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Abstract
Previous zero-shot dialogue state tracking001
(DST) methods only apply transfer learning,002
but ignore unlabelled data in the target domain.003
We transform zero-shot DST into few-shot DST004
by utilising such unlabelled data via joint and005
self-training methods. Our method incorpo-006
rates auxiliary tasks that generate slot types as007
inverse prompts for main tasks, creating slot008
values during joint training. Cycle consistency009
between these two tasks enables the generation010
and selection of quality samples in unknown011
target domains for subsequent fine-tuning. This012
approach also facilitates automatic label cre-013
ation, thereby optimizing the training and fine-014
tuning of DST models. We demonstrate this015
method’s effectiveness on large language mod-016
els in zero-shot scenarios, improving average017
joint goal accuracy by 8% across all domains018
in MultiWOZ1019

1 Introduction020

Dialogue state tracking (DST) is a crucial task in021

understanding users’ intentions by extracting the022

dialogue states from the dialogue history (Balara-023

man et al., 2021), where a single dialogue state is024

a combination of a slot type (e.g.,<hotel-name>)025

and a slot value (e.g.,<Hilton hotel>), as in Fig-026

ure 1. Dialogue states are a set of those com-027

binations (e.g.,<hotel-name: Hilton hotel>) re-028

trieved by DST models, given dialogue history and029

slot types. Traditional methods train and evalu-030

ate DST models with manually-labelled dialogue031

states in each domain, which can be costly and time032

consuming (Wu et al., 2020b; Hosseini-Asl et al.,033

2020). Recently, DST under zero and few-shot set-034

tings draw increased attention (Lin et al., 2021b;035

Hudeček et al., 2021). Compared with few-shot036

methods, zero-shot approaches are more challeng-037

ing, due to unseen slot types and data scarcity in038

unknown target domains.039

1Code and data are available at
https://anonymous.4open.science/r/UNO-DST-58B4.
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Figure 1: Examples of zero-shot methods in DST.

In both zero and few-shot settings, the majority 040

of existing methods convert the DST problem into 041

other common problem settings in natural language 042

processing (NLP): for example, Question Answer- 043

ing (QA; Lin et al., 2021a; Li et al., 2021), prompt 044

learning (Lee et al., 2021), summarization (Shin 045

et al., 2022) and instruction learning (Gupta et al., 046

2022). For example in Figure 1, a given slot type 047

(<hotel-name>) can be transformed into a QA set- 048

ting by queries like “What is the hotel name in the 049

context?” and the slot values can be predicted by a 050

QA model accordingly. 051

Transfer learning methods also convert DST 052

tasks to generation ones, more suited for pre- 053

trained language models (PLMs; Devlin et al., 054

2019). However, such methods cannot fully lever- 055

age the capability of PLMs in generation and se- 056

lection. Two main difficulties emerge: 1) the per- 057

formance of the chosen NLP tasks can be unpre- 058

dictable for unseen slot types in a new domain due 059

to domain divergence; and 2) existing models are 060

only trained in the known domains, without utiliz- 061

ing any unlabeled data in the new target domain. 062

This work proposes UNO-DST2, a method to 063

leverage the unlabelled data for zero-shot DST in 064

target domain. Inspired by the popularity of multi- 065

2“Uno”, Spanish for “one”, embodies our proposed strategy
in this paper: transitioning from zero to one and subsequently
from one to all.
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task learning and self-supervised learning (Zhang066

