

000 VMDIFF: VISUAL MIXING DIFFUSION FOR LIMITLESS 001 CROSS-OBJECT SYNTHESIS 002 003 004

005 **Anonymous authors**

006 Paper under double-blind review

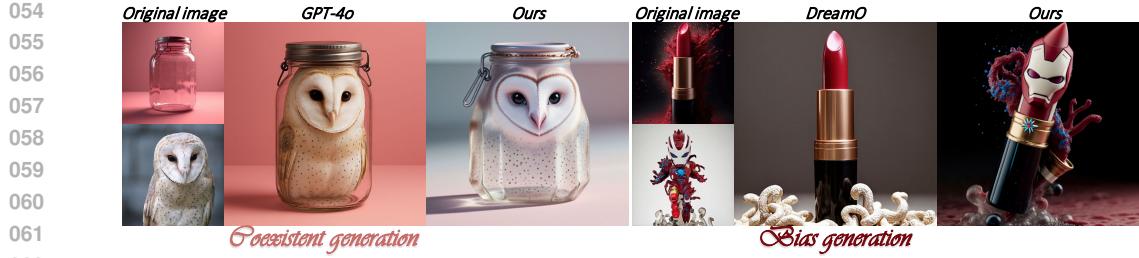
023 Figure 1: Two groups (rows) illustrating our VMDiff’s capability to generate coherent hybrid ob-
024 jects. For each group, images from the 2nd to the 5th column are the product of fusing the source
025 image in the 1st column with the corresponding image in the top left.

026 ABSTRACT

029 Creating novel images by fusing visual cues from multiple sources is a funda-
030 mental yet underexplored problem in image-to-image generation, with broad ap-
031 plications in artistic creation, virtual reality and visual media. Existing methods
032 often face two key challenges: *coexistent generation*, where multiple objects are
033 simply juxtaposed without true integration, and *bias generation*, where one ob-
034 ject dominates the output due to semantic imbalance. To address these issues,
035 we propose **Visual Mixing Diffusion (VMDiff)**, a simple yet effective diffusion-
036 based framework that synthesizes a single, coherent object by integrating two in-
037 put images at both noise and latent levels. Our approach comprises: (1) a *hybrid*
038 *sampling process* that combines guided denoising, inversion, and spherical inter-
039 polation with adjustable parameters to achieve structure-aware fusion, mitigating
040 coexistent generation; and (2) an *efficient adaptive adjustment* module, which in-
041 troduces a novel similarity-based score to automatically and adaptively search for
042 optimal parameters, countering semantic bias. Experiments on a curated bench-
043 mark of 780 concept pairs demonstrate that our method outperforms strong base-
044 lines in visual quality, semantic consistency, and human-rated creativity. [Project](#).

045 1 INTRODUCTION

048 Synthesizing novel images by combining visual elements from multiple sources is a fundamental
049 challenge in image-to-image generation, with wide applications in virtual reality (Haque et al., 2023;
050 Chen et al., 2024), digital media (Zheng et al., 2024; Zhao et al., 2024), product design (Ju et al.,
051 2024; Sheynin et al., 2024; Wang et al., 2024) and film and game (Ceylan et al., 2023; Liu et al.,
052 2024). In particular, visual composition methods generate high-fidelity images by composing ob-
053 jects through various strategies, such as combining object words into complex sentences (Liu et al.,
2022), merging multiple objects (Liu et al., 2021), or blending scenes and styles (Zou et al., 2025).



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
Figure 2: **Failed fusions between two object images.** GPT-4o OpenAI (2025) performs **coexistent generations** (left), while DreamO (Mou et al., 2025) exhibits **bias generations** (right). In contrast, our method achieves a seamless and harmonious fusion of the two objects.

Although these approaches effectively position different objects or parts within an image, they often struggle to seamlessly integrate distinct elements into a single object. Recent semantic mixing (Li et al., 2024; Xiong et al., 2024) explores novel object synthesis by combining textual descriptions of one object with another images or text. In contrast, this work focuses on visual mixing—directly blending two object images into a single, imaginative, and visually cohesive concept.

However, when existing powerful methods are used to perform this visual mixing task, we identify two key limitations. First, **coexistent generation** (see Fig. 2, left) occurs when different objects merely appear in the same scene—either side-by-side or partially overlapped—without achieving true visual and semantic integration. While the resulting compositions are spatially coherent, they remain conceptually disjoint. For example, OpenAI’s recent GPT-4o (OpenAI, 2025) produces an image where the glass jar and owl overlap but fail to meaningfully fuse. Second, **bias generation** (see Fig. 2, right) arises when the model generates only one object while omitting the other. This asymmetry likely stems from imbalanced representations or unresolved semantic conflicts, leading to outputs that disproportionately emphasize one object. For instance, DreamO (Mou et al., 2025) generates the lipstick while entirely neglecting the iron man figurine.

To address these limitations, we develop **Visual Mixing Diffusion (VMDiff)**, a simple yet effective framework for synthesizing novel, coherent objects that seamlessly integrate two input images. VMDiff ensures structural plausibility and semantic balance through two key components: a **Hybrid Sampling Process (HSP)** and an **Efficient Adaptive Adjustment (EAA)**. HSP integrates the two inputs through noise inversion and feature fusion. The inversion refines an initial noise vector conditioned on a concatenated input object embedding with two parameters and their corresponding text prompt, ensuring deep information mixing to prevent mere juxtaposition. Subsequently, feature fusion employs a curvature-respecting interpolation to blend image embeddings, with a scale factor controlling either object from dominating and thus countering bias generation. EAA automates the search for optimal parameters by proposing a novel similarity-based score that measures alignment with both visual/semantic similarity and balance between the fused object and the input object images/their category labels. By maximizing this score, the EAA dynamically adjusts the influence of each input, ensuring semantically coherent and visually faithful fusions across diverse object pairs.

Our contributions are summarized as follows: (1) We introduce a *hybrid sampling process* that constructs optimized semantic noise via guided denoising and inversion, combined with a curvature-aware latent fusion strategy using spherical interpolation for smooth and tunable blending. (2) We present an *efficient adaptive adjustment* algorithm that adjusts fusion parameters to achieve semantic and visual balance via a lightweight score-driven search. (3) By integrating them, we propose VMDiff, a unified and controllable framework for object-level visual concept fusion. Experiments on a curated benchmark of 780 concept pairs demonstrate that our method achieves superior object synthesis, excelling in semantic consistency, visual harmony, and user-rated creativity.

2 RELATED WORK

Multi-Concept Generation. Multi-concept generation seeks to synthesize images representing multiple user-defined concepts, typically from a few reference images per concept. Early works such as Custom Diffusion (Kumari et al., 2023) and SVDiff (Han et al., 2023) extend single-concept personalization by fine-tuning on joint data or merging customized models. Later methods (Gu et al., 2023; Liu et al., 2023b) enhance compositionality by merging LoRA modules or token embeddings

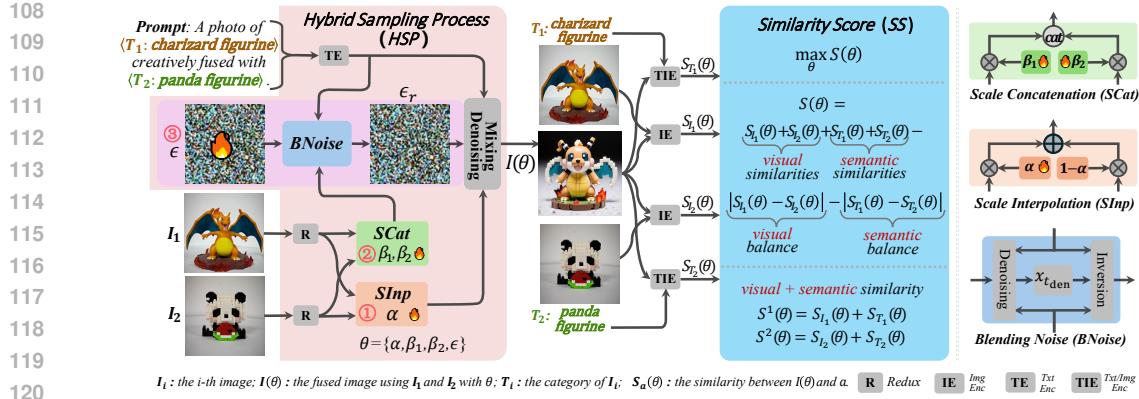


Figure 3: **Overview of our VMDiff framework.** Given two input images and their categories, the Hybrid Sampling Process (HSP) fuses them using noise inversion, scale interpolation (SInp) and scale concatenation (SCat). Efficient adaptive adjustment (EAA) optimizes fusion parameters $\theta = \{\alpha, \beta_1, \beta_2, \epsilon\}$ via a similarity score (SS) that measures visual, semantic, and balance consistency.

via gradient fusion (Gu et al., 2023) or spatial inversion (Zhang et al., 2024). More recent approaches further improve efficiency and flexibility: FreeCustom (Ding et al., 2024) employs multi-reference self-attention and weighted masks for training-free composition, while MIP-Adapter (Huang et al., 2025) mitigates object confusion with a weighted-merge strategy. OmniGen (Xiao et al., 2025) and DreamO (Mou et al., 2025) provide unified instruction-based frameworks for diverse generation tasks. Unlike prior methods that explicitly separate input concepts, our approach introduces a unified fusion framework that integrates two concept inputs into a novel object with coherent structure and balanced semantics.

Semantic Mixing. Creativity, spanning domains from scientific theories to culinary recipes, has long been a key driver of progress in artificial intelligence (Boden, 2004; Maher, 2010; Wang et al., 2023; Xiong et al., 2025b). In this context, semantic mixing has emerged as a promising approach for generating novel objects by fusing features from multiple concepts into a single coherent representation. Unlike traditional style transfer (Zhang et al., 2023; Tang et al., 2023; Ke et al., 2023) or image editing (Avrahami et al., 2025; Dong & Han, 2023; Brooks et al., 2023; Gal et al., 2023)—which emphasize texture transfer or localized modifications while preserving layout—semantic mixing focuses on concept-level integration within a single entity. Conceptlab (Richardson et al., 2024) interpolates token embeddings to synthesize imaginative entities, while TP2O (Li et al., 2024) enhances controllability by aligning and blending prompt embeddings. However, both operate purely in the textual domain and lack support for real visual content. MagicMix (Liew et al., 2022) fuses image latents with text prompts during denoising, preserving spatial structure, while ATIH (Xiong et al., 2024) improves semantic alignment through more coordinated integration of visual and textual inputs. FreeBlend (Zhou et al., 2025) performs staged interpolation in latent space to produce blended objects. In contrast, our method integrates structural and semantic cues from real image concepts, generating hybrid objects that are both visually coherent and semantically balanced.

3 VISUAL MIXING DIFFUSION

In this section, we present a Visual Mixing Diffusion (**VMDiff**) for synthesizing novel objects images in Fig. 3. Our method consists of two key components. We introduce a Hybrid Sampling Process (**HSP**, §3.1) that generates a new object image by blending two distinct inputs using learned scale factors and noise. An Efficient Adaptive Adjustment (**EAA**, §3.2) dynamically adjusts the scale factors and noise based on a Similarity Score (**SS**), ensuring high-quality object synthesis.

3.1 HYBRID SAMPLING PROCESS

Given two distinct images I_1 and I_2 , along with their respective category labels T_1 and T_2 (e.g., *Iron Man* and *Duck*), we first construct a guiding prompt P_G : “A photo of $<T_1>$ creatively fused with $<T_2>$.” and sample an initial Gaussian noise $\epsilon \sim \mathcal{N}(0, I)$. For convenience, we denote an input data $D = \{I_1, I_2, T_1, T_2, P_G\}$. We first employ pretrained image/text encoders $\mathcal{E}_I(\cdot)/\mathcal{E}_T(\cdot)$ of Flux-

Krea (Lee et al., 2025) to project both visual and textual modalities into a unified image-language latent space. Specifically, these embeddings are extracted by $z_1 = \mathcal{E}_I(I_1)$, $z_2 = \mathcal{E}_I(I_2)$, $z_p = \mathcal{E}_T(P_G)$. Using these embeddings, HSP includes *blending noise* and *mixing denoise*.

