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Abstract001

Process reward models (PRMs) have shown002
success in complex reasoning tasks for large003
language models (LLMs). However, their004
application to machine translation (MT) re-005
mains underexplored due to the lack of sys-006
tematic methodologies and evaluation bench-007
marks. To address this gap, we introduce MT-008
RewardTree, a comprehensive framework for009
constructing, evaluating, and deploying pro-010
cess reward models in MT. Unlike traditional011
vanilla preference pair construction, we pro-012
pose a novel method for automatically generat-013
ing token-level preference pairs using approxi-014
mate Monte Carlo Tree Search (MCTS), which015
mitigates the prohibitive cost of human annota-016
tion for fine-grained steps. Then, we establish017
the first MT-specific reward model benchmark018
and provide a systematic comparison of dif-019
ferent reward modeling architectures, reveal-020
ing that token-level supervision effectively cap-021
tures fine-grained preferences. Experimental022
results demonstrate that our MT-PRM-Qwen-023
2.5-3B achieves state-of-the-art performance024
in both token-level and sequence-level evalua-025
tion given the same input prefix. Furthermore,026
we showcase practical applications where MT-027
PRMs successfully identify token-level transla-028
tion differences and enable test-time alignment029
for LLMs without additional alignment train-030
ing. Our work provides valuable insights into031
the role of reward models in MT research. Our032
code and data will be released.033

1 Introduction034

The next-token prediction process in large language035

models (LLMs) is often modeled as a Markov De-036

cision Process (MDP) and has achieved remarkable037

success across various domains, largely attributed038

to reinforcement learning (RL) and the scaling of039

test-time compute (Snell et al., 2024; Zeng et al.,040

2024; DeepSeek-AI et al., 2025; Team, 2025; Xi-041

ang et al., 2025). Reward models are central to042
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Figure 1: Components of MT-RewardTree.

these advancements. Outcome Reward Models 043

(ORMs), which are designed to evaluate full re- 044

sponses, have been widely adopted; however, due 045

to the sparsity of outcome rewards, ORMs often 046

yield suboptimal performance and struggle with sta- 047

bility and efficiency during RL training (Lightman 048

et al., 2024; Cao et al., 2024; Chan et al., 2024). In 049

contrast, Process Reward Models (PRMs) evaluate 050

intermediate steps to provide fine-grained guidance 051

during both training and inference. PRMs have 052

proven particularly effective in tasks such as math- 053

ematics and coding by guiding stepwise decision- 054

making (Wang et al., 2024a; Chen et al., 2024; Luo 055

et al., 2024; Qi et al., 2024; Guan et al., 2025). 056

Machine translation (MT) naturally aligns with 057

token-level MDP frameworks, as each translation 058

decision corresponds directly to token generation. 059

However, there is still a lack of systematic method- 060

ologies for constructing and evaluating PRMs in 061

MT, which has hindered progress relative to ad- 062

vancements in general-domain LLMs. 063

Developing effective PRMs is challenging. Al- 064

though Lightman et al. (2024) demonstrate that 065

process supervision with human annotators im- 066

proves PRM performance in mathematical tasks, 067

this methodology requires domain-expert annota- 068

tors, resulting in prohibitive costs and practical limi- 069
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tations for translation tasks. Recently, some studies070