and Yang, 2021; Tsai et al., 2021), UNO-DST em-067

ploys a two-step training framework invoking both068

joint and self-training (Figure 2). Aside from the069

main task of generating slot values, we design an070

auxiliary task of generating slot types. We then071

jointly train both tasks using the labelled training072

data in known source domains. For the self-training073

period, we implement the concept of cycle con-074

sistency within our two tasks (Zhu et al., 2017).075

That is, a text output from the main task serves as076

input to the auxiliary task, and the resultant text077

produced by the auxiliary task should match the078

original input text. This process forms a full cycle,079

ensuring consistent generation and selection of dia-080

logue states from the unlabelled data, which will be081

further used for fine-tuning the model. In this way,082

we convert zero-shot problems into few-shot ones.083

Importantly, our framework is model-agnostic and084

can be applied to different baseline models.085

Our main contributions are as follows:086

• To the best of our knowledge, we are the first087

zero-shot DST work to use unlabelled training088

data in an unknown target domain under a two-089

step training strategy;090

• We introduce an auxiliary task to facilitate the091

training of the main task, the selection of fine-092

tuning samples, and the generation of unseen093

or new slot types;094

• Our results achieve a new state-of-the-art. Our095

analysis also identifies the lower and upper096

bounds of each zero-shot DST method.097

• We demonstrate our methods with PLMs and098

large language models, showing its effective-099

ness on two popular DST datasets.100

2 Related Works101

Existing DST methods are generally classified as ei-102

ther 1) full-data or 2) low-resource DST. However,103

regardless of which method is adopted, unlabeled104

training data in the target domain is unutilized.105

Full-data DST are commonly trained with fully106

annotated multi-domain conversations (Wu et al.,107

2020a; Hosseini-Asl et al., 2020). SOTA models108

focus on DST tasks with well-annotated datasets109

(Mrkšić et al., 2017; Ren et al., 2018). However,110

the annotation work for data in a new domain can111

be costly. Hence there is interest in transferring the112

knowledge of a model from a known domain into113

an unknown domain and conducting DST tasks in 114

a low-resource setting. 115

Low-resource DST uses zero- or few-shot learn- 116

ing in the unknown target domain. Here, the 117

state-of-the-art use a single NLP task to transfer 118

knowledge from the source domains to the un- 119

known target domain (Lin et al., 2021b; Shin et al., 120

2022). While transfer learning tasks achieve good 121

results, each method is task-dependent. Thus, task- 122

independent strategies have been proposed (Wang 123

et al., 2022; Yang et al., 2023). 124

Multi-task Learning involving simultaneous 125

training of a model on diverse tasks, to boost perfor- 126

mance on trained downstream tasks. It also holds 127

promise for enhancements on new tasks (Raffel 128

et al., 2020; Zhang and Yang, 2021). However, ex- 129

isting methods typically neglect to assess the con- 130

sistency across multiple tasks after joint training, 131

while our approach leverages the cycle consistency 132

for selection (Zhu et al., 2017; Wang et al., 2023). 133

3 Methodology 134

In Figure 2, we show an overview of UNO-DST 135

with joint training and self-training periods. Our 136

method includes two tasks: a main task for slot 137

value prediction (§3.1) and an auxiliary task for 138

slot type prediction (§3.2). In the joint training 139

period, both tasks are jointly trained in the known 140

source domains (§3.3). In the self-training period, 141

we introduce three steps to generate dialogue states, 142

select good samples, and fine-tune the PLM (§3.4). 143

Lastly, we elaborate on the transferability of our 144

strategy with a lower and upper bound (§3.5). 145

3.1 Task Definition 146

The main task for DST is predicting the <slot- 147

type:slot-value> pairs with given dialogue history 148

and slot types from a pre-defined slot type list, as 149

shown in Figure 1. For each domain, there are 150

seen slot types which appear in other domains 151

(e.g.,“hotel-name” and “restaurant-name”) or un- 152

seen slot types which are unique in the specific 153

domain (e.g.,“hotel-stars”). The ratio of the oc- 154

currences of these unseen slot types represents the 155

difficulty of zero-shot DST for each domain (Wang 156

et al., 2022). 157

We denote the dialogue history in a t-turn con- 158

versations as Ct = {c1, c2...ct} and slot types S in 159

domain h as Sh = {s1, s2...sn}. For each conver- 160

sation turn, the main goal is to predict slot values 161

v′. Therefore, the input for the PLM is combined 162
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<User>: Book a train to 
Cambridge for 5 people

Joint training period

Value 
Masking

Self-training period

<User>: I would like to book for 
5 nights in Hilton Hotel<hotel-name>
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Slot Type Dialogue History

Prompt PLM Slot value

Predicted 
Slot Type PLM Inverse Prompt

Masked Dialogue History 
Masked Dialogue History 

Slot Type Dialogue History
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Figure 2: Overview of UNO-DST which consists of two periods: 1) joint training for both task A (slot value
prediction) and B (slot type prediction), 2) self-training in the unknown target domain. Step 1: Generation of slot
values and types from task A and B; Step 2: Selection of good samples using cycle consistency between two tasks;
Step 3: Fine-turning the PLM with selected samples.

of dialogue history and slot types, with the output163

being slot values, as shown in Eq. 1.164

v′i = PLM(Ct, si) (1)165

Compared with methods that select slot values from166

a constant ontology list using classification models167

(Shi et al., 2017), we enhance the capability of text-168

to-text PLMs for text generation (Heck et al., 2020).169

For the case when there are no slot values related170

to a given slot type, we train the model to output a171

“none” value, indicating that there are no dialogue172

states from the current conversation turn.173

To better utilise the capability of PLMs in dif-174

ferent tasks, we utilize different prompt functions175

“P (.)” to generate the prompt in correct format.176

For example, given a slot s and context c, the QA177

prompt p for the DST can be pmain =“What is the178

value of slot s in context c?”. We formulate the179

way of using prompts for the DST main task as:180

v′i = PLM(pmain
i ) = PLM(P (si, Ct)) (2)181

3.2 Auxiliary task182

As joint training can improve the accuracy of183

PLMs, we design an auxiliary task to facilitate the184

training of the main task (Zhang and Yang, 2021;185

Su et al., 2022; Yang et al., 2023). We propose an186

auxiliary task to help the model better understand187

the semantic and context information from the dia- 188

logue history in the joint training period and serve 189

as a regulator to check the main task predictions 190

obtained during the self-training period. 191

We design the auxiliary task as the inverse (con- 192

verse) prompt of the main task. In opposition to 193

the main task, the auxiliary task thus takes the slot 194

values v as input and generates the slot types s′ 195

as outputs, which forms a cycle-consistent loop 196

as a foil to the main task. To make it easier for 197

PLMs, we convert the slot values v and dialogue 198

history Ct into a masked dialogue history Cm
t for 199

the model to make better masked predictions, as in 200

Eq. 3. The inverse QA prompt paux is generated 201

as “What is the masked slot type in context Cm
t ?” 202

from inverse prompt function “IP (.)” (Figure 2). 203

We implement the auxiliary task during both the 204

joint training and self-training periods to facilitate 205

slot values generation and selection. 206

s′i = PLM(pauxi ) = PLM(IP (vi, C
m
t )) (3) 207

3.3 Joint training with auxiliary tasks 208

We conduct a simple version of joint training with 209

only two tasks: the main DST task and the auxiliary 210

task. The training samples for the main tasks are 211

created using a prompt of dialogue history and 212

slot type, while the samples for the auxiliary DST 213

tasks are created using an inverse prompt of masked 214

dialogue history. 215
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As the auxiliary task is an inverse of the main216

