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Figure 1: Two groups (rows) illustrating our VMDiff’s capability to generate coherent hybrid ob-
jects. For each group, images from the 2nd to the 5th column are the product of fusing the source

image in the 1st column with the corresponding image in the top left.

ABSTRACT

Creating novel images by fusing visual cues from multiple sources is a funda-
mental yet underexplored problem in image-to-image generation, with broad ap-
plications in artistic creation, virtual reality and visual media. Existing methods
often face two key challenges: coexistent generation, where multiple objects are
simply juxtaposed without true integration, and bias generation, where one ob-
ject dominates the output due to semantic imbalance. To address these issues,
we propose Visual Mixing Diffusion (VMDIff), a simple yet effective diffusion-
based framework that synthesizes a single, coherent object by integrating two in-
put images at both noise and latent levels. Our approach comprises: (1) a hybrid
sampling process that combines guided denoising, inversion, and spherical inter-
polation with adjustable parameters to achieve structure-aware fusion, mitigating
coexistent generation; and (2) an efficient adaptive adjustment module, which in-
troduces a novel similarity-based score to automatically and adaptively search for
optimal parameters, countering semantic bias. Experiments on a curated bench-
mark of 780 concept pairs demonstrate that our method outperforms strong base-
lines in visual quality, semantic consistency, and human-rated creativity. Project.

1 INTRODUCTION

Synthesizing novel images by combining visual elements from multiple sources is a fundamental

challenge in image-to-image generation, with wide applications in virtual reality (Haque et al.}[2023
g et al, 2024} [Zhao et al., 2024), product design (Ju et al.

Chen et al, [2024)), digital media (Zhen

4

2024

[Sheynin et all, 2024}, [Wang et al.

12024) and film and game (Ceylan et all [2023} [Liu et al.

2024

. In particular, visual composition methods generate high-fidelity images by composing ob-

jects through various strategies, such as combining object words into complex sentences (Liu et al.,

2022), merging multiple objects (Liu et al.,2021), or blending scenes and styles (Zou et al.,[2025).
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Coexistent generation
Figure 2: Failed fusions between two object images. GPT-40 (2025) performs coexistent

generations (left), while DreamO (Mou et al., [2025) exhibits bias generations (right). In contrast,
our method achieves a seamless and harmonious fusion of the two objects.

Although these approaches effectively position different objects or parts within an image, they often
struggle to seamlessly integrate distinct elements into a single object. Recent semantic mixing
et al} 2024}, Xiong et al.l [2024) explores novel object synthesis by combining textual descriptions
of one object with another images or text. In contrast, this work focuses on visual mixing—directly
blending two object images into a single, imaginative, and visually cohesive concept.

However, when existing powerful methods are used to perform this visual mixing task, we identify
two key limitations. First, coexistent generation (see Fig. [2] left) occurs when different objects
merely appear in the same scene—either side-by-side or partially overlapped—without achieving
true visual and semantic integration. While the resulting compositions are spatially coherent, they
remain conceptually disjoint. For example, OpenAl’s recent GPT-40 produces an
image where the glass jar and owl overlap but fail to meaningfully fuse. Second, bias generation
(see Fig. 2} right) arises when the model generates only one object while omitting the other. This
asymmetry likely stems from imbalanced representations or unresolved semantic conflicts, leading

to outputs that disproportionately emphasize one object. For instance, DreamO (Mou et al., [2025)
generates the lipstick while entirely neglecting the iron man figurine.

To address these limitations, we develop Visual Mixing Diffusion (VMDIff), a simple yet effec-
tive framework for synthesizing novel, coherent objects that seamlessly integrate two input images.
VMDiff ensures structural plausibility and semantic balance through two key components: a Hy-
brid Sampling Process (HSP) and an Efficient Adaptive Adjustment (EAA). HSP integrates the
two inputs through noise inversion and feature fusion. The inversion refines an initial noise vector
conditioned on a concatenated input object embedding with two parameters and their corresponding
text prompt, ensuring deep information mixing to prevent mere juxtaposition. Subsequently, feature
fusion employs a curvature-respecting interpolation to blend image embeddings, with a scale factor
controlling either object from dominating and thus countering bias generation. EAA automates the
search for optimal parameters by proposing a novel similarity-based score that measures alignment
with both visual/semantic similarity and balance between the fused object and the input object im-
ages/their category labels. By maximizing this score, the EAA dynamically adjusts the influence of
each input, ensuring semantically coherent and visually faithful fusions across diverse object pairs.

Our contributions are summarized as follows: (1) We introduce a hybrid sampling process that con-
structs optimized semantic noise via guided denoising and inversion, combined with a curvature-
aware latent fusion strategy using spherical interpolation for smooth and tunable blending. (2) We
present an efficient adaptive adjustment algorithm that adjusts fusion parameters to achieve seman-
tic and visual balance via a lightweight score-driven search. (3) By integrating them, we propose
VMDiff, a unified and controllable framework for object-level visual concept fusion. Experiments
on a curated benchmark of 780 concept pairs demonstrate that our method achieves superior object
synthesis, excelling in semantic consistency, visual harmony, and user-rated creativity.