suggest that a PRM can be automatically learned071

during Direct Preference Optimization (DPO) train-072

ing (Rafailov et al., 2024b,a; Yuan et al., 2024).073

However, existing vanilla preference pair datasets074

provide only sequence-to-sequence preference data,075

rather than token-level preferences, which raises076

concerns about their applicability for token-level077

alignment. Additionally, evaluating PRMs remains078

a significant challenge. In mathematical tasks,079

evaluation is often done using a Best-of-N (BoN)080

sampling strategy—selecting the highest-scored re-081

sponse from N candidates based on a PRM (Light-082

man et al., 2024; Wang et al., 2024b; Luo et al.,083

2024)—or by having the PRM identify errors or084

verify correctness in the steps (Zheng et al., 2024;085

Zhang et al., 2025). Since each step in mathematics086

has a deterministic answer, these methods do not087

directly translate to PRM evaluation in MT.088

In this paper, we introduce MT-RewardTree, a089

comprehensive framework for constructing, eval-090

uating, and deploying PRMs in machine transla-091

tion. We propose an approximate Monte Carlo Tree092

Search (MCTS) method (Kocsis and Szepesvári,093

2006; Silver et al., 2016) to generate the token-level094

preference pair dataset. This dataset is then split095

into a training set for reward model development096

and a benchmark for reward evaluation. We pro-097

vide a systematic comparison of different reward098

modeling methods and test on both token-level099

and sequence-level performance. Furthermore, we100

demonstrate two practical applications of PRMs,101

offering valuable insights for future MT research.102

Our main contributions are as follows:103

• We introduce MT-RewardTree, a comprehen-104

sive framework for the construction, evaluation,105

and deployment of PRMs in MT. We estab-106

lish the first dedicated reward benchmark - MT-107

PRMBench. Our experiments demonstrate that108

MT-PRMs achieve competitive performance on109

both token-level and sequence-level evaluations.110

• Comprehensive experiments indicate that our111

token-level preference pairs, generated through112

an approximate MCTS method, significantly out-113

perform vanilla preference pairs in process re-114

ward model training. Furthermore, our anal-115

ysis validates that supervising PRMs using116

preference-based signals is more effective than117

direct supervision with absolute value estimates.118

• We demonstrate that our MT-PRMs can directly119

identify token-level translation differences and 120

facilitate test-time alignment for LLM-based MT 121

without the need for additional alignment train- 122

ing, offering valuable practical insights for the 123

application of reward models in MT. 124

2 Background 125

2.1 Token-level Markov Decision Process 126

LLMs’ autoregressive generation can be naturally 127

formulated as a Markov Decision Process, where 128

each token generation is treated as an action. At 129

each time step t, an action at corresponds to the 130

generation of a new token, and the state st is rep- 131

resented as the sequence of tokens generated up 132

to that point. For tasks that do not involve interac- 133

tion with an external environment—such as trans- 134

lation—the state is defined as 135

st = (x0, . . . , xL, y0, . . . , yt−1), 136

where (x0, . . . , xL) represents the input prompt 137

and (y0, . . . , yt−1) is the sequence of generated 138

tokens until time step t − 1. The state transition 139

function f is deterministic and updates the state by 140

concatenating the newly generated token: 141

st+1 = f(st, at) = st | at, 142

with | denoting concatenation. 143

Within this token-level MDP framework, the re- 144

ward function r(st, at) is typically designed to pro- 145

vide feedback only at the terminal time step T , 146

reflecting the overall correctness of the generated 147

sequence or the successful completion of the task. 148

To optimize the policy πθ based on this reward, 149

Reinforcement Learning with Human Feedback 150

(RLHF) (Ouyang et al., 2022) typically maximizes 151

a KL-constrained objective: 152

E(s0,...,sT )∼ρπ

[∑T
t=0

(
r(st, at)− β log π(at|st)

πref(at|st)

)]
, (1) 153

where πref is a pre-trained reference policy, β con- 154

trols the strength of the KL penalty and ρπ denotes 155

the trajectory distribution induced by policy π. 156

In practice, classical RLHF applies the reward 157

solely at the terminal state. Specifically, the re- 158

ward function used in Proximal Policy Optimiza- 159

tion (PPO) (Schulman et al., 2017) is defined as: 160

r(st, at) =

{
β log πref(at | st), if st+1 is non-terminal,

r(x, y) + β log πref(at | st), if st+1 is terminal.
(2) 161
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2.2 Reward Modeling in RLHF162

Reward modeling is the cornerstone of RLHF, en-163

abling LLMs to align their outputs with human164

preferences. In this section, we distinguish be-165

tween typical (sequence-level) reward modeling166

and the more fine-grained token-level approach.167

Sequence-level Reward Modeling. In classical168

RLHF, the reward function is learned from human169

feedback on prompt-response pairs (x,y). The re-170

ward model is formulated as a contextual bandit,171

where a scalar reward is assigned only at the ter-172

minal state—i.e., once the full response sequence173

has been generated. This formulation, known as174

Outcome Reward Modeling, follows the Bradley-175

Terry (Bradley and Terry, 1952) preference model176

to define the probability of preferring one response177

over another:178

p∗(yw ⪰ yl) =
exp(rϕ(x,yw))

