, we linearly
probe the model from the zero-shot model for 2000 training steps using AdamW with a learning
rate of 0.2, weight decay of 0.1, and a cosine learning rate decay with a warmup period of 200 steps.
To create the endpoint model of the AWE-FT and WiSE-FT interpolations, we fully fine-tune the
zero-shot model for 2000 training steps using AdamW with a learning rate of 10−5, weight decay of
0.1, and a cosine learning rate decay with a warmup period of 200 steps. Training configurations
for fine-tuning and linear probing are the same for all datasets in our evaluation. Note that the
number of training steps is independent of the number of shots. Unless specified otherwise, we use
the OpenCLIP Ilharco et al. (2021) ViT-B/32 pretrained on the Laion2B Schuhmann et al. (2022)

2For fine-grained datasets, we add relevant context to the prompt, e.g., ’[...], a type of food’ for Food101. For
general datasets we use prompt ensembling. All details on the prompts used for all datasets can be found in
Appendix E
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dataset. Experiments consumed approximately a month of compute using an eight Nvidia A100
40Gb compute node.

Baselines We compare our method with 8 baselines. (1) Zero-shot CLIP Radford et al. (2021)
based on hand crafted prompts (See Appendix E). (2) Linear Probed CLIP model, where we fine-tune
the classification layer of the visual encoder, initialized as zero-shot. (3) Fine-tuned CLIP, where we
end-to-end fine-tune CLIP initialized as the zero-shot model. (4) CLIP-Adapter Gao et al. (2021)
which adds an additional learnable feature layer that is blended with the original pre-trained features.
(5) Tip-Adapter Zhang et al. (2021) which employ a on key-query cache models that blends the
queried value of incoming samples with the original pre-trained features. (6) Tip-Adapter-F Zhang
et al. (2021), the trained version of Tip-Adapter3. (7) CoOp Zhou et al. (2021) which learns a
continuous prompt vectors and (8) ProGrad Zhu et al. (2022) which learns prompts vectors while
imposing alignment between downstream knowledge and general knowledge from the zero-shot
model.

D IMPACT STATEMENT

A benefit of our work is that it opens the possibility to leverage large-scale, pretrained models in
the low data regime, further democratizing recent advances in VLMs to applications and use-cases
where it was previously not feasible. While we view these advances as largely positive, they do also
serve to further facilitate the use of VLMs for a wide range of applications, some of which may be
unethical. Future work will actively engage with the AI-safety community to ensure such risks are
actively mitigated and minimized.

E DATASET DETAILS

Table 1: Information on datasets used for evaluation in this work. *For ImageNet, we have created a
validation set from the training set for our oracle experiments.

Dataset Classes Train Val Test Hand-crafted prompt

ImageNet 1,000 1.254M* 26,000* 50,000 Prompt ensemble (Table 2)
Caltech101 100 4,128 1,649 2,465 Prompt ensemble (Table 2)
OxfordPets 37 2,944 736 3,669 “a photo of a [CLASS], a type of pet.”
StanfordCars 196 6,509 1,635 8,041 Prompt ensemble (Table 2)
Flowers102 102 4,093 1,633 2,463 “a photo of a [CLASS], a type of flower.”
Food101 101 50,500 20,200 30,300 “a photo of [CLASS], a type of food.”
FGVCAircraft 100 3,334 3,333 3,333 “a photo of a [CLASS], a type of aircraft.”
SUN397 397 15,880 3,970 19,850 Prompt ensemble (Table 2)
DTD 47 2,820 1,128 1,692 “[CLASS] texture.”
EuroSAT 10 13,500 5,400 8,100 “a centered satellite photo of [CLASS].”
UCF101 101 7,639 1,898 3,783 “a photo of a person doing [CLASS].”

ImageNetV2 1,000 N/A N/A 10,000 Prompt ensemble (Table 2)
ImageNet-Sketch 1,000 N/A N/A 50,889 Prompt ensemble (Table 2)
ImageNet-A 200 N/A N/A 7,500 Prompt ensemble (Table 2)
ImageNet-R 200 N/A N/A 30,000 Prompt ensemble (Table 2)

F WISE AS REGULARIZER

In the few-shot setting, weight-space ensembling (WiSE) acts as a regularizer, similar to an L2 penalty
applied at the end of training or early stopping. With early stopping, the model is prevented from
overfitting the training set by stopping training when the model loses performance on the validation
set. With weight-space ensembling, the model is instead trained to completion and then different
interpolation weightings are validated on a validation set, with the best-performing model chosen

3For both Tip-Adapter and Tip-Adapter-F, we reproduced the results without the hyper-parameter searches
over a validation for fair comparison with other methods.

