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Abstract
Existing analysis of Local (Stochastic) Gradient
Descent for heterogeneous objectives requires
stepsizes η ≤ 1/K where K is the commu-
nication interval, which ensures monotonic de-
crease of the objective. In contrast, we analyze
Local Gradient Descent for logistic regression
with separable, heterogeneous data using any step-
size η > 0. With R communication rounds
and M clients, we show convergence at a rate
O(1/ηKR) after an initial unstable phase last-
ing for Õ(ηKM) rounds. This improves upon
the existingO(1/R) rate for general smooth, con-
vex objectives. Our analysis parallels the single
machine analysis of (Wu et al., 2024a) in which
instability is caused by extremely large stepsizes,
but in our setting another source of instability is
large local updates with heterogeneous objectives.

1. Introduction
As the area of distributed optimization grows — owing to
recent applications in federated learning (McMahan et al.,
2017) and large-scale distributed deep learning (Verbraeken
et al., 2020) — the gap between theory and practice has
grown proportionally. Local Stochastic Gradient Descent
(SGD) and its variants have been successfully used for dis-
tributed learning with heterogeneous data in practice for
years (Wang et al., 2021; Reddi et al., 2021; Xu et al., 2023),
but so far we have little theoretical understanding of this
success (Wang et al., 2022).

The majority of theoretical works in distributed optimization
take a worst-case approach to algorithm analysis: they con-
sider the worst-case efficiency over some large class of opti-
mization problems, such as the class of convex, smooth ob-
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jectives satisfying some hetorogeneity requirement (Wood-
worth et al., 2020a;b; Koloskova et al., 2020). While the
resulting guarantees are very general, they do not always
reflect practice, since they describe the worst-case, rather
than cases which may appear in practice. For Local SGD
and its deterministic variant, Local GD, these worst-case
guarantees rely on the potentially unrealistic condition of
small step sizes η ≤ O(1/K), where K is the communi-
cation interval (Woodworth et al., 2020b; Koloskova et al.,
2020). For Local GD, this small step size can guarantee
monotonic decrease of the objective, but such stable con-
vergence is far removed from practice, as non-monotonic
decrease of the objective is common in practical machine
learning (Jastrzebski et al., 2020; Cohen et al., 2021).

Motivated by this gap between theory and practice, we
take a problem-specific approach and analyze Local GD for
logistic regression. Our central question is:

Can Local GD for logistic regression achieve accelerated
convergence with a large step size (η ≫ 1/K)?

Despite the apparent simplicity of this setting, existing the-
ory is unable to answer this question. In the single-machine
setting, GD is known to converge for logistic regression
with any step size (Wu et al., 2024b;a), and a large enough
step size will cause non-monotonic decrease of the objective.
For the distributed setting, previous work for this problem
considered a two-stage variant of Local GD (Crawshaw
et al., 2025), that uses a small step size η ≤ O(1/K) before
switching to a larger step size later in training. It remains
open to analyze the vanilla Local GD with a constant step-
size in this setting.

Contributions In this paper, we prove that Local GD
for distributed logistic regression converges with any step
size η > 0 and any communication interval K ≥ 1. In
particular, we show that choosing ηK = Θ̃

(
γ3R
M

)
yields a

convergence rate faster than existing lower bounds of Local
GD for distributed convex optimization (see Section 3 for
definitions of all parameters).

Our accelerated convergence crucially uses ηK ≫ 1, which
violates the condition η ≤ O(1/K) from previous work and
potentially creates non-monotonic objective decrease across
communication rounds. To handle this instability, we adapt
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Table 1: Upper bounds on the objective gap F (w)− F∗ of distributed GD variants for logistic regression, up to constants
and logarithmic factors. R is the number of communication rounds, K is the number of local steps, M is the number of
clients, and γ is the maximum margin of the combined dataset. (a) These bounds are derived in (Crawshaw et al., 2025) by
applying the worst-case upper bounds of (Woodworth et al., 2020b) and (Koloskova et al., 2020) to the specific problem
of logistic regression. (b) Assuming R ≥ Ω(Mnγ−2). (c) Assuming R ≥ Ω̃(max(Mnγ−2,KMγ−3))). (d) This lower
bound is included for comparison of the rate in terms of R and K, and applies to the class of convex, H-smooth objectives
that have a minimizer w∗ with ∥w∗∥ ≤ B and ∥∇Fm(w∗)−∇F (w∗)∥ ≤ ζ∗. It should be noted that logistic regression
with separable data is not a member of this class, because no minimizer w∗ exists for this objective.

Step size Arbitrary K Best K

Local GD
(Woodworth et al., 2020b)(a)

η = 1
γ2/3KR1/3

1
γ2KR + 1

γ4/3R2/3
1

γ4/3R2/3

Local GD
(Koloskova et al., 2020)(a)

η = 1
K

1
γ2R

1
γ2R

GD
(Wu et al., 2024a)(b)

η = γ2R - 1
γ4R2

Two-Stage Local GD
(Crawshaw et al., 2025)

η1 = 1
K

η2 = min
(
γ4R
KM , 1

)
max

(
1

γ2KR ,
M
γ6R2

)
M
γ6R2

Local GD
(Corollary 4.3)(c)

η ∈
(
1, γ

3R
M

)
M
γ5R2

M
γ5R2

Local GD Lower Bound
(Patel et al., 2024)(d)

- HB2

R +
(Hζ2∗B

4)1/3

R2/3 -

techniques from the analysis of GD with large step sizes
for single-machine logistic regression, introduced by Wu
et al. (2024a), which shows that GD operates in an initial
unstable phase before entering a stable phase where the
objective decreases monotonically. We use these techniques
to analyze Local GD by decomposing the algorithm’s update
into the contribution from each individual data point, and
tracking this contribution throughout the local update steps,
in order to relate the trajectory of Local GD to that of GD.
Consequently, we can show that Local GD also transitions
from an unstable phase to a stable phase.

We also experimentally evaluate Local GD for logistic re-
gression with synthetic data and MNIST data, and the results
corroborate our theoretical finding that acceleration can be
achieved by allowing for non-monotonic objective decrease.
To probe the limitations of our theory, we evaluate Local
GD under different regimes of η and K, and accordingly we
propose open problems and directions for future research.

Organization We first discuss related work (Section 2),
then state our problem (Section 3) and give our analysis
(Section 4). We provide experimental results (Section 5),
then conclude with a discussion of our results and future
work (Section 6).

Notation For n ∈ N, we denote [n] = {1, . . . , n}. We
use ∥ · ∥ to denote the L2 norm for vectors and the spectral

norm for matrices. Outside of the abstract, we use O, Ω,
and Θ to omit only universal constants. Similarly, Õ, Ω̃,
and Θ̃ only omit universal constants and logarithmic terms.

2. Related Work
General Distributed Optimization Early work in this
area focused on distributed algorithms for solving classical
learning problems with greater efficiency through paral-
lelization (Mcdonald et al., 2009; McDonald et al., 2010;
Zinkevich et al., 2010; Dekel et al., 2012; Balcan et al.,
2012; Zhang et al., 2013; Shamir & Srebro, 2014; Arjevani
& Shamir, 2015). Recent years have seen a growth of re-
search in distributed optimization due to applications for
large-scale distributed training of neural networks (Tang
et al., 2020; Verbraeken et al., 2020) and federated learning
(McMahan et al., 2017). Federated learning is a paradigm
for distributed learning in which user devices collaboratively
train a machine learning model without sharing data; see
(Kairouz et al., 2021; Wang et al., 2021) for a comprehensive
survey.

Efficiency of Local SGD Local SGD (also known as Fed-
erated Averaging, or FedAvg) is a fundamental algorithm
for distributed optimization, both in theory and practice.
Convergence guarantees of Local SGD for distributed con-
vex optimization under various conditions were proven by
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Stich (2019); Haddadpour & Mahdavi (2019); Woodworth
et al. (2020b); Khaled et al. (2020); Koloskova et al. (2020);
Glasgow et al. (2022). These works consider the worst-
case efficiency of Local SGD for solving large classes of
optimization problems, such as the class of problems with
smooth, convex objectives with some condition on the het-
erogeneity between local objectives; we refer to these guar-
antees as worst-case baselines. Lower bounds have estab-
lished that Local SGD is dominated by Minibatch SGD in
the worst case over various problem classes despite the fact
that Local SGD tends to outperform Minibatch SGD for
practical problems (Woodworth et al., 2020a;b; Glasgow
et al., 2022; Patel et al., 2024), and variants of Local SGD
remain standard in practice (Wang et al., 2021; 2022; Reddi
et al., 2021; Xu et al., 2023). It remains an active topic of re-
search to develop a theoretical understanding of Local SGD
and Minibatch SGD that aligns with practical observations
(Woodworth et al., 2020b; Glasgow et al., 2022; Wang et al.,
2022; Patel et al., 2023; 2024).

Gradient Methods for Logistic Regression In this work,
we narrow our focus and consider the efficiency of Local
GD for solving one particular optimization problem, con-
tinuing a line of work which shows that gradient-based
optimization algorithms have very particular behavior for
certain problems of interest in machine learning. Soudry
et al. (2018); Ji & Telgarsky (2019) showed that GD for
logistic regression converges to the maximum margin solu-
tion without explicit regularization. Gunasekar et al. (2018);
Nacson et al. (2019); Ji et al. (2021) proved further implicit
regularization results for general steepest descent methods,
stochastic gradient descent, and a fast momentum-based
algorithm, respectively. A separate line of work observed
that GD exhibits non-monotonic decrease in the objective
when training neural networks, a phenomenon called the
Edge of Stability (Cohen et al., 2021; Damian et al., 2023).

The works which are most closely related to ours are (Wu
et al., 2024b;a) and (Crawshaw et al., 2025). Wu et al.
(2024b) showed that GD for logistic regression can con-
verge with any positive stepsize, despite non-monotonic
decrease of the objective, and that GD converges to the max-
imum margin solution. Wu et al. (2024a) showed that GD
with a large stepsize can achieve accelerated convergence
for logistic regression. Crawshaw et al. (2025) proved that a
two-stage variant of Local GD can achieve accelerated con-
vergence compared to the worst-case baselines (Koloskova
et al., 2020; Woodworth et al., 2020b).

3. Problem Setup
We consider a distributed version of binary classification
with linearly separable data. The number of clients is de-
noted by M , the number of data points per client as n, and

Algorithm 1 Local GD

Input: Initialization w0 ∈ Rd, rounds R ∈ N, local steps
K ∈ N, learning rate η > 0

1: for r = 0, 1, . . . , R− 1 do
2: for m ∈ [M ] do
3: wm

r,0 ← wr

4: for k = 0, . . . ,K − 1 do
5: wm

r,k+1 ← wm
r,k − η∇Fm(wm

r,k)
6: end for
7: end for
8: wr+1 ← 1

M

∑M
m=1 w

m
r,K

9: end for

the dimension of the input data as d. The data consists of M
local datasets, one for each client: Dm = {(xmi , ymi )}i∈[n]

for each m ∈ [M ], where xmi ∈ Rd and ymi ∈ {−1, 1}.
We assume that the global dataset D = ∪m∈[M ]Dm is lin-
early separable, that is, there exists some w ∈ Rd such that
y⟨w,x⟩ > 0 for every (x, y) ∈ D. We also denote by γ
and w∗ the maximum margin and the maximum margin
classifier for the global dataset, that is,

γ = max
w∈Rd,∥w∥=1

min
(x,y)∈D

y⟨w,x⟩ (1)

w∗ = argmax
w∈Rd,∥w∥=1

min
(x,y)∈D

y⟨w,x⟩. (2)

Note that γ > 0 from the assumption of linear separability.