exp(rϕ(x,yw))+exp(rϕ(x,yl))
. (3)179

To train the reward model rϕ, we construct a pref-180

erence dataset D, where each prompt x is paired181

with two candidate responses, y and y′. Human182

annotators or heuristics determine the preferred re-183

sponse yw and the rejected response yl. The reward184

model is then optimized to maximize the likelihood185

of these human preferences:186

maxϕ E(x,yw,yl)∼D [log σ(rϕ(x, yw)− rϕ(x, yl))] , (4)187

where σ is the logistic function. By training188

rϕ in this manner, we ensure that the model as-189

signs higher rewards to preferred responses, effec-190

tively capturing human-like quality judgments for191

sequence-level evaluation.192

Token-level Reward Modeling. While the193

sequence-level approach treats the entire generated194

response as a single action, it fails to capture the195

fine-grained decision-making process inherent in196

token generation. Token-level reward modeling197

addresses this limitation by evaluating rewards at198

each token-generation step. This approach corre-199

sponds to a form of Process Reward Models. The200

cumulative reward for a trajectory τ is computed as201

the sum of per-token rewards, and the correspond-202

ing preference probability between two trajectories,203

τw and τ l, is given by:204

p∗(τw ⪰ τ l) =
exp(

∑N
i=1 r(s

w
i ,awi ))

exp(
∑N

i=1 r(s
w
i ,awi ))+exp(

∑M
i=1 r(s

l
i,a

l
i))

. (5)205

Although token-level reward modeling offers206

finer-grained feedback, obtaining effective PRMs is207

more challenging to obtain and deploy (Lightman208

et al., 2024; Cao et al., 2024).209

3 MT-RewardTree 210

In this section, we introduce the components of the 211

MT-RewardTree. We first describe how we con- 212

struct token-level preference pairs using an MCTS- 213

based method. Next, we review several approaches 214

employed for reward modeling. 215

3.1 Constructing Token-level Preference Pairs 216

Prior studies have investigated translation prefer- 217

ence pair construction (Xu et al., 2024; Agrawal 218

et al., 2024; Feng et al., 2024a), yet a standardized 219

token-level preference pair dataset for PRMs in 220

MT remains absent. MQM (Freitag et al., 2021) 221

datasets depend on manual error annotation, which 222

is both cost-prohibitive and incapable of producing 223

granular token-level preference pairs. 224

Drawing inspiration from MCTS, we propose a 225

token-centric approach that quantifies token quality 226

based on its potential to contribute to higher-quality 227

translations. This method aligns with Monte Carlo- 228

based PRMs construction techniques in mathemat- 229

ics, where step-wise quality is determined by its 230

incremental contribution to deriving correct an- 231

swers (Wang et al., 2024b; Guan et al., 2025). 232

The MCTS process consists of four main steps 233

(depicted in Figure 2): Selection, Expansion, Sim- 234

ulation (Evaluation), and Back-propagation. 235

1. Selection: The first phase involves selecting a 236

portion of the existing tree that is most promis- 237

ing for further expansion. Starting from the 238

root node, a standard approach would traverse 239

the tree down to a leaf using the PUCT algo- 240

rithm (Rosin, 2011; Silver et al., 2017). Since 241

our goal is to construct token-level preference 242

pairs rather than achieving global optimality, 243

we automatically select the existing prompt and 244

previously generated tokens as the prefix y<t. 245

2. Expansion: If the selected leaf node is not an 246

EOS (end-of-sentence) token—i.e. if it is not a 247

terminal state—the node is expanded by gener- 248

ating k candidate children. This is achieved by 249

decoding one additional step using the language 250

model and selecting the top-k tokens as the new 251

children. We select the top-2 candidate tokens 252

atj (with j ∈ {1, 2}) that have the highest log- 253

its. Preliminary experiments demonstrate that 254

tokens outside of the top-2 yield significantly 255

lower translation quality during the Simulation 256

phase. These top-2 tokens, sharing the same 257
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<src>: NLP是最有意思的研究领域

<prompt>: Translate from 
Chinese to English

...

chosen: NLP is the most interesting research field 
rejected: In the realm of research, NLP is the most captivating field

chosen: NLP is the most interesting research field 
rejected: NLP is the most fascinating area of research

Vanilla Preference Pair Token-level Preference Pair

Figure 2: The construction process of token-level preference pairs. We utilize TowerInstruct-7B-v0.2 to generate
candidate tokens. A token-level preference pair comprises two translations that share an identical prefix.

