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Abstract

Despite the increasing relevance of forecasting
methods, causal implications of these algorithms
remain largely unexplored. This is concerning con-
sidering that, even under simplifying assumptions
such as causal sufficiency, the statistical risk of
a model can differ significantly from its causal
risk. Here, we study the problem of causal gener-
alization—generalizing from the observational to
interventional distributions—in forecasting. Our
goal is to find answers to the question: How does
the efficacy of an autoregressive (VAR) model in
predicting statistical associations compare with its
ability to predict under interventions? To this end,
we introduce the framework of causal learning
theory for forecasting. Using this framework, we
obtain a characterization of the difference between
statistical and causal risks, which helps identify
sources of divergence between them. Under causal
sufficiency, the problem of causal generalization
amounts to learning under covariate shifts albeit
with additional structure (restriction to interven-
tional distributions under the VAR model). This
structure allows us to obtain uniform convergence
bounds on causal generalizability for the class of
VAR models. To the best of our knowledge, this is
the first work that provides theoretical guarantees
for causal generalization in the time-series setting.

1 INTRODUCTION

Forecasting algorithms are increasingly relevant in a va-
riety of applications including meteorology, climatology,

*Part of this work was completed while the author was at
Amazon Research.

economics, and business. While traditional economic mod-
elling relies on relatively simple time series models (Brock-
well et al. [1991)), e.g., autoregressive models, or meth-
ods like co-integration, modern business planning heavily
uses neural networks for forecasting (Faloutsos et al.[2018;
Januschowski et al. 2020; Salinas et al. 2020). Despite the
advancements of forecast quality, causal implications are
not yet well understood. There has been notable progress
in ‘explainable’ models in the sense of feature relevance
(Lundberg et al. 2017; Molnar [2019; Janzing et al. [2020;
Wang et al. |[2020) with potential applications in forecasting.
Furthermore, specialized models (Hatt et al.2021; Bica et al.
2020; Lim et al.|[2018)) have shown remarkable success for
causal inference in forecasting.

It is common practice in business and econometrics to learn
statistical forecasting models and interpret them causally.
In practice, while forecasting models tend to agree on their
statistical predictions, they can differ substantially on their
causal predictions (see Figure[T]for an example). In partic-
ular, this practice is considered justified under simplifying
assumptions such as causal sufficiency and the absence of
contemporaneous effects (see for instance Hyvirinen et al.
(2010, Section 1)). Here, we are interested in the funda-
mental question: what is the relation between the statistical
predictability of a forecasting model and its causal general-
izability — ability to predict under interventions.

We argue that even for very simple models and even un-
der simplifying assumptions such as causal sufficiency and
absence of contemporaneous influence, causal interpreta-
tion of forecasting models is non-trivial. To appreciate the
challenges, consider a simple example of a process with
strongly correlated observations where x; ~ x;_1, and
hence x; ~ x;_5. These observations can be explained ei-
ther by a causal model with a strong influence of x;_1 on
or a causal model with a strong influence from z;_2 on x;.
The difference between the models gets apparent when an in-
tervention randomizes z;_; and z;_o independently. Then,
predictions become hard, particularly when x;_; and ;o
are set to significantly different values. While both models
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Figure 1: An example time series with predictions of two DeepAR models (top) under an intervention in red (bottom) on the
Traffic dataset. While we do not know the ground-truth, we see that two models disagree when faced with an intervention
more than on the in-distribution forecasting. Since at most one of them can be right, we conclude that at least the other one

makes a notable forecasting error under the intervention.

are similar in their statistical predictions, they differ sub-
stantially in their causal predictions. This example already
shows that, even in a simple setting, causal and statistical
predictability can differ significantly. The question of causal
generalization is thus practically relevant and non-trivial
and begs for a better theoretical understanding.

Specifically, we consider the simple class of vector autore-
gressive models (VAR) and ask the question

How does the efficacy of an autoregressive model in
predicting statistical associations compare with its ability
to predict under interventions?

These models are widely applied in domains ranging from
econometrics (Liitkepohl 2009; Grabowski et al.2020) and
finance (Zivot et al. [2006) to neuroscience (Valdés-Sosa
et al.|2005)).