Blending Noise (BNoise): Directly sampling standard Gaussian noise to generate a blend of two objects frequently produces incomplete results, with key features such as arms or legs missing (Fig. 4). This occurs because random noise contains no information about the input objects. Our solution is to refine an initial noise vector ϵ , transforming it into a visually and semantically-informed estimate that faithfully represents the source data. Inspired by Rectified Flow (Albergo & Vanden-Eijnden, 2023), this is achieved through a guided denoising and inversion process. Using inputs ϵ, z_1, z_2, z_p , we denoise to an intermediate timestep t_{den} , and invert to a refined noise ϵ_b , which is defined as:

$$\begin{aligned} \hat{x}_t &= x_{t_{\text{den}}} \leftarrow \overbrace{x_{t-1} = x_t - (\sigma_t - \sigma_{t-1})v_\phi(x_t, t, z_{\text{SCat}}(z_1, z_2; \beta_1, \beta_2), \gamma_{\text{den}}, z_p)}^{\text{denoise: } t \text{ decreases from } T \text{ to } t_{\text{den}}, \text{ starting } x_T = \epsilon}, \\ \epsilon_b &= \hat{x}_T \leftarrow \overbrace{\hat{x}_{t+1} = \hat{x}_t + (\sigma_{t+1} - \sigma_t)v_\phi(\hat{x}_t, t, z_{\text{SCat}}(z_1, z_2; \beta_1, \beta_2), \gamma_{\text{inv}}, z_p)}^{\text{inversion: } t \text{ increases from } t_{\text{den}} \text{ to } T, \text{ starting } \hat{x}_t = x_{t_{\text{den}}}} \end{aligned} \quad (1)$$

where x_t and \hat{x}_t are latent variables at timestep t , v_ϕ denotes the noise prediction network, σ_t controls the sampler parameter. For conditioning, we adopt parameters from (Bai et al., 2025): a high denoising strength $\gamma_{\text{den}} = 5$ ensures strong guidance, while an inversion strength of $\gamma_{\text{inv}} = 0$ is used to reduce distortion in the noise space. The total number of timesteps T is 999, with a predefined intermediate denoising timestep at $t_{\text{den}} = 652$. In equation 1, z_p provides the semantic information, while z_{SCat} provides visual information. Here, we introduce two learnable factors $\beta_1, \beta_2 \in \mathbb{R}_+$ to create a **scale concatenation (SCat)** of the input latents: $z_{\text{SCat}}(z_1, z_2; \beta_1, \beta_2) = \text{concat}(\beta_1 z_1, \beta_2 z_2)$.

Discussion on BNoise: concatenate vs. interpolate. We hypothesize that interpolating mismatched embeddings obscures subtle features, while concatenation preserves them, allowing the inversion process to refine noise containing the full concept. To test this, we compare *Interpolate before BNoise*: Blend embeddings first, then refine the noise, and *Interpolate after BNoise*: Refine noise from each embedding first, then blend the results. Fig. 4 shows that both interpolation methods fail to capture intricate details (e.g., legs), whereas our concatenation yields superior visual quality and faithfulness by preserving input details and ensuring a coherent denoising pathway. **Quantitative results in Appdx. A.**

Figure 4: Different BNoise strategies. The figure shows five images of a stylized robot. From left to right: 1. Original Image (real robot). 2. Random noise (blurred robot). 3. Interp before BNoise (robot with missing legs). 4. Interp after BNoise (robot with missing legs). 5. Ours (real robot, same as original). The caption states: "Figure 4: Different BNoise strategies. The figure shows five images of a stylized robot. From left to right: 1. Original Image (real robot). 2. Random noise (blurred robot). 3. Interp before BNoise (robot with missing legs). 4. Interp after BNoise (robot with missing legs). 5. Ours (real robot, same as original). The caption states: 'Figure 4: Different BNoise strategies. The figure shows five images of a stylized robot. From left to right: 1. Original Image (real robot). 2. Random noise (blurred robot). 3. Interp before BNoise (robot with missing legs). 4. Interp after BNoise (robot with missing legs). 5. Ours (real robot, same as original).'"

Mixing Denoise (MDeNoise): Using the blended noise ϵ_b , we denoise it to finally produce a cross-object fusion by mixing the inputs, z_1, z_2, z_p . Specifically, we formulate this process as:

$$I = \mathcal{D}(x_0), \text{ where } x_0 \leftarrow \overbrace{x_{t-1} = x_t - (\sigma_t - \sigma_{t-1})v_\phi(x_t, t, z_{\text{SInp}}(z_1, z_2; \alpha), \gamma_{\text{gen}}, z_p)}^{\text{MDeNoise: } t \text{ decreases from } T \text{ to } 0, \text{ starting } x_T = \epsilon_b}. \quad (2)$$

Here, $\gamma_{\text{gen}} = 4.0$ is a fixed guidance scale, and the decoder $\mathcal{D}(\cdot)$ generates the final fusion image I using the Flux-Krea decoder (Lee et al., 2025). The **scale interpolation (SInp)**, $z_{\text{SInp}}(z_1, z_2; \alpha)$, mixes the two visual embeddings z_1 and z_2 into a single coherent representation, which is implemented by a spherical interpolation (Shoemake, 1985): $z_{\text{SInp}}(\alpha) = \frac{\sin(\alpha \cdot \delta)}{\sin(\delta)} z_1 + \frac{\sin((1-\alpha) \cdot \delta)}{\sin(\delta)} z_2$, where $\delta = \cos^{-1}(z_1 \cdot z_2)$, and $0 \leq \alpha \leq 1$ is a learnable factor to control the mixing ratio. This MDeNoise process in equation 2 outputs the final fusion image I .

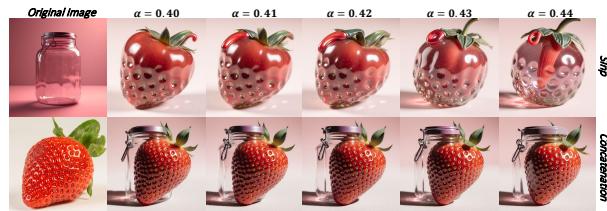


Figure 5: Different MDeNoise generations across α . The figure shows a grid of images. The columns are labeled $\alpha = 0.40, 0.41, 0.42, 0.43, 0.44$. The rows are labeled *Original Image*, *SInp*, and *Ours*. The *SInp* row shows a strawberry in a jar, and the *Ours* row shows a strawberry next to a jar. The caption states: "Figure 5: Different MDeNoise generations across α . The figure shows a grid of images. The columns are labeled $\alpha = 0.40, 0.41, 0.42, 0.43, 0.44$. The rows are labeled *Original Image*, *SInp*, and *Ours*. The *SInp* row shows a strawberry in a jar, and the *Ours* row shows a strawberry next to a jar."

216 in equation 2 (Fig. 5), which tends to produce isolated objects rather than a unified hybrid. Our
 217 interpolation instead creates a single, coherent entity with harmonious consistency.
 218

219 **HSP:** Overall, for a given input D , the hybrid sampling process combines the BNoise (equation 1)
 220 and MDeNoise (equation 2). To simplify the notation, we formalize this process as the function:
 221

$$I(\theta) = \text{HSP}(D; \theta, \hat{\theta}) = \mathcal{D}(x_0), \quad (3)$$

223 where $\theta = \{\alpha, \beta_1, \beta_2, \epsilon\}$ are learnable parameters, and $\hat{\theta} = \{\gamma_{\text{den}} = 5, \gamma_{\text{inv}} = 0, \gamma_{\text{gen}} = 4, T = 224$
 $224, t_{\text{den}} = 652\}$ are fixed defaults in this paper.
 225

226 3.2 EFFICIENT ADAPTIVE ADJUSTMENT (EAA)

228 The HSP process yields distinct fusion results $I(\theta)$ defined in equation 3 with parameters θ , defaults
 229 $\hat{\theta}$ and inputs D , making parameter selection critical for high-quality synthesis. We propose an
 230 adaptive framework to jointly adjust $\theta = \{\alpha, \beta_1, \beta_2, \epsilon\}$, aiming to achieve both semantic coherence
 231 and visual fidelity. Inspired by prior work (Li et al., 2024; Xiong et al., 2024), we first introduce a
 232 **Similarity Score (SS)** to guide this search: (For simplicity, input D and defaults $\hat{\theta}$ are not shown.)
 233

$$S(\theta) = \underbrace{S_{I_1}(\theta) + S_{I_2}(\theta)}_{\text{visual similarity}} + \underbrace{S_{T_1}(\theta) + S_{T_2}(\theta)}_{\text{semantic similarity}} - \underbrace{|S_{I_1}(\theta) - S_{I_2}(\theta)|}_{\text{visual balance}} - \underbrace{|S_{T_1}(\theta) - S_{T_2}(\theta)|}_{\text{semantic balance}}, \quad (4)$$

236 where $S_{I_i}(\theta)$ ($i = 1, 2$) is the visual similarity between $I(\theta)$ and the source image I_i , computed via
 237 a DINO encoder (Oquab et al., 2024), while $S_{T_i}(\theta)$ ($i = 1, 2$) is the semantic similarity between
 238 $I(\theta)$ and the category label T_i , measured using CLIP (Radford et al., 2021). This scoring function
 239 is designed to optimize two key objectives for successful fusion: (i) *maximizing similarity*, and (ii)
 240 *enforcing balance*. The first two terms ensure that the generated image $I(\theta)$ retains high perceptual
 241 and semantic fidelity to both input images and their corresponding category labels. By maximizing
 242 similarity to both sources, these terms preserve the core features of the original concepts. The final
 243 two terms—penalizing the absolute differences—explicitly enforce *balance*, preventing the model
 244 from overfitting to one input and encouraging a fair integration of both objects’ features. Together,
 245 these components create a unified SS objective that balances fidelity and symmetry, offering a prin-
 246 cipled framework for optimizing feature fusion parameters.

247 **Our EAA Algorithm.** To maximize this objective $S(\theta)$ in equation 4, we present a hierarchical
 248 adjustment strategy that learns the parameters $\theta = \{\alpha, \beta_1, \beta_2, \epsilon\}$ using the acceptance threshold
 249 $Th = 2.4$. The key loop iterates from $k = 1$ to $K = 3$, performing these steps:

250 ① **Sample (initial) Gaussian noise:** $\epsilon \sim \mathcal{N}(0, I)$, **initialize the parameters:** $\alpha =$
 251 $0.5, \beta_1 = \beta_2 = 1.0$.

253 ② **Searching α :** Fixed $\beta_1 = \beta_2 = 1.0$ and ϵ , perform a golden section search (Teukolsky
 254 et al., 1992) to find the optimal mixing factor α^* :

$$\alpha^* = \arg \max_{\alpha \in [0,1]} S(\alpha, \beta_1, \beta_2, \epsilon). \quad (5)$$

258 ③ **Adjusting β_1, β_2 :** Fixed α^*, ϵ , if $S(\alpha^*, \beta_1, \beta_2, \epsilon) \leq Th$, then update the noise factors:

$$\begin{cases} \beta_1^* = \beta_1 \& \beta_2^* = \arg \max_{\beta_2 \in \mathbb{R}_+} S(\alpha^*, \beta_1, \beta_2, \epsilon), & \text{if } S_1 > S_2, \\ \beta_2^* = \beta_2 \& \beta_1^* = \arg \max_{\beta_1 \in \mathbb{R}_+} S(\alpha^*, \beta_1, \beta_2, \epsilon), & \text{otherwise.} \end{cases}, \quad (6)$$

263 where $S_1 = S_{I_1} + S_{T_1}$, $S_2 = S_{I_2} + S_{T_2}$, and $S_1 > S_2$ indicates that the mixing noise
 264 favors the object I_1 , and vice versa.

266 ④ **Acceptance criterion:**

$$\begin{cases} \epsilon^* = \epsilon \& \text{return } \theta^* = \{\alpha^*, \beta_1^*, \beta_2^*, \epsilon^*\}, & \text{if } S(\alpha^*, \beta_1^*, \beta_2^*, \epsilon) > Th, \\ \text{return } \theta^* = \{\alpha^*, \beta_1^*, \beta_2^*, \epsilon^*\} \& \text{break,} & \text{if } k > K, \\ \text{turn to the step ① to resample } \epsilon \& k++, & \text{otherwise.} \end{cases} \quad (7)$$

270 where the fused object image $I(\theta)$ is defined in equation 3. Our adaptive loop efficiently explores a
271 low-dimensional yet expressive parameter space $\theta = \{\alpha, \beta_1, \beta_2, \epsilon\}$, yielding conceptually balanced
272 and perceptually smooth fusion results (Fig. 9). By reusing intermediate predictions and limiting
273 optimization to scalar-level searches (via golden section search), the method enhances sample effi-
274 ciency—avoiding the computational overhead of gradient-based latent-space backpropagation.