10



Published at the Workshop on Understanding Foundation Models at ICLR 2023

Table 2: Prompt ensemble for generic image classification. We use the 80 ImageNet prompts proposed
by Radford et al. (2021).

Prompt ensemble

“a bad photo of a [CLASS].” “the origami [CLASS].”
“a photo of many [CLASS].” “the [CLASS] in a video game.”
“a sculpture of a [CLASS].” “a sketch of a [CLASS].”
“a photo of the hard to see [CLASS].” “a doodle of the [CLASS].”
“a low resolution photo of the [CLASS].” “a origami [CLASS].”
“a rendering of a [CLASS].” “a low resolution photo of a [CLASS].”
“graffiti of a [CLASS].” “the toy [CLASS].”
“a bad photo of the [CLASS].” “a rendition of the [CLASS].”
“a cropped photo of the [CLASS].” “a photo of the clean [CLASS].”
“a tattoo of a [CLASS].” “a photo of a large [CLASS].”
“the embroidered [CLASS].” “a rendition of a [CLASS].”
“a photo of a hard to see [CLASS].” “a photo of a nice [CLASS].”
“a bright photo of a [CLASS].” “a photo of a weird [CLASS].”
“a photo of a clean [CLASS].” “a blurry photo of a [CLASS].”
“a photo of a dirty [CLASS].” “a cartoon [CLASS].”
“a dark photo of the [CLASS].” “art of a [CLASS].”
“a drawing of a [CLASS].” “a sketch of the [CLASS].”
“a photo of my [CLASS].” “a embroidered [CLASS].”
“the plastic [CLASS].” “a pixelated photo of a [CLASS].”
“a photo of the cool [CLASS].” “itap of the [CLASS].”
“a close-up photo of a [CLASS].” “a jpeg corrupted photo of the [CLASS].”
“a black and white photo of the [CLASS].” “a good photo of a [CLASS].”
“a painting of the [CLASS].” “a plushie [CLASS].”
“a painting of a [CLASS].” “a photo of the nice [CLASS].”
“a pixelated photo of the [CLASS].” “a photo of the small [CLASS].”
“a sculpture of the [CLASS].” “a photo of the weird [CLASS].”
“a bright photo of the [CLASS].” “the cartoon [CLASS].”
“a cropped photo of a [CLASS].” “art of the [CLASS].”
“a plastic [CLASS].” “a drawing of the [CLASS].”
“a photo of the dirty [CLASS].” “a photo of the large [CLASS].”
“a jpeg corrupted photo of a [CLASS].” “a black and white photo of a [CLASS].”
“a blurry photo of the [CLASS].” “the plushie [CLASS].”
“a photo of the [CLASS].” “a dark photo of a [CLASS].”
“a good photo of the [CLASS].” “itap of a [CLASS].”
“a rendering of the [CLASS].” “graffiti of the [CLASS].”
“a [CLASS] in a video game.” “a toy [CLASS].”
“a photo of one [CLASS].” “itap of my [CLASS].”
“a doodle of a [CLASS].” “a photo of a cool [CLASS].”
“a close-up photo of the [CLASS].” “a photo of a small [CLASS].”
“a photo of a [CLASS].” “a tattoo of the [CLASS].”

based on this validation. With the optimal mixing coefficient α, test performance is maximized by
minimizing overfitting. This regularization perspective is shown in Figure 5, which illustrates training
and testing accuracy for interpolation at different numbers of shots.

G ALPHA APPROXIMATION BASELINES AND COMPARISON

G.1 ALPHA APPROXIMATION BASELINES

This section details naive mixing coefficient baselines we compare to AWE. 1) Constant α = 0.5,
where the mixing coefficient is kept at α = 0.5 for all number of shots per class. 2) Naive log-linear,
where we select α from a log-linear line between 1-shot at α = 0 and 128-shots at α = 1. 3)

11
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Figure 5: WiSE as a regularizer. Training vs testing metrics on ImageNet at multiple few-shot
learning settings. (Left) Accuracy: We see that at few-shot settings, end-to-end fine-tuning leads to
acute overfitting which significantly hurts the test accuracy. Somewhat surprisingly, weight-space
interpolation exhibits two regimes: at few-shots, interpolating from the fine-tuned model towards the
zero-shot leads to improvement on test accuracy without hurting training accuracy. Then, training
accuracy is impaired to improve test accuracy. Finally, the interpolation regresses both train and test
back to the zero-shot accuracy. (Right) Loss: To decrease the test loss from the fine-tuned model
on the left, the training loss must increase. The effect is most pronounced at small number of shots.
Eventually the interpolation regresses to the zero-shot losses on the right.