task, the model is trained for the same knowledge in217

a cycle-consistent way. By predicting the masked218

slot type from the masked dialogue history, the219

model is familiar with the context and different220

slot types. With our specially-designed auxiliary221

task, the generation model reuses the existing data222

for another round of training without the need to223

increase the amount of training data or model pa-224

rameters. We formulate the loss function for the225

main task Lm and auxiliary task La as:226

Lm = −
n∑
i

log p(v′i|Ct, si) (4)227

228

La = −
n∑
i

log p(s′i|Cm
t , vi) (5)229

The final loss is a simple average of both. To keep230

the process simple, we do not add hyperparameters231

to the existing model framework. Importantly, as232

the auxiliary task samples are generated using the233

main task’s inverse prompt, the task ratio mirrors234

the natural distribution of both tasks throughout the235

joint training period.236

3.4 Self-training with auxiliary tasks237

Compared with other zero-shot DST models, the238

key novelty of our strategy is in using the unla-239

belled training data in the unknown target domain240

for self-training. Self-training aims to generate241

pseudo labels and select data samples that further242

fine-tune the models. In the self-training period,243

we divide the strategy into three steps: termed gen-244

eration, selection and fine-tuning (Algorithm 1).245

Step 1 Generation tests both tasks using the un-246

labelled training data in the unknown target domain247

to generate predicted slot values v′ and slot types248

s′. Auxiliary tasks in self-training are created by249

value masking, as shown in Figure 2. For train-250

ing samples with slot values that do not directly251

copy from the original context (such as “yes/no”252

for “hotel-parking”), masking the slot value in the253

original context does not work. Such samples are254

omitted in creating the masked dialogue history in255

auxiliary tasks.256

Step 2 Selection tests the cycle consistency be-257

tween main tasks and auxiliary tasks by comparing258

the predicted slot types s′ with the original slot259

types s in each dialogue turn. A simplified selec-260

tion process is shown in Figure 2. In experiments,261

only conversation turns with all correct slot types262

are selected as good samples, similar to joint goal 263

accuracy settings, aiming to reduce the selection 264

error rate. 265

Step 3 fine-tunes the model PLM(.) with se- 266

lected samples and predicted slot values v′. This 267

completes the conversion of zero-shot DST into 268

few-shot DST, helping the model adapt to unknown 269

domains without increasing data annotation and 270

model parameters. For models that are difficult to 271

fine-tune, we propose other solutions (§ 7). 272

3.5 Lower and upper bound for zero-shot 273

DST models 274

Even though there are many studies working on 275

zero-shot DST, to the best of our knowledge there 276

are no common methods to identify the threshold 277

below where results are unreasonably low (lower 278

bound) or the peak performance that each model 279

can potentially achieve (upper bound). Here, we 280

discuss our proposed algorithm with respect to the 281

lower and upper bounds, aiming to limit the re- 282

search that is unsuitable for zero-shot DST by the 283

lower bound and benchmark our method against 284

oracular results for each model as an upper bound. 285

Lower bound. PLMs generate either a “slot 286

value” representing specific information, or “none” 287

if no information is relevant to the dialogue history, 288

for all slot types in our main tasks. Notably, most 289

dialogues do not associate slot types with specific 290

information, resulting in “none” being the preva- 291

lent prediction. For example, slot type “hotel-area” 292

is linked to “none” for dialogue in Figure 2. There- 293

fore, we set the lower bound as the outcome when 294

models predict “none” for all slot types across all 295

dialogue turns. 296

Upper bound. According to our self-training 297

methods (§3.4), zero-shot DST can always be con- 298

verted into a few-shot DST by selecting good sam- 299

ples with self-generated slot values for fine-tuning, 300

but cycle consistency cannot ensure 100% correct 301

data selection. Oracular performance comes when 302

we select only the correct samples from all the self- 303

generated slot values and use them to fine-tune the 304

model. We define such performance as the upper 305

bound for the zero-shot DST model. 306

4 Experiments and Datasets 307

Dataset. We train and test our model on both 308

MultiWOZ 2.1 (Budzianowski et al., 2018) and 309

the Schema-Guided Dialogue (SGD; Rastogi et al., 310

2020). MultiWOZ and SGD have dialogues dis- 311
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MultiWOZ SGD

JGA JGA AGA

Benchmarks 25.8 27.6 58.0
T5DST 32.4 NA NA
SD-T5 35.6 NA NA
TransferQA 35.8 21.3 60.8
UNO-DST-JT 36.6 (+0.8) 36.9 (+15) 75.9 (+15)
UNO-DST-ST 40.8 (+5.0) 47.4 (+26) 81.8 (+21)

Table 1: Average zero-shot JGA and AGA results
on MultiWOZ and SGD. JT/ST stands for joint/self-
training and red figures calculate the performance in-
crease of UNO-DST (60M) over TransferQA (770M).