275 **Discussion on resampling ϵ .** During our blending process, sampling random Gaussian noise can
276 occasionally yield low-quality or failed fusions. While first-order optimization is an intuitive solution,
277 it offers no significant advantage over simple zero-order resampling for diffusion generation,
278 despite its higher cost (Ma et al., 2025). Consequently, we adopt a zero-order resampling strategy to
279 search for ϵ , and a small number of resamples $K = 3$ proves sufficient for high-quality fusion. **For**
280 **fair comparison, this resampling is disabled, $K = 1$, and the random seed is fixed at 42.**

282 4 EXPERIMENTS

284 4.1 EXPERIMENTAL SETTINGS

286 **Datasets.** We introduce IIOF (Image-Image Object Fusion), a new benchmark of 780 image pairs
287 derived from 40 objects across four classes (i.e., animals, fruits, artificial objects, and character
288 figurines). Most images are from PIE-Bench (Ju et al., 2024) and Pexels¹; figurines were self-
289 captured for quality. To evaluate order-sensitive methods, we also generate all ordered pairs (1,560
290 total), ensuring a comprehensive and fair benchmark. **More details in Appdx. B.**

291 **Implementation Details.** Our method builds upon Flux-Krea (Lee et al., 2025), implementing \mathcal{E}_I
292 with Redux (Black Forest Labs, 2024) for latent-space alignment. We generate all images at $512 \times$
293 512 resolution using the FlowMatchEulerDiscreteScheduler (Lipman et al., 2022) with 20 denoising
294 steps. For the Efficient Adaptive Adjustment (EAA) module, we use Grounded-SAM (Ren et al.,
295 2024) and the query “*most prominent object*” to localize main regions for visual and semantic
296 similarity computation. Each parameter search for α and β involves at most 10 image generations.
297 All experiments are conducted on two NVIDIA RTX 4090 GPUs.

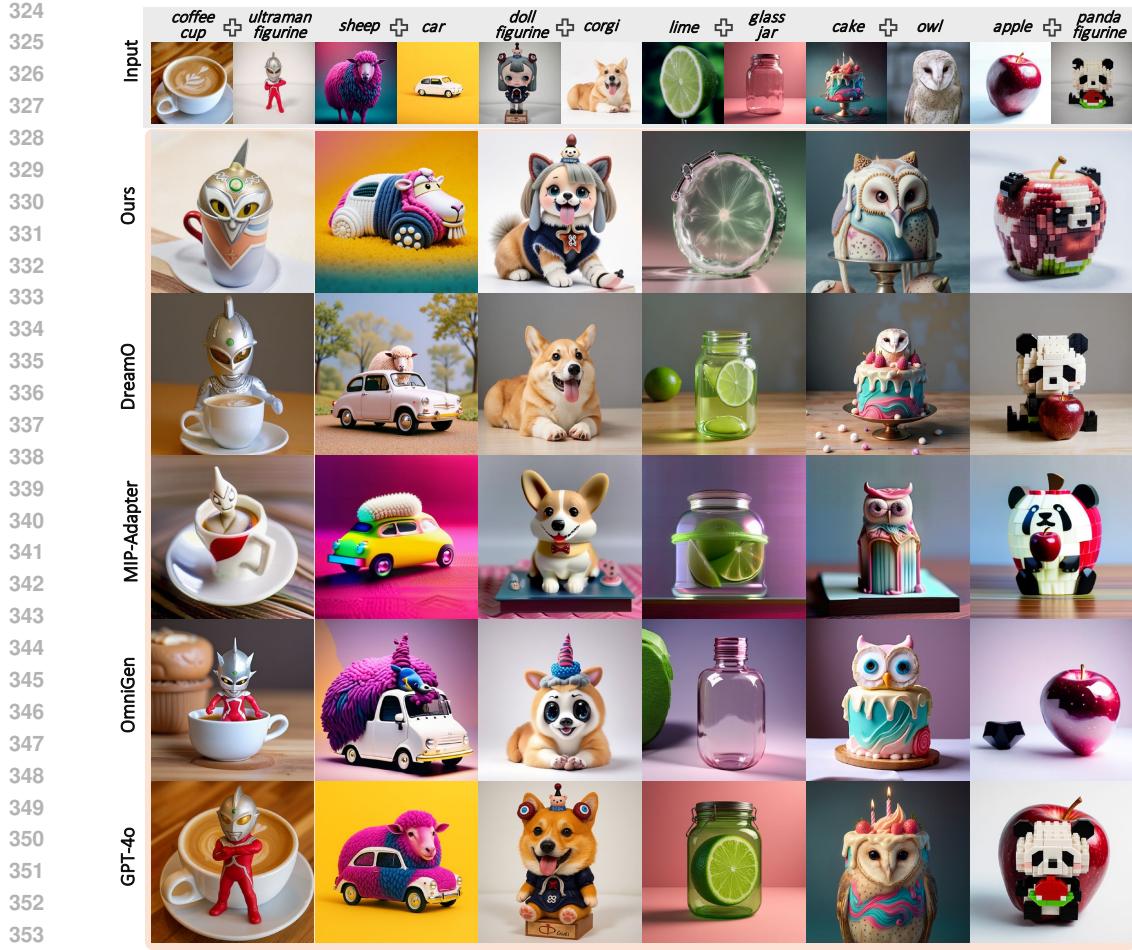
298 **Evaluation Metrics.** To evaluate our method, we use two metric families: Semantic Alignment
299 (SA) and Single-entity Coherence (SCE). SA is computed on the generated prompt P_G
300 using VQAScore (Lin et al., 2024b) and LLaVA-Critic (Xiong et al., 2025a). VQAScore em-
301 ploys CLIP-FlanT5 (Roberts et al., 2022) and LLaVA (Liu et al., 2023a), denoted as $\text{VQA}_{\text{T5}}^{\text{SA}}$ and
302 $\text{VQA}_{\text{LLaVA}}^{\text{SA}}$, respectively; the LLaVA-Critic score is LC^{SA} . SCE assesses if the image forms a uni-
303 fied concept by asking: “*A photo of a seamless fusion of $\langle T_1 \rangle$ and $\langle T_2 \rangle$ into a single coherent*
304 *entity.*” Its scores are $\text{VQA}_{\text{T5}}^{\text{SCE}}$, $\text{VQA}_{\text{LLaVA}}^{\text{SCE}}$, and LC^{SCE} . We also compute the SS score and the
305 balance metric $B_{\text{sim}} = |S_{I_1}(\theta) - S_{I_2}(\theta)| + |S_{T_1}(\theta) - S_{T_2}(\theta)|$, where $S_{T_i}(\theta)$ are normalized to $[0, 1]$
306 using empirical bounds 0.15 and 0.45 to align the scales of visual and textual modalities.

308 4.2 MAIN RESULTS

310 We compare with leading methods across three categories: (i) multi-concept generation (e.g.,
311 OmniGen (Xiao et al., 2025), FreeCustom (Ding et al., 2024), MIP-Adapter (Huang et al.,
312 2025), DreamO (Mou et al., 2025)), (ii) mixing-based (e.g., ATIH (Xiong et al., 2024), Concept-
313 lab (Richardson et al., 2024), FreeBlend (Zhou et al., 2025)), and (iii) image editing (e.g., Stable
314 Flow (Avrahami et al., 2025)). We also include qualitative results from GPT-4o (OpenAI, 2025).
315 Inputs vary: multi-concept methods use two images and a text prompt; ATIH and Stable Flow use
316 one image and text; Conceptlab uses text only. **More examples in Appdx. G.**

317 **Qualitative Comparison.** Fig. 6 compares our method with multi-concept generation baselines
318 (e.g., MIP-Adapter, OmniGen, DreamO, GPT-4o), highlighting two observations. First, baselines
319 output often merely overlay features rather than fusing them—for example, *a lime enclosed in a*
320 *glass jar without integration*—while our method creates a coherent hybrid. Second, baselines fre-
321 quently favor one concept, such as generating either a doll or a corgi but not a unified blend. In
322 contrast, our approach balances both concepts, producing structurally unified and semantically con-
323 sistent results. This demonstrates our method’s superior ability to achieve fine-grained visual fusion.

324 ¹<https://www.pexels.com/>



354 **Figure 6: Comparisons with Multi-Concept Generation Methods.** Our approach yields hybrid
 355 objects with improved structural coherence and visual balance over existing methods.
 356

357 **Table 1: Quantitative comparisons on our IIOF dataset.**

Models	VQA _{T5} ^{SA} ↑	VQA _{T5} ^{SCE} ↑	LC ^{SA} ↑	LC ^{SCE} ↑	VQA _{LLaVA} ^{SA} ↑	VQA _{LLaVA} ^{SCE} ↑	SS ↑	Bsim ↓
Our VMDiff	0.639	0.540	8.372	8.392	0.390	0.413	2.068	0.324
FreeCustom (CVPR (Ding et al., 2024))	0.579	0.452	6.958	6.946	0.360	0.388	1.580	0.776
MIP-Adapter (AAAI (Huang et al., 2025))	0.621	0.512	8.301	8.076	0.389	0.417	1.866	0.483
OmniGen (CVPR (Xiao et al., 2025))	0.570	0.469	7.550	7.233	0.352	0.348	1.705	0.617
ConceptLab (TOG (Richardson et al., 2024))	0.573	0.483	7.589	7.728	0.362	0.395	–	–
ATIH (NeurIPS (Xiong et al., 2024))	0.523	0.465	7.275	6.816	0.317	0.367	–	–
Stable Flow (CVPR (Avrahami et al., 2025))	0.460	0.372	6.020	5.024	0.266	0.294	–	–
DreamO (SIGGRAPH Asia (Mou et al., 2025))	0.591	0.467	7.592	7.013	0.370	0.346	1.793	0.644
FreeBlend (arXiv (Zhou et al., 2025))	0.588	0.507	7.836	7.788	0.341	0.383	1.870	0.479

365 Fig. 7 qualitatively compares our method with mixing/editing baselines (e.g., ConceptLab, ATIH,
 366 FreeCustom, FreeBlend, Stable Flow). ConceptLab often biases toward one concept, while Stable Flow and ATIH
 367 make only subtle edits, such as color or texture transfer. FreeBlend frequently loses original in-
 368 formation and yields fragmented outputs. In contrast, our approach synthesizes novel objects that
 369 structurally and visually integrate both concepts, achieving a deeper, more harmonious fusion and
 370 demonstrating superior blending capability.
 371

372 **Quantitative Comparison.** Table 1 presents quantitative comparisons on key metrics, including
 373 VQA_{T5}^{SA}, VQA_{LLaVA}^{SA}, VQA_{T5}^{SCE}, VQA_{LLaVA}^{SCE}, LC^{SA}, LC^{SCE}, similarity score (SS), and fusion
 374 balance B_{sim} . Although MIP attains the highest VQA_{LLaVA}^{SCE}, it ranks only second or below on the
 375 other VQA, LC, SS, and B_{sim} metrics, indicating that its improvements are not holistic. In contrast,
 376 our method consistently outperforms all baselines on most metrics, demonstrating strong capability
 377 in generating coherent and natural blended objects. These results reinforce our qualitative findings
 and confirm the effectiveness of our approach in achieving high-quality visual fusion.