prefix y<t, form the basis for our token-level258

preference pair.259

3. Simulation (Evaluation): From each expanded260

node a, we generate n complete translation roll-261

outs until an EOS token is reached. We then262

evaluate the quality (or groundedness) of the263

full translation sequence, denoted by g(y, n).264

In our framework, we use COMETKiwi (Rei265

et al., 2022) to estimate the quality of all n full266

rollouts. These scores are averaged and further267

assigned as the value of node a, i.e., V (a).268

4. Back-propagation: Since our objective is to269

construct token-level preference pairs, we com-270

pare the values V (at1) and V (at2) to determine271

which expanded token is superior. Finally, we272

retain the node with the higher V value. This273

node, along with its corresponding prefix y<t,274

is then used as the starting point in the next275

simulation cycle, beginning again at Step 1.276

These four steps are repeated until the EOS token277

appears during the Selection phase. We retain one278

rollout from the superior token and one from the279

inferior to construct our token-level preference pair.280

We use COMETKiwi to guarantee the score gap281

lies between 0.04 and 0.4 to control the quality.282

3.2 Implicit Process Reward Modeling283

Unlike ORMs, which assign a single reward to284

the entire response, PRMs aim to assign rewards285

at a finer granularity, such as at each step or to- 286

ken. However, traditional PRMs training requires 287

step-level annotations, which are costly to obtain. 288

Recent studies (Rafailov et al., 2024a; Zhong et al., 289

2024) show that ORMs can be trained with im- 290

plicit reward modeling, enabling PRMs to emerge 291

naturally without the need for explicit step labels. 292

Consider an ORM where the reward is param- 293

eterized by the log-likelihood ratio of two causal 294

language models: 295

rθ(y) := β log
πθ(y)

πref(y)
(6) 296

where πθ represents the trained model’s probability 297

distribution, and πref is a reference model. We 298

define the cumulative reward up to step t as: 299

qtθ(y<t, yt) :=

t∑
i=1

β log
πθ(yi|y<i)

πref(yi|y<i)
(7) 300

which serves as an exponential moving average of 301

rθ across steps. The expected process reward at 302

step t can then be expressed as: 303

qtθ(y<t, yt) = β logEπref(y|y≤t)

[
e

1
β
rθ(y)

]
(8) 304

This formulation shows that qtθ is an exact expecta- 305

tion of the outcome reward rθ at step t, making it 306

analogous to a Q-value in reinforcement learning. 307

By defining the process reward rtθ as the differ- 308

ence between successive Q-values: 309

rtθ := qtθ − qt−1
θ = β log

πθ(yt|y<t)

πref(yt|y<t)
(9) 310
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Model MT-PRMBench
Sequence-level Token-level

EN→XX XX→EN Avg. EN→XX XX→EN Avg.

Baselines
Skywork-Reward-LLaMA-3.1-8B 0.857 0.773 0.815 - - -
MT-Ranker-base 0.785 0.787 0.786 - - -
MT-Ranker-large 0.847 0.873 0.860 - - -

PRMs
MT-PRM-LLaMA-3.2-3B 0.777 0.775 0.776 0.542 0.615 0.578
MT-PRM-Qwen-2.5-3B 0.867 0.858 0.863 0.637 0.685 0.660

Table 1: Accuracy results on MT-PRMBench. Skywork-Reward-LLaMA-3.1-8B is an advanced ORM for general
domains, while MT-Ranker represents the SoTA non-metric reference-free translation quality estimation model.

Preference Pair Type Training Strategy Avg.

Token-level DPO 0.660
Vanilla DPO 0.574
Token-level KTO 0.644
Vanilla KTO 0.562

Table 2: Ablation study on the effect of training prefer-
ence data and implicit reward training objectives. The
backbone model is Qwen-2.5-3B-Instruct and we test
these variants on MT-PRMBench (Token-level).

We see that PRMs can be derived directly from311

an ORM trained on response-level data, without312

requiring explicit step-wise labels. This insight313

suggests that training an ORM inherently leads314

to the learning of a Q-function, enabling step- or315

token-level reward modeling without requiring ad-316

ditional supervision. A typical example of this is317

DPO (Rafailov et al., 2024b), which optimizes the318

following objective:319

LDPO(πθ;πref) = −E(x,yw,yl)∼D log σ
(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

)
(10)320

This formulation shows that optimizing πθ implic-321

itly optimizes a reward model, as described in Eq. 4.322

Moreover, Yuan et al. (2024) demonstrated that this323

approach is agnostic to the specific training objec-324

tive (i.e., not limited to DPO). It can be instantiated325

using various training objectives (e.g., KTO (Etha-326

yarajh et al., 2024)), with the only modification327

being the substitution of rθ(y) with β log πθ(y)
πref(y)