MultiWOZ T5DST∗ SD-T5 UNO-DST† UNO-DST‡
Domains JT ST JT ST
Attraction 30.45 33.92 33.50 36.05 32.86 33.09
Hotel 19.38 19.85 21.04 23.00 22.91 25.66
Restaurant 20.42 20.75 22.36 24.03 29.47 30.99
Taxi 66.32 66.25 65.23 65.03 66.00 65.48
Train 25.60 36.96 38.72 47.95 31.68 48.90
Average 32.44 35.55 36.17 39.21 36.58 40.82

Table 2: Zero-shot JGA results for domains in Multi-
WOZ. Bold indicates the best results, ∗ shows results
of our replicated T5DST model, while † and ‡ give “t5-
small” and “t5-QA” as our model checkpoints. JT/ST
stands for joint/self-training.

tributed in both training and testing distributions312

over 7, 13 domains, representing 7K, 16K training313

examples in English, respectively. We use standard314

means for data pre-processing (Budzianowski et al.,315

2018) for data pre-processing and follow the Multi-316

WOZ leave-one-out settings for zero-shot training317

and testing in both datasets (Wu et al., 2019; Ras-318

togi et al., 2020).319

Evaluation metrics. The primary metric for320

DST evaluation is Joint Goal Accuracy (JGA),321

which compares the set of generated predicted val-322

ues with the set of ground truth after each turn323

of conversation and returns the fraction of correct324

matches (Henderson et al., 2014). Average Goal325

Accuracy (AGA) calculates the JGA only for ac-326

tive slot types, which is used in the SGD baseline327

(Rastogi et al., 2020).328

Baselines and experiment setup. We use T5329

(Raffel et al., 2020) as our baseline model. For a330

fair analysis, we also compare our results with pre-331

vious DST benchmarks: TRADE (Wu et al., 2019)332

and the SGD baseline (Rastogi et al., 2020), and333

current SOTA models: T5DST (Lin et al., 2021b),334

TransferQA (Lin et al., 2021a) and SD-T5 (Wang335

et al., 2022). We adopt the cross-domain settings336

SGD TransferQA UNO-DST-JT UNO-DST-ST
Domains JGA AGA JGA AGA JGA AGA
Flights 3.6 42.9 26.4 75.1 25.3 72.7
RideSharing 31.2 61.7 33.3 64.3 73.5 89.8
Homes 31.7 80.6 16.8 77.6 17.9 76.3
Events 15.6 56.8 11.5 58.0 23.1 71.6
Movies 24.0 56.2 35.5 86.7 52.6 86.7
Services 37.2 75.6 75.1 92.1 77.2 92.4
Travel 14.0 24.2 55.2 76.7 56.4 77.8
Weather 40.3 59.4 93.8 98.0 94.3 98.5
Hotels 13.5 60.1 44.8 85.6 75.9 94.6
RentalCars 10.8 73.8 7.5 72.9 5.4 79.4
Restaurants 16.3 68.9 31.8 74.7 35.9 78.5
Media 30.2 67.5 37.0 69.7 60.0 89.2
Music 8.9 62.4 11.6 54.9 19.1 55.5
Average 21.3 60.8 36.9 75.9 47.4 81.8

Table 3: Zero-shot JGA and AGA results for domains
in SGD. Bold shows the best results and JT/ST stands
for joint/self-training.

for both datasets, experimenting on two check- 337

points, “t5-small”3 and “t5-QA”4. We detail our 338

experimental setup and parameters in § A.1. 339

5 Results 340

Table 1 analyzes the zero-shot results of our UNO- 341

DST and the baseline models, including the state- 342

of-the-art (SOTA) TransferQA model, across both 343

datasets. Our model surpasses all baselines for 344

both joint and self-training phases, inclusive of 345

TransferQA using “t5-large” (a magnitude larger 346

in model size). Detailed outcomes for each do- 347

main and specific training period (either joint or 348

self-training) across each dataset are presented in 349

Tables 2 and 3. 350

Joint training results. For the joint training 351

period in the MultiWOZ dataset (Table 2), we are 352

using the same model and prompt as T5DST. UNO- 353

DST shows an increase of more than 4% for JGA 354

across all checkpoints. For SGD (Table 3), our joint 355

training period increases the previous baseline by 356

even larger margins of 15.6% in JGA (15.1% in 357

AGA). The joint training period is critical as it pre- 358

pares a model for self-training. Table 2 shows that 359

using different model checkpoints is also critical 360

even when using the same model architecture and 361

parameter size. The model performs best when 362

we follow the prompt format in each pre-training 363

checkpoint. 364

Self-training results. For the MultiWOZ dataset 365

(Table 2), self-training further improves average 366

3https://huggingface.co/t5-small
4https://github.com/facebookresearch/Zero-Shot-DST
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Round Att. Hotel Res. Taxi Train Avg Gain ↑

0 32.86 22.91 29.47 66.00 31.68 36.58
1 33.09 25.66 30.99 65.48 48.90 40.82 (+4.24)
2 35.53 27.22 31.44 64.71 54.60 42.70 (+1.88)
3 36.62 27.09 31.14 65.48 53.31 42.73 (+0.03)

Table 4: JGA for multiple rounds of self-training on
MultiWOZ. Absolute gains indicated in red.

Attraction Hotel Restaurant Taxi Train Average
Domain

0

10

20

30

40

50

60

70

JG
A

40.10

29.90

44.33

69.23
65.54

49.82

Joint-training
self-training
Upper-bound

Figure 3: Gains by joint and self-training stages of UNO-
DST on the “t5-QA” checkpoint. We show the results
of upper-bound (oracle) in each domain for relative
comparison.