Population average α, where we use the average oracle mixing coefficient for k-shot for 10 reference
datasets (leaving out the evaluation dataset).

(a) Behavior of various α estimation strategies versus
number of shots for end-to-end fine-tuning.

(b) Behavior of various α estimation strategies versus
number of shots for linear probing.

G.2 PERFORMANCE COMPARISON

Figure 7 shows comparison of our approximation method to other baseline approximation approaches
shown in Appendix G.1 for end-to-end fine-tuning results. Both the constant and the naive log-linear
baselines show regressions in low shot regimes, where the former relies too heavily on the fine-tuned
model and the latter relies too weakly on the fine-tuned model. Additionally the constant baseline
misses out on performance gains with high-shots by relying too heavily on the zero-shot model. The
population average approximation performs well for most datasets, but significantly underperforms
on datasets which significantly deviate from typical behaviors such as Food101, OxfordPets and
FGVCAircraft. AWE manages to achieve a very good approximation and proves to be a flexible
method to approximate the mixing coefficient, including very good performance on datasets with
atypical behaviors.

12
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Figure 7: Comparison of the performance of our adaptive α scheme, AWE, versus other baseline
methods for inferring α. A constant α = 0.5 often fails for many and few shots, and a naive
log-linear predictor often underperforms at a low numbers of shots. A population-average approach
performs better but still underperforms on datasets that deviate from typical behavior such as Food101,
Flowers102, OxfordPets, and FGVCAircraft.

Table 3: Performance of AWE and baselines on multiple visual-encoder backbone varying in archi-
tecture and sizes. Bold is the best algorithm per visual backbone, underlined is the second best. We
do not include oracle methods in the rankings.

Visual Backbone ResNet50 ResNet101 ViT-B/32 ViT-B/16 ViT-B/32
Radford et al. (2021) Radford et al. (2021) Radford et al. (2021) Radford et al. (2021) Ilharco et al. (2021)

Zeroshot 58.77 59.86 61.88 65.23 68.05
Linear Probing 57.53 58.37 75.65 79.79 79.29
Finetuning 72.48 74.90 77.93 82.39 80.49

CoOp 73.42 75.96 75.70 79.71 77.71
ProGrad 73.95 N/A N/A N/A 77.62
Clip-Adapter 74.35 N/A N/A N/A 76.36
Tip-Adapter 66.11 65.63 68.72 73.15 73.30
Tip-Adapter-F 73.88 74.86 75.62 79.43 79.43

WiSE-LP (Oracle) 66.74 ± 0.11 69.23 ± 0.31 77.65 ± 0.10 81.41 ± 0.14 81.30 ± 0.16

AWE-LP (Ours) 66.68 ± 0.18 68.76 ± 0.24 77.52 ± 0.15 81.13 ± 0.11 81.14 ± 0.16

WiSE-FT (Oracle) 75.68 ± 0.16 77.46 ± 0.16 80.18 ± 0.13 84.05 ± 0.13 82.36 ± 0.15

AWE-FT (Ours) 75.61 ± 0.09 77.27 ± 0.12 79.97 ± 0.15 83.93 ± 0.12 82.39 ± 0.14
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Figure 8: Average results of selected approaches over our 11 datasets extended beyond 16 shots, up
to 128. Higher number of shots clearly reveals the suboptimal performance of methods that do not
employ full fine-tuning. Methods like Tip-Adapter-F, the best performing baseline on average, and
AWE-LP saturate at similar performance to linear probing since they are using frozen features from
pretraining. Note that when restricted to frozen features, AWE-LP outperforms the other methods.
Finally, we see that both AWE methods also converge to their corresponding fine-tuned models at
large number of shots.

H ADDITIONAL RESULTS

H.1 MAIN TEXT SUPPORT

H.2 EXTENSION OF MAIN TEXT FIGURES

In this section, we provide results for all baselines on all datasets and for all numbers of shots.
Figure 9 extends Figure 4 where some baselines, in particular full model fine-tuning and linear
probing, were held out for clarity. Figure 10 extends Figure 8 by showing performance on all datasets.
It is important to note that results shown in Figure 8 were averaged across datasets, and for the datasets
that did not have enough data to perform few-shot experiments up to 128, we use the performance at
their maximum number of available shots.

14



Published at the Workshop on Understanding Foundation Models at ICLR 2023

Figure 9: Few-shot learning results of AWE and baselines, compared to fine-tuning and linear
probing on our 11 datasets.