.328

Moreover, our implicit PRMs can seamlessly329

be converted into ORMs using weighted implicit330

rewards:331

rsequence(y1:T ) =
T−1∑
k=0

wt log
πθ(yt|y<t)

πref(yt|y<t)
(11)332

where the positional weights wt =
1

|y<t| are used333

to balance the contributions of each token.334

4 Experiments 335

4.1 Experimental Setup 336

Datasets. We explore four languages—English 337

(EN), German (DE), Chinese (ZH), and Russian 338

(RU)—and six translation directions: EN→XX and 339

XX→EN. Our raw corpus consists of test sets from 340

WMT17 to WMT20, supplemented with develop- 341

ment and test sets from the Flores (Costa-jussà 342

et al., 2022). We use the TowerInstruct-7B-v0.21 343

model with a temperature of 0.95 and apply the 344

MCTS-based approach described earlier. During 345

the Simulation step, we sample three candidate 346

hypotheses for each node. Our token-level pref- 347

erence pairs is divided into train and test set (MT- 348

PRMBench). Detailed statistics are in Table 5. 349

Training Details. We take LLaMA-3.2-3B- 350

Instruct and Qwen-2.5-3B-Instruct as the backbone 351

models for training. For the DPO training, the 352

higher-scored sentence is designated as the cho- 353

sen response, while the lower-scored sentence is 354

labeled as the rejected response. For the KTO train- 355

ing, the higher-scored sentence is treated as the 356

positive sample, and the lower-scored sentence as 357

the negative sample. We set β as 0.1. 358

Reward Evaluation. We evaluate reward models 359

by framing the task as a classification problem, 360

similar to prior work on reward model benchmarks 361

in the general domain (Lambert et al., 2024; Liu 362

et al., 2024). For sequence-level evaluation, given 363

a tuple (x, yc, yr), where x is the prompt, yc is the 364

chosen response, and yr is the rejected response, 365

the reward model predicts whether yc is better than 366

yr. If the reward model assigns a higher reward to 367

yc than to yr, the prediction is correct; otherwise, 368

it is incorrect. We use accuracy as the evaluation 369

1https://huggingface.co/Unbabel/TowerInstruct-7B-v0.2
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metric, computed as follows:370

Accuracy = 1
|D|

∑
(x,yc,yr)∈D I[Rθ(x, yc) > Rθ(x, yr)]