2 RELATED WORK

Multi-Concept Generation. Multi-concept generation seeks to synthesize images representing
multiple user-defined concepts, typically from a few reference images per concept. Early works
such as Custom Diffusion (Kumari et al.,[2023)) and SVDiff extend single-concept
personalization by fine-tuning on joint data or merging customized models. Later methods
2023}, [Liu et al.,[2023b)) enhance compositionality by merging LoRA modules or token embeddings
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Figure 3: Overview of our VMDIff framework. Given two input images and their categories, the
Hybrid Sampling Process (HSP) fuses them using noise inversion, scale interpolation (SInp) and
scale concatenation (SCat). Efficient adaptive adjustment (EAA) optimizes fusion parameters § =
{a, 1, B2, €} via a similarity score (SS) that measures visual, semantic, and balance consistency.

via gradient fusion (Gu et al.,[2023)) or spatial inversion (Zhang et al.,|2024)). More recent approaches
further improve efficiency and flexibility: FreeCustom (Ding et al.| 2024) employs multi-reference
self-attention and weighted masks for training-free composition, while MIP-Adapter (Huang et al.,
2025) mitigates object confusion with a weighted-merge strategy. OmniGen (Xiao et al.,[2025) and
DreamO (Mou et al.| 2025) provide unified instruction-based frameworks for diverse generation
tasks. Unlike prior methods that explicitly separate input concepts, our approach introduces a uni-
fied fusion framework that integrates two concept inputs into a novel object with coherent structure
and balanced semantics.

Semantic Mixing. Creativity, spanning domains from scientific theories to culinary recipes, has
long been a key driver of progress in artificial intelligence (Boden, 2004} Maher, |2010; |Wang et al.}
2023} Xiong et al.,|2025b)). In this context, semantic mixing has emerged as a promising approach for
generating novel objects by fusing features from multiple concepts into a single coherent representa-
tion. Unlike traditional style transfer (Zhang et al., 2023; Tang et al.,|2023}; |[Ke et al., | 2023) or image
editing (Avrahami et al.l [2025; |Dong & Han, 2023; Brooks et al., [2023}; |Gal et al., [2023)—which
emphasize texture transfer or localized modifications while preserving layout—semantic mixing
focuses on concept-level integration within a single entity. Conceptlab (Richardson et al., [2024)
interpolates token embeddings to synthesize imaginative entities, while TP20 (Li et al., 2024) en-
hances controllability by aligning and blending prompt embeddings. However, both operate purely
in the textual domain and lack support for real visual content. MagicMix (Liew et al., [2022)) fuses
image latents with text prompts during denoising, preserving spatial structure, while ATIH (Xiong
et al.,|2024) improves semantic alignment through more coordinated integration of visual and tex-
tual inputs. FreeBlend (Zhou et al., 2025) performs staged interpolation in latent space to produce
blended objects. In contrast, our method integrates structural and semantic cues from real image
concepts, generating hybrid objects that are both visually coherent and semantically balanced.

3  VISUAL MIXING DIFFUSION

In this section, we present a Visual Mixing Diffusion (VMDIff) for synthesizing novel objects im-
ages in Fig. Our method consists of two key components. We introduce a Hybrid Sampling
Process (HSP, that generates a new object image by blending two distinct inputs using learned
scale factors and noise. An Efficient Adaptive Adjustment (EAA, dynamically adjusts the
scale factors and noise based on a Similarity Score (SS), ensuring high-quality object synthesis.

3.1 HYBRID SAMPLING PROCESS

Given two distinct images /; and 15, along with their respective category labels T} and 75 (e.g., [ron
Man and Duck), we first construct a guiding prompt Pg: “A photo of < T > creatively fused with
< T >.” and sample an initial Gaussian noise € ~ N(0, ). For convenience, we denote an input
data D = {Iy, I, Ty, Tz, Pg}. We first employ pretrained image/text encoders £;(-) /Er(-) of Flux-



Krea 2025) to project both visual and textual modalities into a unified image-language
latent space. Specifically, these embeddings are extracted by z1 = &;(I1), 22 = &1(l2), 2z, =
Er(Pg). Using these embeddings, HSP includes blending noise and mixing denoise.

Blending Noise (BNoise): Directly sampling standard Gaussian noise to generate a blend of two ob-
jects frequently produces incomplete results, with key features such as arms or legs missing (Fig. ).
This occurs because random noise contains no information about the input objects. Our solution is
to refine an initial noise vector e, transforming it into a visually and semantically-informed estimate
that faithfully represents the source data. Inspired by Rectified Flow (Albergo & Vanden-Eijnden,
[2023), this is achieved through a guided denoising and inversion process. Using inputs ¢, 21, 22, zp,
we denoise to an intermediate timestep tq4ep, and invert to a refined noise €, which is defined as:

denoise: t decreases from T to tgen, starting xr=e

By = Ty, = Ty—1 = T — (04 — 04—1)Ve (T4, L, Zscar(21, 223 B1, B2), Ydens 2p),
€= Tp <= Typ1 = T+ (0p41 — 00) 0 (Tt t, 2scai(21, 223 B15 B2) s Yinvs Zp)5

(1)

BNoise inversion: ¢ increases from tgen to T, starting Te=x+ den

where z; and &, are latent variables at timestep ¢, v, denotes the noise prediction network, o; con-
trols the sampler parameter. For conditioning, we adopt parameters from 2025): a high
denoising strength 4., = 5 ensures strong guidance, while an inversion strength of i,y = 0 is used
to reduce distortion in the noise space. The total number of timesteps 7" is 999, with a predefined
intermediate denoising timestep at {4., = 652. In equationlII, zp provides the semantic information,
while zgc, provides visual information. Here, we introduce two learnable factors 31, 82 € R to
create a scale concatenation (SCat) of the input latents: zscq (21, 22; 81, B2) = concat(B; 21, B222).