Figure 10: Few-shot learning results of AWE compared to select baselines on our 11 datasets beyond
16 up to 128.

H.3 DETAILED FEW-SHOT LEARNING RESULTS

In this section, we further provide the detailed few-shot classification results for all datasets and
baselines.
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Table 4: 11 dataset average few-shot learning results of AWE and baselines. Bold is the best algorithm
per visual backbone, underlined is the second best. We do not include oracle methods in the rankings.
For datasets without necessary samples for 64 or 128-shots evaluation, we use the performance of the
highest number of shots available for the average.

Algorithm Average over all datasets
Few-shot setup 1 2 4 8 16 32 64 128

Zeroshot 68.05
Linear Probing 48.21 59.75 69.08 75.17 79.29 81.65 84.97 85.85
Finetuning 59.83 65.68 71.28 76.26 80.49 83.93 86.31 88.34

CoOp 65.90 67.96 71.44 74.90 77.71 44.33 N/A N/A
ProGrad 67.90 70.24 73.05 75.37 77.62 42.70 N/A N/A
Clip-Adapter 68.39 69.04 69.72 74.19 76.36 38.30 N/A N/A
Tip-Adapter 69.04 69.97 70.90 72.00 73.30 74.74 77.89 76.47
Tip-Adapter-F 70.00 71.75 73.78 76.52 79.43 81.76 85.29 86.36

WiSE-LP (Oracle) 72.36 ± 0.29 74.46 ± 0.33 77.07 ± 0.27 79.35 ± 0.25 81.30 ± 0.16 82.59 ± 0.15 85.72 ± 0.13 86.47 ± 0.09

AWE-LP (Ours) 71.21 ± 0.23 73.66 ± 0.28 76.99 ± 0.24 79.05 ± 0.21 81.14 ± 0.16 82.56 ± 0.13 85.38 ± 0.09 86.52 ± 0.05

WiSE-FT (Oracle) 72.76 ± 0.20 74.65 ± 0.25 77.40 ± 0.25 79.83 ± 0.18 82.36 ± 0.15 84.84 ± 0.10 86.98 ± 0.11 88.70 ± 0.09

AWE-FT (Ours) 72.28 ± 0.21 73.87 ± 0.20 77.06 ± 0.20 79.66 ± 0.19 82.39 ± 0.14 84.76 ± 0.11 87.00 ± 0.09 88.70 ± 0.08

Table 5: ImageNet few-shot learning results of AWE and baselines. Bold is the best algorithm per
visual backbone, underlined is the second best. We do not include oracle methods in the rankings.

Algorithm ImageNet
Few-shot setup 1 2 4 8 16 32 64 128

Zeroshot 66.47
Linear Probing 29.59 41.48 52.60 60.39 65.23 68.07 69.45 70.00
Finetuning 55.47 58.90 62.40 65.59 68.56 71.01 72.68 73.38

CoOp 61.07 62.47 64.03 65.67 66.60 N/A N/A N/A
ProGrad 61.97 63.30 65.00 66.10 67.00 N/A N/A N/A
Clip-Adapter 66.20 66.17 66.57 66.93 67.30 N/A N/A N/A
Tip-Adapter 66.55 66.70 66.79 67.11 67.47 67.75 67.42 66.13
Tip-Adapter-F 66.62 66.85 67.38 68.20 69.56 71.30 72.67 73.76
WiSE-LP (Oracle) 66.69 ± 0.03 67.20 ± 0.03 68.04 ± 0.02 69.00 ± 0.04 70.08 ± 0.04 70.88 ± 0.06 71.55 ± 0.05 71.78 ± 0.02

AWE-LP (Ours) 66.43 ± 0.06 67.20 ± 0.03 67.90 ± 0.03 68.74 ± 0.03 69.55 ± 0.07 70.98 ± 0.04 71.03 ± 0.05 71.78 ± 0.02

WiSE-FT (Oracle) 66.90 ± 0.02 67.28 ± 0.04 67.92 ± 0.02 68.95 ± 0.03 70.17 ± 0.04 71.63 ± 0.05 72.79 ± 0.03 73.37 ± 0.05

AWE-FT (Ours) 66.77 ± 0.03 67.26 ± 0.01 67.58 ± 0.02 68.50 ± 0.02 69.91 ± 0.06 71.53 ± 0.06 72.79 ± 0.03 73.38 ± 0.05

Table 6: FGVCAircraft few-shot learning results of AWE and baselines. Bold is the best algorithm
per visual backbone, underlined is the second best. We do not include oracle methods in the rankings.