We are interested in studying the behavior of Local Gra-
dient Descent (Algorithm 1) for minimizing the logis-
tic loss of this classification problem. Denoting ℓ(z) =
log(1 + exp(−z)), the local objective Fm : Rd → R for
client m ∈ [M ] is defined as

Fm(w) =
1

n

n∑
i=1

ℓ(ymi ⟨w,xmi ⟩), (3)

and our goal is to approximately solve the following:

min
w∈Rd

{
F (w) :=

1

M

M∑
m=1

Fm(w)

}
. (4)

In this work, we focus on minimization of this training loss,
and guarantees for the population loss can be derived using
standard techniques.

Notice that the objective depends on each data point
(xmi , y

m
i ) only through the product ymi xmi . Therefore, we

can assume without loss of generality that ymi = 1 for
every m ∈ [M ], i ∈ [n], since we can replace any data
point (xmi ,−1) with (−xmi , 1), which preserves the prod-
uct ymi xmi and therefore does not change the trajectory of
Local GD. We also assume that ∥xmi ∥ ≤ 1 for every m, i,
which can always be enforced by rescaling all data points by
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maxm,i ∥xmi ∥. Lastly, we will denote by H the smoothness
constant of F , that is, H := supw∈Rd ∥∇2F (w)∥, which
satisfies H ≤ 1/4 when ∥xmi ∥ ≤ 1 (Crawshaw et al., 2025).

4. Convergence Analysis
We present two convergence results of Local GD for the
logistic regression problem stated in Equation 4. Our
Theorem 4.1 gives an upper bound on the average objec-
tive 1

r

∑r−1
s=0 F (wr) over the first r communication rounds,

which holds for any r. On the other hand, Theorem 4.2 pro-
vides a last-iterate upper bound on the objective F (wr) for
every r after a transition time τ . Both of these results hold
for any learning rate η > 0 and any number of local stepsK.
Corollary 4.3 summarizes our results by deriving the error
with the best choices of η and K for a given communication
budget R. We first state and discuss the results in Section
4.1, then give an overview of the proofs in Section 4.2. The
complete proofs are deferred to Appendix A.

4.1. Statement of Results

Theorems 4.1 and 4.2 provide guarantees in two phases:
the initial unstable phase (lasting for τ rounds), and the
latter stable phase. During the unstable phase, we cannot
provide a last-iterate guarantee, but we can upper bound
the average loss over the trajectory. After the loss becomes
sufficiently small, Local GD enters the stable phase, where
the loss decreases monotonically at every round. These
two phases mimic the observed behavior of Local GD in
experiments (see Section 5), and align with the behavior of
single-machine GD (Wu et al., 2024a).

Theorem 4.1. For every r ≥ 0, Local GD satisfies

1

r

r−1∑
s=0

F (ws) ≤

26
∥w0∥2 + 1 + log2(K + ηKγ2r) + η2K2

ηγ4r
. (5)

Notice that the RHS of Equation 5 grows at most linearly
with η and quadratically with K: this aligns with the intu-
ition that large stepsizes and/or long communication inter-
vals can create instability. Indeed, even if η ≤ 1/H , so that
the local objectives are guaranteed to decrease with each
local step, the global objective may not decrease monotoni-
cally over rounds when K is large, due to a large effective
per-round step size ηK. However, for any fixed η and K,
Theorem 4.1 shows that the average loss can be made arbi-
trarily small with large enough r. After at most τ rounds,
F (wr) will decrease below a certain threshold, after which
the global objective will decrease monotonically with each
communication round, leading to the following last-iterate
guarantee.

Theorem 4.2. Denote ψ = min
(

γ
140ηKM , 1

2Mn

)
and

τ =
4γ∥w0∥+ 2

√
2 + 2η + log

(
1 +

√
K√
ηγψ

)
ηγ2ψ

. (6)

For every r ≥ τ , Local GD satisfies

F (wr) ≤
16

ηγ2K(r − τ)
. (7)

Note that Theorems 4.1 and 4.2 apply for any choice of the
stepsize η and number of local steps K. In contrast with
the worst-case analysis which requires that η ≤ O

(
1
K

)
,

ours is the first result showing that Local GD can converge
for logistic regression without any restrictions on η and K.
The following corollary shows that, by tuning η and K, we
can achieve an accelerated rate with R−2 dependence on
R, which improves upon the lower bounds of Local GD for
general distributed convex optimization (see Table 1).

Corollary 4.3. Suppose R ≥ Ω̃
(
max

(
Mn
γ2 ,

KM
γ3

))
. With

w0 = 0, η ≥ 1, and ηK = Θ̃
(
γ3R
M

)
, Local GD satisfies

F (wR) ≤ Õ
(

M

γ5R2

)
. (8)

The condition R ≥ Ω̃
(
max

(
Mn
γ2 ,

MK
γ3

))
ensures that

R ≥ τ , so that training will actually enter the stable phase
and decrease the objective at the rate 1/(ηγ2KR). A similar
condition is used in the analysis of GD with large stepsizes
for single-machine logistic regression (Wu et al., 2024a).

Also, note that aside from the condition η ≥ 1, the step-
size η and the communication interval K always appear
together as the product ηK. This means that our guarantee
does not distinguish the performance of Local GD as K
changes, so long as the stepsize changes to keep ηK con-
stant. Therefore, it remains open to show whether or not
Local GD can actually benefit from the use of local steps for
this problem. Indeed, the analysis of GD for single-machine
logistic regression (Wu et al., 2024a) immediately implies
that for our distributed problem, GD (parallelized over M
machines) achieves error Õ(1/(γ4R2)), which improves
upon our guarantee for Local GD in terms of M and 1/γ.
We further discuss this comparison in Section 6.

4.2. Proof Overview

Throughout the analysis, we will denote bmr,i = ⟨wr,x
m
i ⟩,

so that Fm(wr) =
1
n

∑n
i=1 ℓ(b

m
r,i). Similarly, we will de-

note bmr,i,k = ⟨wm
r,k,x

m
i ⟩.

The proofs of Theorems 4.1 and 4.2 adapt existing tools
introduced by (Wu et al., 2024a) and (Crawshaw et al.,
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2025); our application of these tools for our setting relies on
a comparison between the trajectories of GD and Local GD
by decomposing updates into the contribution from each
individual data point xmi . Specifically, a single GD update
starting from wr is

−η∇F (wr) =
η

Mn

M∑
m=1

n∑
i=1

|ℓ′(bmr,i)|xmi . (9)

Denoting

βmr,i =
1
K

∑K−1
k=0 |ℓ′(bmr,i,k)|
|ℓ′(bmr,i)|

, (10)

a single round update of Local GD from wr can be rewritten

wr+1 −wr = −
η

M

M∑
m=1

K−1∑
k=0

∇Fm(wm
r,k) (11)

=
ηK

Mn

M∑
m=1

n∑
i=1

βmr,i|ℓ′(bmr,i)|xmi . (12)

Comparing Equation 9 and Equation 12, the updates for
GD and Local GD can both be represented as linear com-
binations of the data xmi , and the two trajectories can be
compared by analyzing the coefficients βmr,i. By upper and
lower bounding βmr,i, we can adapt the split comparator and
gradient potential techniques of Wu et al. (2024a) (which
were introduced for GD) to analyze Local GD during the
unstable phase and show a transition to stability.

For the stable phase, we leverage the relationship between
the derivatives of the objective function, namely that

∥∇2F (w)∥ ≤ F (w) and ∥∇F (w)∥ ≤ F (w), (13)

to show that a small objective value F (w) implies a small
local smoothness ∥∇2F (w′)∥ for ∥w′−w∥ ≤ 1, and this in
turn implies monotonic decrease of the objective. A similar
argument was used by Crawshaw et al. (2025), but here we
use a refined version that allows for any η > 0, whereas the
analysis of Crawshaw et al. (2025) requires η ≤ 1/H .

Below we state key lemmas to sketch the proofs of each
theorem, and full proofs are deferred to Appendix A.

Unstable Phase As previously mentioned, we aim to ap-
ply the split comparator technique of Wu et al. (2024a) to
analyze Local GD, and we can do so if we upper and lower
bound βmr,i. Our lower bound is surprisingly simple:

βmr,i =
1
K

∑K−1
k=0 |ℓ′(bmr,i,k)|
|ℓ′(bmr,i)|

≥ 1

K
, (14)

where the inequality simply ignores all terms of the sum in
the numerator, except that corresponding to k = 0. While
this may appear very loose, it is not hard to show in special

cases that this bound is tight up to logarithmic factors for
certain values of wr (see Lemma B.7).

We upper bound βmr,i as

βmr,i =
1

K

K−1∑
k=0

1 + exp(bmr,i)

1 + exp(bmr,i,k)
(15)

≤ 1 + exp(bmr,i) = 1 + exp(⟨wr,x
m
i )⟩ (16)

≤ 1 + exp(∥wr∥), (17)

where the last line uses ∥xmi ∥ ≤ 1. To bound ∥wr∥, we
apply the split comparator technique of Wu et al. (2024a) to
analyze the local trajectories of each round {wm

s,k}k, then
use this to establish a recursive bound on ∥ws − u∥ over
rounds, where u = u1+u2 is a yet unspecified comparator.
The analysis within each round implies that

∥wm
s,K − u∥2

2ηK
+

1

K

K−1∑
k=0

Fm(wm
s,k) ≤

∥ws − u∥2

2ηK
+ Fm(u1), (18)

and in particular that

∥wm
s,K − u∥ ≤ ∥ws − u∥+

√
2ηKFm(u1). (19)

Averaging over m ∈ [M ] and recursing over s ∈
{0, . . . , r − 1} implies that

∥wr − u∥ ≤ ∥w0 − u∥+ r
√
2ηKF (u1), (20)

so
∥wr∥ ≤ ∥w0∥+ 2∥u∥+ r

√
2ηKF (u1). (21)

By choosing u to balance the last two terms on the RHS,
we arrive at the following bound.
Lemma 4.4. For every r ≥ 0,

∥wr∥ ≤ ∥w0∥+
√
2 + η + log(1 + ηγ2Kr2)

γ
. (22)

We can now plug this in to Equation 17 to upper bound
βmr,i. Although the bound for βmr,i is exponential in ∥wr∥,
Lemma 4.4 shows that ∥wr∥ is only logarithmic in r, so the
resulting upper bound of βmr,i is only polynomial in r.

With upper and lower bounds of βmr,i, the split comparator
technique can be used to analyze Local GD similarly as for
GD. The full proof can be found in Appendix A.1.

Stable Phase Our error bound for the stable phase uses
the following modified descent inequality:
Lemma 4.5. For w,w′ ∈ Rd, if ∥w′ −w∥ ≤ 1, then for
every m ∈ [M ],

Fm(w′)− Fm(w) ≤ (23)

Fm(w) + ⟨∇Fm(w),w′ −w⟩+ 4Fm(w)∥w′ −w∥2.
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The above descent inequality is proven by using the facts
that ∥∇2Fm(w)∥ ≤ Fm(w) (Lemma B.1), and ∥w′ −
w∥ ≤ O(1) implies that ∥∇2Fm(w′)∥ ≤ O(∥∇2Fm(w)∥)
(Lemma B.3). This descent inequality captures a desirable
property of the logistic loss: the local smoothness constant
decreases with the objective value, so that large stepsizes can
yield monotonic objective decrease as long as the objective
is below some threshold.