Connection to Covariate Shift. The problem of causal gen-
eralization is closely related to the problem of covariate shift.
To see this, we first ignore the time series setting and con-
sider the scenario where a variable Y should be predicted
from a variable X, which is known not to be an effect of Y.
If there is no common cause of X and Y, that is, we assume
causal sufficiency (Spirtes et al.|1993)), the statistical relation
between X and Y is entirely due to the influence of X on Y.
Therefore, the observational and interventional condition-
als coincide (Py|z—g+ = Py |do(z—s~) in Pearl’s language
(Pearl 2009))) and the true parameters would be optimal
both from a statistical and causal perspective. However, due
to estimation bias, a prediction model learned using finite
samples from P, may perform poorly when randomized
interventions draw x-values from a different distribution
Py, which is the usual covariate shift scenario (Sugiyama
et al.[2012). In our setting, X and Y are represented by the
past and the present values of a (possibly multivariate) time
series, respectively. Accordingly, we focus on interventional
distributions that are natural for this setting: independent
interventions at different time points and components of the

multivariate process. Hence, we have additional structure in
comparison with the standard covariate shift problem. We
are not aware of any theoretical work on covariate shift in
the time-series setting. Nevertheless, we describe the con-
nections to learning theory in the standard covariate shift
setting and other related work in Section [6]

Our Contributions. Our central goal in this work is to
develop a formal and thorough understanding of causal
generalization for the class of VAR models.

a. To this end, we introduce a framework of causal learning
theory for forecasting to analyze when forecasting models
can generalize from the observational to the interventional
distributions (Section [2). This is closely related to the
setting of learning under domain adaptation.

b. Using this framework, we provide a characterization of

the difference in the statistical and causal risks (Section [3).
Such a characterization allows us to identify the sources of
divergence between the two quantities. Our results show
that the strength of correlation of the underlying process
plays a key role in determining causal generalizability.
They also highlight that already for simple models, causal
and statistical errors can even diverge.

c. Further, we provide finite-sample, uniform convergence
bounds on causal generalization for the class of VAR
models (Section[3). Our simulations demonstrate that our
bounds indeed capture the key drivers of causal generaliza-
tion. To the best of our knowledge, this is the first work that
provides theoretical guarantees for causal generalization
of any kind in the time-series setting.

d. As a by-product of our analysis, we provide an explicit

characterization of the powers of a companion matrix (see
Section [2)) using symmetric Schur polynomials (Macdon-
ald|1998) of its eigenvalues (Lemma@ which, to the best
of our knowledge, has not been noted in the literature.
This result could be of independent interest in theoreti-
cal endeavors that build upon companion matrices which,
for instance, are ubiquitous in stochastic processes and in



Linear-Time-Invariant dynamical systems (Davison |1976;
Melnyk et al. [2016).

. We conduct experiments with a variety of deep neural net-
works on real data. Our experiments approach causal risks
in this setting and explore its relationship to uncertainty.

2 CAUSAL LEARNING THEORY FOR
FORECASTING

In this section, we introduce a framework to formally eval-
uate the quality of a forecasting model with respect to pre-
diction and the validity of its causal implications. We refer
to this framework as causal learning theory for forecasting.
First, we introduce some relevant notation.

Notation. For any stochastic process {z:},., € R, we
use X', = {@t—w_n+1, " s Tt—w—1,Tt—w} to denote
the set of x;_,, and the n — 1 variables in the past of
Ti—w. We distinguish this from y;* which denotes the vec-
tor (xt, Ty 1, - ,xt,nH)T € R™. When it is clear from
context, to reduce cumbersome notation, we simply use
y¢. For any random variable z, E[z] denotes its expecta-
tion. For any matrix A, we use A;; and A.; to denote the
ith row and jth column of A respectively. We use A{ 5 to
denote the (1,k)th element of A7. For any vector x; at
time ¢, we use z;; to denote the ith element of x;. We use
Amax(A); Amin(A), £(A) = Amax(A)/Amin(A) to denote
the maximum and minimum eigenvalues and the condition
number of A respectively. I, denotes the identity matrix of
size p, N, Z denote the set of natural numbers and integers
respectively and [n] denotes the set {1,2,---n}.

To evaluate the statistical and causal efficacy of an estimator
we introduce the notions of statistical and causal forecast
risks. To define statistical forecast risk, we consider the
setting of w—step forecasting where the goal is to predict
x; from observations x}*  drawn from a stochastic process
{xt},cy for some w € N. To define the causal forecast risk,
we consider interventions on x;_,, ; for some ¢ € [d]E]

Definition 2.1 (Statistical forecast error). The statistical
forecast error of an estimator f in the prediction of a tar-
get variable x; from x}*_, drawn from the observational
distribution, can be defined as

S =Ep(a,xn ) [(ze — JE(CC?_W))Q] (H

The empirical counterpart (S;), is defined naturally by re-
placing the expectation by the empirical mean.

For causal questions, we want to investigate the behavior
of a model under interventions. Here, we consider atomic

"The results for simultaneous interventions are qualitatively
similar to those of interventions on single variables, and for ease
of exposition, we present our discussion in the latter case.

interventions. Using Pearl’s do notation (Pearl 2009), an
atomic intervention do(z = x™*) refers to setting the variable
x to some value x*.