Algorithm FGVCAircraft
Few-shot setup 1 2 4 8 16 32

Zeroshot 23.43
Linear Probing 19.04 25.26 32.83 39.77 46.49 49.83
Finetuning 13.82 18.92 26.58 38.67 52.15 64.40
CoOp 22.53 23.10 24.23 35.13 40.20 44.33
ProGrad 25.30 27.70 31.33 35.50 39.77 42.70
Clip-Adapter 24.70 25.97 27.10 31.03 27.90 38.30
Tip-Adapter 24.47 25.76 27.17 29.33 32.31 35.06
Tip-Adapter-F 25.34 27.60 30.51 34.91 41.72 47.99

WiSE-LP (Oracle) 26.58 ± 0.31 29.69 ± 0.28 34.53 ± 0.36 40.38 ± 0.27 46.57 ± 0.27 49.53 ± 0.18

AWE-LP (Ours) 26.05 ± 0.27 29.77 ± 0.15 34.42 ± 0.37 39.77 ± 0.27 46.49 ± 0.27 49.83 ± 0.15

WiSE-FT (Oracle) 26.31 ± 0.19 29.17 ± 0.46 34.61 ± 0.39 42.35 ± 0.42 53.32 ± 0.22 64.34 ± 0.29

AWE-FT (Ours) 26.31 ± 0.19 27.22 ± 0.23 34.61 ± 0.39 42.55 ± 0.39 53.34 ± 0.24 64.35 ± 0.29
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Table 7: EuroSAT few-shot learning results of AWE and baselines. Bold is the best algorithm per
visual backbone, underlined is the second best. We do not include oracle methods in the rankings.

Algorithm EuroSAT
Few-shot setup 1 2 4 8 16 32 64 128

Zeroshot 47.84
Linear Probing 61.62 70.00 79.39 84.01 89.38 90.50 91.91 92.62
Finetuning 56.96 69.88 78.86 85.40 90.13 94.14 95.53 96.82
CoOp 56.87 66.13 72.13 79.63 85.80 N/A N/A N/A
ProGrad 58.57 68.50 73.13 79.50 82.80 N/A N/A N/A
Clip-Adapter 49.60 52.27 51.67 64.17 72.23 N/A N/A N/A
Tip-Adapter 49.55 53.01 52.94 52.61 53.72 59.66 63.85 63.02
Tip-Adapter-F 56.97 65.02 70.37 76.88 83.77 89.72 92.02 92.59

WiSE-LP (Oracle) 67.61 ± 1.33 73.82 ± 1.78 80.68 ± 0.91 84.29 ± 1.10 89.41 ± 0.39 90.50 ± 0.37 91.91 ± 0.10 92.61 ± 0.05

AWE-LP (Ours) 61.46 ± 0.89 69.24 ± 1.64 80.27 ± 0.89 84.01 ± 1.05 88.89 ± 0.42 89.89 ± 0.41 91.80 ± 0.11 92.62 ± 0.05

WiSE-FT (Oracle) 73.49 ± 0.62 79.75 ± 0.76 85.50 ± 0.73 89.26 ± 0.46 92.29 ± 0.22 94.75 ± 0.11 95.86 ± 0.09 96.88 ± 0.06

AWE-FT (Ours) 73.10 ± 0.67 73.49 ± 0.60 85.24 ± 0.57 89.19 ± 0.50 92.05 ± 0.26 94.77 ± 0.12 95.91 ± 0.08 96.82 ± 0.03

Table 8: UCF101 few-shot learning results of AWE and baselines. Bold is the best algorithm per
visual backbone, underlined is the second best. We do not include oracle methods in the rankings.

Algorithm UCF101
Few-shot setup 1 2 4 8 16 32 64 128

Zeroshot 64.26
Linear Probing 48.28 59.96 68.92 75.70 79.26 81.66 82.46 82.32
Finetuning 59.50 65.44 71.30 77.08 81.08 84.56 86.14 85.81
CoOp 63.43 66.93 71.93 74.70 77.63 N/A N/A N/A
ProGrad 65.07 68.10 71.07 73.83 77.17 N/A N/A N/A
Clip-Adapter 64.43 65.27 66.73 73.50 76.73 N/A N/A N/A
Tip-Adapter 65.03 65.98 67.58 69.18 71.76 72.63 72.59 71.33
Tip-Adapter-F 65.46 66.84 69.61 73.35 78.69 80.07 81.54 80.99

WiSE-LP (Oracle) 68.18 ± 0.35 70.52 ± 0.16 74.14 ± 0.29 78.09 ± 0.28 80.33 ± 0.14 81.74 ± 0.23 82.46 ± 0.08 82.43 ± 0.16