To use this lemma to bound the error of Local GD, we need
to do three things: (1) show that ∥wr+1 −wr∥ ≤ 1 when
F (wr) is below some threshold; (2) show that the bias in the
update direction wr+1 −wr compared to −ηK∇F (wr) is
negligible when F (wr) is below some threshold; (3) show
that F (wr) becomes smaller than our desired threshold
within τ rounds.

First, to show that ∥wr+1 −wr∥ ≤ 1 based on the magni-
tude of F (wr), notice

∥wr+1 −wr∥ = η

∥∥∥∥∥ 1

M

M∑
m=1

K−1∑
k=0

∇Fm(wm
r,k)

∥∥∥∥∥ (24)

≤ η

M

M∑
m=1

K−1∑
k=0

∥∇Fm(wm
r,k)∥. (25)

We know ∥∇Fm(wm
r,k)∥ ≤ Fm(wm

r,k) (Lemma B.1), and if
we knew that local updates monotonically decrease the local
loss, we further have Fm(wm

r,k) ≤ Fm(wr). Combined
with Equation 25, this would yield

∥wr+1 −wr∥ ≤ ηKF (wr). (26)

In fact, we can use Lemma 4.5 to show that local up-
dates monotonically decrease the local objective, that is,
Fm(wm

r,k+1) ≤ Fm(wm
r,k), whenever Fm(wm

r,k) ≤ 1/(4η).
This shows that local objectives monotonically decrease
across local steps (Lemma 4.6), and this in turn implies that
∥wm

r,k −wr∥ ≤ 1 (Lemma 4.7).

Lemma 4.6. If F (wr) ≤ 1/(4ηM) for some r ≥ 0, then
Fm(wm

r,k) is decreasing in k for every m ∈ [M ].

Lemma 4.7. If F (wr) ≤ 1/(ηKM) for some r ≥ 0, then
∥wm

r,k −wr∥ ≤ 1 for every m ∈ [M ], k ∈ [K].

By choosing k = K and averaging over m ∈ [M ], Lemma
4.7 implies that ∥wr+1 −wr∥ ≤ 1.

Next, to handle the bias of the update direction, we rewrite
the update as

wr+1 −wr = −ηK(∇F (wr) + br), (27)

where

br =
1

MK

M∑
m=1

K−1∑
k=0

(∇Fm(wm
r,k)−∇Fm(wr)). (28)

We can bound the magnitude of the bias as follows:

∥br∥ ≤
1

MK

M∑
m=1

K−1∑
k=0

∥∇Fm(wm
r,k)−∇Fm(wr)∥, (29)

and denoting C = {(1− t)wr + twm
r,k | t ∈ [0, 1]},

∥∇Fm(wm
r,k)−∇Fm(wr)∥ (30)

≤
(
max
w∈C

∥∇2Fm(w)∥
)
∥wm

r,k −wr∥ (31)

≤
(
max
w∈C

Fm(w)

)
∥wm

r,k −wr∥ (32)

≤ max
(
Fm(wr), Fm(wm

r,k)
)
∥wm

r,k −wr∥, (33)

where the last two inequalities use ∥∇2Fm(w)∥ ≤ Fm(w)
(Lemma B.1) and convexity of Fm, respectively. Using
Lemmas 4.6 and 4.7, we can already bound the two terms
of Equation 33 when Fm(wr) is small, which gives the
following.

Lemma 4.8. If F (wr) ≤ γ/(70ηKM), then ∥br∥ ≤
1
5∥∇F (wr)∥.

Third, we must show that F (wr) will be sufficiently small
for some r ≤ τ in order to satisfy the conditions of Lemmas
4.6, 4.7, and 4.8. To do this, we adapt the gradient potential
argument of Wu et al. (2024a), as previously mentioned, by
lower bounding βmr,i. We use the same bound as in the proof
of Theorem 4.1: βmr,i ≥ 1/K. This allows us to relate the
gradient potential of Local GD to that of GD, and combining
this with Lemma 4.4 shows that F (wr) is sufficiently small
to enable stable descent after τ rounds.

Lemma 4.9. There exists some r ≤ τ such that F (wr) ≤
γ

70ηKM .

Finally, to prove Theorem 4.2, we can apply Lemma 4.5 for
all r ≥ τ . Applying Lemma 4.8 to control the bias of the
update direction, we obtain

F (wr+1)− F (wr) ≤ −
1

4
ηK∥∇F (wr)∥2. (34)

Using ∥∇F (wr)∥ ≥ γ
2F (wr) (Lemma B.1), this leads to a

recursion over F (wr), and unrolling back to round τ gives
exactly Equation 7 from Theorem 4.2. The full proof is
given in Appendix A.2.

Corollary 4.3, which gives our result stated in Table 1, is
proved in Appendix A.3.

4.3. Comparison to Single-Machine Case

When K = 1 or M = 1, the Local GD algorithm reduces
to GD. However, our convergence rate of M/(γ5R2) does
not exactly recover the 1/(γ4R2) rate of Wu et al. (2024a)
in terms of the dataset’s margin γ. Here we provide some

6



Constant Stepsize Local GD for Logistic Regression: Acceleration by Instability

technical details on the origin of this issue and whether it
can be removed.

The issue of our γ dependence stems from bounding the bias
term ∥br∥ in Lemma 4.8. br is the difference between the
update direction for a round compared to the global gradient
at the beginning of that round. Notice that other conditions
for entering the stable phase (Lemma 4.6, Lemma 4.7) only
require F (wr) ≤ O(1/(ηKM)), whereas Lemma 4.8 re-
quires F (wr) ≤ O(γ/(ηKM)). This additional factor of
γ needed to bound ∥br∥ creates the worse dependence on
γ compared with the single-machine case. Note that the
gradient bias results from taking multiple local steps before
averaging, so it does not appear when K = 1 or M = 1.

Technically, the requirement F (wr) ≤ O(γ/(ηKM))
might be weakened, but with a fine-grained analysis of
the Local GD trajectory. First, note that the requirement
on F (wr) is used in Equation 114 of Lemma A.5, for
the inequality marked (iv). The need for the factor of γ
arises from the next inequality (marked (v)), where we ap-
ply F (w) ≤ 2∥∇F (w)∥/γ (Lemma B.2). The additional
factor of γ is needed to cancel out the 1/γ from Lemma
B.2. Now, if we had a stronger bound in Lemma B.2 — say
F (w) ≤ ∥∇F (w)∥— then we could remove the extra γ
factor. The bound F (w) ≤ ∥∇F (w)∥ does not hold for
all w, but it does hold for some w, namely in the case that
w = tw∗, where t is a large scalar. So we could possibly
improve the gamma dependence if we knew that Local GD
converges to the max-margin solution, however, this kind of
implicit bias of Local GD with large η or K is not known;
even in the single-machine case the implicit bias of GD
for logistic regression is unknown when the step size scales
linearly with the number of iterations (Wu et al., 2024a). We
consider this implicit bias analysis as an important direction
of future research.

5. Experiments
We further investigate the behavior of Local GD for logis-
tic regression through experiments, in order to answer the
following questions: Q1: Can Local GD converge faster by
choosing η and K large enough to create non-monotonic
objective decrease? Q2: Do local steps yield faster con-
vergence if we tune η after choosing K? Q3: Do local
steps yield faster convergence if we keep ηK constant? We
investigate Q1 to empirically verify our theoretical findings,
whereas Q2 and Q3 are meant to probe the limitations of
our theory: our guarantee (Corollary 4.3) does not show any
benefit of local steps, and we ask whether such a benefit
occurs in practice. We further discuss this limitation of our
theory in Section 6. Lastly, we provide an additional experi-
ment with synthetic data in Appendix D.2 to evaluate how
optimization behavior is affected by heterogeneity among
the margins of each client’s local dataset.

Setup We evaluate Local GD for a synthetic dataset used
by Crawshaw et al. (2025) and for a subset of the MNIST
dataset with binarized labels, following (Wu et al., 2024a)
and (Crawshaw et al., 2025). The synthetic dataset is a
simple testbed with M = 2 clients and n = 1 data point
per client. For MNIST, we use a common protocol (Karim-
ireddy et al., 2020; Crawshaw et al., 2025) to partition 1000
MNIST images among M = 5 clients with n = 200 images
each, in a way that induces heterogeneous feature distribu-
tions among clients. Note that H ≤ 1/4 for these datasets.
See Appendix C for complete details of each dataset. Ad-
ditionally, we provide results with the CIFAR-10 dataset in
Appendix D.1.

We run Local GD with a wide range of values for the
parameters: η ∈ {2−2, 20, 22, 24, 26, 28, 210} and K ∈
{20, 22, 24, 26}. Note that the traditional choice of η =
1/H = 22 is in the middle of the search range for η, so a
large number of these experiments fall outside of the scope
of conventional theory. All experiments have a communica-
tion budget of R = 2048 rounds.

Results Our investigations of Q1, Q2, and Q3 are shown
in Figures 1, 2, and 3. Note that the results for η = 210 are
not shown because all such trajectories diverged.

The loss curves in Figure 1 show that the final error reached
by Local GD is always made smaller when either η or K
is increased while the other is held fixed, even when such
changes create instability. This answers Q1 affirmatively
and is consistent with our theory. Unsurprisingly, increases
to η create higher loss spikes and require more communica-
tion rounds to reach stability, which aligns with our theory.
More surprising is that increases to K actually preserve or
decrease the rounds required to reach stability while also
leading to a smaller final loss! This is consistent across both
datasets and is stronger than predicted by our theory, since
the transition time τ in Theorem 4.2 is proportional to ηK.

Figure 2 shows that a larger communication interval K
can accelerate convergence when η is tuned to K, which
answers Q2 positively. For the synthetic data, larger choices
of K do not increase the time to reach stability, but they
lead to a smaller final error. In the MNIST case, we see
another stabilizing effect of K: larger choices of K permit
larger choices of η! Indeed, setting η = 256 when K = 1
or K = 4 caused divergence, whereas this choice led to fast
(albeit unstable) convergence when K = 16 or K = 64.

Lastly, since our Theorem 4.2 does not distinguish the er-
ror of Local GD when ηK is constant, Figure 3 evaluates
different parameter choices which have a common value of
ηK. For both datasets, the final error reached by Local GD
is nearly identical for all parameter choices, which leans
toward a negative answer for Q3. However, we can see that
the number of rounds required to reach the stable phase
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(a) Synthetic data. Left: K = 4. Right: η = 64.
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(b) MNIST data. Left: K = 16. Right: η = 64.

Figure 1: Objective gap when varying one of η,K and keeping the other fixed. In general, Local GD converges faster when
η and K are larger, despite the initial instability in early rounds.
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Figure 2: Objective gap for different values of K with tuned
η. Left: Synthetic data. Right: MNIST data.

tends to decrease as K increases, which still suggests that
there may be room for improvement in our bound of the
transition time in Theorem 4.2.