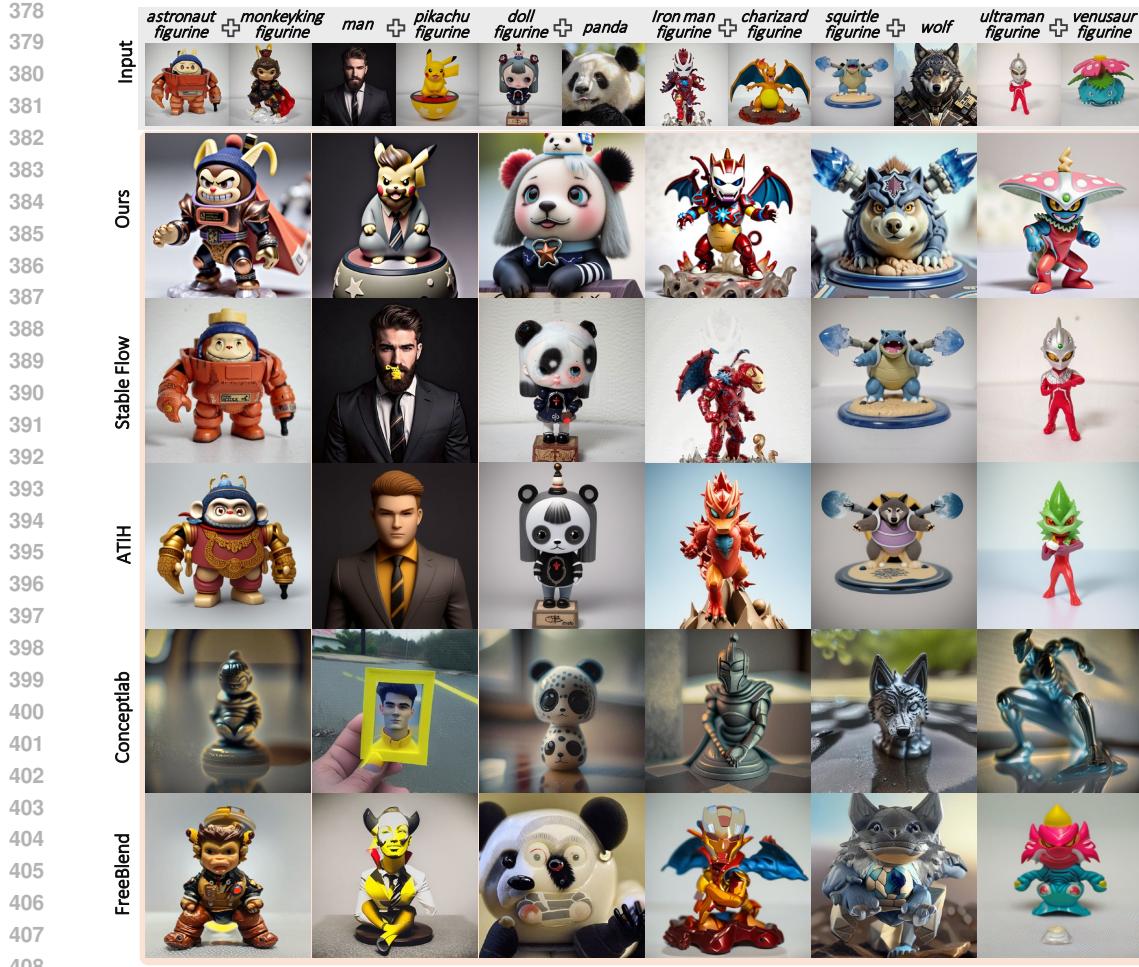


Figure 7: **Comparisons with Mixing and Image Editing Methods.** Our method produces more coherent and balanced hybrids, while baselines often favor one concept or apply minimal edits.

Table 2: Quantitative ablation study on our IIoF dataset.

Models	VQA _{T5} ^{SA} ↑	VQA _{T5} ^{SCE} ↑	LC ^{SA} ↑	LC ^{SCE} ↑	VQA _{LLaVA} ^{SA} ↑	VQA _{LLaVA} ^{SCE} ↑	SS ↑	Bsim ↓
Baseline 1	0.497	0.438	7.261	7.077	0.287	0.314	1.570	0.682
Baseline 2	0.508	0.441	7.426	7.291	0.298	0.325	1.586	0.693
Baseline 2+ α -search	0.625	0.532	8.278	8.276	0.382	0.405	2.025	0.358
Baseline 2+ α -search+ β_1, β_2 -search	0.639	0.540	8.372	8.392	0.390	0.413	2.068	0.324

User Study. To evaluate the perceptual quality of our fusions, we conducted two user studies (Fig. 8). 76 participants each rated 12 results—6 from *Multi-Concept Generation* and 6 from *Mixing/Editing*—yielding 912 total votes. Our VMDiff received the highest preference in both groups: **67.3%** and **87.1%**, respectively. GPT-4o and ATIH ranked second, but with significantly lower votes (12.9% and 7.5%). These results indicate that our VMDiff aligns better with human preferences in visual coherence and creativity. *More details in Appdx. C.*

4.3 ABLATION STUDY

We conducted an ablation study to evaluate the contributions of our VMDiff’s key components, as shown in Fig. 9 and Table 2. Progressively adding each element—(i) *baseline 1*: random

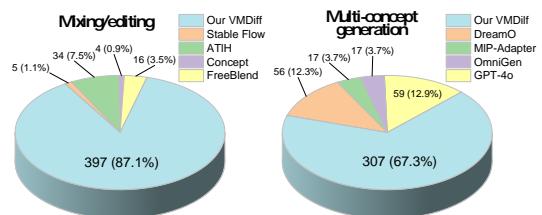


Figure 8: User studies.

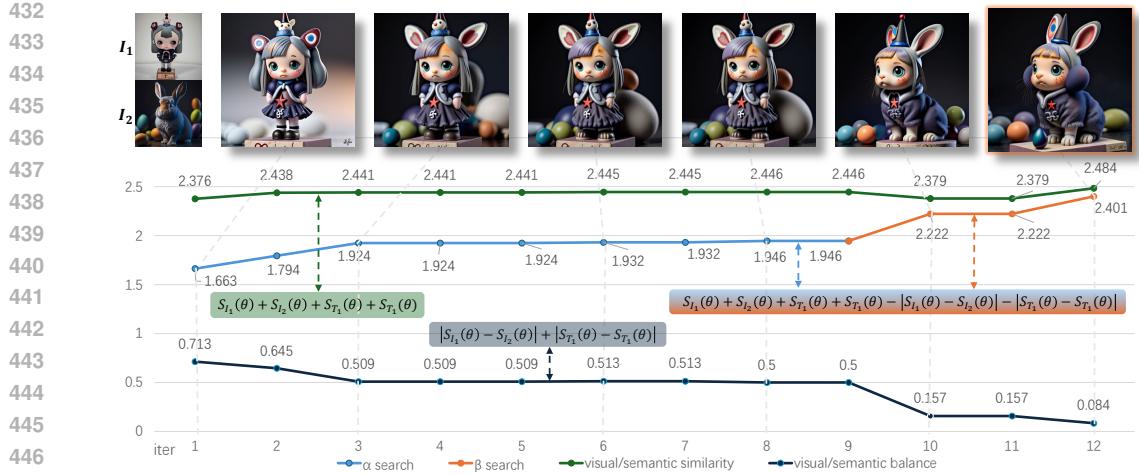


Figure 10: **Visualizing the updated process of our EAA** based on two input images I_1 (doll figurine) and I_2 (rabbit). The α parameter (blue) improves fusion quality, while β (orange) enhances semantic balance. The green curve (similarity) rises and the dark blue curve (imbalance) falls over iterations. The final output is a coherent hybrid with high similarity and minimal imbalance.

noise+MDeNoise ($\alpha = 0.5$), **(ii) baseline 2:** baseline 1+BNoise ($\beta_1 = \beta_2 = 1$), **(iii) baseline 2 + MDeNoise** (α search), and **(iv) baseline 2 + BNoise** (β_1, β_2 search) + MDeNoise (α search)—yielded consistent improvements. Without noise refinement, outputs lacked detail. Its inclusion enhanced structural fidelity and preserved input features. Adaptive α improved fusion balance, while adaptive β refined noise influence for greater visual harmony. Fig. 10 illustrates the optimization process for a representative case (*doll figurine + rabbit*). Throughout iterations, similarity $S(\theta)$ (green) increased steadily, while the blending balance metric (dark blue) decreased. The α search (light blue) rapidly boosted similarity, and β search (orange) smoothed visual-textual alignment. These results confirm that our EAA design effectively optimizes both similarity and symmetry for high-quality blending. **Limitations are discussed in Appdx. D.**

Figure 9: **Ablation study in VMDiff.** Noise refinement improves detail and structure, while *adaptive α* and β search progressively enhance semantic balance and visual coherence.

4.4 MULTI-IMAGE FUSION AND BACKBONE GENERALIZATION.

Figure 11: **Multi-image fusion.**

486
487 **Multi-image fusion.** We also explore extending VMDiff beyond pairwise fusion. Figure 11 shows
488 preliminary three-image results obtained by sequentially applying our pipeline (e.g., first fusing
489 (I_1, I_2) and then fusing the hybrid with I_3). The method can still produce single coherent entities
490 that blend attributes from all three categories, indicating that our formulation can, in principle,
491 scale to more inputs. However, compared with the pairwise case, these hybrids exhibit stronger
492 information loss and imbalance across sources, so in this work we focus on image pairs and leave
493 permutation-invariant, learned aggregation of multiple image embeddings to future work.

511 Figure 12: **Each column shows an input pair (top) and the fused outputs when plugging our**
512 **framework into Flux-1.0-dev+Redux, SDXL+IP-adapter(Ye et al., 2023), and SD-3.5+SD-3.5**
513 **IP-adapter(Team, 2024). All backbones use the same images and fusion prompt.**

514
515 **Backbone generalization.** We evaluate VMDiff on three backbones with identical settings: Flux-
516 dev+Redux, SDXL (Lin et al., 2024a)+IP-Adapter (Ye et al., 2023), and SD-3.5 (AI, 2024)+SD-3.5-
517 IP-Adapter (Team, 2024) (Fig. 12). All three run under our HSP+EAA framework, so VMDiff is not
518 tied to Flux-Krea, but the *quality and tendency toward a single hybrid object* strongly depend on how
519 image information is encoded. Flux+Redux maps images into a semantic latent space shared with
520 text, allowing BNoise+SInp to operate directly on rich, text-like image embeddings and thus best
521 preserve instance-level geometry and appearance from both sources. For SDXL and especially SD-
522 3.5, IP-Adapter injects image features as extra attention tokens; interpolating these tokens mainly
523 modulates high-level semantics and, in our results, often weakens retention of input-specific struc-
524 ture. VMDiff therefore benefits most from backbones that preserve detailed instance information in
525 a text-compatible embedding space. Our SDXL and SD-3.5 experiments should be viewed as fea-
526 sibility checks under this weaker image interface, and we expect that adding Redux-style semantic
527 image encoders to such models would narrow the quality gap to Flux-Krea.

5 CONCLUSION

528 In this paper, we presented VMDiff, a novel unified and controllable framework for visual concept
529 fusion that synthesizes coherent new objects directly from two input images. Our approach en-
530 ables fine-grained control by semantically integrating concepts at both the noise and latent levels.
531 VMDiff consists of two core components: (1) a hybrid sampling process that constructs optimized
532 semantic noise through guided denoising and inversion, followed by a curvature-aware latent fusion
533 using spherical interpolation, and (2) an efficient adaptive adjustment algorithm that refines fusion
534 parameters via a lightweight, score-driven search. Experimental results on a curated benchmark
535 demonstrate VMDiff’s superior performance, excelling in semantic consistency, visual harmony,
536 and user-rated creativity, thereby establishing a new paradigm for hybrid object synthesis. This
537 work offers practical and valuable insights for professionals developing combinational characters,
538 directly applicable to diverse fields from film and animation to figures and industrial design.

540 **REFERENCES**
541

542 Stability AI. Sd3.5 – inference-only reference implementation. <https://github.com/Stability-AI/sd3.5>, 2024.

544 Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic inter-
545 polants. In *Proceedings of the International Conference on Learning Representations (ICLR)*,
546 2023.

548 Omri Avrahami, Or Patashnik, Ohad Fried, Egor Nemchinov, Kfir Aberman, Dani Lischinski, and
549 Daniel Cohen-Or. Stable flow: Vital layers for training-free image editing. In *Proceedings of the*
550 *IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 7877–7888,
551 2025.

552 Lichen Bai, Shitong Shao, Zikai Zhou, Zipeng Qi, Zhiqiang Xu, Haoyi Xiong, and Zeke Xie. Zigzag
553 diffusion sampling: Diffusion models can self-improve via self-reflection. In *Proceedings of the*
554 *International Conference on Learning Representations (ICLR)*, 2025.

555 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024. Ac-
556 cessed: 2025-05-07.

558 Margaret A Boden. *The creative mind: Myths and mechanisms*. Routledge, 2004.

560 Tim Brooks, Aleksander Holynski, and Alexei A. Efros. Instructpix2pix: Learning to follow image
561 editing instructions. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
562 *Recognition (CVPR)*, pp. 18392–18402, 2023.

563 Duygu Ceylan, Chun-Hao P Huang, and Niloy J Mitra. Pix2video: Video editing using image
564 diffusion. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*,
565 pp. 23206–23217, 2023.

567 Yiwen Chen, Zilong Chen, Chi Zhang, Feng Wang, Xiaofeng Yang, Yikai Wang, Zhongang Cai, Lei
568 Yang, Huaping Liu, and Guosheng Lin. Gaussianeditor: Swift and controllable 3d editing with
569 gaussian splatting. In *Proceedings of the IEEE/CVF conference on Computer Vision and Pattern*
570 *Recognition (CVPR)*, pp. 21476–21485, 2024.

571 Ganggui Ding, Canyu Zhao, Wen Wang, Zhen Yang, Zide Liu, Hao Chen, and Chunhua Shen.
572 Freecustom: Tuning-free customized image generation for multi-concept composition. In *Pro-
573 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
574 9089–9098, 2024.

576 Xiaoyue Dong and Shumin Han. Prompt tuning inversion for text-driven image editing using dif-
577 fusion models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*
578 *(ICCV)*, pp. 7430–7440, 2023.