AWE-LP (Ours) 67.62 ± 0.29 70.14 ± 0.22 74.17 ± 0.19 78.09 ± 0.28 80.33 ± 0.14 81.66 ± 0.18 82.46 ± 0.08 82.32 ± 0.11

WiSE-FT (Oracle) 68.81 ± 0.28 70.80 ± 0.31 74.84 ± 0.31 79.20 ± 0.15 82.19 ± 0.23 84.69 ± 0.17 86.21 ± 0.17 85.85 ± 0.21

AWE-FT (Ours) 68.25 ± 0.22 70.96 ± 0.26 72.94 ± 0.11 79.26 ± 0.13 81.92 ± 0.14 84.56 ± 0.15 86.14 ± 0.17 85.81 ± 0.20

Table 9: SUN397 few-shot learning results of AWE and baselines. Bold is the best algorithm per
visual backbone, underlined is the second best. We do not include oracle methods in the rankings.

Algorithm SUN397
Few-shot setup 1 2 4 8 16 32 64

Zeroshot 68.35
Linear Probing 40.78 53.68 62.94 69.45 73.62 76.53 76.09
Finetuning 60.39 64.63 67.67 70.59 73.68 75.98 75.96

CoOp 64.20 63.93 67.77 69.40 73.00 N/A N/A
ProGrad 65.13 66.77 69.63 71.27 73.70 N/A N/A
Clip-Adapter 68.53 69.07 69.70 72.63 73.93 N/A N/A
Tip-Adapter 68.63 69.00 69.55 70.51 71.66 72.97 73.16
Tip-Adapter-F 68.79 69.33 70.39 72.32 74.79 76.91 77.06
WiSE-LP (Oracle) 69.65 ± 0.08 70.99 ± 0.07 72.61 ± 0.16 74.22 ± 0.11 75.80 ± 0.08 77.47 ± 0.04 77.13 ± 0.08

AWE-LP (Ours) 69.74 ± 0.09 71.02 ± 0.09 72.69 ± 0.11 73.88 ± 0.10 75.81 ± 0.04 77.10 ± 0.02 76.09 ± 0.03

WiSE-FT (Oracle) 69.85 ± 0.11 70.91 ± 0.08 72.22 ± 0.15 73.46 ± 0.08 75.31 ± 0.11 76.81 ± 0.10 76.92 ± 0.07

AWE-FT (Ours) 69.87 ± 0.10 70.74 ± 0.06 71.97 ± 0.08 73.58 ± 0.10 75.42 ± 0.08 76.64 ± 0.08 76.65 ± 0.09

17



Published at the Workshop on Understanding Foundation Models at ICLR 2023

Table 10: Caltech101 few-shot learning results of AWE and baselines. Bold is the best algorithm per
visual backbone, underlined is the second best. We do not include oracle methods in the rankings.

Algorithm Caltech101
Few-shot setup 1 2 4 8 16 32 64

Zeroshot 94.97
Linear Probing 79.23 86.16 92.11 93.94 95.91 96.38 96.52
Finetuning 87.89 90.26 92.67 94.39 96.16 96.57 96.84

CoOp 92.10 92.73 94.03 94.63 95.37 N/A N/A
ProGrad 93.03 93.53 94.97 95.13 95.80 N/A N/A
Clip-Adapter 94.80 94.93 95.10 95.57 95.83 N/A N/A
Tip-Adapter 94.95 95.07 95.31 95.07 95.07 94.85 94.44
Tip-Adapter-F 94.97 95.15 95.52 95.66 96.19 96.43 96.23

WiSE-LP (Oracle) 94.95 ± 0.04 95.08 ± 0.03 95.42 ± 0.02 95.56 ± 0.17 96.13 ± 0.08 96.22 ± 0.14 96.54 ± 0.11

AWE-LP (Ours) 94.35 ± 0.19 94.97 ± 0.00 95.32 ± 0.04 95.18 ± 0.05 95.70 ± 0.07 96.64 ± 0.05 96.19 ± 0.06

WiSE-FT (Oracle) 94.99 ± 0.02 94.93 ± 0.09 95.46 ± 0.10 95.88 ± 0.04 96.36 ± 0.11 96.87 ± 0.05 97.02 ± 0.06

AWE-FT (Ours) 94.49 ± 0.02 95.10 ± 0.03 95.25 ± 0.04 95.81 ± 0.05 96.52 ± 0.09 96.96 ± 0.07 97.19 ± 0.04

Table 11: OxfordPets few-shot learning results of AWE and baselines. Bold is the best algorithm per
visual backbone, underlined is the second best. We do not include oracle methods in the rankings.