Definition 2.2 (Causal errors). The interventional fore-
cast error of f in predicting the effect of an intervention
do(w¢—w,i = T}_,, ), on target variable x; is defined as

gd()w,i = E]Pdowy,i(ajt7x?,w) [('rf - fA(I?—w))Q]v (2)

where do,, ; is shorthand for do(z;—,; = z;_, ;) and
Py, ; denotes the distribution induced by the intervention
do(z4—yi = x{_,, ;). To isolate from the dependence on
specific values that the intervened variables are set to, we
present our results via the notion of average causal error. It
is defined as the expected interventional error for interven-
tions drawn from the marginal distribution of x;_, ; since
it provides a natural scale at which the statistical and causal
errors can be compared.

gw,i = Exfiw,iwp(xt,w‘i) [gdow7i] . 3

Statistical and Causal Learning Theory. Consider the
standard framework of statistical learning in time-series
prediction. For any stochastic process {z }, ., taking values
in X, given a loss function [ : X x X — R, the goal of
statistical learning is to learn a function f% that achieves the
optimal statistical risk S“( f):

Since the true process is unknown, the empirical aver-
age (S“) of generalization risk is used to estimate S“.
Statistical generalization bounds of the form: S“(f) <
S¥(f) + C(F,n) are then used to provide guarantees on
the uniform deviation of empirical risk from expected risk
given sufficiently many samples and when the “complexity”
of the function class is small.

Analogously, the goal of causal learning is to find a function
f& that achieves the optimal causal risk G (f)

In contrast to statistical learning, the empirical averages of
the causal error cannot be utilized to estimate G, since we
often do not have access to data from the interventional dis-
tributions. Instead, we are only provided with data from the
observational/statistical distribution of the stochastic pro-
cess and the goal of causal learning theory is to understand,
to what extent is it possible to provide causal generalization
guarantees of the form: G¥(f) < S“(f) + C(F,n).

To summarize, we ask: Can the predictors in F generalize
from the empirical observational distribution to the true in-
terventional distribution assuming that we control the com-
plexity of F and that we observe sufficiently many samples
drawn from the observational distribution? One cannot ad-
dress this question in a very general setting and would need
model assumptions to make any meaningful statements. To
this end, we now formally introduce our problem setup and
some preliminaries. We provide additional relevant back-
ground in the Appendix [T}



Statistical and Causal Models. We assume that the stochas-
tic process {24 }+ez € R? follows a weakly stationary vector
autoregressive model(VAR(p)) of order p for some p,d € N
which is defined as

Ty = A1xi1 + Aoxp—o + - Apxi_p + €, €]

where x; € R? is a vector-valued time-series, for all i € [p],
A; € R are the coefficients of the VAR model, and
¢; € R? denotes the noise vector such that E[e;] = 0 and
E[eteah} = Y. if h = 0 and 0 otherwise. For some 2 >
0, we simply set . = o021 for enhanced readability. Our
results can be easily generalized to arbitrary covariance
matrices by means of the spectral properties (Apmin, Amax)
of 3. The autocovariance matrix of {z;},., plays a central
role in our results and analysis. For any n € N, we use X,
to denote the autocovariance matrix of size n defined as
E[(y? — E[y?])(y® — E[y?])T]. It is convenient to rewrite
a VAR model of order p in Equation () as a VAR(1) model,
Yy = Ayp_1 + ey, where v, € R, e, € R are defined as
Yt = (xt,xt_l-, ce ,ﬂ?t_p+1)T, €t = (6,5,0, cee ,O)T, and
A € R¥PXIP ig a (multi) companion matrix defined as:

Ay Ay Apy A,
I 0 -~ 0 0

a-lo 1 - 0o o] )
0 0 - I 0

The eigenvalues of the multi-companion matrix A fully
characterize the stability and stationarity of the VAR process.
For a VAR(p) process to be weakly stationary, that is for the
mean and the covariance of the process to not change over
time, the eigenvalues of A, which satisfy

det|Ig\? — ANP™L — ApWP™2 — ... — A | =0, (6)

are constrained to not lie on the unit circle. If the magnitude
of all the eigenvalues are |\;| < 1, then the process is stable,
that is, its values do not diverge (Liitkepohl|2013)).

Causal Models. Under the assumptions of causal suffi-
ciency and absence of contemporaneous influences, a causal
interpretation of the VAR model in (@) as structural equa-
tions naturally yields the corresponding causal model. We
consider the family of all VAR models as our function class
F of statistical and causal estimators.