579 Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit Haim Bermano, Gal Chechik, and
580 Daniel Cohen-Or. An image is worth one word: Personalizing text-to-image generation using
581 textual inversion. In *Proceedings of the International Conference on Learning Representations*
582 *(ICLR)*, 2023.

584 Yuchao Gu, Xintao Wang, Jay Zhangjie Wu, Yujun Shi, Yunpeng Chen, Zihan Fan, Wuyou Xiao,
585 Rui Zhao, Shuning Chang, Weijia Wu, et al. Mix-of-show: Decentralized low-rank adaptation
586 for multi-concept customization of diffusion models. *Proceedings of the Advances in Neural*
587 *Information Processing Systems (NeurIPS)*, 36:15890–15902, 2023.

588 Ligong Han, Yinxiao Li, Han Zhang, Peyman Milanfar, Dimitris Metaxas, and Feng Yang. Svdif:
589 Compact parameter space for diffusion fine-tuning. In *Proceedings of the IEEE/CVF Interna-
590 tional Conference on Computer Vision (ICCV)*, pp. 7323–7334, 2023.

592 Ayaan Haque, Matthew Tancik, Alexei A Efros, Aleksander Holynski, and Angjoo Kanazawa.
593 Instruct-nerf2nerf: Editing 3d scenes with instructions. In *Proceedings of the IEEE/CVF In-
594 ternational Conference on Computer Vision (ICCV)*, pp. 19740–19750, 2023.

594 Qihan Huang, Siming Fu, Jinlong Liu, Hao Jiang, Yipeng Yu, and Jie Song. Resolving multi-
595 condition confusion for finetuning-free personalized image generation. In *Proceedings of the*
596 *AAAI Conference on Artificial Intelligence (AAAI)*, pp. 3707–3714, 2025.

597

598 Xuan Ju, Ailing Zeng, Yuxuan Bian, Shaoteng Liu, and Qiang Xu. Direct inversion: Boosting
599 diffusion-based editing with 3 lines of code. In *Proceedings of the International Conference on*
600 *Learning Representations (ICLR)*, 2024.

601 Zhanghan Ke, Yuhao Liu, Lei Zhu, Nanxuan Zhao, and Rynson WH Lau. Neural preset for color
602 style transfer. In *Proceedings of the IEEE/CVF conference on Computer Vision and Pattern*
603 *Recognition (ICCV)*, pp. 14173–14182, 2023.

604

605 Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Multi-concept
606 customization of text-to-image diffusion. In *Proceedings of the IEEE/CVF Conference on Com-*
607 *puter Vision and Pattern Recognition (CVPR)*, pp. 1931–1941, 2023.

608

609 Sangwu Lee, Titus Ebbecke, Erwann Millon, Will Beddow, Le Zhuo, Iker García-Ferrero, Liam
610 Esparraguera, Mihai Petrescu, Gian Saß, Gabriel Menezes, and Victor Perez. FLUX.1 Krea [dev].
<https://github.com/krea-ai/flux-krea>, 2025.

611

612 Jun Li, Zedong Zhang, and Jian Yang. Tp2o: Creative text pair-to-object generation using balance
613 swap-sampling. In *Proceedings of the European Conference on Computer Vision (ECCV)*, pp.
92–111, 2024.

614

615 Jun Hao Liew, Hanshu Yan, Daquan Zhou, and Jiashi Feng. Magicmix: Semantic mixing with
616 diffusion models. *arXiv preprint arXiv:2210.16056*, 2022.

617

618 Shanchuan Lin, Anran Wang, and Xiao Yang. Sdxl-lightning: Progressive adversarial diffusion
619 distillation. *arXiv preprint arXiv:2402.13929*, 2024a.

620

621 Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia, Graham Neubig, Pengchuan Zhang, and
622 Deva Ramanan. Evaluating text-to-visual generation with image-to-text generation. In *Proceed-*
623 *ings of the European Conference on Computer Vision (ECCV)*, pp. 366–384, 2024b.

624

625 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow match-
626 ing for generative modeling. In *Proceedings of the International Conference on Learning Repre-*
627 *sentations (ICLR)*, 2022.

628

629 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In *Proceed-*
630 *ings of the Advances in Neural Information Processing Systems (NeurIPS)*, pp. 34892–34916,
2023a.

631

632 Nan Liu, Shuang Li, Yilun Du, Josh Tenenbaum, and Antonio Torralba. Learning to compose visual
633 relations. In *Proceedings of the Advances in Neural Information Processing Systems (NeurIPS)*,
pp. 23166–23178, 2021.

634

635 Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B Tenenbaum. Compositional visual
636 generation with composable diffusion models. In *Proceedings of the European Conference on*
Computer Vision (ECCV), pp. 423–439, 2022.

637

638 Shaoteng Liu, Yuechen Zhang, Wenbo Li, Zhe Lin, and Jiaya Jia. Video-p2p: Video editing with
639 cross-attention control. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
Pattern Recognition (CVPR), pp. 8599–8608, 2024.

640

641 Zhiheng Liu, Yifei Zhang, Yujun Shen, Kecheng Zheng, Kai Zhu, Ruili Feng, Yu Liu, Deli Zhao,
642 Jingren Zhou, and Yang Cao. Cones 2: customizable image synthesis with multiple subjects. In
643 *Proceedings of the Advances in Neural Information Processing Systems (NeurIPS)*, pp. 57500–
57519, 2023b.

644

645 Nanye Ma, Shangyuan Tong, Haolin Jia, Hexiang Hu, Yu-Chuan Su, Mingda Zhang, Xuan Yang,
646 Yandong Li, Tommi Jaakkola, Xuhui Jia, et al. Scaling inference time compute for diffusion mod-
647 els. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*
(CVPR), pp. 2523–2534, 2025.

648 Mary Lou Maher. Evaluating creativity in humans, computers, and collectively intelligent systems.
649 In *Proceedings of the 1st DESIRE Network Conference on Creativity and Innovation in Design*,
650 pp. 22–28, 2010.

651

652 Chong Mou, Yanze Wu, Wenxu Wu, Zinan Guo, Pengze Zhang, Yufeng Cheng, Yiming Luo, Fei
653 Ding, Shiwen Zhang, Xinghui Li, et al. Dreamo: A unified framework for image customization.
654 In *Proceedings of the SIGGRAPH Asia 2025 Conference Papers*, 2025.

655

656 OpenAI. Chatgpt: Optimizing language models for dialogue. 2025. URL <https://www.openai.com>. Accessed: 2025-05-07.

657

658 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
659 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nico-
660 las Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael
661 Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Ar-
662 mand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision.
663 *Transactions on Machine Learning Research (TMLR)*, 2024.

664

665 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
666 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
667 models from natural language supervision. In *Proceedings of the International Conference on
Machine Learning (ICML)*, pp. 8748–8763, 2021.

668

669 Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao, Jiayu Chen, Xinyu Huang,
670 Yukang Chen, Feng Yan, et al. Grounded sam: Assembling open-world models for diverse visual
671 tasks. *arXiv preprint arXiv:2401.14159*, 2024.

672

673 Elad Richardson, Kfir Goldberg, Yuval Alaluf, and Daniel Cohen-Or. Conceptlab: Creative concept
674 generation using vlm-guided diffusion prior constraints. *ACM Transactions on Graphics (TOG)*,
675 43(3):1–14, 2024.

676

677 Adam Roberts, Hyung Won Chung, Anselm Levskaya, Gaurav Mishra, James Bradbury, Daniel
678 Andor, Sharan Narang, Brian Lester, Colin Gaffney, Afroz Mohiuddin, Curtis Hawthorne, Aitor
679 Lewkowycz, Alex Salcianu, Marc van Zee, Jacob Austin, Sebastian Goodman, Livio Baldini
680 Soares, Haitang Hu, Sasha Tsvyashchenko, Aakanksha Chowdhery, Jasmijn Bastings, Jannis Bu-
681 llian, Xavier Garcia, Jianmo Ni, Andrew Chen, Kathleen Kenealy, Jonathan H. Clark, Stephan Lee,
682 Dan Garrette, James Lee-Thorp, Colin Raffel, Noam Shazeer, Marvin Ritter, Maarten Bosma,
683 Alexandre Passos, Jeremy Maitin-Shepard, Noah Fiedel, Mark Omernick, Brennan Saeta, Ryan
684 Sepassi, Alexander Spiridonov, Joshua Newlan, and Andrea Gesmundo. Scaling up models and
685 data with τ_{5x} and $\text{seq} \circ$. *arXiv preprint arXiv:2203.17189*, 2022.

686

687 Shelly Sheynin, Adam Polyak, Uriel Singer, Yuval Kirstain, Amit Zohar, Oron Ashual, Devi Parikh,
688 and Yaniv Taigman. Emu edit: Precise image editing via recognition and generation tasks. In
689 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
690 pp. 8871–8879, 2024.

691

692 Ken Shoemake. Animating rotation with quaternion curves. In *Proceedings of the 12th annual
693 conference on Computer graphics and interactive techniques*, pp. 245–254, 1985.

694

695 H. Tang, L. Yu, and J. Song. Master: Meta style transformer for controllable zero-shot and few-
696 shot artistic style transfer. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
697 Pattern Recognition (CVPR)*, 2023.

698

699 InstantX Team. Instantx sd3.5-large ip-adapter page, 2024.

700

701 Saul A Teukolsky, Brian P Flannery, W Press, and W Vetterling. Numerical recipes in c. *SMR*, 693
(1):59–70, 1992.

702

703 Kuan-Chieh Wang, Daniil Ostashev, Yuwei Fang, Sergey Tulyakov, and Kfir Aberman. Moa:
704 Mixture-of-attention for subject-context disentanglement in personalized image generation. In
705 *Proceedings of the SIGGRAPH Asia 2024 Conference Papers*, 2024.

702 Renke Wang, Guimin Que, Shuo Chen, Xiang Li, Jun Li, and Jian Yang. Creative birds: Self-
703 supervised single-view 3d style transfer. In *Proceedings of the IEEE/CVF International Conference*
704 *on Computer Vision (ICCV)*, pp. 8775–8784, 2023.

705

706 Shitao Xiao, Yueze Wang, Junjie Zhou, Huaying Yuan, Xingrun Xing, Ruiran Yan, Chaofan Li,
707 Shuting Wang, Tiejun Huang, and Zheng Liu. Omnipgen: Unified image generation. In *Proceedings*
708 *of the IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
709 13294–13304, 2025.

710 Tianyi Xiong, Xiyao Wang, Dong Guo, Qinghao Ye, Haoqi Fan, Quanquan Gu, Heng Huang, and
711 Chunyuan Li. Llava-critic: Learning to evaluate multimodal models. In *Proceedings of the Computer*
712 *Vision and Pattern Recognition Conference (CVPR)*, pp. 13618–13628, 2025a.

713 Zeren Xiong, Ze dong Zhang, Zikun Chen, Shuo Chen, Xiang Li, Gan Sun, Jian Yang, and Jun
714 Li. Novel object synthesis via adaptive text-image harmony. In *Proceedings of the Advances in*
715 *Neural Information Processing Systems (NeurIPS)*, pp. 139085–139113, 2024.

716

717 Zeren Xiong, Zikun Chen, Zedong Zhang, Xiang Li, Ying Tai, Jian Yang, and Jun Li. Category-
718 aware 3d object composition with disentangled texture and shape multi-view diffusion. In *Proceedings*
719 *of the ACM International Conference on Multimedia (ACMMM)*, 2025b.

720 Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
721 adapter for text-to-image diffusion models. *arXiv preprint arXiv:2308.06721*, 2023.

722

723 Xulu Zhang, Xiao-Yong Wei, Jinlin Wu, Tianyi Zhang, Zhaoxiang Zhang, Zhen Lei, and Qing Li.
724 Compositional inversion for stable diffusion models. In *Proceedings of the AAAI Conference on*
725 *Artificial Intelligence (AAAI)*, number 7, pp. 7350–7358, 2024.

726

727 Y. Zhang, L. Wang, and H. Li. Inversion-based style transfer with diffusion models. In *Proceedings*
728 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 10146–
729 10156, 2023.

730

731 Xiang Zhao, Haowen Bai, Jiangshe Zhang, Yulun Zhang, Kai Zhang, Shuang Xu, Dongdong Chen,
732 Radu Timofte, and Luc Van Gool. Equivariant multi-modality image fusion. In *Proceedings of the*
733 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 25912–25921,
734 2024.

735

736 Naishan Zheng, Man Zhou, Jie Huang, Junming Hou, Haoying Li, Yuan Xu, and Feng Zhao. Probing
737 synergistic high-order interaction in infrared and visible image fusion. In *Proceedings of the*
738 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 26384–26395,
739 2024.