Algorithm OxfordPets
Few-shot setup 1 2 4 8 16 32 64 128

Zeroshot 89.86
Linear Probing 49.21 63.49 73.79 81.18 85.31 88.60 90.25 89.88
Finetuning 70.47 75.66 79.22 84.92 88.14 90.83 92.35 92.18

CoOp 84.50 84.37 86.70 87.03 86.43 N/A N/A N/A
ProGrad 87.67 85.13 87.83 88.03 88.40 N/A N/A N/A
Clip-Adapter 89.83 90.07 90.20 90.93 91.13 N/A N/A N/A
Tip-Adapter 89.90 90.08 90.15 90.64 90.67 91.10 90.87 89.90
Tip-Adapter-F 89.94 90.32 90.53 90.76 90.67 91.36 91.92 91.16

WiSE-LP (Oracle) 90.28 ± 0.17 90.31 ± 0.11 90.71 ± 0.26 91.08 ± 0.24 90.90 ± 0.12 91.31 ± 0.31 92.11 ± 0.34 91.35 ± 0.19

AWE-LP (Ours) 90.42 ± 0.13 90.24 ± 0.03 90.99 ± 0.12 91.23 ± 0.15 91.11 ± 0.10 91.19 ± 0.09 91.38 ± 0.14 91.91 ± 0.05

WiSE-FT (Oracle) 90.57 ± 0.07 90.51 ± 0.06 91.30 ± 0.14 91.52 ± 0.18 91.64 ± 0.21 92.99 ± 0.09 93.39 ± 0.15 93.14 ± 0.11

AWE-FT (Ours) 90.31 ± 0.22 90.79 ± 0.10 91.39 ± 0.08 91.24 ± 0.15 92.06 ± 0.18 92.49 ± 0.12 93.71 ± 0.03 93.16 ± 0.04

Table 12: DTD few-shot learning results of AWE and baselines. Bold is the best algorithm per visual
backbone, underlined is the second best. We do not include oracle methods in the rankings.

Algorithm DTD
Few-shot setup 1 2 4 8 16 32 64

Zeroshot 54.61
Linear Probing 45.33 53.75 63.36 70.08 73.87 77.92 78.94
Finetuning 54.42 56.60 63.53 67.12 71.54 75.89 77.42

CoOp 53.43 56.60 62.73 66.63 71.03 N/A N/A
ProGrad 57.67 59.93 63.90 66.23 69.47 N/A N/A
Clip-Adapter 54.87 55.57 57.87 66.83 72.77 N/A N/A
Tip-Adapter 56.62 57.42 59.87 63.53 66.61 69.44 70.24
Tip-Adapter-F 56.71 58.87 61.70 66.90 72.10 76.21 77.07

WiSE-LP (Oracle) 63.12 ± 0.38 65.15 ± 0.70 69.82 ± 0.57 73.87 ± 0.32 75.53 ± 0.29 78.84 ± 0.21 79.74 ± 0.24

AWE-LP (Ours) 61.64 ± 0.26 64.43 ± 0.59 69.56 ± 0.46 72.85 ± 0.19 74.91 ± 0.37 78.87 ± 0.29 79.62 ± 0.20

WiSE-FT (Oracle) 61.18 ± 0.58 63.32 ± 0.36 67.75 ± 0.46 71.00 ± 0.40 74.04 ± 0.27 77.41 ± 0.17 78.84 ± 0.30

AWE-FT (Ours) 60.54 ± 0.40 63.43 ± 0.30 67.59 ± 0.47 69.75 ± 0.57 74.55 ± 0.32 77.49 ± 0.24 78.84 ± 0.30
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Table 13: Food101 few-shot learning results of AWE and baselines. Bold is the best algorithm per
visual backbone, underlined is the second best. We do not include oracle methods in the rankings.

Algorithm Food101
Few-shot setup 1 2 4 8 16 32 64 128

Zeroshot 78.69
Linear Probing 38.54 52.96 64.10 71.60 76.34 79.32 81.12 82.00
Finetuning 54.68 60.58 66.32 71.75 75.47 78.67 81.25 83.08

CoOp 69.87 67.63 70.80 71.53 74.40 N/A N/A N/A
ProGrad 72.13 70.73 72.73 74.57 76.40 N/A N/A N/A
Clip-Adapter 78.70 79.07 79.17 79.63 80.23 N/A N/A N/A
Tip-Adapter 78.71 78.74 78.87 78.97 79.16 79.47 79.52 79.07
Tip-Adapter-F 78.74 78.86 79.19 79.55 80.07 80.78 81.61 82.19