Together, our experimental results confirm that instability
is an important ingredient for the fast convergence of Local
GD for logistic regression. Further, they suggest that Local
GD with K > 1 may be able to outperform GD under the
same communication budget, which is even stronger than
our current guarantees. We discuss this possibility as a
direction of future research in Section 6.

6. Discussion
We have presented the first results showing that Local GD
for logistic regression can converge with any step size η > 0
and any communication interval K, and our convergence
rate improves upon that guaranteed by the worst-case anal-
ysis which is known to be tight (Koloskova et al., 2020;
Woodworth et al., 2020b; Patel et al., 2024). Below we
discuss the problem-specific approach, limitations of our
results, and suggest directions for follow up work.

100 101 102 103
Rounds

10−3

10−2

10−1

100

Effect of K with fixed ηK
K=1, η=64
K=4, η=16
K=16, η=4
K=64, η=1

100 101 102 103
Rounds

10−1

100

Effect of K with fixed ηK
K=1, η=64
K=4, η=16
K=16, η=4
K=64, η=1

Figure 3: Objective gap for different values of η,K with
constant ηK. Left: Synthetic data. Right: MNIST data.

Choice of Problem Class The conventional optimization
analysis of distributed learning focuses on providing guar-
antees of efficiency in the worst-case over large classes
of optimization problems. The question is, which class
of problems should we analyze? Certain classes of prob-
lems lend themselves well to theoretical analysis, such as
those satisfying a heterogeneity condition like uniformly
bounded gradient dissimilarity (Woodworth et al., 2020b), or
bounded gradient dissimilarity at the optimum (Koloskova
et al., 2020); however, such conditions have come into ques-
tion, since they lead to worst-case complexities that do not
explain algorithm behavior for practical problems (Wang
et al., 2022; Patel et al., 2023; 2024). These works have
attempted to find the “right” heterogeneity condition, but
so far (to the best of our knowledge), no such condition
has explained the significant advantage enjoyed by Local
SGD over Minibatch SGD in practice. In this work, by fo-
cusing on a specific problem, we investigate the possibility
that algorithm performance can be explained according to
the specific problem structure rather than general hetero-
geneity conditions, as discussed by Patel et al. (2024) and
Crawshaw et al. (2025). Even though this approach is less
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general than the conventional style, we believe that a narrow
analysis which accurately describes practice has a different
kind of value than a general analysis which does not, and is
an important direction for the community to pursue.

Usefulness of Local Steps The main limitation of our
results is that our error bound for Local GD is strictly worse
than that of GD for R steps (Wu et al., 2024a) in terms of
M and 1/γ (see Table 1). If we are to accept these results,
one should set K = 1 and parallelize GD over M machines
rather than use Local GD with K > 1, but it remains open
whether our analysis for Local GD can be improved to
match (or even dominate) GD. Based on our experiments,
we conjecture that Local GD with K > 1 can converge
faster than GD, and this suggests two open problems: (1)
Provide a lower bound of GD for logistic regression, and
(2) Determine whether Local GD with K > 1 can converge
with error smaller than R−α for some α > 2. Our current
results are insufficient to show any advantage to settingK >
1, not only because of the unfavorable comparison with GD,
but also because η and K appear in our Theorem 4.2 only
through the product ηK (excluding non-dominating terms of
the transition time τ ). This means that any error guaranteed
by choosing stepsize η and communication interval K can
also be guaranteed with stepsize ηK and communication
interval 1, so that an interval larger than 1 does not produce
any advantage. The challenge of proving an advantage
from local steps is fundamental in distributed optimization
(Woodworth et al., 2020b; Glasgow et al., 2022; Patel et al.,
2024), and we hope to address this in future work.

Future Extensions There are several natural extensions
of our work, given the narrow focus of the problem setting.
Since SGD for logistic regression was analyzed by Wu
et al. (2024a) using similar techniques as we have leveraged
in this work, one direction is to extend our analysis for
Local SGD. These same techniques were applied by Cai
et al. (2024) to analyze GD for training two-layer neural
networks with approximately homogeneous activations, so
another direction is to analyze the distributed training of two-
layer networks with Local GD. Lastly, one could attempt
to generalize our analysis for a larger class of problems, by
formulating some general problem class for which Local
GD outperforms the existing worst-case lower bounds. We
leave these directions for future work.
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A. Proofs of Main Results
A.1. Proof of Theorem 4.1

Lemma A.1 (Restatement of Lemma 4.4). For every r ≥ 0,

∥wr∥ ≤ ∥w0∥+
√
2 + η + log(1 + ηγ2Kr2)

γ
. (35)

Proof. Recall that Wu et al. (2024a) introduced a large stepsize analysis of GD for logistic regression, which provides an
upper bound on the norm of the parameter at each step. We wish to achieve a similar bound for the norm of the parameter
found by Local GD. To accomplish this, we treat the local training of each client during each round as GD on a logistic
regression problem, and we apply the ”split comparator” technique of Wu et al. (2024a). This leads to a recursive upper
bound on the norm of the global parameter ∥wr∥, and unrolling yields the desired bound. We demonstrate this argument
below.

Let 0 ≤ s < r and m ∈ [M ]. Define u1 = λ1w∗,u2 = λ2w∗, and u = u1 + u2, where λ1, λ2 will be chosen later and
will not depend on s or m. Note that u is a scalar multiple of w∗, which is the maximum margin predictor of the global
dataset, not that of any local dataset. We start by applying the split comparator technique of (Wu et al., 2024a) to the local
updates of client m at round s, which takes K gradient steps with learning rate η on the objective Fm, initialized from ws.
For every 0 ≤ k < K,

∥wm
s,k+1 − u∥2 = ∥(wm

s,k − u) + (wm
s,k+1 −wm

s,k)∥2 (36)

= ∥wm
s,k − u∥2 + 2

〈
wm
s,k+1 −wm

s,k,w
m
s,k − u

〉
+ ∥wm

s,k+1 −wm
s,k∥2 (37)

= ∥wm
s,k − u∥2 + 2η

〈
∇Fm(wm

s,k),u−wm
s,k

〉
+ η2∥∇Fm(wm

s,k)∥2 (38)

= ∥wm
s,k − u∥2 + 2η

〈
∇Fm(wm

s,k),u1 −wm
s,k

〉︸ ︷︷ ︸
A1

(39)

+ 2η
〈
∇Fm(wm

s,k),u2

〉
+ η2∥∇Fm(wm

s,k)∥2︸ ︷︷ ︸
A2

(40)

The first term A1 is easily bounded by convexity of Fm:

A1 = 2η
〈
∇Fm(wm

s,k),u1 −wm
s,k

〉
≤ 2η(Fm(u1)− Fm(wm

s,k)). (41)

The second term A2 can be bounded by the Lipschitz property of Fm together with a choice of u2:

A2 = η
(
2
〈
∇Fm(wm

s,k),u2

〉
+ η∥∇Fm(wm

s,k)∥2
)

(42)

(i)
= η

− 2

n

n∑
i=1

⟨xmi ,u2⟩
1 + exp(⟨wm

s,k,x
m
i ⟩)

+ η

∥∥∥∥∥ 1n
n∑
i=1

xmi
1 + exp(⟨wm

s,k,x
m
i ⟩)

∥∥∥∥∥
2
 (43)

(ii)

≤ η

−2λ2
n

n∑
i=1

⟨xmi ,w∗⟩
1 + exp(⟨wm

s,k,x
m
i ⟩)

+
η

n

n∑
i=1

∥∥∥∥∥ xmi
1 + exp(⟨wm

s,k,x
m
i ⟩)

∥∥∥∥∥
2
 (44)

(iii)

≤ η

(
−2γλ2

n

n∑
i=1

1

1 + exp(⟨wm
s,k,x

m
i ⟩)

+
η

n

n∑
i=1

∥∥∥∥∥ xmi
1 + exp(⟨wm

s,k,x
m
i ⟩)

∥∥∥∥∥
)

(45)

(iv)

≤ η

(
−2γλ2

n

n∑
i=1

1

1 + exp(⟨wm
s,k,x

m
i ⟩)

+
η

n

n∑
i=1

1

1 + exp(⟨wm
s,k,x

m
i ⟩)

)
(46)

=
η

n

n∑
i=1

−2γλ2 + η

1 + exp(⟨wm
s,k,x

m
i ⟩)

, (47)

where (i) uses the definition of ∇Fm, (ii) uses the definition of u2 and Jensen’s inequality, and both (iii) and (iv) use

12
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∥xmi ∥ ≤ 1. Therefore, choosing λ2 = η/(2γ) implies that A2 ≤ 0. Plugging back to Equation 40,

∥wm
s,k+1 − u∥2 ≤ ∥wm

s,k − u∥2 + 2η(Fm(u1)− Fm(wm
s,k)) (48)

Fm(wm
s,k) ≤

∥wm
s,k − u∥2 − ∥wm

s,k+1 − u∥2

2η
+ Fm(u1). (49)

Averaging over k ∈ {0, . . . ,K − 1},

1

K

K−1∑
k=0

Fm(wm
s,k) ≤

∥ws − u∥2 − ∥wm
s,K − u∥2

2ηK
+ Fm(u1) (50)

∥wm
s,K − u∥2

2ηK
+

1

K

K−1∑
k=0

Fm(wm
s,k) ≤

∥ws − u∥2

2ηK
+ Fm(u1). (51)

In particular, this implies
∥wm

s,K − u∥2

2ηK
≤ ∥ws − u∥2

2ηK
+ Fm(u1), (52)

so
∥wm

s,K − u∥ ≤
√
∥ws − u∥2 + 2ηKFm(u1) ≤ ∥ws − u∥+

√
2ηKFm(u1). (53)

Recall that ws+1 = 1
M

∑M
m=1 w

m
s,K . So averaging over m,

∥ws+1 − u∥ =

∥∥∥∥∥ 1

M

M∑
m=1

wm
s,k − u

∥∥∥∥∥ ≤ 1

M

M∑
m=1

∥∥wm
s,k − u

∥∥ (54)

≤ ∥ws − u∥+ 1

M

M∑
m=1

√
2ηKFm(u1) (55)

(i)

≤ ∥ws − u∥+
√
2ηKF (u1), (56)

where (i) uses the fact that
√
· is concave together with Jensen’s inequality. We can now unroll this recursion over

s ∈ {0, . . . , r − 1} to obtain

∥wr − u∥ ≤ ∥w0 − u∥+
√
2ηKr2F (u1) ≤ ∥w0∥+ ∥u∥+

√
2ηKr2F (u1). (57)

so

∥wr∥ ≤ ∥wr − u∥+ ∥u∥ ≤ ∥w0∥+ 2∥u∥+
√

2ηKr2F (u1) (58)

= ∥w0∥+ 2λ1 + 2λ2 +
√
2ηKr2F (λ1w∗). (59)

It only remains to choose λ1. Note that

F (λ1w∗) =
1

Mn

M∑
m=1

n∑
i=1

log(1 + exp(−λ1⟨w∗,x
m
i ⟩)) (60)

(i)

≤ 1

Mn

M∑
m=1

n∑
i=1

exp(−λ1⟨w∗,x
m
i ⟩) (61)

(ii)

≤ exp(−λ1γ), (62)

where (i) uses log(1 + x) ≤ x for x ≥ 0 and (ii) uses the definition of w∗. Therefore, choosing λ1 = 1
γ log(1 + ηγ2Kr2)

yields

F (λ1w∗) ≤
1

1 + ηγ2Kr2
≤ 1

ηγ2Kr2
, (63)

13
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so

∥wr∥ ≤ ∥w0∥+
2

γ
log(1 + ηγ2Kr2) +

η

γ
+

√
2ηKr2

1

ηγ2Kr2
(64)

= ∥w0∥+
√
2 + η + log(1 + ηγ2Kr2)

γ
. (65)

Theorem A.2 (Restatement of Theorem 4.1). For every r ≥ 0, Local GD satisfies

1

r

r−1∑
s=0

F (ws) ≤ 26
∥w0∥2 + 1 + log2(K + ηKγ2r) + η2K2

ηγ4r
. (66)

Proof. To achieve this bound on the loss of Local GD, we again adapt the split comparator technique of (Wu et al., 2024a).
This time, we consider the trajectory of the global model wr, instead of the trajectory of locally updated models wm

r,k as in
Lemma 4.4. To apply this technique for Local GD, we have to account for the fact that the update direction wr+1−wr is not
equal to the global gradient∇F (wr). However, both the update direction and the global gradient are linear combinations of
the data {xmi }m,i, and we account for the discrepancy between the two by bounding the ratio of their linear combination
coefficients.