740

741 Yufan Zhou, Haoyu Shen, and Huan Wang. Freeblend: Advancing concept blending with staged
742 feedback-driven interpolation diffusion. *arXiv preprint arXiv:2502.05606*, 2025.

743

744

745 Xiadong Zou, Mingzhu Shen, Christos-Savvas Bouganis, and Yiren Zhao. Cached multi-lora com-
746 position for multi-concept image generation. In *Proceedings of the International Conference on*
747 *Learning Representations (ICLR)*, 2025.

748

749

750

751

752

753

754

755

756 **SUPPLEMENTARY MATERIALS**

758 This supplementary material provides additional technical details and extended results to support
 759 the main paper. We begin in **Section A** with two key discussions: the necessity of adjusting β_1
 760 and β_2 in our hierarchical parameter search, and a quantitative comparison of BNoise fusion strate-
 761 gies—concatenation versus interpolation. **Section B** describes the construction of our proposed
 762 IIOF benchmark dataset, including the criteria for category selection and object pairing strategies.
 763 **Section C** presents a comprehensive user study, providing human preference validation of our fu-
 764 sion results. In **Section D**, we outline the current limitations of our method, discuss remaining
 765 challenges, and suggest possible directions for future improvement. **Section E** contains our formal
 766 statement on the use of LLMs in this work, in accordance with ICLR policy. **Section F** details the
 767 full inference pipeline of our VMDiff framework. Finally, **Section G** showcases extensive qualita-
 768 tive results, further demonstrating the effectiveness and generalization ability of our method across
 769 diverse fusion scenarios.

770 **A ADDITIONAL DISCUSSIONS**

785 Figure 13: Illustration of our hierarchical parameter adjustment. The top row shows results from
 786 searching α ; the bottom row refines the fusion by fixing α and adjusting β_2 . **Consistent with**
 787 **Sec. 3.2, once the overall score S exceeds the acceptance threshold $T_h = 2.4$, the fusion becomes**
 788 **visually coherent and balanced**; when α -only optimization underperforms, the second-stage β_2
 789 **refinement raises S above the threshold.**

790 **Discussion on the necessity of adjusting β_1, β_2 .** As shown in Fig. 13, global optimization over α
 791 alone occasionally fails to yield well-fused results. To mitigate this, we first fix α^* (corresponding
 792 to the best similarity score in Eq. 4) and then perform a local refinement by optimizing β_1, β_2 . This
 793 adjustment allows the model to precisely calibrate the noise contribution of each object, enhancing
 794 both visual coherence and semantic balance in the final output.

795 **Discussion on BNoise.** As shown in Table 3 on the IIOF dataset, Ours (Concat before inversion)
 796 achieves state-of-the-art performance on most metrics. Although it ranks second on the LC metric,
 797 its substantial advantage on SS demonstrates that concatenation more effectively preserves and
 798 integrates complementary information from both inputs. In summary, concatenation before inversion
 799 yields superior visual quality and semantic faithfulness by retaining fine-grained details and guiding
 800 a more coherent denoising pathway, compared with either form of interpolation.

801 Table 3: Quantitative Evaluation of BNoise Fusion: Concatenation vs. Interpolation.

Models	VQA _{I5} ^{SA} ↑	VQA _{I5} ^{SCE} ↑	LC ^{SA} ↑	LC ^{SCE} ↑	VQA _{LLaVA} ^{SA} ↑	VQA _{LLaVA} ^{SCE} ↑	SS↑	Bsim↓
Random noise	0.497	0.438	7.261	7.077	0.287	0.314	1.570	0.682
Interp Before Inversion	0.504	0.441	7.439	7.390	0.293	0.321	1.551	0.678
Interp After Inversion	0.486	0.430	7.278	7.112	0.283	0.311	1.532	0.712
Ours(Concat Before Inversion)	0.508	0.442	7.426	7.291	0.298	0.325	1.586	0.693

806 **Discussion on additional ablation of BNoise and the α/β search.** To better understand the
 807 contributions of BNoise and the EAA search, we conduct an additional ablation on 1,184 pairs from IIOF,
 808 summarized in Fig. 14 and Table 4. We compare four variants: (i) **Baseline 1**, which uses random
 809 noise plus MDeNoise with a fixed $\alpha = 0.5$ (no BNoise, no search); (ii) **Baseline 2**, which augments
 Baseline 1 with BNoise by setting $\beta_1 = \beta_2 = 1$ (semantic noise injected, no search); (iii) **Baseline 1**

+ β_1, β_2 -search, which augments Baseline 1 with BNoise and an EAA search over (β_1, β_2) ; and (iv) Random noise + α -search, which applies EAA only to α without BNoise.

Figure 14: **Ablation of BNoise and the α/β search.** Each column shows the original image pair (left) and fused results from different variants: *Baseline 1* (random noise + MDeNoise with fixed $\alpha=0.5$), *Baseline 2* (Baseline 1 + BNoise with $\beta_1=\beta_2=1$), *Baseline 1 + β -search*, and *Random noise + α -search*. BNoise (columns 2–3) provides a more informative initialization that preserves structures from both sources, while β -search further balances semantic content in the noise. In contrast, random-noise + α -search alone often loses details, confirming the complementary roles of BNoise and the α/β search.

Table 4: Quantitative ablation of BNoise and the α/β search on the IIoF dataset.

Models	VQA _{T5} ^{SA} ↑	VQA _{T5} ^{SCE} ↑	LC ^{SA} ↑	LC ^{SCE} ↑	VQA _{LLaVA} ^{SA} ↑	VQA _{LLaVA} ^{SCE} ↑	SS ↑	Bsim↓
Baseline 1	0.496	0.419	7.186	7.065	0.283	0.320	1.563	0.691
Baseline 2	0.503	0.420	7.326	7.191	0.290	0.326	1.580	0.705
Baseline 1+ β_1, β_2 -search	0.553	0.461	7.723	7.679	0.320	0.359	1.760	0.553
Random noise+ α -search	0.603	0.508	8.009	8.017	0.357	0.394	1.972	0.354

Qualitatively, Baseline 1 often loses information from the sources, whereas Baseline 2 preserves more structures from both inputs, confirming that the semantic noise ϵ_b obtained via the denoise-invert cycle provides a more informative initialization than pure Gaussian noise. Adding β -search on top of BNoise further improves all SA/SCE and SS scores and reduces the imbalance metric B_{sim} from 0.691 to 0.553, indicating that (β_1, β_2) effectively rebalance how each source contributes to the noise. The random-noise+ α -search variant achieves higher SA/SCE and lower B_{sim} than Baseline 1, but still misses fine details and parts from the inputs, as seen in Fig. 14, due to the lack of a semantically informed noise initialization. Taken together, these results highlight complementary roles: BNoise produces a conditional, information-carrying noise ϵ_b , while the EAA search over α and (β_1, β_2) adjusts the contributions of the two sources in the mixed embeddings and in the noise, respectively. This motivates our full HSP+EAA design, which combines both components to obtain the most faithful and balanced hybrids.

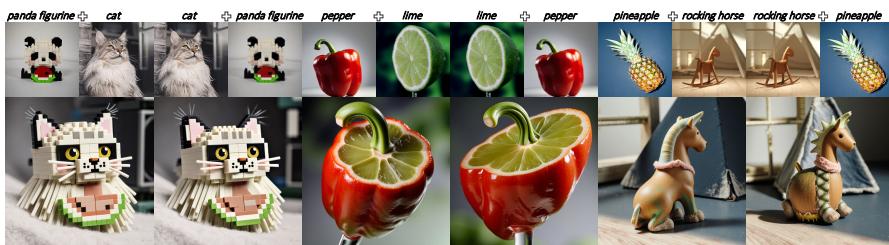
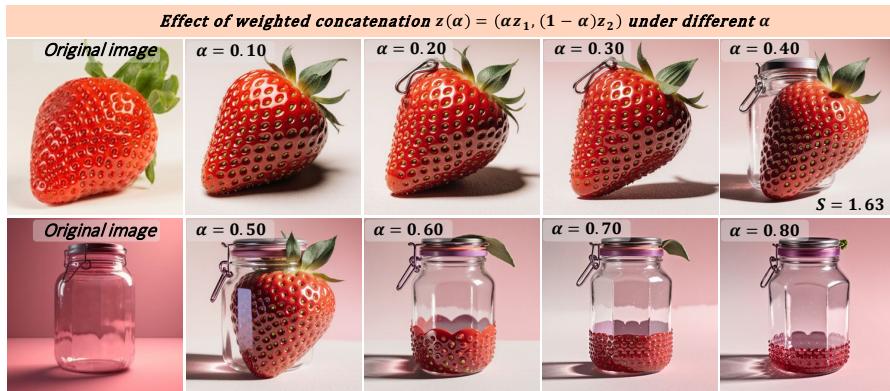


Figure 15: **Effect of swapping the order of T_1 and T_2 in the prompt.**

Discussion on name order. Fusion is, in principle, sensitive to the order of the category names in the guiding prompt, since the text encoder need not be strictly commutative. To probe this effect, we fix the image pair (I_1, I_2) and all hyperparameters, and only swap the order of the category tokens T_1

864 and T_2 in the prompt, using the ‘‘Random noise + MDeNoise ($\alpha = 0.5$)’’ baseline (Fig. 15). For most
 865 pairs (left and middle examples), the two orderings produce almost identical hybrids, indicating that
 866 our fusion behaves approximately symmetric with respect to name order. In a few harder cases
 867 (right), the leading token receives slightly more emphasis and extra attributes may appear, but both
 868 generations remain single, coherent hybrids rather than collapsing to one source. In the full VMDiff
 869 pipeline, this mild asymmetry is further reduced by the symmetric fusion score $S(\theta)$ and EAA
 870 search, which explicitly discourage strong bias toward a single category.

871 **Discussion on fusion strategy.** To better understand why we favor interpolation over concatenation,
 872 we also test a weighted concatenation variant $z_{\text{cat}}(\alpha) = \text{concat}(\alpha z_1, (1-\alpha)z_2)$, and fix the source
 873 images while varying α from 0.1 to 0.8 (Fig. 16). As the figure shows, relatively large changes in
 874 α are required to noticeably alter the result, confirming that α exerts much weaker control in the
 875 concatenation space than in the interpolated space. More importantly, across all settings the fusion
 876 remains *stitching-like*: one region of the image is dominated by the strawberry and the other by the
 877 jar, with a clear boundary between them. This suggests that separating z_1 and z_2 into distinct blocks
 878 encourages the network to treat them as two pieces to be glued together, rather than a single coherent
 879 object. In contrast, our MDeNoise stage mixes z_1 and z_2 via spherical interpolation within the
 880 *same* latent subspace, leading to much more integrated hybrids with smoothly shared geometry and
 881 appearance (see Fig. 21). These observations support our choice of slerp-based mixing in MDeNoise
 882 rather than concatenation-based fusion.



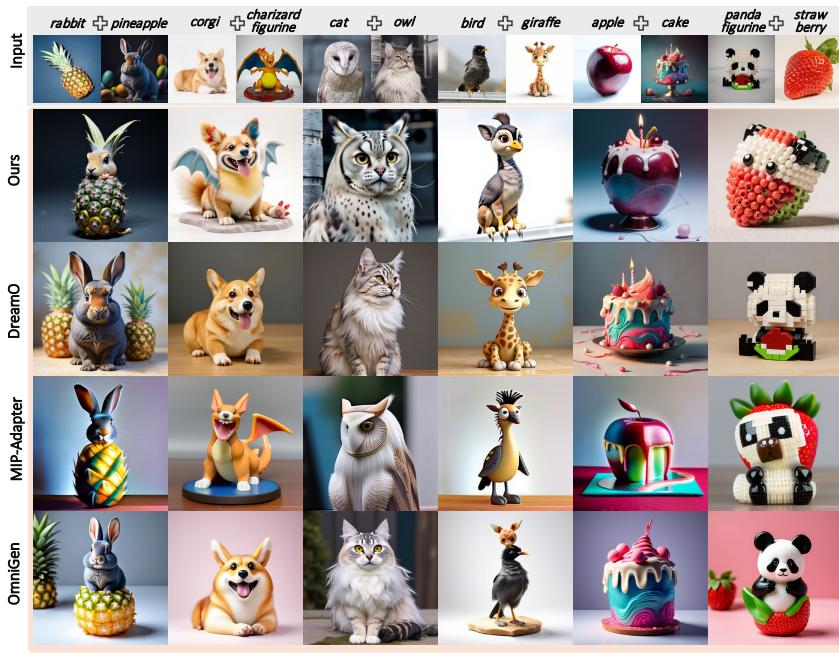
883
 884 **Effect of weighted concatenation $z(\alpha) = (\alpha z_1, (1-\alpha)z_2)$ under different α**
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896 Figure 16: **Behaviour of weighted concatenation** $z_{\text{cat}}(\alpha) = \text{concat}(\alpha z_1, (1-\alpha)z_2)$ **under different α .** We fix the source images and vary α from 0.1 to 0.8. Large changes in α are required
 897 to noticeably alter the result, and across all settings the fusion remains stitching-like: one region is
 898 dominated by the strawberry and the other by the jar, with a clear boundary between them.
 899

900 **Why MIP-Adapter scores higher on SA/SCE.** At first glance, MIP-Adapter appears visually weaker
 901 than DreamO and OmniGen, yet it achieves higher SA/SCE scores in Table 1. This is because our
 902 metrics are explicitly designed to measure *semantic fusion quality* rather than photo-realism. SA
 903 and SCE are LMM-based scores that reward (i) strong alignment with the fusion prompt and (ii) the
 904 presence of a *single* fused entity that simultaneously reflects both source categories. As illustrated
 905 in Fig. 17, MIP-Adapter typically produces one coherent object that clearly contains cues from both
 906 inputs, even though many fine-grained instance details are washed out. DreamO and OmniGen, on
 907 the other hand, often generate highly realistic and aesthetically pleasing images, but they frequently
 908 either omit one concept or render two separate objects instead of a single hybrid. Such behaviours
 909 are explicitly penalized by SA/SCE (and SS), which explains why MIP-Adapter scores higher in
 910 Table 1 despite being less visually appealing than DreamO and OmniGen in Fig. 17 and receiving
 911 lower user preference in Table 6.