WiSE-LP (Oracle) 78.79 ± 0.04 79.09 ± 0.06 79.52 ± 0.03 80.21 ± 0.08 80.66 ± 0.07 81.43 ± 0.05 82.05 ± 0.05 82.47 ± 0.03

AWE-LP (Ours) 77.58 ± 0.09 78.69 ± 0.00 79.43 ± 0.05 79.94 ± 0.03 80.67 ± 0.07 81.42 ± 0.06 81.81 ± 0.03 82.40 ± 0.04

WiSE-FT (Oracle) 79.07 ± 0.03 79.44 ± 0.06 79.78 ± 0.05 80.51 ± 0.04 81.15 ± 0.07 82.17 ± 0.02 83.15 ± 0.03 84.18 ± 0.03

AWE-FT (Ours) 78.23 ± 0.08 79.44 ± 0.06 79.33 ± 0.08 80.51 ± 0.04 81.02 ± 0.04 82.07 ± 0.04 83.15 ± 0.03 84.23 ± 0.04

Table 14: Flowers102 few-shot learning results of AWE and baselines. Bold is the best algorithm per
visual backbone, underlined is the second best. We do not include oracle methods in the rankings.

Algorithm Flowers102
Few-shot setup 1 2 4 8 16 32 64 128

Zeroshot 71.82
Linear Probing 71.58 84.86 91.47 95.07 96.98 97.82 98.03 98.26
Finetuning 73.24 82.64 90.62 94.68 97.09 98.30 98.66 98.79
CoOp 72.07 78.93 85.33 91.83 94.50 N/A N/A N/A
ProGrad 75.13 82.80 86.60 90.30 93.33 N/A N/A N/A
Clip-Adapter 72.27 72.50 73.97 85.40 91.53 N/A N/A N/A
Tip-Adapter 76.43 79.09 82.36 85.46 87.78 89.28 88.92 89.36
Tip-Adapter-F 77.83 81.53 86.87 92.83 95.03 96.53 97.50 97.46

WiSE-LP (Oracle) 81.53 ± 0.36 87.91 ± 0.35 92.25 ± 0.24 95.29 ± 0.09 97.03 ± 0.12 97.82 ± 0.04 98.02 ± 0.08 98.20 ± 0.07

AWE-LP (Ours) 79.89 ± 0.18 85.71 ± 0.26 92.29 ± 0.30 95.07 ± 0.08 96.98 ± 0.13 97.82 ± 0.04 98.03 ± 0.07 98.08 ± 0.05

WiSE-FT (Oracle) 80.41 ± 0.23 85.51 ± 0.46 91.67 ± 0.33 94.84 ± 0.08 96.97 ± 0.13 98.33 ± 0.04 98.66 ± 0.06 98.79 ± 0.11

AWE-FT (Ours) 78.81 ± 0.24 84.53 ± 0.44 91.38 ± 0.32 94.68 ± 0.12 97.09 ± 0.11 98.23 ± 0.04 98.66 ± 0.06 98.79 ± 0.11

Table 15: StanfordCars few-shot learning results of AWE and baselines. Bold is the best algorithm
per visual backbone, underlined is the second best. We do not include oracle methods in the rankings.

Algorithm StanfordCars
Few-shot setup 1 2 4 8 16 32

Zeroshot 88.30
Linear Probing 47.12 65.61 78.40 85.67 89.76 91.54
Finetuning 71.25 78.92 84.94 88.71 91.43 92.88

CoOp 84.83 84.70 86.20 87.67 89.90 N/A
ProGrad 85.27 86.20 87.40 88.63 90.00 N/A
Clip-Adapter 88.33 88.50 88.80 89.47 90.33 N/A
Tip-Adapter 88.58 88.79 89.27 89.59 90.11 89.94
Tip-Adapter-F 88.60 88.84 89.53 90.39 91.11 92.08

WiSE-LP (Oracle) 88.55 ± 0.07 89.35 ± 0.10 90.10 ± 0.09 90.89 ± 0.10 91.87 ± 0.12 92.80 ± 0.06

AWE-LP (Ours) 88.18 ± 0.05 88.81 ± 0.02 89.84 ± 0.08 90.78 ± 0.07 92.07 ± 0.04 92.73 ± 0.06

WiSE-FT (Oracle) 88.73 ± 0.10 89.52 ± 0.07 90.32 ± 0.07 91.17 ± 0.07 92.47 ± 0.02 93.28 ± 0.02

AWE-FT (Ours) 88.45 ± 0.12 89.56 ± 0.08 90.35 ± 0.09 91.18 ± 0.04 92.45 ± 0.05 93.31 ± 0.02
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