Discussion on BNoise: concatenate ocsnoimse
vs. interpolate. We hypothesize that
interpolating mismatched embeddings
obscures subtle features, while con-
catenation preserves them, allowing [
the inversion process to refine noise B =
containing the full concept. To test Figure 4: Different BNoise strategies.

this, we compare Interpolate before BNoise: Blend embeddings first, then refine the noise, and
Interpolate after BNoise: Refine noise from each embedding first, then blend the results. Fig. ]
shows that both interpolation methods fail to capture intricate details (e.g., legs), whereas our con-
catenation yields superior visual quality and faithfulness by preserving input details and ensuring a
coherent denoising pathway. Quantitative results in Appdx. [A]

— —_ =

Mixing Denoise (MDeNoise): Using the blended noise €5, we denoise it to finally produces a cross-
object fusion by mixing the inputs, 21, 22, 2,,. Specifically, we formulate this process as:

MDeNoise: ¢ decreases from 7" to 0, starting z =€y

I =D(xg), where xg <= x1—1 = @t — (0t — 04—1)Ve (T, L, Zsmp (21, 223 @), Yeens 2p) - (2)

Here, Ygen = 4.0 is a fixed guidance scale, and the decoder D(-) generate the final fusion image

I using the Flux-Krea decoder (Lee et al., 2025). The scale interpolation (SInp), zsip (21, 22; @),
mixes the two visual embeddings z; and 2z into a single coherent representation, which is imple-

.. } ] " sin(a-d) in((1—a)-8)
mented by a spherical interpolation l, 1985): zsmp(r) = Ssin‘(l(;) 21 + 2 st (;1) 29,
where § = cos’l(zl - 29), and 0 < o < 1 is a learnable factor to control the mixing ratio. This

MDeNoise process in equation [2]outputs the final fusion image 1.

Discussion on MDeNoise: interpolate i a=0.41
vs. concatenate. MDeNoise prioritizes
fusing its two inputs, unlike BNoise
which preserves them. While concatena-
tion retains more input information, its
rigid separation often creates disjointed
representations and generations. How-
ever, interpolation enables seamless in-
tegration. To demonstrate this, we com-
pare with a concatenation-fusion variant: zgyy, is replaced by zsca(c) = concat(azi, (1 — «)22)

Figure 5: Different MDeNoise generations across a.



in equation 2] (Fig. [5), which tends to produce isolated objects rather than a unified hybrid. Our
interpolation instead creates a single, coherent entity with harmonious consistency.

HSP: Overall, for a given input D, the hybrid sampling process combines the BNoise (equation [I))
and MDeNoise (equation 2). To simplify the notation, we formalize this process as the function:

I(0) = HSP(D:0,0) = D(x0), (3)

where 0 = {a, 1, B2, €} are learnable parameters, and 0 = {Vden = 5,%inv = 0,%en = 4, T =
999, t4en = 652} are fixed defaults in this paper.

3.2 EFFICIENT ADAPTIVE ADJUSTMENT (EAA)

The HSP process yields distinct fusion results I (6) defined in equationwith parameters 6, defaults

6 and inputs D, making parameter selection critical for high-quality synthesis. We propose an
adaptive framework to jointly adjust 8 = {«, (1, B2, €}, aiming to achieve both semantic coherence
and visual fidelity. Inspired by prior work (Li et al.| 2024} Xiong et al.| 2024)), we first introduce a

Similarity Score (SS) to guide this search: (For simplicity, input D and defaults 6 are not shown.)

S5(0) = S1,(0) + 51,(0) + 51, (0) + 51, (0) = |51, (0) — Sp, (0)| = | ST, (6) = S1,(0)],  (4)

visual similarity semantic similarity visual balance semantic balance

where Sy, (0) (i = 1,2) is the visual similarity between I(6) and the source image I;, computed via
a DINO encoder (Oquab et all [2024), while St,(0) (: = 1,2) is the semantic similarity between
I(0) and the category label T;, measured using CLIP (Radford et al.,2021). This scoring function
is designed to optimize two key objectives for successful fusion: (i) maximizing similarity, and (ii)
enforcing balance. The first two terms ensure that the generated image I(6) retains high perceptual
and semantic fidelity to both input images and their corresponding category labels. By maximizing
similarity to both sources, these terms preserve the core features of the original concepts. The final
two terms—penalizing the absolute differences—explicitly enforce balance, preventing the model
from overfitting to one input and encouraging a fair integration of both objects’ features. Together,
these components create a unified SS objective that balances fidelity and symmetry, offering a prin-
cipled framework for optimizing feature fusion parameters.

Our EAA Algorithm. To maximize this objective S(f) in equation E} we present a hierarchical
adjustment strategy that learns the parameters § = {«, 81, 82, €} using the acceptance threshold
Th = 2.4. The key loop iterates from k£ = 1 to K = 3, performing these steps:

(1 Sample (initial) Gaussian noise: ¢ ~ A(0,I), initialize the parameters: o =
0.5, 8 = 85 = 1.0.