913 B DATASETS

914
 915 To systematically evaluate our fusion framework, we construct a comprehensive benchmark dataset
 916 named **IIOF** (Image-Image Object Fusion), specifically tailored for assessing diverse and semanti-
 917 cally rich visual concept mixing.

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938



939 Figure 17: **Additional qualitative comparisons on IIOF.**

940
941 We meticulously selected **40 distinct object categories**, strategically organized into four semantic
942 groups: *Animals*, *Fruits*, *Artificial Objects*, and *Character Figurines*. Each group comprises 10
943 unique classes, a design choice that ensures both intra-group consistency and ample inter-group
944 diversity. A complete list of all selected categories is provided in Table 5.

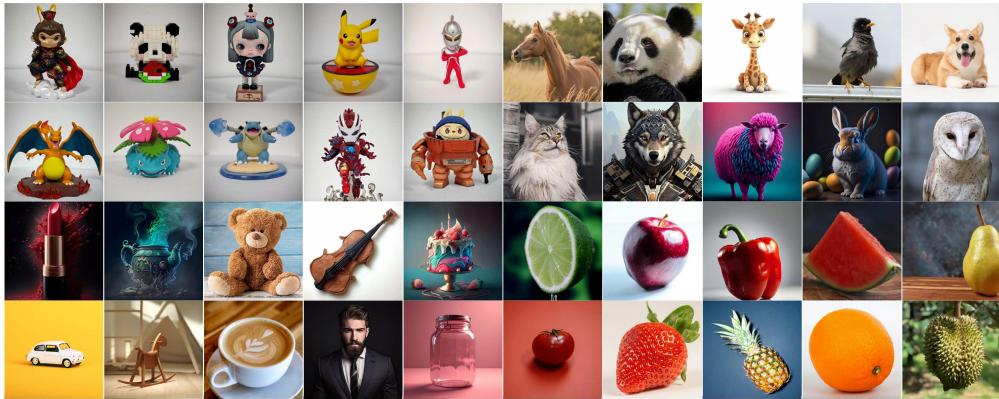
945 For each chosen class, we sourced one high-quality, representative image. The majority of these
946 images were obtained from established public benchmarks such as PIE-Bench (Ju et al., 2024)
947 and popular stock image platforms like Pexels². Recognizing the scarcity of high-quality, pub-
948 licly available data for character figurines, we self-captured these images under controlled con-
949 ditions, ensuring consistent lighting and resolution to maintain visual quality and diversity across
950 the dataset. Figure 18 showcases all the selected images, providing a visual overview of the
951 dataset’s content. Additionally, each selected image is paired with its corresponding **textual cat-
952 egory name**, as detailed in Table 5, to facilitate evaluations for prompt-based fusion methods.

953 Initially, we derived **780 unique image pairs**
954 by combining each of the 40 objects with ev-
955 ery other object once, without considering in-
956 put order. However, to ensure a comprehensive
957 evaluation and enable fair comparison across
958 all methods, particularly those sensitive to in-
959 put order (e.g., ATIH (Xiong et al., 2024)),
960 we further expanded IIOF to include **all pos-
961 sible ordered pairs** among the 40 categories.
962 This expansion yielded a total of **1,560 im-
963 age pairs**, where each combination (A, B) is
964 present alongside its reverse (B, A) . This ex-
965 haustive pairing strategy allows us to rigorously
966 assess fusion performance across a wide spec-
967 trum of semantic relationships—ranging from
968 semantically close concepts to challenging dis-
969 tant combinations, such as fusing a ‘violin’ with
970 a ‘panda’ or a ‘horse’ with ‘lipstick’. This also
971 critically highlights our model’s ability to gen-
972 eralize and compose novel concepts effectively across diverse domains.

Table 5: List of Objects in the IIOF Dataset by Category.

Category	Object Names
Animals	wolf, panda, owl, rabbit, horse, giraffe, corgi, cat, bird, sheep
Fruits	apple, orange, strawberry, durian, lime, pear, pineapple, watermelon, tomato, pepper
Artificial Objects	lipstick, violin, coffee cup, rocking horse, glass jar, car, teapot, cake, man, teddy bear
Character Figurines	iron man figurine, monkey king figurine, doll figurine, pikachu figurine, charizard figurine, ultraman figurine, astronaut figurine, venusaur figurine, panda figurine, squirtle figurine

²<https://www.pexels.com/>



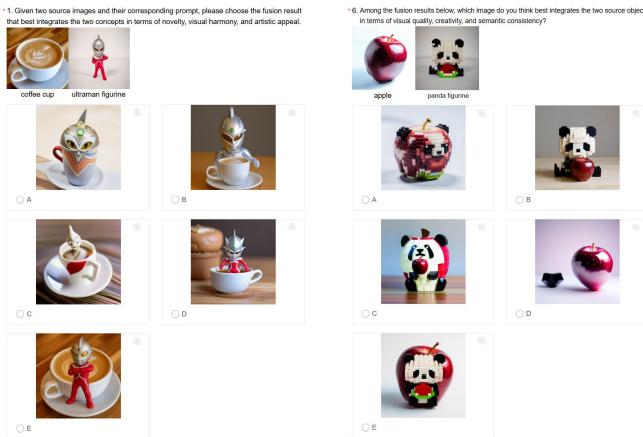
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988 Figure 18: Original Object Image Set.
989

C USER STUDY

990 To evaluate the perceptual quality and human preference for the novel images generated by our
991 fusion framework, we conducted two user studies. These studies assessed our method, **VMD-
992 iff**, against state-of-the-art baselines in two main categories: *Multi-Concept Generation* meth-
993 ods and *Mixing and Image Editing* methods. The overall vote distributions are visualized in
994 Fig. 8, while detailed per-example preferences are presented in Table 6 and Table 7. An ex-
995 ample user study question for the *Multi-Concept Generation* group and the *Mixing and Image
996 Editing* group is provided in Fig. 19. A total of 76 participants completed the survey, each
997 evaluating 12 fused results (6 from each group), contributing a total of 912 votes. Participants
998 were asked to select the fusion result that best integrated the given concepts in terms of visual
999 quality, creativity, and semantic consistency. As shown in Fig. 8, our method consistently re-
1000 ceived the highest number of votes in both evaluation groups. In the *Mixing and Image Editing*
1001 category (left pie chart), VMDiff garnered a significant **397 votes (87.1%)** of the total. This
1002 considerably surpassed other methods such as Stable Flow (Avrahami et al., 2025) (5 votes,
1003 1.1%), ATIH (Xiong et al., 2024) (34 votes, 7.5%), Conceptlab (Richardson et al., 2024) (4
1004 votes, 0.9%) and FreeBlend (Zhou et al., 2025) (16 votes, 3.5%). For instance, as illustrated in
1005 Fig. 19, for the “astronaut figurine-monkey king figurine” fusion, our method obtained 81.58%
1006 of the votes, demonstrating its strong capability in seamlessly integrating distinct visual elements.
1007

1008 In the *Multi-
1009 Concept Generation*
1010 category (right
1011 pie chart), **VMD-
1012 iff** led with **307
1013 votes (67.3%)**,
1014 significantly out-
1015 performing GPT-
1016 4o (OpenAI, 2025),
1017 which ranked sec-
1018 ond with 59 votes
1019 (12.9%). Other
1020 baselines—DreamO
1021 (56 votes, 12.3%),
1022 MIP-Adapter (17
1023 votes, 3.7%), and
1024 OmniGen (17 votes,
1025 3.7%)—received
notably fewer votes.

1026 In the “doll fig-
1027 ure-corgi” case, VMDiff earned **78.95%** of preferences. Even in more challenging cases like
1028 “apple-panda figurine” (see Fig. 19), it maintained an edge with **75.00%** over GPT-4o’s **5.26%**.
1029 These results indicate that **VMDiff** better aligns with human preferences for visual coherence,



1026 Figure 19: An example of a user study comparing various multi-concept gen-
1027 eration, mixing and image editing methods.
1028

creativity, and concept integration, consistently outperforming existing methods across diverse fusion scenarios.

Table 6: User study with multi-concept generation methods.

image-image	A(Our VMDiff)	B(DreamO)	C(MIP-Adapter)	D(OmniGen)	E(GPT-4o)
coffee cup-ultraman figurine	43(56.58%)	11(14.47%)	7(9.21%)	3(3.95%)	12(15.79%)
sheep-car	57(75.00%)	4(5.26%)	1(1.32%)	2(2.63%)	12(15.79%)
doll figurine-corgi	60(78.95%)	1(1.32%)	3(3.95%)	3(3.95%)	9(11.84%)
lime-glass jar	45(59.21%)	22(28.95%)	1(1.32%)	0(0.00%)	8(10.53%)
cake-owl	45(59.21%)	5(6.58%)	3(3.95%)	9(11.84%)	14(18.42%)
apple-panda figurine	57(75.00%)	13(17.11%)	2(2.63%)	0(0.00%)	4(5.26%)

Table 7: User study with mixing and image editing methods.

image-image	A(Our VMDiff)	B(Stable Flow)	C(ATIH)	D(Conceptlab)	E(FreeBlend)
astronaut figurine-monkey king figurine	62(81.58%)	2(2.63%)	7(9.21%)	1(1.32%)	4(5.26%)
man-pikachu figurine	68(89.47%)	0(0.00%)	4(5.26%)	1(1.32%)	3(3.95%)
doll figurine-panda	62(81.58%)	0(0.00%)	13(17.11%)	1(1.32%)	0(0.00%)
iron man figurine-charizard figurine	69(90.79%)	3(3.95%)	3(3.95%)	0(0.00%)	1(1.32%)
squirtle-wolf	66(86.84%)	0(0.00%)	4(5.26%)	1(1.32%)	5(6.58%)
ultraman figurine-venusaur figurine	70(92.11%)	0(0.00%)	3(3.95%)	0(0.00%)	3(3.95%)

D LIMITATIONS

Our method effectively fuses two input images into a coherent hybrid object that captures broad conceptual information; however, it has two main limitations. First, inference relies on iterative optimization, which increases computational cost and latency (Table 8). A promising remedy is to train a lightweight prediction/refinement module that guides the fusion in a single forward pass, thereby reducing runtime while maintaining—or even improving—visual quality and semantic balance. Second, in a small fraction of cases the fused outputs do not fully align with human preferences (Fig. 20), exhibiting semantic inconsistencies or stylistic imbalance. Although repeated noise resampling and selection can mitigate these failures, this heuristic has limited controllability. In future work, we will pursue more controllable, preference-aligned fusion via explicit human feedback, aesthetic priors, or learned alignment objectives, enabling results that more reliably reflect human intent and aesthetics.

Figure 20: Examples of failure cases where our method produces fused outputs with suboptimal semantic or stylistic coherence.

Table 8: Runtime comparison across methods.