(12)371

where I(·) is the indicator function, and D denotes372

the evaluation dataset.373

For token-level evaluation, we use tuples of the374

form (x, y<t+ac, y<t+ar), where y<t is the gener-375

ated tokens before, ac is the next chosen token, and376

ar is the rejected token. Similarly, we compute ac-377

curacy as the evaluation score: if the PRM assigns378

a higher reward to ac than to ar, the prediction is379

correct; otherwise, it is incorrect.380

MT-PRMBench. MT-PRMBench comprises two381

distinct subsets for evaluation: Token-level and382

Sequence-level. The Token-level subset is designed383

for assessing preferences between immediate next-384

token candidates that follow an identical input pre-385

fix. In contrast, the Sequence-level facilitates the386

comparison of entire generated sequence comple-387

tions that also originate from a shared input prefix.388

4.2 Evaluation Results389

Token-level Performance. From Table 1, we can390

observe that our MT-PRM-LLaMA-3.2-3B and391

MT-PRM-Qwen-2.5-3B models achieved accura-392

cies of 0.578 and 0.66 respectively on the token-393

level MT-PRMBench. As shown in Table 2, we394

systematically compare models trained with vanilla395

sequence-level preference pairs versus our token-396

level preference pairs, while evaluating both DPO397

and KTO training objectives. The results demon-398

strate that token-level preference pairs significantly399

improve discrimination accuracy: implicit PRMs400

trained with token-level preference pairs outper-401

form vanilla sequence-level baselines by +8.6%402

(DPO) and +11.5% (KTO). This performance gap403

highlights the critical advantage of token-level pref-404

erence pairs in helping capture fine-grained transla-405

tion quality distinctions.406

Sequence-level Performance. We also convert our407

PRMs to sequence-level scoring through weighted408

DPO rewards (as shown in Eq. 11). We can ob-409

serve that our MT-PRM-Qwen-2.5-3B achieves the410

highest performance among all models in the Pre-411

fixed set, with an average score of 0.863, outper-412

forming both Skywork-Reward-LLaMA-3.1-8B 2413

and the MT-Ranker (Moosa et al., 2024) variants.414

This demonstrates the effectiveness of our token-415

level supervision framework even when adapted to416

2https://huggingface.co/Skywork/Skywork-Reward-
Llama-3.1-8B

sequence-level scoring. 417

5 Analysis and Practical Insight 418

5.1 Modeling Advantage versus Value as the 419

PRM Training Signal 420

We have explored the impact of vanilla preference 421

pairs versus MCTS-generated token-level prefer- 422

ence pairs on the performance of implicit PRMs in 423

the previous experiments (Table 2). This section 424

shifts focus to the nature of the supervisory signal 425

used for training PRMs. Specifically, we analyze 426

our choice of implicit reward modeling—derived 427

from token-level preference pairs (termed "Super- 428

vised by Preference (SP)")—against the alterna- 429

tive of directly using MCTS-backpropagated val- 430

ues V (a) as a dense supervisory signal (termed 431

"Supervised by Value (SV)"). 432

Table 3 demonstrates that SP yields markedly 433

superior performance in token-level discrimination, 434

where SP achieved an average accuracy of 0.66, 435

while SV achieved 0.52. This significantly higher 436

accuracy underscores the effectiveness of our im- 437

plicit PRM when trained with preference-based 438

supervision. The SV approach, directly regress- 439

ing on MCTS-backpropagated V (a) values, tasks 440

the PRM with learning a value function. However, 441

V (a) as a dense, token-level reward faces limita- 442

tions: Monte Carlo estimates can be noisy, and the 443

absolute value of a partial translation may offer an 444

indirect and insufficiently discriminative signal for 445

the most recent token’s quality, especially in com- 446

plex MT scenarios or with imperfect rollouts—a 447

recognized challenge in process supervision liter- 448

ature (Lightman et al., 2024). We also find that 449

these V (a) values often clustered within a narrow 450

numerical range (e.g., 0.7-0.8) further illustrates 451

why this SV approach struggles. Such clustering 452

severely hampers a regression model’s ability to 453

discern fine-grained distinctions, as the supervisory 454

signal becomes subtle. 455

In contrast, the SP approach, using DPO/KTO 456

objectives, excels by directly learning a repre- 457

sentation reflecting the advantage of one token 458

choice over another. This implicitly shapes a re- 459

ward function where the per-step process reward, 460

rtθ = β log πθ(yt|y<t)
πref (yt|y<t)

(Eq. 9), quantifies the lo- 461

calized, step-wise advantage of selecting token 462

yt. This preference-based optimization strategy 463

is well-supported by prior work (Yuan et al., 2024; 464

Rafailov et al., 2024a; Wang et al., 2024a). Cru- 465

cially, DPO’s mechanism, focusing on the log- 466
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MT-PRMBench (Token-level) DE-EN RU-EN ZH-EN EN-DE EN-RU EN-ZH Avg.

Supervised by Value (SV) 0.52 0.56 0.48 0.50 0.51 0.55 0.52
Supervised by Preference (SP) 0.64 0.74 0.68 0.58 0.68 0.66 0.66

Table 3: Experimental results of two training methods on the Token-level Benchmark

Source 在橘红色背景墙映衬下格外鲜亮的广告牌上，它们各自标出了不菲的价码。

Reference On the bright advertising board against a tangerine colored wall, they listed their respective exorbitant price tags.

Translation A Against an orange background, the bright billboards listed their respective, hefty prices.
Translation B Against an orange background, the dark billboards listed their respective, hefty prices.
Translation C Against an orange background, the bright billboards listed their respective, bargain prices.

Translation A ’Against’ ’ an’ . . . ’ the’ ’ bright’ ’ bill’ . . . ’ hefty’ ’ prices’ Weighted Implicit Rewards(↑) COMETKiwi(↑)
Reward -2.3 -2.3 . . . 0.07 1.28 -2.3 . . . 0.03 0.09 -3.43 0.80

Translation B ’Against’ ’ an’ . . . ’ the’ ’ dark’ ’ bill’ . . . ’ hefty’ ’ prices’ Weighted Implicit Rewards(↑) COMETKiwi(↑)
Reward -2.3 -2.3 . . . 0.07 -2.3 -2.3 . . . 0.09 0.09 -4.13 0.73

Translation C ’Against’ ’ an’ . . . ’ the’ ’ bright’ ’ bill’ . . . ’ bargain’ ’ prices’ Weighted Implicit Rewards(↑) COMETKiwi(↑)
Reward -2.3 -2.3 . . . 0.07 1.28 -2.3 . . . -0.95 -2.3 -3.99 0.78