Let u1 = λ1w∗,u2 = λ2w∗, where λ1 and λ2 will be determined later, and let u = u1 + u2. Then

∥ws+1 − u∥2 = ∥(ws − u) + (ws+1 −ws)∥2 (67)

= ∥ws − u∥2 + 2⟨ws+1 −ws,ws − u⟩+ ∥ws+1 −ws∥2 (68)

= ∥ws − u∥2 + 2η

M

M∑
m=1

K−1∑
k=0

〈
∇Fm(wm

s,k),u−ws

〉
+ η2

∥∥∥∥∥ 1

M

M∑
m=1

K−1∑
k=0

∇Fm(wm
s,k)

∥∥∥∥∥
2

(69)

= ∥ws − u∥2 + 2η

M

M∑
m=1

K−1∑
k=0

〈
∇Fm(wm

s,k),u1 −ws

〉
︸ ︷︷ ︸

A1

(70)

+
2η

M

M∑
m=1

K−1∑
k=0

〈
∇Fm(wm

s,k),u2

〉
+ η2

∥∥∥∥∥ 1

M

M∑
m=1

K−1∑
k=0

∇Fm(wm
s,k)

∥∥∥∥∥
2

︸ ︷︷ ︸
A2

. (71)

To bound A1, we express the local gradient of the local models∇Fm(wm
s,k) in terms of the local gradient of the preceding

global model∇Fm(ws). For any w,

∇Fm(w) =
1

n

n∑
i=1

∇Fm,i(w) =
−1
n

n∑
i=1

xmi
1 + exp(⟨xmi ,w⟩)

. (72)

So denoting βms,i,k = (1 + exp(bms,i))/(1 + exp(bms,i,k)) and Fm,i(w) = log(1 + exp(−⟨w,xmi ⟩)),

∇Fm(wm
s,k) =

1

n

n∑
i=1

−xmi
1 + exp(bms,i,k)

=
1

n

n∑
i=1

1 + exp(bms,i)

1 + exp(bms,i,k)

−xmi
1 + exp(bms,i)

=
1

n

n∑
i=1

βms,i,k∇Fm,i(ws). (73)

Notice, from the definition of βms,k,

βms,k :=
1

K

K−1∑
k=0

|ℓ′(bms,i,k)|
|ℓ′(bms,i)|

=
1

K

K−1∑
k=0

1 + exp(bms,i)

1 + exp(bms,i,k)
=

1

K

K−1∑
k=0

βms,i,k, (74)

14
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so

A1 =
2η

Mn

M∑
m=1

K−1∑
k=0

n∑
i=1

βms,i,k⟨∇Fm,i(ws),u1 −ws⟩ (75)

(i)

≤ 2η

Mn

M∑
m=1

K−1∑
k=0

n∑
i=1

βms,i,k(Fm,i(u1)− Fm,i(ws)) (76)

=
2ηK

Mn

M∑
m=1

n∑
i=1

βms,iFm,i(u1)−
2ηK

Mn

M∑
m=1

n∑
i=1

βms,iFm,i(ws). (77)

where (i) uses the convexity of Fm,i. We can now bound the two terms of Equation 77 with upper and lower bounds of βms,i,

respectively. Denoting ϕ = ∥w0∥+
√
2+η+log(1+ηγ2Kr2)

γ ,

βms,i =
1

K

K−1∑
k=0

1 + exp(bms,i)

1 + exp(bms,i,k)
≤ 1 + exp(bms,i) = 1 + exp(⟨ws,x

m
i ⟩) (78)

(i)

≤ 1 + exp(∥ws∥)
(ii)

≤ 1 + exp

(
∥w0∥+

√
2 + η + log(1 + ηγ2Ks2)

γ

)
(79)

≤ 2 exp(ϕ), (80)

where (i) uses Cauchy-Schwarz together with ∥xmi ∥ ≤ 1 and (ii) uses Lemma 4.4. Also,

βms,i =
1

K

K−1∑
k=0

1 + exp(bms,i)

1 + exp(bms,i,k)
≥ 1

K

1 + exp(bms,i)

1 + exp(bms,i,0)
=

1

K
. (81)

The step βms,i ≥ 1
K was mentioned in our proof overview, and it will be used again in the proof of Lemma 4.9. See Lemma

B.7 for a discussion on the tightness of this bound. Plugging Equation 80 and Equation 81 into Equation 77,

A1 ≤
4ηK exp(ϕ)

Mn

M∑
m=1

n∑
i=1

Fm,i(u1)−
2η

Mn

M∑
m=1

n∑
i=1

Fm,i(ws) (82)

≤ 4ηK exp(ϕ)F (u1)− 2ηF (ws). (83)

This bounds A1. For A2,

A2 =
2η

M

M∑
m=1

K−1∑
k=0

〈
∇Fm(wm

s,k),u2

〉
+ η2K2

∥∥∥∥∥ 1

MK

M∑
m=1

K−1∑
k=0

∇Fm(wm
s,k)

∥∥∥∥∥
2

(84)

≤ 2η

M

M∑
m=1

K−1∑
k=0

〈
∇Fm(wm

s,k),u2

〉
+
η2K

M

M∑
m=1

K−1∑
k=0

∥∥∇Fm(wm
s,k)
∥∥2 (85)

=
η

M

M∑
m=1

K−1∑
k=0

(
2
〈
∇Fm(wm

r,k),u2

〉
+ ηK

∥∥∇Fm(wm
s,k)
∥∥2) (86)

(i)

≤ η

M

M∑
m=1

K−1∑
k=0

(
2
〈
∇Fm(wm

s,k),u2

〉
+ ηK

∥∥∇Fm(wm
s,k)
∥∥) (87)

=
η

Mn

M∑
m=1

K−1∑
k=0

n∑
i=1

(
− 2⟨xmi ,u2⟩
1 + exp(⟨xmi ,wm

s,k)
+

ηK∥xmi ∥
1 + exp(⟨xmi ,wm

s,k⟩)

)
(88)

(ii)
=

η

Mn

M∑
m=1

K−1∑
k=0

n∑
i=1

−2λ2⟨xmi ,w∗⟩+ ηK∥xmi ∥
1 + exp(⟨xmi ,wm

s,k⟩)
(89)

≤ η

Mn

M∑
m=1

K−1∑
k=0

n∑
i=1

−2γλ2 + ηK

1 + exp(⟨xmi ,wm
s,k⟩)

, (90)
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where (i) uses the fact that ∥∇Fm(w)∥ ≤ 1, coming from Equation 72 and ∥xmi ∥ ≤ 1, and (ii) uses the definition of u2.
Choosing λ2 = ηK/(2γ) then implies that A2 ≤ 0.

Plugging A2 ≤ 0 and Equation 83 into Equation 71,

∥ws+1 − u∥2 ≤ ∥ws − u∥2 + 4ηK exp(ϕ)F (u1)− 2ηF (ws) (91)

F (ws) ≤
∥ws − u∥2 − ∥ws+1 − u∥2

2η
+ 2K exp(ϕ)F (u1), (92)

and averaging over s ∈ {0, . . . , r − 1} yields

1

r

r−1∑
s=0

F (ws) ≤
∥w0 − u∥2 − ∥wr − u∥2

2ηr
+ 2K exp(ϕ)F (u1) (93)

≤ ∥w0 − (u1 + u2)∥2

2ηr
+ 2K exp(ϕ)F (u1) (94)

≤ 3

2

∥w0∥2 + ∥u1∥2 + ∥u2∥2

ηr
+ 2K exp(ϕ)F (u1) (95)

≤ 3

2

∥w0∥2 + λ21 + λ22
ηr

+ 2K exp(ϕ)F (λ1w∗). (96)

Recall that

F (λ1w∗) =
1

Mn

M∑
m=1

n∑
i=1

log(1 + exp(−λ1⟨xmi ,w∗⟩)) ≤ log(1 + exp(−λ1γ))
(i)

≤ exp(−λ1γ), (97)

where (i) uses log(1 + x) ≤ x for x ≥ 0. So

1

r

r−1∑
s=0

F (ws) ≤
3

2

∥w0∥2 + λ21 + λ22
ηr

+ 2K exp(ϕ− λ1γ) (98)

=
3

2

∥w0∥2 + λ21 + λ22
ηr

+ 2 exp(logK + ϕ− λ1γ). (99)

Here we choose λ1 = (ϕ+ log(K + ηKγ2r))/γ. Finally, together with the previous choice of λ2 = ηK/(2γ), we have

1

r

r−1∑
s=0

F (ws) ≤
3∥w0∥2

2ηr
+

3(ϕ2 + log2(K + ηKγ2r))

ηγ2r
+

3ηK2

8γ2r
+

2

1 + ηγ2r
(100)

≤ 14∥w0∥2

ηγ4r
+

12η

γ4r
+

15 log2(K + ηKγ2r)

ηγ4r
+

3ηK2

8γ2r
+

26

ηγ4r
(101)

≤ 26
∥w0∥2 + 1 + log2(K + ηKγ2r) + η2K2

ηγ4r
. (102)

A.2. Proof of Theorem 4.2

Lemma A.3 (Restatement of Lemma 4.6). If F (wr) ≤ 1/(4ηM) for some r ≥ 0, then Fm(wm
r,k) is decreasing in k for

every m.

Proof. Recall that for each r,m, the sequence of local steps {wm
r,k}k is generated by GD for a single-machine logistic

regression problem. To show decrease of the objective, we use the modified descent inequality from Lemma 4.5.

We want to show that Fm(wm
r,k+1) ≤ Fm(wm

r,k) for every k. To do this, we prove Fm(wm
r,k) ≤ Fm(wr) by induction on k.