JGA by 3.09% after joint training. Compared with367

the baseline, the best performance increases by368

8.38% in JGA. In SGD (Table 3), self-training im-369

proves the average JGA and AGA in 12 out of 13370

domains by an average of 10.5% and 5.9% com-371

pared with the joint-training alone, and over 26%372

and 21% compared to the baseline.373

The success of self-training proves the possibil-374

ity of using pseudo labels generated from zero-shot375

DST models to bootstrap performance. However,376

carefully selecting good samples to fine-tune the377

model is challenging because not all the domains378

benefit from the self-training process. For exam-379

ple, the result for the “Taxi” domain in MultiWOZ380

and “Flights” domain in SGD decreased after self-381

training. We examine the rationale behind the gains382

obtained through self-training, which is associated383

with the upper bound results in each domain and384

further discussed in § 6.385

As shown in Table 4, as we lengthen self-training386

from a single round to multiple rounds, our frame-387

work’s performance continues to improve. How-388

ever, the performance gap between results from dif-389

ferent rounds shows diminishing returns, signalling390

a plateau. The best result with UNO-DST comes391

when adding more variation is insignificant and so392

we stop the training when the margin is below 0.1393

in JGA. Future work is required to systematically394

study this strategy over multi-round self-training.395

All Generated Slot Types in Train Domain

people5, day5, destination5, departure5, leave5,
arrive5, price5, type5, time5, area5, name5

Valid New Slot Types

price15, day1, parking3, name5

Dialogue Example [PMUL1359] (price5, name5)

System:“Okay, tr6572 departs at 05:29.”
User:“What is the price?”

Dialogue Example [PMUL3027] (parking3)

System:“I have 2 Turkish restaurants in the centre?”
User:“Do they offer free parking?”

Dialogue Example [PMUL1118] (day1)

User:“I am in Cambridge for the week and want to
know what museums you guys have there.”

Table 5: Newly-generated slot types with examples.
The superscript on each slot type indicates the domain
information from: (1:attraction, 2:hotel, 3:restaurant,
4:taxi, 5:train)

6 Discussion 396

Lower and upper bound. We calculate the lower 397

and upper bound for zero-shot DST (cf § 3.5) 398

for MultiWOZ. The lower bound is an average 399

of 27.96% for JGA across all domains, a thresh- 400

old below which the results are unreasonably low 401

(Budzianowski et al., 2018). Of all the baselines 402

in this experiment, only results from TRADE are 403

below the lower bound (Table 1) and based on that, 404

we claim that TRADE (Wu et al., 2019) model is 405

unsuitable for zero-shot DST. 406

For the upper bound, oracular calculation, we 407

select only the 100% correct samples from the zero- 408

shot predictions and use them for fine-tuning. In 409

Figure 3, we visualise the gains of joint training 410

and self-training alongside our upper bound. While 411

efficacy differs from domain to domain, an impor- 412

tant observation is that when the margin between 413

the upper bound (blue columns) and joint train- 414

ing (red columns) is large, the model has a larger 415

gain from self-training, as in “Train” domain. In 416

contrast, for “Taxi” domain, the influence of self- 417

training is weak (cf § 5). Utilizing upper bounds 418

calculations enables us to swiftly evaluate whether 419

a domain or model is apt for the self-training pe- 420

riod. Said another way, a larger margin between 421

joint training and the upper bound yields a larger 422

potential improvement that the model can achieve 423

with fine-tuning. 424

New slot type generation. All the existing zero- 425
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Dialogue History: 
System: “tr4824” leaves london kings cross at 9:17 and arrives at 10:08. 
User: how much would the ticket cost ?"

Masked Dialogue History: 
System: [MASK] leaves london kings cross at 9:17 and arrives at 10:08. 
User: how much would the ticket cost ?"

What is the slot value of the slot type train-departure in Dialogue History?

Based on the given conversation, the slot value of 
  the slot type "train-departure" is "tr4824".

What is the slot type of the masked token in Masked Dialogue History?

Based on the context, the masked token is likely 
  a placeholder for the train's name or identifier.

Given the slot value “tr4824” is related to slot type of train-name or 
train-identifier, can you revise your answer to the first question?

Apologies for the confusion. Based on the conversation, 
  the slot value of the slot type "train-departure" is "9:17."

(a) Correction of the wrong prediction.

Dialogue History: 
System: “tr4824” leaves london kings cross at 9:17 and arrives at 10:08. 
User: how much would the ticket cost ?"

Masked Dialogue History: 
System: “tr4824” leaves london kings cross at 9:17 and arrives at [MASK]. 
User: how much would the ticket cost ?"

What is the slot value of the slot type train-arriveby in Dialogue History?

The slot value corresponding to this slot type from 
  the system's message is "10:08".

What is the slot type of the masked token in Masked Dialogue History?

The system is indicating the time the train is supposed to 
  arrive at its destination.

Based the answer that 10:08 is the arrive time of the train, 
do you think your answer to the first question is correct? 

For the slot type "train arriveby", the slot value is "10:08". 
  I hope this clears up any misunderstandings.

(b) Confirmation of the correct prediction.