(2) Searching «: Fixed 31 = B2 = 1.0 and ¢, perform a golden section search (Teukolsky
et al.l|[1992)) to find the optimal mixing factor a*:

o = arg max S(q, 51, B2, €). (5)
a€l0,1]

) Adjusting 31, 32: Fixed a*, ¢, if S(a*, B1, Ba,€) < Th, then update the noise factors:

Brzﬁl&ﬁ;:arg max S(a*aﬂl7527€)7 lfsl >525
B2ER Y (6)
By = B2 & By = arg max S(a*, 31, B2,€), otherwise.’
B1ERL
where S1 = S, + S, S2 = S, + St,, and S; > S indicates that the mixing noise
favors the object 1, and vice versa.
@ Acceptance criterion:
€ = e & return 0 = {o*, 5], 55, €}, if S(a*, 57, 85,¢€) > Th,
return 6% = {a*, 87, 85, €*} & break, ifk>K, (7

turn to the step (D to resample € & k + +, otherwise.



where the fused object image I(#) is defined in equation Our adaptive loop efficiently explores a
low-dimensional yet expressive parameter space 6 = {«, (1, 52, €}, yielding conceptually balanced
and perceptually smooth fusion results (Fig.[9). By reusing intermediate predictions and limiting
optimization to scalar-level searches (via golden section search), the method enhances sample effi-
ciency—avoiding the computational overhead of gradient-based latent-space backpropagation.

Discussion on resampling c¢. During our blending process, sampling random Gaussian noise can
occasionally yield low-quality or failed fusions. While first-order optimization is an intuitive solu-
tion, it offers no significant advantage over simple zero-order resampling for diffusion generation,
despite its higher cost (Ma et al.;,[2025). Consequently, we adopt a zero-order resampling strategy to
search for €, and a small number of resamples K = 3 proves sufficient for high-quality fusion. For
Jair comparison, this resampling is disabled, K = 1, and the random seed is fixed at 42.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We introduce IIOF (Image-Image Object Fusion), a new benchmark of 780 image pairs
derived from 40 objects across four classes (i.e., animals, fruits, artificial objects, and character
figurines). Most images are from PIE-Bench (Ju et al., 2024) and Pexel figurines were self-
captured for quality. To evaluate order-sensitive methods, we also generate all ordered pairs (1,560
total), ensuring a comprehensive and fair benchmark. More details in Appdx. [B|

Implementation Details. Our method builds upon Flux-Krea (Lee et al [2025)), implementing &;
with Redux (Black Forest Labs|, [2024) for latent-space alignment. We generate all images at 512 X
512 resolution using the FlowMatchEulerDiscreteScheduler (Lipman et al.,2022) with 20 denoising
steps. For the Efficient Adaptive Adjustment (EAA) module, we use Grounded-SAM (Ren et al.,
2024) and the query “most prominent object” to localize main regions for visual and semantic
similarity computation. Each parameter search for a and (8 involves at most 10 image generations.
All experiments are conducted on two NVIDIA RTX 4090 GPUs.

Evaluation Metrics. To evaluate our method, we use two metric families: Semantic Align-
ment (SA) and Single-entity Coherence (SCE). SA is computed on the generated prompt Pg
using VQAScore (Lin et al., [2024b) and LLaVA-Critic (Xiong et al.l 2025a). VQAScore em-
ploys CLIP-FlanT5 (Roberts et al., [2022) and LLaVA (Liu et al., [2023a), denoted as VQAPSFJQx and
VQAE‘EKVA, respectively; the LLaVA-Critic score is LC>*. SCE assesses if the image forms a uni-
fied concept by asking: “A photo of a seamless fusion of <T1> and <T5> into a single coherent
entity.” Tts scores are VQA3ST, VQAFTE ., and LCSCF. We also compute the SS score and the
balance metric By = |51, (6) — S1,(0)| + ST, (8) — ST, (0)|, where St (0) are normalized to [0, 1]
using empirical bounds 0.15 and 0.45 to align the scales of visual and textual modalities.

4.2 MAIN RESULTS

We compare with leading methods across three categories: (i) multi-concept generation (e.g.,
OmniGen (Xiao et al.| [2025), FreeCustom (Ding et all 2024), MIP-Adapter (Huang et al.,
20235), DreamO (Mou et al., [2025))), (ii) mixing-based (e.g., ATIH (Xiong et al., |2024)), Concept-
lab (Richardson et al.l [2024), FreeBlend (Zhou et al., 2025)), and (iii) image editing (e.g., Stable
Flow (Avrahami et al.l [2025)). We also include qualitative results from GPT-40 (OpenAll [2025).
Inputs vary: multi-concept methods use two images and a text prompt; ATIH and Stable Flow use
one image and text; Conceptlab uses text only. More examples in Appdx.

Qualitative Comparison. Fig. [6| compares our method with multi-concept generation baselines
(e.g., MIP-Adapter, OmniGen, DreamO, GPT-40), highlighting two observations. First, baselines
output often merely overlay features rather than fusing them—for example, a lime enclosed in a
glass jar without integration—while our method creates a coherent hybrid. Second, baselines fre-
quently favor one concept, such as generating either a doll or a corgi but not a unified blend. In
contrast, our approach balances both concepts, producing structurally unified and semantically con-
sistent results. This demonstrates our method’s superior ability to achieve fine-grained visual fusion.

'https://www.pexels.com/
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Figure 6: Comparisons with Multi-Concept Generation Methods. Our approach yields hybrid
objects with improved structural coherence and visual balance over existing methods.

Table 1: Quantitative comparisons on our IIOF dataset.