Clearly it holds for k = 0, so suppose that it holds for some 0 ≤ k < K. Then

∥wm
r,k+1 −wm

r,k∥ = η∥∇Fm(wm
r,k)∥

(i)

≤ ηFm(wm
r,k)

(ii)

≤ ηFm(wr)
(iii)

≤ 1/4, (103)
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where (i) uses Lemma B.1, (ii) uses the inductive hypothesis, and (iii) uses Fm(wr) ≤MF (wr) ≤ 1/(4η). This bound
on ∥wm

r,k+1 −wm
r,k∥ shows that the condition of Lemma 4.5 is satisfied, so

Fm(wm
r,k+1)− Fm(wm

r,k) ≤ ⟨∇Fm(wm
r,k),w

m
r,k+1 −wm

r,k⟩+ 4Fm(wm
r,k)∥wm

r,k+1 −wm
r,k∥2 (104)

≤ −η
∥∥∇Fm(wm

r,k)
∥∥2 + 4η2Fm(wm

r,k)
∥∥∇Fm(wm

r,k)
∥∥2 (105)

≤ −η
(
1− 4ηFm(wm

r,k)
) ∥∥∇Fm(wm

r,k)
∥∥2 (106)

(i)

≤ 0, (107)

where (i) uses the inductive hypothesis Fm(wm
r,k) ≤ Fm(wr) ≤ 1/(4η). This completes the induction, so that Fm(wm

r,k) ≤
Fm(wr). Additionally, Equation 107 shows that Fm(wm

r,k) is decreasing in k.

Lemma A.4 (Restatement of Lemma 4.7). If F (wr) ≤ 1/(ηKM) for some r ≥ 0, then ∥wm
r,k − wr∥ ≤ 1 for every

m ∈ [M ], k ∈ {0, . . . ,K − 1}.

Proof. To bound the per-round movement ∥wm
r,k −wr∥, we simply use the property ∥∇Fm(w)∥ ≤ Fm(w) from Lemma

B.1, combined with the fact that the local loss is decreasing during the round from Lemma 4.6. Specifically,

∥wm
r,k −wr∥ = η

∥∥∥∥∥
k−1∑
t=0

∇Fm(wm
r,t)

∥∥∥∥∥ = η

k−1∑
t=0

∥∥∇Fm(wm
r,t)
∥∥ (108)

(i)

≤ η

k−1∑
t=0

Fm(wm
r,t)

(ii)

≤ ηKFm(wr)
(iii)

≤ 1, (109)

where (i) uses Lemma B.1, (ii) uses Fm(wm
r,t) ≤ Fm(wr) from Lemma 4.6, and (iii) uses the condition Fm(wr) ≤

MF (wr) ≤ 1/(ηK).

Lemma A.5 (Restatement of Lemma 4.8). If F (wr) ≤ γ/(70ηKM), then ∥br∥ ≤ 1
5∥∇F (wr)∥.

Proof. Our bound of ∥br∥ is essentially a direct calculation that leverages Lemmas B.4, B.1, and 4.6.

∥br∥ =

∥∥∥∥∥ 1

MK

M∑
m=1

K−1∑
k=0

(∇Fm(wm
r,k)−∇Fm(wr))

∥∥∥∥∥ ≤ 1

MK

M∑
m=1

K−1∑
k=0

∥∥∇Fm(wm
r,k)−∇Fm(wr)

∥∥ (110)

(i)

≤ 1

MK

M∑
m=1

K−1∑
k=0

7Fm(wr)∥wm
r,k −wr∥ =

7

MK

M∑
m=1

Fm(wr)

K−1∑
k=0

∥∥∥∥∥
k−1∑
t=0

η∇Fm(wm
r,t)

∥∥∥∥∥ (111)

≤ 7η

MK

M∑
m=1

Fm(wr)

K−1∑
k=0

k−1∑
t=0

∥∥∇Fm(wm
r,t)
∥∥ (ii)

≤ 7η

MK

M∑
m=1

Fm(wr)

K−1∑
k=0

k−1∑
t=0

Fm(wm
r,t) (112)

(iii)

≤ 7ηK

M

M∑
m=1

Fm(wr)
2 ≤ 7ηK

M

(
M∑
m=1

Fm(wr)

)2

= 7ηKMF (wr)
2 (113)

(iv)

≤ γ

10
F (wr)

(v)

≤ 1

5
∥∇F (wr)∥, (114)

where (i) uses Lemma B.4 to bound the change in the local gradient during the round, (ii) applies ∥∇Fm(w)∥ ≤ Fm(w)
from Lemma B.1, (iii) uses the fact that Fm(wm

r,t) is decreasing in t (Lemma 4.6), (iv) uses the assumption F (wr) ≤
γ/(70ηKM), and (v) uses F (w) ≤ 2

γ ∥∇F (w)∥ from Lemma B.2.

Lemma A.6. There exists some r ≤ τ such that F (wr) ≤ γ
70ηKM .

Proof. We use a potential function argument inspired by Lemma 9 of (Wu et al., 2024a). Similarly to our proof of Theorem
4.1, we have to account for the change in the local gradient∇Fm(wm

r,k) during each round.
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Define

Gm(w) =
1

n

n∑
i=1

|ℓ′(⟨w,xm,i⟩)|, (115)

and G(w) = 1
M

∑M
m=1Gm(w). Then for every r ≥ 0,

⟨wr+1,w∗⟩ = ⟨wr,w∗⟩+ ⟨wr+1 −wr,w∗⟩ (116)

= ⟨wr,w∗⟩ −
η

M

M∑
m=1

K−1∑
k=0

⟨∇Fm(wr,k),w∗⟩ (117)

= ⟨wr,w∗⟩+
η

Mn

M∑
m=1

K−1∑
k=0

n∑
i=1

|ℓ′(⟨wm
r,k,xm,i⟩)|⟨xm,i,w∗⟩ (118)

≥ ⟨wr,w∗⟩+
ηγ

Mn

M∑
m=1

K−1∑
k=0

n∑
i=1

|ℓ′(⟨wm
r,k,xm,i⟩)| (119)

= ⟨wr,w∗⟩+
ηγK

Mn

M∑
m=1

n∑
i=1

βmr,i|ℓ′(⟨wm
r,k,xm,i⟩)|⟨xm,i,w∗⟩, (120)

where βmr,i :=
1
K

∑K−1
k=0

|ℓ′(bmr,i,k)|
|ℓ′(bmr,i)|

. We can lower bound βmr,i ≥ 1/K by ignoring all terms of the sum except the one
corresponding to k = 0. This step was mentioned in our proof overview in Section 4. See Lemma B.7 for a discussion of
the tightness of this step. βmr,i ≥ 1/K implies

⟨wr+1,w∗⟩ ≥ ⟨wr,w∗⟩+
ηγ

Mn

M∑
m=1

n∑
i=1

|ℓ′(⟨wr,xm,i⟩)| (121)

= ⟨wr,w∗⟩+
ηγ

M

M∑
m=1

Gm(wr) (122)

= ⟨wr,w∗⟩+ ηγG(wr), (123)

Rearraging and averaging over r,

1

r

r−1∑
s=0

G(ws) ≤
⟨wr,w∗⟩ − ⟨w0,w∗⟩

ηγr
(124)

≤ ∥wr −w0∥
ηγr

(125)

(i)

≤ 2γ∥w0∥+
√
2 + η + log(1 + ηγ2Kr2)

ηγ2r
, (126)

where (i) uses Lemma 4.4 together with ∥wr −w0∥ ≤ ∥wr∥+ ∥w0∥. Recall that ψ = min
(

γ
140ηKM , 1

2Mn

)
; we want to

the RHS of Equation 126 to be smaller than ψ. So we want

ψ ≥ 2γ∥w0∥+
√
2 + η + log(1 + ηγ2Kr2)

ηγ2r
(127)

r ≥ 2γ∥w0∥+
√
2 + η + log(1 + ηγ2Kr2)

ηγ2ψ
. (128)

Applying Lemma B.6 with

A =
2γ∥w0∥+

√
2 + η

ηγ2ψ
, B =

1

ηγ2ψ
, C = ηγ2K, (129)
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Equation 128 is satisfied when

r ≥ τ :=
1

ηγ2ψ

(
4γ∥w0∥+ 2

√
2 + 2η + log

(
1 +

√
K

√
ηγψ

))
. (130)

In particular, Equation 128 is satisfied with r = τ . So, letting r0 = argmin0≤s<τ G(ws),

G(wr0) ≤
1

τ

τ−1∑
s=0

G(ws) ≤ ψ. (131)

We can now bound F (wr0) in terms of G(wr0). First, since G(wr0) ≤ 1
2Mn , we have for each m ∈ [M ], i ∈ [n],

1

Mn
|ℓ′(⟨wr0 ,xm,i⟩)| ≤

1

Mn

M∑
m=1

n∑
i=1

|ℓ′(⟨wr0 ,xm,i⟩)| = G(wr0) ≤
1

2Mn
, (132)

so

|ℓ′(⟨wr0 ,xm,i⟩)| ≤
1

2
(133)

1

1 + exp(⟨wr0 ,xm,i⟩)
≤ 1

2
(134)

⟨wr0 ,xm,i⟩ ≥ 0, (135)

so that every point is classified correctly by wr0 . Therefore

F (wr0) =
1

Mn

M∑
m=1

n∑
i=1

log(1 + exp(−⟨wr0 ,xm,i⟩)) (136)

≤ 1

Mn

M∑
m=1

n∑
i=1

exp(−⟨wr0 ,xm,i⟩) (137)

(i)

≤ 1

Mn

M∑
m=1

n∑
i=1

2

1 + exp(⟨wr0 ,xm,i⟩)
(138)

≤ 2G(wr0) ≤ 2ψ = min

(
γ

70ηKM
,

1

Mn

)
, (139)

where (i) uses 1 ≤ exp(⟨wr0 ,xm,i⟩).

Theorem A.7 (Restatement of Theorem 4.2). Denote ψ = min
(

γ
140ηKM , 1

2Mn

)
and

τ =
4γ∥w0∥+ 2

√
2 + 2η + log

(
1 +

√
K√
ηγψ

)
ηγ2ψ

. (140)

For every r ≥ τ , Local GD satisfies

F (wr) ≤
16

ηγ2K(r − τ)
. (141)

Proof. The proof of this theorem has a similar structure as that of Lemma 4.6. When the loss F (ws) is small, the total
movement ∥ws+1 −ws∥ can be bounded (Lemma 4.7); when the movement is bounded, we can apply a modified descent
inequality (Lemma 4.5), which shows decrease of the loss when F (ws) is small. The main difference compared to Lemma
4.6 is that the update ws+1 −ws is not necessarily parallel with the gradient ∇F (ws). However, Lemma 4.8 shows that
the magnitude of this bias is negligible compared to the magnitude of the gradient. Finally, Lemma 4.9 implies that the
conditions of these lemmas (that F (wr) is below some threshold) are met for some r ≤ τ . We execute this argument below.
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By Lemma 4.9, there exists some r0 ≤ τ such that F (wr0) ≤
γ

70ηKM . We will prove F (wr) ≤ F (wr0) for all r ≥ r0 by
induction. Clearly it holds for r = r0, so suppose it holds for some r ≥ r0. Notice that the condition ∥wr+1 −wr∥ ≤ 1 of
Lemma 4.5 is satisfied, since

∥wr+1 −wr∥ =

∥∥∥∥∥ 1

M

M∑
m=1

wm
r,K −wr

∥∥∥∥∥ ≤ 1

M

M∑
m=1

∥∥wm
r,K −wr

∥∥ (i)

≤ 1, (142)

where (i) uses Lemma 4.7. Recall that wr+1 −wr = −ηK(∇F (wr) + br). By applying Lemma 4.5:

F (wr+1)− F (wr) (143)

≤ ⟨∇F (wr),wr+1 −wr⟩+ 4F (wr)∥wr+1 −wr∥2 (144)