Figure 4: Case studies for conversations with ChatGPT for zero-shot DST.

shot DST methods require given slot types in gen-426

erating the slot values for both source and target427

domains and our model also follows the same ex-428

periment settings (cf § 3.1). However, we show that429

our model can also self-generate reasonable slot430

types either in or beyond the 30 given slot types431

with our designed auxiliary task. In order to self-432

generate new slot types, we do a case study on the433

MultiWoZ “Train” domain and perform random434

word masking for all the dialogue history, inputting435

those randomly masked dialogue histories to the436

auxiliary task for slot type predictions, as shown437

in Figure 5b. In Table 5, we show some valid new438

slot types generated by our auxiliary tasks with di-439

alogue history. For example, “asking for the ticket440

price” in “Train” domain and “asking for parking441

information” in “Restaurant” domain are reason-442

able new slot types, which can also be included in443

the given slot types list.444

Besides generating new slot types, we propose a445

future zero-shot DST without any given slot types,446

where the self-training is conducted based on self-447

generated slot types in the target domain. Due448

to the limited scope of this paper, we discuss the449

details in Appendix § A.3. Even though our current450

auxiliary task can predict all 6 given slot types in451

“Train” domain, additional steps for selection and452

merging are required to maintain the quality and453

efficiency of self-generated slot types (Hudeček454

et al., 2021).455

7 UNO-DST with ChatGPT456

While earlier sections analyse the effectiveness of457

our methods on PLMs like “T5”, this section fo-458

cuses on the potential application of UNO-DST459

with current generation large language models460

(LLMs), such as Brown et al., 2020 and Tou- 461

vron et al., 2023. Specifically, we examine UNO- 462

DST for zero-shot DST using OpenAI’s ChatGPT5 463

as the backbone LLM, an LLM which has been 464

adopted as a language tool for information extrac- 465

tion with strong capabilities, even without specific 466

training or fine-tuning. 467

ChatGPT can be interacted with either an open- 468

accessed web interface or through its API. Our 469

study will test the efficacy of our self-training strat- 470

egy in UNO-DST, on both these versions of Chat- 471

GPT, including the web interface and the API6. Our 472

objective is to explore the potential application of 473

our methods to LLMs featuring conversational ap- 474

proaches (§7.1) and in-context learning (ICL; Hu 475

et al., 2022 §7.2). 476

7.1 Conversational approaches 477

Implementation. We skip the joint training for 478

ChatGPT and use conversations as an inference 479

approach. As shown in Figure 4, we implement 480

main and auxiliary tasks with conversations asking 481

for slot values or types. The selection and fine- 482

tuning steps in the self-training strategy have been 483

converted into the correction or confirmation step, 484

where we provide the slot value and type predic- 485

tions from the previous two questions to ChatGPT 486

and ask whether it needs to revise the slot value to 487

the main task. We consider the revised response 488

from ChatGPT as the final answer to our main task. 489

We manually examine all the responses generated 490

and give examples of their performance. 491

Results and discussion. We show two cases 492

of predictions made by ChatGPT using the same 493

5https://chatgpt.openai.com
6ChatGPT API model: gpt-3.5-turbo-0301
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dialogue history in Figure 4a and 4b. In Figure494