3 CAUSAL GENERALIZATION FOR VAR

In this section, we present causal generalization bounds for
the family of VAR models under atomic interventions. We
first provide an overview of our results in the more general
case of VAR(p) models and later provide a thorough inter-
pretation of the results, often by deriving simplified versions
of the results for AR(p) models. We begin by providing

an exact characterization of the difference in statistical and
causal errors in terms of the model and estimated parameters
and the autocovariance matrix of the underlying process.

Lemma 1 (Difference in Causal and Statistical er-
rors (VAR)). Consider a vector-valued time series
{#i}iep € RY, following a VAR(q) process parameterized
by {A1,As,--- Ay}, Let v = max{p, q}. For any VAR(p)
model f with parameters { Ay, Ay, --- A},

dv
Gt — Sul = 2|(A% — A5) D (A%, — A5)54 ],
k#i

where ¥V denotes the autocovariance matrix of T, of size v,
A is a multi-companion matrix of the form described in ()
with the first d rows populated by { A}, A, --- AL}, with
Aj defined as A, for all | < p and as 0gxq for all | > p. A
is analogously defined.

Building on Lemmal[I] we establish that the condition num-
ber of the autocovariance matrix of the underlying process
controls causal generalizability from the observational to
interventional distributions.

Proposition 1 (Stability Controls Causal Generalization
(VAR)). Let {x:},., follow a VAR(q) process for some
q € N. For any VAR(p) model,

1Gui — Sul| < (26(2Y) — 1)(S, — 02), (7

where k(XV) denotes the condition number of the autoco-
variance matrix Y. Further, one can construct processes
where equality holds upto a small constant factor.

The result states that the difference in expected causal and
statistical errors is controlled by the condition number of the
autocovaraince matrix of size max {p, ¢}. It also states that
without incorporating additional information, one cannot
obtain a much tighter bound which is also verified by our
experiments in Section 4 The condition number of the au-
tocovariance matrix can get arbitrarily large as the process
gets closer to the boundary of the stability domain. This
result therefore shows that even for very simple classes of
forecasting models, causal interpretations can get challeng-
ing. We later provide a detailed interpretation of this result
and provide an explicit bound on k(X%,) in terms of the
stability parameter for AR(p) models (Corollary [2).

Proposition [I] allows us to employ generalization bounds
for time-series (Yu [1994} Meir 2000; Mohri et al. 2009;
McDonald et al.[2017) to derive finite-sample causal gener-
alization bounds for VAR models. In particular, we utilize
Rademacher complexity bounds for generalization in time-
series under mixing conditions (Mobhri et al. 2009) to derive
Theorem 1l



Theorem 1 (Finite sample bounds for VAR(p) models).
Let F denote the family of all VAR models of dimension d
and order p. For any n > max {p,q} € N, let u,m > 0 be
integers such that 2um = nand 6 > 2(u—1)p™ for a fixed
constant 0 < p < 1 determined by the underlying process.
Let {x1,29,---2,} € RY be a finite sample drawn from
a VAR(q) process. Then, simultaneously for every f € F,
under the square loss truncated at M, with probability at
least 1 — 6,

Gui < (S + CRU(F )+3CM\/ ®

where ( = 2k(X7), &' = 6 — 2(u — 1)p™, and %M(}")

denotes the empirical Rademacher complexlty of F.

Our causal generalization bound in Theorem|[I]suggests that,
given sufficiently many samples, the true causal error can
be guaranteed to be close to empirical statistical error if our
VAR models come from a class with a small Rademacher
complexity, particularly when the process is associated with
a small stability parameter.

We now focus on providing a detailed interpretation of our
results. First, we take a minor detour to present a technical
result (Lemma [2)) which is useful both in deriving some of
our main results as well as in interpreting them.

Lemma 2 (Expressing powers of a companion matrix
using symmetric polynomials). For a companion matrix
A with distinct eigenvalues, for any k € [p], the (1,k)th
element of A7, can be expressed using Schur polynomials of
the eigenvalues X = {\1, \a, -+ Ny} of A, that is, A{ ;=
S; k(X), where S; ,(X) refers to the Schur polynomial in-
dexed by K = {j,1,---k — 1 times---,1,0,--- ,0}.

Lemma 2]shows that the coefficients of the powers of a com-
panion matrix can be fully characterized using symmetric
Schur polynomials of its eigenvalues. A good overview of
these polynomials can be found in Chaugule et al. (2019).
An advantage of expressing the coefficients using symmet-
ric Schur polynomials is that these polynomials have been
a subject of extensive research in combinatorics and an
equivalence between several alternate definitions has been
established. To name a few, Cauchy’s bialternant expression,
(Cauchy |1815} Jacobi |1841)), the combinatorial formula
(Macdonald [1998)) or Jacobi—Trudi identity (Jacobi|1841)
are all equivalent ways to define Schur polynomials. It is
therefore possible and often beneficial to choose the def-
inition that yields the most useful notion for the context.
We utilize this connection to interpret our results. First, for
easier interpretation, we simplify Lemma[I]to the following
result for scalar AR models.