Table 4: Case study illustrating token-level credit assignment by our Qwen-PRM.

probability ratio between sequences (Eq. 4), is in-467

herently more sensitive to relative differences than468

absolute value regression. This makes it adept at469

capturing preferences even when underlying V (a)470

scores from the SV context are close, explaining its471

superior performance in training PRMs for nuanced472

token-level discrimination in our MT setting.473

5.2 Per-token Credit Assignment474

Our PRM can identify token-level translation dif-475

ferences, with the per-step process reward defined476

as Eq. 9 quantifying the reward for generating to-477

ken yt at step t. These individual token rewards478

are then aggregated into a final weighted sequence479

score (Eq. 11), allowing for a comprehensive evalu-480

ation that originates from fine-grained assessments.481

Table 6 provides a case study illustrating these482

capabilities. For instance, in Translation B, the483

token "dark", which semantically contradicts the484

source " 鲜亮" (bright), receives a significantly485

negative reward (-2.3) from our PRM. In Transla-486

tion C, the incorrect token "bargain", used where487

" 不菲的" (exorbitant/costly) is implied, is sub-488

stantially penalized (-0.95). In contrast, contextu-489

ally appropriate tokens in Translation A, such as490

"bright" (1.28) and "hefty" (0.03), secure relatively491

higher rewards. Furthermore, the final weighted492

sequence scores computed by our PRM demon-493

strate strong alignment with automatic metrics like494

COMETKiwi. Translation A, the highest quality495

hypothesis (COMETKiwi 0.80), also achieves the496

most favorable weighted PRM score (-3.43). This497

case study thus substantiates our PRM’s effective498

token-level credit assignment and the consistency499

of its fine-grained assessments with established500

sequence-level quality metrics.501

5.3 Test-time Alignment 502

Test-time alignment, also known as decoding-time 503

alignment (Huang et al., 2024; Rashid et al., 2024), 504

refers to the process of adjusting an LM’s output 505

during inference to better align with human pref- 506

erences, without additional training or fine-tuning. 507

Its application in MT remains underexplored. 508

In the context of MT, given the prior context 509

s<t and timestamp t, we define the reward-guided 510

scoring function for a candidate token a as: 511

s(a, s<t) = LM(a | s<t) + w · P (r([s<t, a]))
(13) 512

where LM(a | s<t) represents the LM’s predicted 513

probability for token a given the preceding context 514

s<t. r([s<t, a]) denotes the reward signal for to- 515

ken a, conditioned on the prior context s<t. The 516

softmax function is applied over the reward signal 517

r([s<t, a]), computed over the top k candidate to- 518

kens (with k being a window size), normalizing 519

the reward value, which we label as P (r([s<t, a]). 520

The scaling factor w adjusts the relative weight of 521

the reward signal, allowing it to contribute effec- 522

tively without overpowering the LM’s probability. 523

Compared to standard decoding strategies, this ap- 524

proach offers a more refined scoring function, as 525

it encourages the generated text to: 1) Maintain 526

semantic coherence and relevance with the prior 527

context, and 2) Align more closely with reward- 528

based criteria and human preferences. Test-time 529

alignment also substantially reduces the need for 530

the extensive resources typically required for LM 531

alignment training. 532

We use Qwen2.5-14B-Instruct3 for generating 533

tokens and leverage MT-PRM-LLaMA-3.2-3B and 534

3https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
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Figure 3: Results of test-time alignment across WMT
23 ZH-EN and EN-RU. MT-PRMs with less parameters
can assist in aligning Qwen-2.5-14B-Instruct.