4a, ChatGPT first made a wrong main task pre-495

diction, followed by a correct but not consistent496

auxiliary task prediction. When we provide all497

historical information to ChatGPT and ask for a498

revised main task prediction, it realised that the slot499

value from the first prediction is not consistent with500

the original slot type and it self-corrected its wrong501

prediction. In Figure 4b, we show another case of502

correct predictions which happens for the major-503

ity of the conversations. When ChatGPT is able504

to make correct predictions for both the main and505

auxiliary tasks, it confirms the correct predictions506

for the final question based on cycle consistency.507

We illustrate how the cycle consistency between508

the main and auxiliary tasks aids ChatGPT in recti-509

fying incorrect answers or confirming correct an-510

swers provided by the LLM (Zhu et al., 2017). The511

strategy is applicable to the free accessible web512

interface of ChatGPT and is easy to implement.513

However, as conversations are difficult to quantify514

and evaluate, we only show the results in a qualita-515

tive way and encourage future research to explore516

all the potential implementations in LLMs (Wang517

et al., 2023).518

7.2 In-context Learning519

Implementation. Following the settings in § 7.1,520

we skip the joint training period and apply our521

strategy to ChatGPT by ICL, providing examples522

and instructions in the prompt context. Specifi-523

cally, we compare the ICL results using prompts524

from two different types of examples: 1) examples525

from source domain and 2) examples generated526

and selected by cycle consistency in target domain.527

To illustrate, the ICL prompt is originally built by528

DST examples from the source domains and DST529

test turn from the target domain. After selecting530

good samples with the strategy discussed in § 7.1,531

the ICL prompt can be updated with examples in532

the target domain. We conduct small-scale experi-533

ments 3 times with the “train” domain in the Mul-534

tiWOZ dataset by randomly sampling 100 turns535

of conversations and inference with ICL prompts536

using examples generated from the source or target537

domains, evaluated by JGA.538

Results and discussion. The resulting average539

JGA for the original source domain ICL prompt540

is 34.92% while the JGA for the selected target541

domain ICL prompt is 54.18%. Our self-training542

strategy works very well, serving the LLM to select543

valuable in-domain examples for the ICL prompt, 544

improving the zero-shot DST performance by a 545

large 19.25% margin. By manually examining the 546

generated dialogue states, the ICL prompt modified 547

with our strategy performs better, especially for 548

conversations with longer dialogue turns and more 549

slot types. Our self-training strategy demonstrates 550

its capability in generating and selecting dialogue 551

state samples in LLMs which can further improve 552

the performance of zero-shot DST using an ICL 553

prompt. However, due to the scope of this paper, 554

we only test the application of our UNO-DST on 555

ChatGPT with a small corpus of dialogues for case 556

studies (§ 8). 557

In summary, this section extends the applicabil- 558

ity of the UNO-DST strategy to LLMs like Chat- 559

GPT, assessing its efficacy in both conversational 560

approaches and ICL. Conversational methods of- 561

fer a straightforward mechanism for rectifying in- 562

discussion errors, whereas ICL, leveraging APIs 563

or LLM inferences, facilitates handling larger data 564

corpora. Besides testing the cycle consistency strat- 565

egy in well-suited DST tasks, additional work is 566

required to extend it to other LLMs or more general 567

NLP problems. 568

8 Conclusion 569

We propose a novel approach to convert the zero- 570

shot DST into a few-shot setting by generating 571

and selecting quality dialogue states from unla- 572

beled data in the target domain through joint and 573

self-training periods. We introduce and demon- 574

strate how our proposed auxiliary task, which gen- 575

erates slot types as the inverse prompt for the main 576

task which generates slot values, serves the whole 577

model for 1) better accuracy of the main task in 578

joint training 2) quality data selection in the self- 579

training period 3) new slot types generation beyond 580

the given slot type list and 4) upgrading to LLMs 581

without pre-training. 582

Our proposed strategies of UNO-DST are task- 583

independent, which can be extended to other 584

prompt formats and generalised to LLMs. We look 585

forward to future works that engage additional aux- 586

iliary tasks which target new datasets and apply 587

zero-shot DST, even where no slot types are given. 588

Limitations 589

This work has two main limitations: 1) due to the 590

limitation of computational resources, we only con- 591

duct experiments on small PLMs, which is “t5- 592

8



small” and simple NLP tasks, which is “QA”. Our593

future works will include more NLP tasks with594

different PLMs to systematically test the perfor-595

mance of our proposed models. 2) Our reported596

self-training results are only for a single round597

of self-training because we could not find a way598

to continuously increase the performance of self-599

training. Our future plan seeks to improve and600

examine the best criteria for self-training using an601

early-stopping strategy. 3) The experimental set-602

tings for ChatGPT can be improved in three aspects:603

a) a larger data corpus can be applied with better604

instruction prompts in order to limit ChatGPT in605

generating more accurate values, b) an open-source606

LLM (Touvron et al., 2023) can be applied to better607

evaluate and replicate the results of the experiment,608

and c) a full self-training strategy that includes gen-609

eration, selection, and fine-tuning can be tested in610

order to demonstrate the best performance with611

LLMs.612

Ethical Concerns613

Our self- and joint-training tunes models to atten-614

uate and amplify signals from the original dataset.615

While this strategy does work well in our experi-616

ments, if the dataset’s signal is weak to start with,617

our methods may incorrectly amplify errors or bi-618

ases. Application of our techniques in practical619

settings should be evaluated before deployment.620

This work experimented with publicly available621

datasets which require no additional annotation622

from human annotators.623
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A Appendix835

A.1 Experimental Setup836

We select QA as the main task in our framework837

for its popularity and test it through different check-838

points holding parameters fixed. We adopt the839

open-source T5-SMALL (Raffel et al., 2020) with840

60M parameters as our baseline and train using841

AdamW with a learning rate of 0.0001, batch size842

8 for 1 epoch (zero-shot setting) and 3 epochs (fine-843

tuning setting). We initialize the model using “t5-844

small”7 and “t5-QA”8 checkpoints. For “t5-small”,845

the same question prompt is used as in T5DST (Lin846

et al., 2021b). While for “t5-QA” which is pre-847

trained following the steps in TransferQA, a similar848

prompt format is chosen (Lin et al., 2021a). We849

train on a single GeForce RTX3000 GPU.850

During the training period, we adopt the cross-851

domain setting for MultiWOZ 2.1 all domains (Wu852

et al., 2020a) and SGD seen domains (Rastogi et al.,853

2020). For example, under this setting, we use four854

of the five domains in MultiWOZ as the source855

domains for the training of the model. The remain-856

ing domain is used as the target domain for testing857

performance (Wu et al., 2019). The unlabelled858

training data in the target domain will be used for859

self-training and testing data in target domain is860

only used for final testing.861

Algorithm 1 Self-training with auxiliary task

Require: Training dataset Ku in unknown do-
mains, slot type s ∈ S, dialogue history Ct

and PLM PLM(.) after joint training
Ensure: The fine-tuned model PLM(.)