Models VQAST | VQAR®t | LC% 1 | LCOt | VQAFR a1 | VQARTIatT | SS 1 | Bsim|

Our VMDiff 0.639 0.540 8.372 8.392 0.390 0.413 2068 0324

FreeCustom (CVPR 2024)) 0.579 0.452 6.958 6.946 0.360 0.388 1.580 | 0.776

MIP-Adapter (AAAI ( mﬁ ) 0.621 0.512 8.301 8.076 0.389 0.417 1.866 | 0.483

OmniGen (CVPR ‘mg 0.570 0.469 7.550 7.233 0.352 0.348 1705 | 0.617
Conceptlab (TOG (Richardson et al.| ) 0.573 0.483 7.589 7.728 0.362 0.395 - -

ATIH (NeurIPS ‘M 0.523 0.465 7.275 6.816 0.317 0.367 - -
Stable Flow (CVPR (Avrahami et al.| 0.460 0.372 6.020 5.024 0.266 0.294 - -
DreamO (SIGGRAPH Asia W ) 0.591 0.467 7.592 7.013 0.370 0.346 1793 | 0.644

FreeBlend (arXiv ( hou ctal.|2025]) 0.588 0.507 7.836 7.788 0.341 0.383 1.870 | 0.479

Fig. [7] qualitatively compares our method with mixing/editing baselines (e.g., Conceptlab, ATIH,
FreeBlend, Stable Flow). Conceptlab often biases toward one concept, while Stable Flow and ATTH
make only subtle edits, such as color or texture transfer. FreeBlend frequently loses original in-
formation and yields fragmented outputs. In contrast, our approach synthesizes novel objects that
structurally and visually integrate both concepts, achieving a deeper, more harmonious fusion and
demonstrating superior blending capability.

Quantltatlve Comparlson. Table [T] presents quantitative comparisons on key metrics, including
VQAS2, VQATL va, VQASSE VQATTY . LCSA, LCSCE, similarity score (SS), and fusion
balance B,. Although MIP attains the highest VQALL&VA, it ranks only second or below on the
other VQA, LC, SS, and Bg;j,, metrics, indicating that its improvements are not holistic. In contrast,
our method consistently outperforms all baselines on most metrics, demonstrating strong capability
in generating coherent and natural blended objects. These results reinforce our qualitative findings
and confirm the effectiveness of our approach in achieving high-quality visual fusion.
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Figure 7: Comparisons with Mixing and Image Editing Methods. Our method produces more
coherent and balanced hybrids, while baselines often favor one concept or apply minimal edits.

Table 2: Quantitative ablation study on our IIOF dataset.

Models VQARST | VQARSET | LC% 1t | LCP®1 | VQATR,va T | VQATTEAT | SST | Bsim)
Baseline 1 0.497 0.438 7.261 7.077 0.287 0.314 1.570 | 0.682
Baseline 2 0.508 0.441 7426 | 7291 0.298 0325 1586 | 0.693
Baseline 2+a-search 0.625 0.532 8278 | 8276 0.382 0.405 2025 | 0358
Baseline 2+a-search+f3;, f-search | 0.639 0.540 8372 | 8392 0.390 0413 2068 | 0324
User Study. To evaluate the perceptual qual- Mixing editing ou o Multhcofcep our VMDil
. . Stable Flow DreamO
ity of our fusions, we conducted two user stud- » (75%)4(o§%)15 sl ATH 0@ P Adapr
. . . . oncept \ mniGen
ies (Fig. [B). 76 participants each rated 12 re- **"~ >\ = ediens g P GPT-40
59 (12.9%)

sults—6 from Multi-Concept Generation and 6
from Mixing/Editing—yielding 912 total votes.
Our VMDIff received the highest preference in 397 (87.1%) 307 (67.3%)
both groups: 67.3% and 87.1%, respectively.

GPT-40 and ATIH ranked second, but with sig-

nificantly lower votes (12.9% and 7.5%). These Figure 8: User studies.

results indicate that our VMDiff aligns better
with human preferences in visual coherence and creativity. More details in Appdx. |[C]

4.3 ABLATION STUDY

We conducted an ablation study to evaluate the contributions of our VMDIiff’s key components,
as shown in Fig. [0] and Table 2] Progressively adding each element—(i) baseline 1: random
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Figure 10: Visualizing the updated process of our EAA based on two input images I7 (doll
figurine) and I, (rabbit). The o parameter (blue) improves fusion quality, while 5 (orange) enhances
semantic balance. The green curve (similarity) rises and the dark blue curve (imbalance) falls over
iterations. The final output is a coherent hybrid with high similarity and minimal imbalance.

noise+MDeNoise (a« = 0.5), (ii) baseline 2: baseline 1+BNoise (51 = [ = 1), (iii) base-
line 2 + MDeNoise (« search), and (iv) baseline 2 + BNoise (31, 82 search) + MDeNoise (a
search)—yielded consistent improvements. Without noise refinement, outputs lacked detail. Its
inclusion enhanced structural
fidelity and preserved input
features. Adaptive o improved

fusion balance, while adaptive K
(S refined noise influence for

greater visual harmony. Fig. [I0] #
illustrates  the  optimization
process for a representative

case (doll figurine + rabbit).
Throughout iterations, simi-

larity S(f) (green) increased =t
steadily, while the blending
balance metric (dark blue) Fjgure 9: Ablation study in VMDIff. Noise refinement improves

decreased. The o search (light  §etai] and structure, while adaptive o and [ search progressively

blue) rapidly boosted similarity, ephance semantic balance and visual coherence.
and 3 search (orange) smoothed

visual-textual alignment. These results confirm that our EAA design effectively optimizes both
similarity and symmetry for high-quality blending. Limitations are discussed in Appdx.

On'gina/ Image Baseline 1 Baseline2 Baseline 2+a search Bai?;/’:' eﬁ,‘éj;ﬁ,"”

4.4 MULTI-IMAGE FUSION AND BACKBONE GENERALIZATION.
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Figure 11: Multi-image fusion.