Corollary 1 (Difference in Causal and Statistical errors
(AR)). Let {x4},., follow an AR(q) process. Then, for any

AR(p) model with parameters A,

v

G — S| = 2\@4&& ) Y (A8~ A ©)
k=2

where, for any k € N, v denotes the autocovariance of
{@t},cq with lag k. A and A are the corresponding com-
panion matrices of the model and estimated parameters as

defined in Lemmall]

LemmalT]identifies factors that control causal generalizabil-
ity. We now describe them.

Correlations control causal generalizability. Recall our
motivating example of the two highly correlated time-series
where the casual and statistical errors diverge. Intuitively,
one would therefore expect that large correlations among
time series potentially induce large differences between ob-
servational and interventional distributions. The quantitative
dependence of causal generalizability on the correlation
structure of the process is, however, less obvious. Lemma[]
confirms the intuition and shows that correlations between
the intervened time-series x:_,, ; across both the compo-
nents and time instances in X;_,, control generalizability
from observational to the interventional distributions.

High-dimensional and higher-order processes can hurt
generalization. For high-dimensional processes it is not un-
likely to have strong correlations across components, which
may obscure causal relations in the same way as strong cor-
relations across time does for univariate processes. Lemma
[T also supports this intuition and shows that strong corre-
lations across components as well as time instances play a
role. With increasing order or dimension of the processes,
larger orders of covariances across time and dimensions
could entail poor causal generalizability.

Dependence on w. The dependence of the error on w arises
through the elements of the matrix power A*. A simple com-
putation shows that, even for an AR(2) model, the depen-
dence of these coefficients on the model parameters is asym-
metric and highly intricate. However, using the Cauchy’s
bialternant formulation of Schur polynomials, we have that
for any AR(p) model, the coefficients A{, can be expressed
b1 e A ey (M)

det [{AF ™"}, prep
refers to the elementary symmetric polynomial of order
k and with variables {A1, - X\i—1, Ait1,- -+, Ap}. While
this is not the most interpretable definition per se, the de-
pendence of the coefficients on w is easily understood and it
is easy to verify that if the underlying model as well as the
estimated model are both stable (]| < 1), the coefficients
and hence the difference in errors exponentially decays with
interventions arbitrarily in the past of the target variable and
if either of the process is not stable (|| > 1), the difference
can indeed diverge.

as A7, = (-1) , where e;()\;)




Proposition[T]allows us to obtain a high-level perspective on
causal generalizability. It states that the condition number of
the autocovariance matrix controls causal generalizability.
Both the maximum and the minimum eigenvalue of the
autocovariance matrix (and hence the condition number)
can be used as a measure of stability and hence determine
the strength of correlation of the underlying process (Basu
et al.|2015; Melnyk et al.|2016)). As the process gets closer to
the boundary of stability domain, the autocovariance matrix
gets singular and hence the condition number of the auto-
covariance matrix can get arbitrarily large. Proposition
therefore, can be interpreted as if the underlying process
gets closer to the boundary of the stability domain the causal
and statistical errors can diverge.

For intuition, let us revisit our motivating example from
the introduction with strongly correlated observations in
an AR(p) process. Let, without loss of generality p = q.
Introducing the vectors a := (a1,a2,...,a,) and @ :=
(@1, a2, ..., ap) and the covariance matrix X, = Y ax(p.q}-
Then the quotient between causal and statistical error for
predicting one time step ahead i.e. (w = 1) reads:

Gdo,  (a—a)T(a—a)+o?
S, (a—a)T8,(a—a)+ o2’

(10)

Where we have assumed X; to have unit variance without
loss of generality. The quotient is maximized if (@ — a) is a
multiple of the eigenvector to the smallest eigenvalue of 3,,.
This aligns with the intuition that causal loss diverges when
the auto-covariance matrix gets singular. Moreover, we see
that the vector (@ — a) can be large with little observable
effect when it mainly consists of eigenvectors with small
eigenvalues of X,. In the extreme case, if the minimum
eigenvalue of the autocovariance matrix is 0, it is possible to
arbitrarily deviate from the true model parameters along the
direction of the corresponding eigenvector which can signifi-
cantly affect the causal error without affecting the statistical
error at all. For an AR(2) process, for instance, we obtain
Yo < 1 aq / (1 — ag)
P a1/(1 — as) 1

singular for a; = (1 — as) which indeed is the boundary
of the stability domain (see for example, Liitkepohl (2009)).
This is the limit in Section |I| where X; = +X;_1. The
eigenvector for eigenvalue 0 reads (1, F1). Accordingly, the
quotient diverges when ¢ differs from a by (1, F1).