= −ηK ⟨∇F (wr),∇F (wr) + br⟩+ 4η2K2F (wr) ∥∇F (wr) + br∥2 (145)

= −ηK ∥∇F (wr) + br∥2 + ηK ⟨br,∇F (wr) + br⟩+ 4η2K2F (wr) ∥∇F (wr) + br∥2 (146)

= −ηK (1− 4ηKF (wr)) ∥∇F (wr) + br∥2 + ηK ⟨br,∇F (wr) + br⟩ (147)

≤ −ηK (1− 4ηKF (wr)) ∥∇F (wr) + br∥2 + ηK∥br∥ ∥∇F (wr) + br∥ (148)

By Lemma 4.8, we have ∥br∥ ≤ 1
5∥∇F (wr)∥. Therefore

∥∇F (wr) + br∥ ≥ ∥∇F (wr)∥ − ∥br∥ ≥ 4∥br∥, (149)

so ∥br∥ ≤ ∥∇F (wr) + br∥/4. Plugging this back into Equation 148,

F (wr+1)− F (wr) ≤ −ηK
(
1− 4ηKF (wr)−

1

4

)
∥∇F (wr) + br∥2 (150)

(i)

≤ −1

2
ηK ∥∇F (wr) + br∥2 (151)

(ii)

≤ −1

4
ηK ∥∇F (wr)∥2 (152)

(iii)

≤ − 1

16
ηγ2KF (wr)

2, (153)

where (i) uses the condition F (wr) ≤ γ/(70ηKM), (ii) uses

∥∇F (wr) + br∥ ≥ ∥∇F (wr)∥ − ∥br∥ ≥
4

5
∥∇F (wr)∥, (154)

and (iii) uses ∥∇F (w)∥ ≥ γ
2F (w) from Lemma B.2. Equation 148 completes the induction, so F (wr) ≤ F (wr0) for all

r ≥ r0. Further, Equation 148 holds for all r ≥ r0, so we can unroll it to get an upper bound on F (wr). Diving both sides
of Equation 148 by F (wr)F (wr+1),

1

F (wr)
− 1

F (wr+1)
≤ − 1

16
ηγ2K

F (wr)

F (wr+1)
(155)

1

F (wr+1)
≥ 1

F (wr)
+

1

16
ηγ2K

F (wr)

F (wr+1)
(156)

1

F (wr+1)

(i)

≥ 1

F (wr)
+

1

16
ηγ2K. (157)

Unrolling from r to r0,
1

F (wr)
≥ 1

F (wr0)
+

1

16
ηγ2K(r − r0) ≥

1

16
ηγ2K(r − r0), (158)

so
F (wr) ≤

16

ηγ2K(r − r0)
. (159)

Recall that r0 ≤ τ , so r − r0 ≥ r − τ , and finally

F (wr) ≤
16

ηγ2K(r − τ)
. (160)
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A.3. Proof of Corollary 4.3

Corollary A.8 (Restatement of Corollary 4.3). Suppose R ≥ Ω̃
(
max

(
Mn
γ2 ,

KM
γ3

))
. With w0 = 0, η ≥ 1, and

ηK = Θ̃(γ
3R
M ), Local GD satisfies

F (wR) ≤ Õ
(

M

γ5R2

)
. (161)

Proof. With our choices of w0, η, and ηK, the transition time τ becomes

τ =
2
√
2 + 2η + log

(
1 +

√
K√
ηγψ

)
ηγ2ψ

(162)

= Õ
(
1 + η

ηγ2ψ

)
(163)

(i)
= Õ

(
1

γ2ψ

)
(164)

(ii)
= Õ

(
max

(
ηKM

γ3
,
Mn

γ2

))
(165)

(iii)
= Õ

(
max

(
R,

Mn

γ2

))
(166)

(iv)
= Õ(R), (167)

where (i) uses η ≥ 1, (ii) uses the definition of ψ, (iii) uses the choice of ηK, and (iv) uses the condition

R ≥ Ω̃

(
Mn

γ2

)
. (168)

Therefore, we can ensure that R ≥ 2τ with the appropriate choice of constant/logarithmic multiplicative factors on the RHS
of Equation 168. Since R ≥ τ , Theorem 4.2 implies

F (wr) ≤
16

ηγ2K(R− τ)
(169)

(i)

≤ 32

ηγ2KR
(170)

(ii)

≤ Õ
(

M

γ5R2

)
, (171)

where (i) usesR−τ ≥ R/2, sinceR ≥ 2τ , and (ii) uses the choice ηK = Θ̃
(
γ3R
M

)
. Note that the conditionR ≥ Ω̃

(
KM
γ3

)
is necessary to ensure that the choice ηK = Θ̃

(
γ3R
M

)
is compatible with the requirement η ≥ 1.

B. Auxiliary Lemmas
Lemma B.1 (Lemma 25 from (Crawshaw et al., 2025)). For every w ∈ Rd,

∥∇Fm(w)∥ ≤ Fm(w) and ∥∇F (w)∥ ≤ F (w). (172)

Lemma B.2 (Lemma 26 of (Crawshaw et al., 2025)). If w ∈ Rd such that ⟨w,xmi ⟩ ≥ 0 for a given m ∈ [M ] and all
i ∈ [n], then

∥∇Fm(w)∥ ≥ γ

2
Fm(w). (173)

Similarly, if ⟨w,wm,i⟩ ≥ 0 for all m ∈ [M ] and all i ∈ [n], then

∥∇F (w)∥ ≥ γ

2
F (w). (174)

21



Constant Stepsize Local GD for Logistic Regression: Acceleration by Instability

Lemma B.3 (Lemma 1 from (Crawshaw et al., 2025)). For every w1,w2 ∈ Rd,

∥∇2Fm(w2)∥ ≤ Fm(w1)

(
1 + ∥w2 −w1∥

(
1 + exp(∥w2 −w1∥2)

(
1 +

1

2
∥w2 −w1∥2

)))
. (175)

Lemma B.4. For w1,w2 ∈ Rd, if ∥w1 −w2∥ ≤ 1, then

∥∇Fm(w2)−∇Fm(w1)∥ ≤ 7Fm(w1)∥w2 −w1∥. (176)

Proof. The proof is a direct calculation, leveraging the upper bound of the objective’s Hessian norm from Lemma B.3.

Let λ = ∥w2 −w1∥ and v = w2−w1

∥w2−w1∥ . By the fundamental theorem of calculus,

∇Fm(w2)−∇Fm(w1) =

∫ λ

0

∇2Fm(w1 + tv)v dt (177)

∥∇Fm(w2)−∇Fm(w1)∥ =

∥∥∥∥∥
∫ λ

0

∇2Fm(w1 + tv)v dt

∥∥∥∥∥ (178)

≤
∫ λ

0

∥∥∇2Fm(w1 + tv)v
∥∥ dt (179)

≤
∫ λ

0

∥∥∇2Fm(w1 + tv)
∥∥ dt (180)

(i)

≤
∫ λ

0

7Fm(w1) dt (181)

= 7Fm(w1)λ, (182)

where (i) uses Lemma B.3, noting that the condition ∥(w1 + tv)−w1∥ ≤ 1 is satisfied by the assumption ∥w2 −w1∥ ≤
1.

Lemma B.5 (Restatement of Lemma 4.5). For w,w′ ∈ Rd, if ∥w −w′∥ ≤ 1, then

Fm(w′) ≤ Fm(w) + ⟨∇Fm(w),w′ −w⟩+ 4Fm(w)∥w′ −w∥2, (183)

and
F (w′) ≤ F (w) + ⟨∇F (w),w′ −w⟩+ 4F (w)∥w′ −w∥2. (184)

Proof. To prove this fact, we write Fm as a second-order Taylor series centered at w, then use Lemma B.3 to upper bound
the quadratic term.

Let λ = ∥w′ −w∥ and v = w′−w
∥w′−w∥ . Then

Fm(w′) = Fm(w) + ⟨∇Fm(w),w′ −w⟩+
∫ λ

0

(λ− t)⟨v,∇2Fm(w + tv)v⟩ dt︸ ︷︷ ︸
Q

. (185)

The quadratic term Q can be bounded as follows:

Q ≤
∫ λ

0

(λ− t)∥v∥
∥∥∇2Fm(w + tv)v

∥∥ dt (186)

≤
∫ λ

0

(λ− t)
∥∥∇2Fm(w + tv)

∥∥ dt (187)

(i)

≤ 7Fm(w)

∫ λ

0

(λ− t) dt (188)

=
7

2
Fm(w)λ2, (189)
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where (i) uses Lemma B.3 to bound ∥∇2Fm(w + tv)∥, using the condition that ∥(w + tv)−w∥ ≤ λ ≤ 1. Plugging this
into Equation 185 gives Equation 183, and averaging over m ∈ [M ] gives Equation 184.

Lemma B.6. For A,B,C ≥ 0, the inequality

x ≥ A+B log(1 + Cx2) (190)

is satisfied when
x ≥ 2A+B log(1 +B

√
C). (191)

Proof. Using concavity of
√
· and log,

A+B log(1 + Cx2) = A+
B

2
log(

√
1 + Cx2) (192)

≤ A+
B

2
log(1 +

√
Cx) (193)

≤ A+
B

2

(
log(1 +B

√
C) +

√
C

1 +B
√
C
(x−B)

)
(194)

≤ A+
B

2

(
log(1 +B

√
C) +

x

B

)
(195)

= A+
B

2
log(1 +B

√
C) +

x

2
. (196)

So, to satisfy Equation 190, it suffices that

x ≥ A+
B

2
log(1 +B

√
C) +

x

2
(197)

x

2
≥ A+

B

2
log(1 +B

√
C) (198)

x ≥ 2A+B log(1 +B
√
C). (199)

An important part of the proofs of Theorem 4.1 and Lemma 4.9 is the lower bound

βmr,i :=
1

K

K−1∑
k=0

|ℓ′(bmr,i,k)|
|ℓ′(bmr,i)|

≥ 1

K
, (200)

which comes by ignoring all terms of the sum coming from k > 0. This may seem pessimistic, but the following lemma
shows that for the case n = 1, this bound is tight up to logarithmic multiplicative factors for certain values of wr.

Lemma B.7. Suppose n = 1 and wr = 0. Then βmr,i ≤ O
(

1
K + 1

ηγ2K log
(
1 + ηγ2K

))
, and if additionally η ≥ 1, then

βmr,i ≤ Õ
(

1
K

(
1 + 1

γ2

))
.