Methods	Avg. Time / Pair
Ours	2 min 46 sec
ATIH	10 sec
Stable Flow	27 sec
Conceptlab	13 min 45 sec
FreeCustom	22 sec
OmniGen	53 sec
Freeblend	12 sec
MIP-Adapter	12 sec
DreamO	8 sec

E STATEMENT ON LLM USAGE

In accordance with the ICLR policy on the use of Large Language Models (LLMs), we hereby declare that an LLM (ChatGPT, GPT-5) was used solely to aid or polish the writing of this paper,

1080 such as improving grammar and wording. All ideas, technical content, and experimental results are
 1081 entirely our own. Further details are described within the paper. The authors take full responsibility
 1082 for the accuracy and integrity of the content.
 1083

1084 **Algorithm 1:** VMDiff with Efficient Adaptive Adjustment (VMDiff-EAA)

1085 **Input:** images I_1, I_2 , labels T_1, T_2 , prompt P_G , threshold TH , max rounds K
 1086 **Output:** fused image I^* and parameters $\theta^* = \{\alpha^*, \beta_1^*, \beta_2^*, \epsilon^*\}$
 1087 1 Compute embeddings $z_1 = \mathcal{E}_I(I_1)$, $z_2 = \mathcal{E}_I(I_2)$, $z_p = \mathcal{E}_T(P_G)$;
 1088 2 Initialize $\alpha = 0.5$, $\beta_1 = \beta_2 = 1.0$; $S_{\text{best}} = -\infty$, $\theta_{\text{best}} = \emptyset$;
 1089 3 **for** $k = 1$ **to** K **do**
 1090 4 Sample noise $\epsilon \sim \mathcal{N}(0, I)$;
 1091 5 $z_{\text{SCat}} = \text{concat}(\beta_1 z_1, \beta_2 z_2)$, $x_T = \epsilon$;
 1092 6 **for** $t = T$ **to** t_{den} **do**
 1093 7 $x_{t-1} = x_t - (\sigma_t - \sigma_{t-1})v_\phi(x_t, t, z_{\text{SCat}}, \gamma_{\text{den}}, z_p)$
 1094 8 **for** $t = t_{\text{den}}$ **to** T **do**
 1095 9 $x_{t+1} = \hat{x}_t + (\sigma_{t+1} - \sigma_t)v_\phi(\hat{x}_t, t, z_{\text{SCat}}, \gamma_{\text{inv}}, z_p)$
 1096 10 $\epsilon_r = \hat{x}_T$;
 1097 11 $\alpha^* = \text{GoldenSearch}(\alpha \in [0, 1], f(\alpha) = S(\alpha, \beta_1, \beta_2, \epsilon_r))$;
 1098 12 $(S, S_{I_1}, S_{I_2}, S_{T_1}, S_{T_2}) = \text{Score}(\alpha^*, \beta_1, \beta_2, \epsilon_r)$;
 1099 13 **if** $S > S_{\text{best}}$ **then**
 1100 14 $S_{\text{best}} = S$; $\theta_{\text{best}} = \{\alpha^*, \beta_1, \beta_2, \epsilon_r\}$
 1101 15 **if** $S \geq TH$ **then**
 1102 16 **return** $I(\theta^*)$, θ^*
 1103 17 $S_1 = S_{I_1} + S_{T_1}$, $S_2 = S_{I_2} + S_{T_2}$;
 1104 18 **if** $S_1 > S_2$ **then**
 1105 19 $\beta_2^* = \text{GoldenSearch}(\beta_2 \in [\beta_{\min}, \beta_{\max}], f(\beta_2))$
 1106 20 **else**
 1107 21 $\beta_1^* = \text{GoldenSearch}(\beta_1 \in [\beta_{\min}, \beta_{\max}], f(\beta_1))$
 1108 22 $(S', \cdot) = \text{Score}(\alpha^*, \beta_1^*, \beta_2^*, \epsilon_r)$;
 1109 23 **if** $S' > S_{\text{best}}$ **then**
 1110 24 $S_{\text{best}} = S'$; $\theta_{\text{best}} = \{\alpha^*, \beta_1^*, \beta_2^*, \epsilon_r\}$
 1111 25 **if** $S' \geq TH$ **then**
 1112 26 Normalize z_1, z_2 and compute spherical interpolation $z_{\text{SInp}}(\alpha^*)$;
 1113 27 $x_T = \epsilon_r$;
 1114 28 **for** $t = T$ **to** 0 **do**
 1115 29 $x_{t-1} = x_t - (\sigma_t - \sigma_{t-1})v_\phi(x_t, t, z_{\text{SInp}}(\alpha^*), \gamma_{\text{gen}}, z_p)$
 1116 30 $I = \mathcal{D}(x_0)$; **return** I , θ^*
 1117
 31 **if** $\theta_{\text{best}} \neq \emptyset$ **then**
 32 Decode best parameters θ_{best} via MixingDenoise;
 33 **return** I , θ_{best}
 1120
 34 **return** \emptyset ;

1122

1123

F ALGORITHM

1124

1125 Algorithm 1 outlines the complete inference process of our proposed framework, **VMDiff**, which
 1126 integrates a noise refinement step and an efficient adaptive adjustment (EAA) loop. Given two input
 1127 images I_1, I_2 and their category labels T_1, T_2 , we construct a prompt P_G and initialize the fusion
 1128 parameters $\theta = \{\alpha, \beta_1, \beta_2, \epsilon\}$.
 1129

1130 The algorithm begins by sampling initial Gaussian noise ϵ , which is refined through a denoising-
 1131 inversion procedure to produce a structure-aware latent representation ϵ_r . The core loop involves:
 1132

1133 • **Searching** for the optimal interpolation factor α using Golden Section Search to maximize
 1134 the similarity score $S(\theta)$.

- **Conditionally adjusting** the noise scaling factors β_1, β_2 when the current fusion score is below a threshold TH , guiding the fusion toward balance between the two source objects.
- **Returning** a fused image $I(\theta^*)$ once a satisfactory similarity score is achieved.

This design ensures a lightweight and interpretable optimization routine over a low-dimensional parameter space. The algorithm reliably produces perceptually and semantically coherent hybrid images, as validated in our experiments.

G MORE RESULTS

In this section, we present additional qualitative results with **resampling disabled**, to evaluate VMDiff under a deterministic setting and further demonstrate its effectiveness and generalization. Fig. 1 shows generations at 1024×1024 resolution. Figs. 21, 22, 23, 24, 25, 26, 27, 28, and 29 provide diverse fusion examples spanning animals, fruits, artificial objects, and character figurines. In all figures, the leftmost column displays the source images, and the adjacent columns show the fused outputs.

These examples are generated from our IIOF dataset and cover a wide range of visual appearances and semantic attributes. Across varied fusion types—such as person–fruit, animal–object, and object–object—the results consistently exhibit structural coherence, balanced integration, and high visual fidelity. This indicates that VMDiff can integrate symbolic and structural cues into stylistically consistent hybrids, regardless of whether the source concepts are semantically similar or dissimilar.

Overall, these results substantiate the strong generalization of VMDiff, yielding novel, imaginative, and structurally plausible hybrid objects from diverse real-world inputs, even without resampling or seed variation.

Figure 21: **More Results.** The primary source (*astronaut figurine*, top-left) is fused with secondary inputs (left column), with results shown on the right.

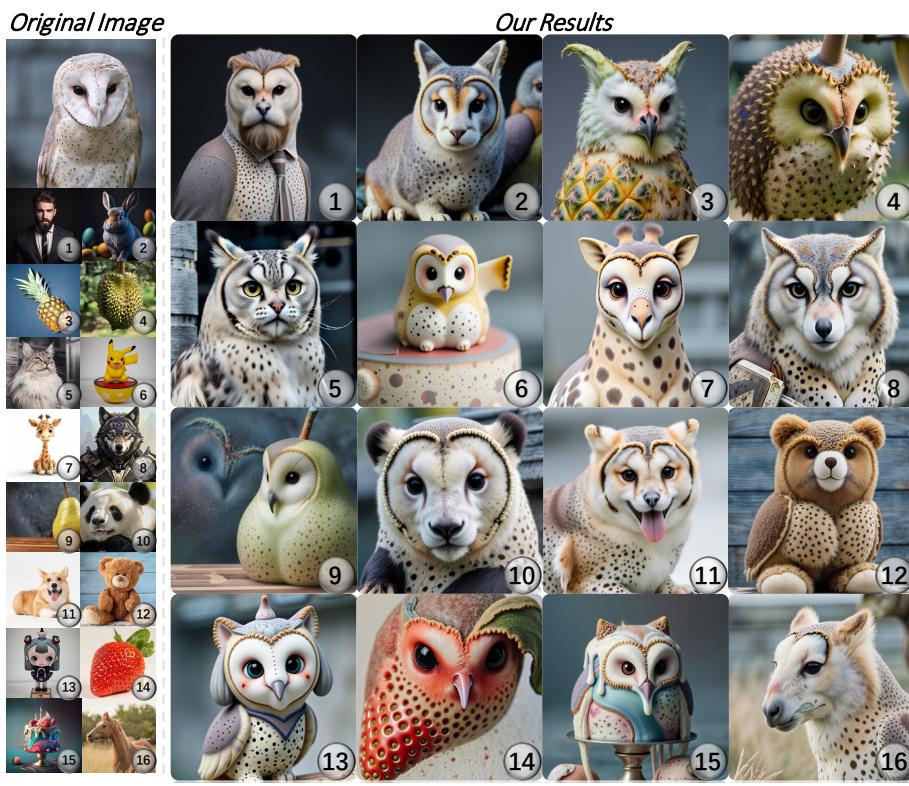
1213 Figure 22: **More Results.** The primary source (*coffee cup*, top-left) is fused with secondary
1214 inputs (left column), with results shown on the right.

Figure 23: **More Results.** The primary source (*charizard figurine*, top-left) is fused with secondary inputs (left column), with results shown on the right.

1267 Figure 24: **More Results.** The primary source (apple, top-left) is fused with secondary inputs (left column), with results shown on the right.
1268

Figure 25: **More Results.** The primary source (panda figurine, top-left) is fused with secondary inputs (left column), with results shown on the right.

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320



1321 **Figure 26: More Results.** The primary source (*owl*, top-left) is fused with secondary inputs (left
1322 column), with results shown on the right.

1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

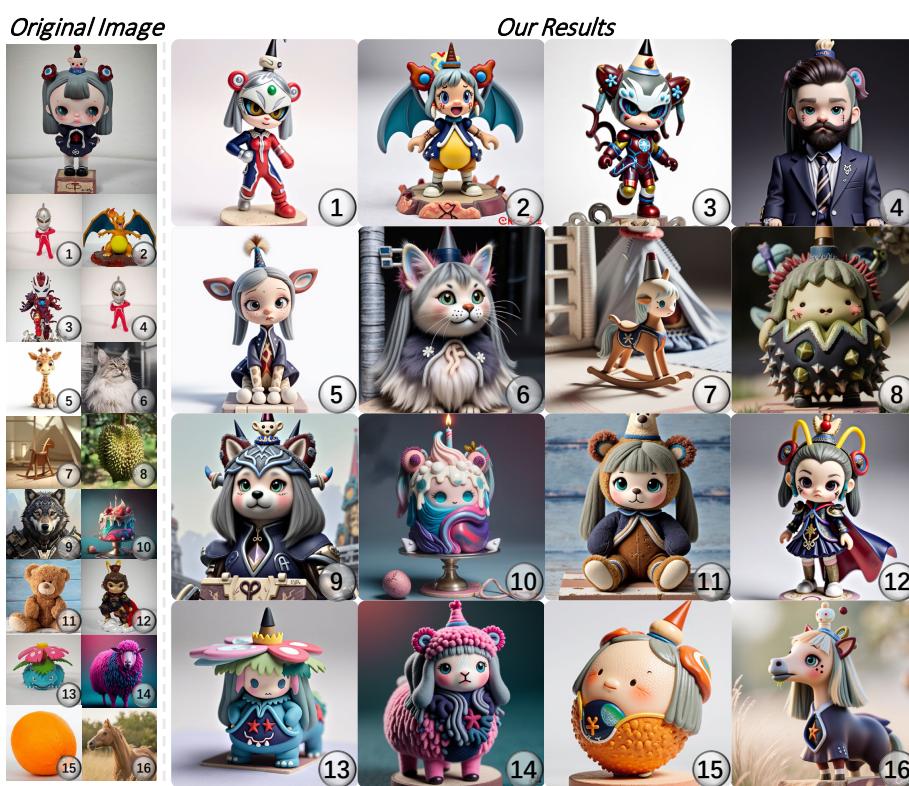


Figure 27: **More Results.** The primary source (*doll figurine*, top-left) is fused with secondary inputs (left column), with results shown on the right.

1375 Figure 28: **More Results.** The primary source (bird, top-left) is fused with secondary inputs (left
1376 column), with results shown on the right.

Figure 29: **More Results.** The primary source (Iron man figurine, top-left) is fused with secondary inputs (left column), with results shown on the right.