) , which becomes

This further highlights that even for simple classes of fore-
casting models and with simplifying assumptions such as
causal sufficiency, causal risks may even diverge from sta-
tistical risks. To show this formally, by means of Lemma 2]
we can derive an explicit upper bound on the condition num-
ber of the autocovariance matrix £ (Xmax{p,q3) for AR(p)
models and arrive at Corollary 2]

Corollary 2 (Stability Controls Causal Generalization
(AR)). Consider an AR(q) process, such that eigenvalues
of its companion matrix satisfy |\| < § < 1. For any AR(q)

model f,

1Gurii = Sul S KpSu(fv(L+0)*/(1=6%), (D)
where K, is some finite constant that depends on the order
p of the underlying process.

The bound in Corollary [2]is elegant due to its simplicity
and generality. However, the cost of generality of the bound
that relies only on the stability parameter is clearly that
it cannot explain the variations in behavior exhibited by
individual processes with the same stability parameter.
For instance, consider an AR(2) model with parameters
a; and as with ag ~ 0 so that it is essentially an AR(1)
model. Then, it is easy to verify that Ay ~ 0. The combi-
natorial definition of the Schur polynomials (Macdonald
1998) allows us to express the coefficients as follows:
AP =30 AT, A = ST YT Combin-
ing this with Corollary([T} it is easy to see that if the estimated
model is also close to AR(1), then the coefficients Af, and
2?2 and hence the difference in statistical and causal errors
is close to 0. The bound in which relies on the stability
parameter does not capture this. For tighter bounds that
utilize additional information about the spectrum of the
companion matrix, we can exploit the connection to Schur
polynomials to arrive at the following bound.

|Gw,i — Sw| < Kp 4 max {5, S}w Z (S:;\k - Sik)'yk—l’

k=2

where K, , is a constant that depends on p, ¢, ¢ and 5 are
the stability parameters of the true and estimated processes
respectively and A and X denote the set of eigenvalues of A
and A respectively.

4 SIMULATIONS

To verify the practical behavior of causal and statistical risks,
we provide some simple simulations to study the errors of
different estimators under AR processes. For each presented
plot, we draw parameters for 10,000 stationary AR(p) pro-
cesses using rejection sampling. We draw the coefficients
of each process independently and uniformly from [—2, 2]
and reject sets of parameters that yield a non-stationary pro-
cess. For each process, we draw a training sample with 100
timesteps and a test sample with 1000 timesteps. For all
figures in the main paper we set w = 1. To estimate the coef-
ficients we use Ordinary Least Squares (OLS). In Appendix
[5| we provide additional plots with hidden confounder, as
well as varying order, sample size, w and other estimators:
Ridge, Lasso, and Elastic Net regressors. OLS minimizes the
empirical statistical error, that is, ) s (yi — 9:)%, where
y; denotes the model prediction with estimated parameters
a.
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Figure 2: The causal error G versus the statistical error S for AR(p) processes withp = 3,5, 7.
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Figure 3: The maximal difference between statistical error S and causal error G as well as an estimate for the generalization
bound in Theorem [I] for increasing condition number & for process orders p = 3,5, 7 (from left to right). The maximum is
taken over 500 datasets with the closest «. Our theoretical bounds (orange) closely match the empirical evaluations up to

constant factors (blue).

In line with our theoretical results, we find that even for
simple scalar AR processes of small orders, the causal er-
ror of the estimators is often several times larger than the
statistical error (see Figure[2). In Figure[3| we sorted the ran-
domly drawn datasets by their autocorrelation (measured by
the condition number x of the autocorrelation matrix) and
split the sorted list into buckets of 500 dataset. For each we
calculated the maximum, mean and 90% quantile of the dif-
ference in causal and statistical error for the OLS and Ridge
estimators. The plots corresponding to the other estimators
are provided in Appendix [5|We can see that upto constant
factors, our theoretical finite sample causal generalization
bound matches the difference in causal and statistical risks
observed empirically.

S EXPERIMENTS ON REAL DATA

Data. We conduct experiments on three different datasets:
m4 hourly (Makridakis et al. 2018)), electricity (Dua et al.
2017), and traffic (Dua et al.[2017). The m4 hourly dataset
includes timeseries from a diverse set of sources. The m4
dataset has a hourly frequency and a prediction length of
48. The traffic dataset records the occupancy rates of car
lanes on freeways in the San Francisco Bay Area and the

electricity dataset records the electricity consumption of
370 customers hourly. To create an interventional distribu-
tion without a generative model, for each time series we
replace the last time step prior to the evaluation window by
sampling at random either from all time-series at that time
step (referred to as across-ts) or from previous values of the
same time series (referred to as within-ts).