MT-PRM-Qwen-2.5-3B as the models for provid-535

ing token-level rewards. We randomly sample536

500 cases from the WMT 2023 testset. As shown537

in Figure 3, the reward-guided decoding methods538

outperform the standard greedy decoding in both539

EN-RU and ZH-EN translation tasks, evaluated by540

the COMET (Rei et al., 2020), COMETKiwi (Rei541

et al., 2022), and XCOMET-XL (Guerreiro et al.,542

2024) metrics. For instance, using the XCOMET-543

XL metric, LLaMA PRM and Qwen PRM out-544

perform the standard greedy decoding by 17.5%545

and 17.9% in the EN-RU task respectively. Addi-546

tionally, Qwen PRM slightly outperforms LLaMA547

PRM in both translation tasks and across all met-548

rics, which aligns with the results in Table 1, where549

Qwen PRM achieves better token-level reward per-550

formance. These findings highlight the effective-551

ness of reward-guided decoding strategies in im-552

proving MT outcomes.553

6 Related Work554

Token-Level Feedback Mechanisms. Fine-555

grained feedback has been recognized for its abil-556

ity to help models capture potential errors more557

precisely (Lightman et al., 2024). In the context558

of mathematical reasoning, process supervision559

using Monte Carlo methods has shown signifi-560

cant promise (Wang et al., 2024b; Qi et al., 2024;561

Guan et al., 2025). Furthermore, developments in562

general-domain have demonstrated that DPO can563

implicitly learn token-level rewards through policy 564

optimization, a process referred to implicit reward 565

learning (Rafailov et al., 2024a; Wang et al., 2024a; 566

Yuan et al., 2024). Despite these advancements, 567

these approaches have yet to be tested in the con- 568

text of MT. The translation community has long 569

acknowledged the value of granular feedback, with 570

early attempts relying on binary error markings 571

from human annotations (Kreutzer et al., 2020), 572

reference-based heuristics (Petrushkov et al., 2018), 573

or LLM (Feng et al., 2024b). 574

Alignment Paradigms in Machine Translation. 575

Alignment techniques in neural machine translation 576

have evolved from Minimum Risk Training (Shen 577

et al., 2015) to more sophisticated reinforcement 578

learning approaches (Dang et al., 2024). While 579

PPO-based RLHF has achieved success in general- 580

domain alignment, its application to MT presents 581

unique challenges, particularly due to the need for 582

fine-grained quality signals rather than the bandit 583

reward. Recent works like He et al. (2024) and Xu 584

et al. (2024) have investigated the use of automatic 585

metrics to select better translations or construct 586

preference pairs to improve the LLM, while Zhao 587

et al. (2024) explored scaling test-time compute 588

to further enhance translation performance. Re- 589

cently, Ramos et al. (2024) pioneered the use of 590

xCOMET as a dynamic reward signal during RL 591

training. However, these methods remain limited 592

to sequence-level guidance or binary approxima- 593

tions of the reward process, failing to provide the 594

fine-grained token-level feedback required for more 595

accurate translation alignment. 596

7 Conclusion 597

In this work, we propose MT-RewardTree, a com- 598

prehensive framework for constructing, evaluat- 599

ing, and deploying process reward models in MT. 600

Our framework leverages an automatic token-level 601

preference pair generation approach inspired by 602

approximate Monte Carlo Tree Search, effectively 603

addressing the challenge of large-scale fine-grained 604

supervision annotation. Extensive experiments on 605

both sequence-level and token-level benchmarks 606

demonstrate that our MT-PRM achieves advanced 607

performance in reward modeling in MT, surpassing 608

traditional sequence-level preference pairs. Our ex- 609

ploration of token credit assignment and test-time 610

alignment provide valuable insights for the appli- 611

cation of reward models in MT. 612
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Limitations613

Although we have developed the first comprehen-614

sive framework for process reward models in the615

field of machine translation, several important chal-616

lenges remain to be addressed. Our work primarily617

focuses on synthesizing token-level data to leverage618

its fine-grained benefits. However, methods like619

Token-level DPO, RTO which optimize training al-620

gorithms, also show promise in further improving621

PRM performance. Additionally, our current frame-622

work includes only a limited set of high-resource623

languages, and expanding to multilingual settings,624

especially for low-resource languages, is a crucial625

direction for future work. While we have demon-626

strated the potential applications of reward models627

in test-time alignment and hypothesis ensembling,628

their integration into reinforcement learning train-629

ing remains an important area for exploration.630
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B Data Statistics947

Translation Direction
Token-level Preference Pairs
Train MT-PRMBench

DE-EN 1,255 200
EN-DE 2,059 200
RU-EN 1,219 200
EN-RU 1,711 200
ZH-EN 1,232 200
EN-ZH 1,176 200

Table 5: Data Statistics.
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Source 换油的师傅说油品清亮，确实是好油。

Reference The oil was changed by the master, who claimed that it was clean and good oil.

Greedy Decoding (GD) The mechanic said the oil was clear, indeed good oil. COMETKiwi: 0.7779

GD with LLaMA PRM The mechanic who changed the oil said that the oil is clear, indeed it is good oil. COMETKiwi: 0.8165

GD with Qwen PRM The mechanic who changed the oil said that the oil is clear, indeed it is good oil. COMETKiwi: 0.8165

Table 6: Case study of test-time alignment.
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