Proof. Since n = 1, we omit the index i ∈ [n]. We will also denote γm = ∥xm∥. Recall that ℓ(z) = log(1 + exp(−z)), so
|ℓ′(z)| = 1

1+exp(z) , and recall the definitions bmr = ⟨wr,x
m⟩ and bmr,k = ⟨wm

r,k,x
m⟩. Then we want to upper bound

βmr =
1

K

K−1∑
k=0

1 + exp(⟨wr,x
m⟩)

1 + exp(⟨wm
r,k,x

m⟩)
. (201)

When n = 1, each local trajectory is relatively simple to analyze, since the updates wm
r,k+1 −wm

r,k are always parallel to
xm. For this case, we will consider the gradient flow trajectory of Fm initialized at wr. Since n = 1, the gradient flow has a
convenient analytical form while also providing a lower bound for bmr,k, which will in turn give our upper bound for βmr .
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Let w̃m
r : [0,∞)→ Rd be the gradient flow of Fm initialized at wr, so that w̃m

r is the unique solution to

d

dt
w̃m
r (t) = −η∇Fm(w̃m

r (t)) and w̃m
r (0) = wr. (202)

Then define b̃mr (t) = ⟨w̃m
r (t),xm⟩, so that

d

dt
b̃mr (t) =

〈
d

dt
w̃m
r (t),xm

〉
(203)

= −η ⟨∇Fm(w̃m
r (t)),xm⟩ (204)

= −η
〈

−xm
1 + exp(⟨w̃m

r (t),xm⟩)
,xm

〉
(205)

=
ηγ2m

1 + exp(̃bmr (t))
. (206)

We claim that b̃mr (k) ≤ bmr,k, which we show by induction on k. Clearly it holds for k = 0, since b̃mr (0) = bmr = bmr,0. So
suppose it holds for some k ≥ 0. If b̃mr (k+1) ≤ bmr,k, then we are done, since bmr,k+1 ≥ bmr,k. Otherwise, by the intermediate
value theorem, there exists some t0 ∈ [k, k + 1] such that b̃mr (t0) = bmr,k, so

b̃mr (k + 1) = b̃mr (t0) +

∫ k+1

t0

d

dt
b̃mr (t) dt (207)

= bmr,k + ηγ2m

∫ k+1

t0

1

1 + exp(̃bmr (t))
dt (208)

≤ bmr,k + ηγ2m

∫ k+1

t0

1

1 + exp(̃bmr (t0))
dt (209)

= bmr,k + ηγ2m(k + 1− t0)
1

1 + exp(bmr,k+1)
(210)

≤ bmr,k + ηγ2m
1

1 + exp(bmr,k+1)
(211)

= bmr,k+1. (212)

This completes the induction, so we know b̃mr (k) ≤ bmr,k for all k. From Equation 201, this means

βmr ≤
1 + exp(bmr )

K

K−1∑
k=0

1

1 + exp(̃bmr (k))
. (213)

Also, we can directly solve the ODE in Equation 206 for b̃mr (t):

d

dt
b̃mr (t) =

ηγ2m

1 + exp(̃bmr (t))
(214)

(1 + exp(̃bmr (t))) db̃mr (t) = ηγ2mdt (215)

b̃mr (t) + exp(̃bmr (t)) = ηγ2mt+ C (216)

b̃mr (t) + exp(̃bmr (t))
(i)
= ηγ2mt+ bmr + exp(bmr ), (217)

where (i) comes from the initial condition b̃mr (0) = bmr . For a fixed t, we use the substitutions z = exp(̃bmr (t)) and
b = ηγ2mt+ bmr + exp(bmr ) to obtain

log(z) + z = b (218)
z exp(z) = exp(b) (219)

z =W (exp(b)), (220)
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where W denotes the principal branch of the Lambert W function. So

exp(̃bmr (t)) =W (exp(ηγ2mt+ bmr + exp(bmr ))) (221)

b̃mr (t) = log(W (exp(ηγ2mt+ bmr + exp(bmr )))) (222)

b̃mr (t) = log(W (exp(1 + ηγ2mt))), (223)

where we used the choice wr = 0 =⇒ bmr = 0. Denoting w =W (exp(1 + ηγ2mt)), we have by the definition of W

w exp(w) = exp(1 + ηγ2mt) (224)

w + logw = 1 + ηγ2mt (225)

2w
(i)

≥ 1 + ηγ2mt (226)

w ≥ 1 + ηγ2mt

2
, (227)

where (i) uses logw ≤ w. Plugging w ≥ 1
2 (1 + ηγ2mt) back into Equation 223 yields b̃mr (t) ≥ log( 12 (1 + ηγ2mt)), and

plugging this back into Equation 213 yields

βmr ≤
1 + exp(bmr )

K
+

1 + exp(bmr )

K

K−1∑
k=1

1

1 + exp(̃bmr (k))
(228)

=
2

K
+

2

K

K−1∑
k=1

1

1 + exp(̃bmr (k))
(229)

≤ 2

K
+

4

K

K−1∑
k=1

1

3 + ηγ2mk
(230)

≤ 2

K
+

4

K

∫ K−1

0

1

3 + ηγ2mt
dt (231)

=
2

K
+

4

ηγ2mK

[
log(3 + ηγ2mt)

]K−1

0
(232)

=
2

K
+

4

ηγ2mK
log

(
1 +

ηγ2m(K − 1)

3

)
(233)

≤ 2

K
+

4

ηγ2mK
log

(
1 +

ηγ2mK

3

)
(234)

≤ 2

K
+

4

ηγ2K
log

(
1 +

ηγ2K

3

)
, (235)

where the last line uses γm = ∥xm∥ ≥ γ together with the fact that f(x) = log(1 + x)/x is decreasing in x.

C. Additional Experimental Details
The synthetic and MNIST datasets that we use for the experiments in Section 5 are described in full detail below.

C.1. Synthetic Data

The synthetic dataset is a simple task with M = 2 clients and n = 1 data points per client, with d = 2 dimensional data. It
was introduced by Crawshaw et al. (2025) with the goal of inducing conflict between the magnitude and direction of local
client updates. The two data points x1,x2 are defined in terms of parameters δ, g as follows: w1 = γ1w

∗
1 and w2 = γ2w

∗
2 ,

where

w∗
1 =

(
δ√

1 + δ2
,

1√
1 + δ2

)
(236)

w∗
2 =

(
δ√

1 + δ2
,− 1√

1 + δ2

)
, (237)
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Figure 4: Train loss of Local GD (step size η, communication interval K) with the CIFAR-10 dataset. Overall, we observe
that Local GD converges faster in the long run by choosing a larger step size/communication interval, despite unstable/slow
optimization in early iterations. For (a), we first fix K = 16 while varying η, then fix η = 29 while varying K.

and γ1 = 1, γ2 = 1/g. By choosing δ close to zero and g with large magnitude, the two local objectives differ significantly
in terms of gradient direction and magnitude. For our experiments, we use δ = 0.1 and g = 10.

C.2. MNIST

Similar to Wu et al. (2024a) and Crawshaw et al. (2025), we use a subset of MNIST data with binarized labels, and our
implementation follows that of Crawshaw et al. (2025). First, we randomly select 1000 images from the MNIST dataset,
which we then partition among the M clients using a heterogeneity protocol that is common throughout the federated
learning literature (Karimireddy et al., 2020). Specifically, for a data similarity parameter s ∈ [0, 100], the s% of the data
is allocated to an “iid pool”, which is randomly shuffled, and a “non-iid pool”, which is sorted by label. When sorting
the non-iid pool, we sort according to the 10-way digit label. We then split the iid pool into M equally sized subsets, and
similarly split the non-iid pool into M equally sized subsets (keeping the sorted order), and each client’s local dataset is
comprised of one subset of the iid pool together with one subset of the non-iid pool. In this way, the local datasets have
different proportions of each digit. If s = 100, then the 1000 images are allocated uniformly at random to different clients,
and if s = 0, then the clients will have nearly disjoint sets of digits in their local datasets. Finally, after images have been
allocated to clients, we replace each image’s label with the parity of its depicted digit. For our experiments, we set M = 5
and s = 50. For all images, the pixel values initially fall into the range [0, 255]; we normalize the data by subtracting 127
from each pixel, then dividing all pixels by the same scaling factor to ensure that maxm,i ∥xmi ∥ = 1.

D. Additional Experimental Results
D.1. CIFAR-10 Experiments

In this section, we provide additional experiments on the CIFAR-10 dataset, using similar protocols as in Section 5. For
these experiments, we vary the step size η ∈ {26, 27, . . . , 210}, and other details of the setup exactly match those of our
MNIST experiments (see Section C.2), including the number of communication rounds R, the heterogeneity procedure,
number of clients M , number of samples per client n, data similarity parameter s, data normalization procedure, and choice
of interval K ∈ {1, 4, 16, 64}. Note that we used step sizes between 26 and 210, since smaller choices led to very slow, very
stable convergence and larger choices led to overflow.

The results can be seen in Figure 4. For these additional experiments, we used the same evaluation protocol as in Section 5:
Figures 4(a) corresponds to Q1 and Figure 1, Figure 4(b) corresponds to Q2 and Figure 2, and Figure 4(c) corresponds to
Q3 and Figure 3.

The results on CIFAR-10 further support our theoretical findings. In Figure 4(a), larger step sizes/communication intervals
lead to faster convergence in the long run, despite the resulting slow/unstable convergence in early iterations. In Figure
4(b), we can see that a larger communication interval K leads to faster convergence when η is tuned to K. The results
in Figure 4(c) are similar to the MNIST results in Figure 3: when ηK is constant, K = 1 is less stable and slower than
other choices of K, and all other choices have roughly the same final loss. These results strengthen the evidence that our
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Homogeneous Margins

Client 1
Client 2
Client 3
Client 4

Mixed Margins

Client 1
Client 2
Client 3
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Heterogeneous Margins

Client 1
Client 2
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Figure 5: Three splits of a synthetic dataset. Binary labels are shown in red/blue, and client indices for each data point
are shown with markers. Note that some data points are contained by multiple clients, which is shown with overlapping
markers. In the homogeneous split (left), all clients have the same data, so they all have the same local margins. For mixed
(middle), two clients have local margin γ, and two clients have local margin 3γ. For heterogeneous (right), all four clients
have different local margins. Note that the combined dataset of all four clients is the same for all three splits.

theoretical findings accurately describe the behavior of Local GD in practice.

D.2. Margin Heterogeneity

While our theoretical analysis makes no assumption about data heterogeneity (it applies to any linearly separable dataset),
the question remains whether the convergence rate can be improved with a more fine-grained analysis that considers the local
margins γm := maxw∈Rd,∥w∥=1 min(x,y)∈Dm

y⟨w,w⟩ instead of the global margin γ alone. We investigate this question
with a controlled synthetic dataset, by changing the local margins γm while preserving the global dataset.

This synthetic dataset has M = 4 clients with a total of 16 data points. The dataset can be split among the four clients in
three different ways to create either homogeneous, partially homogeneous (i.e. mixed), or heterogeneous margins among
clients, which are shown in Figure 5. Note that ∥xmi ∥ ≤ 1 for every data point, so that H ≤ 1/4, similarly with the
datasets of Section 5. Also, the global dataset (and therefore γ) is the same for all three splits. Our theory provides the
same convergence rate upper bound for all three splits, and we verify this prediction by evaluating Local GD with various
hyperparameters on the three splits. Results are shown in Figure 6.

The left subplots of Figure 6 show that the losses for each split are slightly different in early iterations, but quickly become
nearly identical. The right subplots show that all three splits satisfy ηγ2Kr · F (wr) → 1 as r increases, so that the
asymptotic convergence rate is unaffected by heterogeneity in the local margins. This behavior is consistent across choices
of η and K. These results align with our theoretical prediction that the convergence rate of Local GD depends on properties
of the global dataset, rather than how that dataset is allocated among clients.
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(a) η = 1,K = 16

(b) η = 1,K = 64

(c) η = 4,K = 16

(d) η = 4,K = 64

Figure 6: Results of Local GD on three splits of the synthetic dataset pictured in Figure 5. The right subplots show the
asymptotic rate as the number of iterations goes to∞, similarly to Figures 1(b) and 1(d) of (Wu et al., 2024a).
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