Models. We include three popular deep neural network
architectures in our evaluation. DeepAR consists of an RNN
that takes the previous time steps as inputs and predicts
the parameters of an auto-regressive model (Gasthaus et al.
2019). Wavenet is a hierarchical CNN developed for speech-
to-text (Oord et al.[2016). Transformer is an attention-based
deep neural network widely applied to NLP tasks including
translation (Vaswani et al.[2017)). For all these models we
use AutoGluonTS’s default hyperparameters.

The experiments were conducted using GluonTS (Alexan-
drov et al. 2019) with default hyperparameters on in-
stances with 4 virtual CPUs and a 2.9 GHz pro-
cessor. The code for reproducing all the experi-
ments can be found at https://github.com/
amazon-research/causal-forecasting

Metrics. For the observational distribution, we compute
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Figure 4: Results of the evaluation of three different deep neural network architectures on the m4hourly, electricity, and
traffic datasets. The “RMSE* is computed comparing prediction on the observational data against the ground truth. The
disagreement from Def. [5.1|compares the root-mean-square deviation between the predictions of two models of the same
architecture on the observational data (“Statistical Disagreement) and interventional distributions (“Causal Disagreement
Across TS* sampling interventions from all of time-series and “Causal Disagreement Within TS* sampling interventions
from prior points within the time series). The results are averaged over 5 runs of training and evaluation and include standard

deviation in black.

the root-mean-square error (RMSE) comparing average pre-
diction for each time point with the ground truth in the eval-
uation set. For the interventional distribution we are lacking
ground truth. Therefore, we train two separate models and
compute their disagreement.

Definition 5.1. The disagreement is the average root-mean-
square deviation of the mean forecasts of two models. The
average is taken over a set of time-series. If the time-series
come from the original dataset, we call it the statistical
disagreement. If they come from one of the interventional
datasets, we call it causal disagreement and specify the type
of intervention as across time-series or within time-series.

This disagreement is a measure of uncertainty introduced
by the randomness in the training and evaluation procedure.
Here, however, we use it to approach the causal risk, that
we cannot compute directly. If the disagreement is high on
the interventional distribution at least one of the models
must have a high causal risk. For comparison, we also in-
cluded this disagreement measure for examples from the
observational distribution. Finally, to explore the relation-
ship between causal forecasting error and uncertainty, we
also compute the width of the 80% prediction interval for
both the observational and interventional distribution.

Definition 5.2. The 80% prediction width of a forecasting
model is the absolute distance between the 0.9 quantile and
0.1 quantile of the forecast distribution. It is averaged over
a set of time-series that can come from the observational or
the interventional distritibutions.

Limitations. The dataset and models have clear shortcom-
ings. Likely, the dataset is not causally sufficient. Also, we
did not tune the models. Moreover, we are lacking sam-
ples from the marginal distribution for the interventions
and groundtruth on what happens under these interventions.

Model observ. across-ts interv. | within-ts interv.
DeepAR 940.0 £ 126.2 | 1329.2 + 187.5 | 953.1 £124.2
wavenet 1253.9 +96.6 | 3444.7 +649.4 | 1612.7 + 257.7

transformer || 1259.3 4+ 139.3 | 1355.1 £ 129.6 | 1255.7 +£139.3

Table 1: 80% prediction width for the m4 dataset, see
Def. for observational and interventional forecasts. Av-
eraged over 5 runs with std.

Nevertheless, we hope to get a sense for how popular deep
learning networks can behave on real data for relevant pre-
diction tasks under interventions.

Results. Figure [] shows the results of the metrics when
we evaluate the models on the datsets for both observation
and interventional distributions. We see that the causal dis-
agreement between two models of the same architecture
and hyper-parameters can be much higher than their dis-
agreement on the observational distribution. While there are
only smaller differences in the statistical risk between the
model architectures, their causal disagreement differs more.
Overall, the the causal disagreement can be high, which
implies high causal risk, but it varies across datasets and
model architectures. Wavenet’s disagreement is an order of
magnitude larger when sampling interventions from other
time-series. For transformer models their interventional dis-
agreement is close to the observational one.

Uncertainty.

When we compare the width of the 80% interval of pre-
dictions in Table [T] (m4 dataset) and Table [2] (electricity
and traffic datasets) we see that this uncertainty measure is
higher for the interventional distribution compared to the
observational one. Moreover, directionally it relates to the
causal disagreement across models. Unlike the disagreement
that requires a second model to be trained, this uncertainty
measure is readily available from the predicted forecasts.