Multi-image fusion. We also explore extending VMDIff beyond pairwise fusion. Figure[TT|shows
preliminary three-image results obtained by sequentially applying our pipeline (e.g., first fusing
(I1,I5) and then fusing the hybrid with I3). The method can still produce single coherent enti-
ties that blend attributes from all three categories, indicating that our formulation can, in principle,
scale to more inputs. However, compared with the pairwise case, these hybrids exhibit stronger
information loss and imbalance across sources, so in this work we focus on image pairs and leave
permutation-invariant, learned aggregation of multiple image embeddings to future work.

ultraman  Ironman _charizard  coffee
cake 50 fairine  figurine i figurine cup Gr oW

120

apple <a 'zgg;’ bird dh i’gf.,‘;,’

2 X

doll
figurine g horse
1

Input
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= " Dt ] i

Figure 12: Each column shows an input pair (top) and the fused outputs when plugging our
framework into Flux-1.0-dev+Redux, SDXL+IP-adapter(Ye et al.,2023), and SD-3.5+SD-3.5-
IP-adapter(Team) [2024). All backbones use the same images and fusion prompt.

Backbone generalization. We evaluate VMDIiff on three backbones with identical settings: Flux-
dev+Redux, SDXL 2024a)+IP-Adapter 2023)), and SD-3.5 (AIL 2024)+SD-3.5-
IP-Adapter (Fig.[12). All three run under our HSP+EAA framework, so VMDIff is not
tied to Flux-Krea, but the quality and tendency toward a single hybrid object strongly depend on how
image information is encoded. Flux+Redux maps images into a semantic latent space shared with
text, allowing BNoise+SInp to operate directly on rich, text-like image embeddings and thus best
preserve instance-level geometry and appearance from both sources. For SDXL and especially SD-
3.5, IP-Adapter injects image features as extra attention tokens; interpolating these tokens mainly
modulates high-level semantics and, in our results, often weakens retention of input-specific struc-
ture. VMDiff therefore benefits most from backbones that preserve detailed instance information in
a text-compatible embedding space. Our SDXL and SD-3.5 experiments should be viewed as fea-
sibility checks under this weaker image interface, and we expect that adding Redux-style semantic
image encoders to such models would narrow the quality gap to Flux-Krea.

5 CONCLUSION

In this paper, we presented VMDIff, a novel unified and controllable framework for visual concept
fusion that synthesizes coherent new objects directly from two input images. Our approach en-
ables fine-grained control by semantically integrating concepts at both the noise and latent levels.
VMDiff consists of two core components: (1) a hybrid sampling process that constructs optimized
semantic noise through guided denoising and inversion, followed by a curvature-aware latent fusion
using spherical interpolation, and (2) an efficient adaptive adjustment algorithm that refines fusion
parameters via a lightweight, score-driven search. Experimental results on a curated benchmark
demonstrate VMDiff’s superior performance, excelling in semantic consistency, visual harmony,
and user-rated creativity, thereby establishing a new paradigm for hybrid object synthesis. This
work offers practical and valuable insights for professionals developing combinational characters,
directly applicable to diverse fields from film and animation to figures and industrial design.
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SUPPLEMENTARY MATERIALS

This supplementary material provides additional technical details and extended results to support
the main paper. We begin in Section [A] with two key discussions: the necessity of adjusting 3;
and (5 in our hierarchical parameter search, and a quantitative comparison of BNoise fusion strate-
gies—concatenation versus interpolation. Section [B| describes the construction of our proposed
IIOF benchmark dataset, including the criteria for category selection and object pairing strategies.
Section [C] presents a comprehensive user study, providing human preference validation of our fu-
sion results. In Section [D| we outline the current limitations of our method, discuss remaining
challenges, and suggest possible directions for future improvement. Section [E] contains our formal
statement on the use of LLMs in this work, in accordance with ICLR policy. Section [F]details the
full inference pipeline of our VMDIiff framework. Finally, Section [G] showcases extensive qualita-
tive results, further demonstrating the effectiveness and generalization ability of our method across
diverse fusion scenarios.

A ADDITIONAL DISCUSSIONS
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Figure 13: Tllustration of our hierarchical parameter adjustment. The top row shows results from
searching «; the bottom row refines the fusion by fixing « and adjusting 3>. Consistent with
Sec.[3.2} once the overall score S exceeds the acceptance threshold T}, = 2.4, the fusion becomes
visually coherent and balanced; when a-only optimization underperforms, the second-stage (s
refinement raises S above the threshold.

Discussion on the necessity of adjusting 31, B>. As shown in Fig. global optimization over «
alone occasionally fails to yield well-fused results. To mitigate this, we first fix a* (corresponding
to the best similarity score in Eq. f) and then perform a local refinement by optimizing /31, 32. This
adjustment allows the model to precisely calibrate the noise contribution of each object, enhancing
both visual coherence and semantic balance in the final output.

Discussion on BNoise. As shown in Table 3] on the IIOF dataset, Ours (Concat before inversion)
achieves state-of-the-art performance on most metrics. Although it ranks second on the LC metric,
its substantial advantage on SS demonstrates that concatenation more effectively preserves and in-
tegrates complementary information from both inputs. In summary, concatenation before inversion
yields superior visual quality and semantic faithfulness by retaining fine-grained details and guiding
a more coherent denoising pathway, compared with either form of interpolation.

Table 3: Quantitative Evaluation of BNoise Fusion: Concatenation vs. Interpolation.