1: repeat
2: Step 1
3: for batch ku ∈ Ku do
4: for slot-type, context s, Ct ∈ ku do
5: pmain = P (s, Ct) –>prompting
6: v′ ← PLM(pmain) –>main task
7: Cm

t = M(Ct, v
′) –>value masking

8: paux = IP (Cm
t ) –>inverse prompting

9: s′ ← PLM(paux) –>auxiliary task
10: end for
11: end for
12: Step 2
13: G = [ ]
14: for batch ku ∈ Ku do
15: if set(s) = set(s′) then
16: G.append(ku)
17: end if
18: end for
19: Step 3 fine-tuning PLM(.) with G

A.2 Self-training Algorithm 862

In this section, we explain the detail for our self- 863

training strategy in Algorithm 1. The self-training 864

is conducted using PLM after the joint training 865

and based on the unlabelled training data in the 866

target domain. There are a total of 3 steps for self- 867

training which are 1) generation of slot values and 868

types from the main and auxiliary task, 2) selection 869

of good dialogue state samples using cycle con- 870

sistency between two tasks and 3) Fine-tuning the 871

PLM with selected samples. 872

A.3 Slot type discussion 873

A.3.1 Future zero-shot DST 874

As discussed in the previous section, the auxiliary 875

task can facilitate the generation of new slot types 876

beyond the pre-defined 30 slots in MultiWOZ. Be- 877

sides adding more slot types to the given slot type 878

list, we believe that it is possible for our proposed 879

model to conduct DST tasks in an unknown tar- 880

get domain without any given slot types and we 881

describe the proposal of future zero-shot DST in 882

7https://huggingface.co/t5-small
8https://github.com/facebookresearch/Zero-Shot-

DST/tree/main/TransferQA
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(a) Future zero-shot DST
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(b) Slot type prediction with randomly masked dialogue history

System: TR4824 leaves london kings cross at 9:17 and arrives at 10:08. 
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(c) Building slot type corpus with merging and selection

Figure 5: Zero-shot DST without pre-defined slot types

Figure 5883

In order to eliminate the use of pre-defined slot884

types, we add a slot type generation period between885

joint and self-training, which identifies and select886

domain-relevant slot type corpus. Similar to the887

process proposed by Hudeček et al. (2021), we can888

first use our auxiliary task to generate potential slot889

types based on random masked dialogue history,890

as shown in Figure 5b. The generated text may891

contain domain-irrelevant or similar slot types and892

we propose a weak selection and merging of task-893

relevant and similar slot types for slot type corpus894

(Hudeček et al., 2021). Secondly, those generated895

slot-type corpus can be used for self-training in the896

unknown target domain, as discussed in § 3.4.897

During our testing, our auxiliary task can gener-898

ate predictions including all 6 given slot types in899

the “train” domain, as well as valid slot types in900

other domains, which demonstrates the potential of901

future zero-shot methods without pre-defined slot902

types. We look forward to future works for zero-903

shot DST without any labelled data in slot types904

and values in unknown target domains.905

A.3.2 Unseen slot type prediction906

For each domain, there are seen slot types which907

appear in other domains (e.g.,“hotel-name” and908

“restaurant-name”) or unseen slot types which are909

unique in the specific domain (e.g.,“hotel-stars”).910

The ratio of the occurrences of these slot types911

represents the difficulty of zero-shot DST for each912

domain (Wang et al., 2022). As shown in table 6, 913

the original setting for the MultiWoz dataset has 30 914

given slot types. However, not all of them appear 915

in every domain. For some certain domains, like 916

the “hotel” domain, there are 4 unique slot types 917

which do not appear in other domains, including 918

“stars”, “internet”, “stay” and “parking”. In Figure 919

6, we show the slot accuracy for the hotel domain. 920

It shows that generally, the unseen slot types will 921

perform worse than the seen slot types (Wang et al., 922

2022). Prediction for those slot types in zero-shot 923

cross-domain settings can be challenging as there 924

is no further information from the other source do- 925

mains. In addition, half of the unseen slot types in 926

the “hotel” domain are related to “yes/no” slot val- 927

ues, whereas in our joint training settings in § 3.3, 928

we skip the masking of those “yes/no” values from 929

the context and the model is less trained compared 930

with other slot types. We hope that future works 931

should improve on “yes” or “no” value prediction. 932

All Given Slot Types in MultiWOZ 2.1

area123, arriveby45, day235, departure45,
destination45, food3, internet2, leave45,
name123, people235, parking2, price23, stars2,
stay2, time3, type12

Seen Slot Types in Hotel Domain

area123, day235, name123, people235, price23, type12

Unseen Slot Types in Hotel Domain

internet2, parking2, stars2, stay2

Table 6: Seen and unseen slot types in hotel domain.
The superscript on each slot type indicates the domain
information from: (1:attraction, 2:hotel, 3:restaurant,
4:taxi, 5:train)

A.3.3 Auxiliary Task Design 933

In our model, in order to better facilitate the main 934

task with cycle consistency, we design the auxiliary 935

task as an inverse prompt of the main task and in 936

order to better leverage the capability PLMs, we 937

convert the auxiliary prompt as mask language pre- 938

diction. We conclude our design of the auxiliary 939

task into 3 criteria: 1) The auxiliary task and the 940

main task should have a similar format so that they 941

can share the prompt function P . 2) The auxil- 942

iary task needs to facilitate the main task in one or 943

many different ways. In UNO-DST, the auxiliary 944

task serves the main task in two different ways, 945

which are generation and selection. 3) The aux- 946

iliary task should be easier than the main task so 947

12
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Figure 6: Slot Accuracy for seen and unseen slot types
in hotel domain. (Grey: Seen slot types, Red: Unseen
slot types)

that it can better serve the selection in self-training.948

Our work shows the initiative of adding auxiliary949

tasks and we hope that future work can propose950

different tasks, such as targeting “none” or “yes/no”951

value predictions. Besides cycle consistency, the952

self-consistency between multiple auxiliary tasks953

should also help with the main task in generation954

and selection (Wang et al., 2023).955
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