Dataset electricity traffic
Model observ. across-ts interv. within-ts interv. observ. across-ts interv. within-ts interv.
DeepAR 381.550 4 21.647 | 449.781 £ 27.536 | 375.632 + 20.851 || 0.0282 + 0.0015 | 0.0288 £+ 0.0017 | 0.0294 + 0.0018
wavenet 470.691 4+ 15.886 | 799.307 4+ 65.722 | 588.469 + 39.911 || 0.0246 £+ 0.0003 | 0.0279 £ 0.0003 | 0.0299 + 0.0003
transformer || 413.174 4+ 31.243 | 575.946 + 35.456 | 407.372 +29.073 || 0.0282 + 0.0023 | 0.0312 £+ 0.0031 | 0.0328 + 0.0033

Table 2: 80% prediction width for observational and interventional forecasts on electricity and traffic datasets. Averaged

over 5 runs with std.

The causal disagreement can be high for some models which
implies a high causal risk. This cautions against the use of
statistical deep learning models to forecast what will happen
under interventions. The difference we observe in causal dis-
agreement across models motivates further development of
specific model architectures suitable for causal forecasting.
For existing models, the uncertainty measure considering
the width of the prediction interval can be an indicator for
causal risk.

6 RELATED WORK

Our work intersects with domain adaption, RL, and treat-
ment effect estimation, reviewed separately below.

Domain Adaptation. The literature closest to our setting is
that of learning theory for domain adaptation, in particular,
for covariate shift. Theoretical analysis of domain adapta-
tion when labelled samples from the source distribution and
unlabelled samples from the target distribution are generated
i.i.d was initiated by Ben-David et al. (2007), who provided
VC bounds for binary classification under covariate shifts
based on a discrepancy measure dx between source and
target distributions that depends on the hypothesis class F
and is estimable from finite samples. Mansour et al. (2009)
extended the work to the context of regression in the i.i.d
setting by adapting the discrepancy measure for more gen-
eral loss functions and by providing tighter, data-dependent
Rademacher bounds. Despite the i.i.d assumption, the re-
sults in Mansour et al. (2009) are perhaps the most relevant
to our setting. We can utilize one of the main results from
Mansour et al. (2009, Theorem 8) which does not rely on
the i.i.d assumption to arrive at the following population-
level bound for our setting: |G, ;(f, f*) — Su(f, [*)] <
supy prer Guw.i(f, f') — Sw(f, f')|- These bounds are non-
informative in our context since they do not incorporate
structural knowledge of the class of interventional distribu-
tions under a VAR model.

Estimation of Treatment Effects. A related problem is that
of estimating treatment effects in the potential outcomes
framework (Hill et al. 2006} Shi et al.|2019)), where the goal
is to estimate the effects of binary-valued treatments from
observational data under a multivariate confounding model.
Our setting is more general in that variables in the multi-
variate process can take a continuum of interventions and
play a multiplicity of roles — each variable plays the role of

treatment, confounder, and the target variable. Of particular
relevance is the work of Shalit et al. (2017) and Johans-
son et al. (2020), who prove generalization error bounds on
estimating individual-level treatment effects in terms of stan-
dard generalization error and a distance measure between
the treated and control distributions. This result is similar
to domain adaptation bounds in Ben-David et al. (2007)
and Mansour et al. (2009) and may be interpreted as causal
learning theory in the sense of our paper.

Reinforcement Learning. The ratio of observational versus
interventional densities in our setting play a similar role as
the state density ratio in off-policy evaluation in reinforce-
ment learning(RL) (Bennett et al.|2021). In RL, however,
the clear separation between the state of actions and the state
space acted on admits techniques that we do not see for our
problem, e.g., deconfounding (Hatt et al. 2021), or learning
representations of the history that are independent of the
actions (Bica et al.|2020), which overcomes the problem of
high inverse probability weightings (Lim et al.[2018).

7 DISCUSSION AND CONCLUSION

Our work highlights that even for very simple models
and even under simplifying assumptions such as causal
sufficiency, causal and statistical errors can diverge. It
emphasizes the need for providing guarantees for causal
generalization in a similar vein as providing guarantees for
statistical learning. To this end, we initiate a first analysis
in this direction by introducing a framework for causal
learning theory for forecasting and providing conditions
under which one can guarantee generalization in the causal
sense for the class of VAR models. We hope that this work
inspires more theoretical work that allows certifying the
validity of the causally interpreting forecasting models.

Our theoretical as well as empirical results challenge the
causal interpretation of forecasting models used in practice
which are typically far more complex. Our experiments
show that causal disagreement can be high for some models
which implies a high causal risk. This cautions against the
use of statistical deep learning models for causal forecasting.
The difference we observe in causal disagreement across
models motivates further development of specific model
architectures suitable for causal forecasting. For existing
models, the uncertainty measure considering the width of
the prediction interval can be an indicator for causal risk.
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