Models VQASR | VQATS®T | LCS* 1 | LSt | VQAPR va 1 | VOQATTRAT | $S 1 | Bsim|

Random noise 0.497 0.438 7.261 7.077 0.287 0.314 1.570 | 0.682

Interp Before Inversion 0.504 0.441 7.439 7.390 0.293 0.321 1.551 | 0.678
Interp After Inversion 0.486 0.430 7.278 7.112 0.283 0.311 1.532 | 0.712
Ours(Concat Before Inversion) 0.508 0.442 7.426 7.291 0.298 0.325 1.586 | 0.693

Discussion on additional ablation of BNoise and the o/ 5 search. To better understand the contri-
butions of BNoise and the EAA search, we conduct an additional ablation on 1,184 pairs from IIOF,
summarized in Fig. [I4]and Table ] We compare four variants: (i) Baseline 1, which uses random
noise plus MDeNoise with a fixed @ = 0.5 (no BNoise, no search); (ii) Baseline 2, which augments
Baseline 1 with BNoise by setting 51 = 2 = 1 (semantic noise injected, no search); (iii) Baseline 1



+ (31, B2-search, which augments Baseline 1 with BNoise and an EAA search over (51, 82); and (iv)
Random noise + a-search, which applies EAA only to a without BNoise.

Original Image Baseline 1 Baseline 2 Baseline 1+ B, Bsearch Random noise+asearch

Figure 14: Ablation of BNoise and the o/ search. Each column shows the original image pair
(left) and fused results from different variants: Baseline I (random noise + MDeNoise with fixed
«=0.5), Baseline 2 (Baseline 1 + BNoise with 5;=p£>=1), Baseline 1 + [3-search, and Random
noise + a-search. BNoise (columns 2-3) provides a more informative initialization that preserves
structures from both sources, while 3-search further balances semantic content in the noise. In
contrast, random-noise + «-search alone often loses details, confirming the complementary roles of
BNoise and the o/f3 search.

Table 4: Quantitative ablation of BNoise and the o/ search on the IIOF dataset.

Models VQAFET | VQAR"t | LCH 1 | Lt | VQATRwa 1 | VQAT AT | SS 1 | Bsimi
Baseline 1 0.496 0.419 7.186 7.065 0.283 0.320 1.563 0.691
Baseline 2 0.503 0.420 7.326 7.191 0.290 0.326 1.580 0.705

Baseline 1+/31, 32-search 0.553 0.461 7.723 7.679 0.320 0.359 1.760 0.553
Random noise+a-search 0.603 0.508 8.009 8.017 0.357 0.394 1.972 0.354

Qualitatively, Baseline 1 often loses information from the sources, whereas Baseline 2 preserves
more structures from both inputs, confirming that the semantic noise ¢, obtained via the denoise—
invert cycle provides a more informative initialization than pure Gaussian noise. Adding [-search
on top of BNoise further improves all SA/SCE and SS scores and reduces the imbalance metric
B, from 0.691 to 0.553, indicating that (31, 82) effectively rebalance how each source contributes
to the noise. The random-noise+a-search variant achieves higher SA/SCE and lower By, than
Baseline 1, but still misses fine details and parts from the inputs, as seen in Fig.[T4] due to the lack of
a semantically informed noise initialization. Taken together, these results highlight complementary
roles: BNoise produces a conditional, information-carrying noise ¢, while the EAA search over o
and (31, B2) adjusts the contributions of the two sources in the mixed embeddings and in the noise,
respectively. This motivates our full HSP+EAA design, which combines both components to obtain
the most faithful and balanced hybrids.
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Figure 15: Effect of swapping the order of 73 and 75 in the prompt.
Discussion on name order. Fusion is, in principle, sensitive to the order of the category names in the

guiding prompt, since the text encoder need not be strictly commutative. To probe this effect, we fix
the image pair (1, I2) and all hyperparameters, and only swap the order of the category tokens 77



and T in the prompt, using the “Random noise + MDeNoise (o = 0.5)” baseline (Fig.[T5). For most
pairs (left and middle examples), the two orderings produce almost identical hybrids, indicating that
our fusion behaves approximately symmetric with respect to name order. In a few harder cases
(right), the leading token receives slightly more emphasis and extra attributes may appear, but both
generations remain single, coherent hybrids rather than collapsing to one source. In the full VMDiff
pipeline, this mild asymmetry is further reduced by the symmetric fusion score S(6) and EAA
search, which explicitly discourage strong bias toward a single category.

Discussion on fusion strategy. To better understand why we favor interpolation over concatenation,
we also test a weighted concatenation variant z.,; () = concat(az1, (1—a)z2), and fix the source
images while varying o from 0.1 to 0.8 (Fig.[I6). As the figure shows, relatively large changes in
« are required to noticeably alter the result, confirming that o exerts much weaker control in the
concatenation space than in the interpolated space. More importantly, across all settings the fusion
remains stitching-like: one region of the image is dominated by the strawberry and the other by the
jar, with a clear boundary between them. This suggests that separating z; and 25 into distinct blocks
encourages the network to treat them as two pieces to be glued together, rather than a single coherent
object. In contrast, our MDeNoise stage mixes z; and 2o via spherical interpolation within the
same latent subspace, leading to much more integrated hybrids with smoothly shared geometry and
appearance (see Fig.[21). These observations support our choice of slerp-based mixing in MDeNoise
rather than concatenation-based fusion.

Effect of weighted concatenation z(a) = (azq, (1 — @)z,) under different a

a=0.40 ‘

Figure 16: Behaviour of weighted concatenation z.,;(o) = concat(azy, (1—a)z2) under dif-
ferent a. We fix the source images and vary « from 0.1 to 0.8. Large changes in « are required
to noticeably alter the result, and across all settings the fusion remains stitching-like: one region is
dominated by the strawberry and the other by the jar, with a clear boundary between them.

Why MIP-Adapter scores higher on SA/SCE. At first glance, MIP-Adapter appears visually weaker
than DreamO and OmniGen, yet it achieves higher SA/SCE scores in Table[T] This is because our
metrics are explicitly designed to measure semantic fusion quality rather than photo-realism. SA
and SCE are LMM-based scores that reward (i) strong alignment with the fusion prompt and (ii) the
presence of a single fused entity that simultaneously reflects both source categories. As illustrated
in Fig. |17} MIP-Adapter typically produces one coherent object that clearly contains cues from both
inputs, even though many fine-grained instance details are washed out. DreamO and OmniGen, on
the other hand, often generate highly realistic and aesthetically pleasing images, but they frequently
either omit one concept or render two separate objects instead of a single hybrid. Such behaviours
are explicitly penalized by SA/SCE (and SS), which explains why MIP-Adapter scores higher in
Table [T] despite being less visually appealing than DreamO and OmniGen in Fig. [T7)and receiving
lower user preference in Table [6]

B DATASETS

To systematically evaluate our fusion framework, we construct a comprehensive benchmark dataset
named IIOF (Image-Image Object Fusion), specifically tailored for assessing diverse and semanti-
cally rich visual concept mixing.
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Figure 17: Additional qualitative comparisons on IIOF.

We meticulously selected 40 distinct object categories, strategically organized into four semantic
groups: Animals, Fruits, Artificial Objects, and Character Figurines. Each group comprises 10
unique classes, a design choice that ensures both intra-group consistency and ample inter-group
diversity. A complete list of all selected categories is provided in Table[3]

For each chosen class, we sourced one high-quality, representative image. The majority of these
images were obtained from established public_benchmarks such as PIE-Bench 2024)
and popular stock image platforms like Pexelﬂ Recognizing the scarcity of high-quality, pub-
licly available data for character figurines, we self-captured these images under controlled condi-
tions, ensuring consistent lighting and resolution to maintain visual quality and diversity across
the dataset. Figure [T8] showcases all the selected images, providing a visual overview of the
dataset’s content. Additionally, each selected image is paired with its corresponding textual cat-
egory name, as detailed in Table [5] to facilitate evaluations for prompt-based fusion methods.
Initially, we derived 780 unique image pairs

by combining each of the 40 objects with ev- Table 5: List of Objects in the ITOF Dataset by

ery other object once, without considering in- Category.

put order. However, to ensure a comprehensive ~ Category || Object Names

evaluation and enable fair comparison across Animals wolf, panda, owl, rabbit, horse,

all methods, particularly those sensitive to in- giraffe, corgi, cat, bird, sheep

put order (e.g., ATIH (Xiong et all, 2024)), apple, orange, strawberry, durian,
we further expanded IIOF to include all pos-  Fruits lime, pear, pineapple, watermelon,
sible ordered pairs among the 40 categories. tomato, pepper

This expansion yielded a total of 1,560 im- . lipStiCk, violin, coffee cup, r()ckjng
age pairs, where each combination (A, B) is Art;ﬁmal horse, g]assjar, car, teapot, cake, man,
present alongside its reverse (B, A). This ex- Objects teddy bear

haustive pairing strategy allows us to rigorously iron man figurine, monkey king
assess fusion performance across a wide spec- figurine, doll figurine, pikachu

trum of semantic relationships—ranging from  Character || figurine, charizard figurine, ultraman
semantically close concepts to challenging dis-  Fjgurines figurine, astronaut figurine, venusaur
tant combinations, such as fusing a ’violin” with figurine, panda figurine, squirtle
a’panda’ or a "horse’ with ’lipstick’. This also figurine

critically highlights our model’s ability to gen-

eralize and compose novel concepts effectively across diverse domains.

https://www.pexels.com/
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Figure 18: Original Object Image Set.

C USER STUDY

To evaluate the perceptual quality and human preference for the novel images generated by our
fusion framework, we conducted two user studies. These studies assessed our method, VMD-
iff, against state-of-the-art baselines in two main categories: Multi-Concept Generation meth-
ods and Mixing and Image Editing methods. The overall vote distributions are visualized in
Fig. Bl while detailed per-example preferences are presented in Table [6] and Table [7] An ex-
ample user study question for the Multi-Concept Generation group and the Mixing and Image
Editing group is provided in Fig. [I9] A total of 76 participants completed the survey, each
evaluating 12 fused results (6 from each group), contributing a total of 912 votes. Participants
were asked to select the fusion result that best integrated the given concepts in terms of visual
quality, creativity, and semantic consistency. As shown in Fig. |8} our method consistently re-
ceived the highest number of votes in both evaluation groups. In the Mixing and Image Edit-
ing category (left pie chart), VMDIiff garnered a significant 397 votes (87.1%) of the total. This
considerably surpassed other methods such as Stable Flow (Avrahami et al) 2025) (5 votes,
1.1%), ATIH (Xiong et all [2024) (34 votes, 7.5%), Conceptlab (Richardson et al) 2024) (4
votes, 0.9%) and FreeBlend (Zhou et al.| [2023)) (16 votes, 3.5%). For instance, as illustrated in
Fig. [T9] for the “astronaut figurine-monkey king figurine” fusion, our method obtained 81.58%
of the votes, demonstrating its strong capability in seamlessly integrating distinct visual elements.
In the  Multi-

Concept Generation o

category (right o : “hh
pic chart), VMD- D & éiai
iff led with 307 e o sty o e

votes  (67.3%), 4. » £ ;
.. N Y v
significantly  out- o @ O
i GPT- AK B S - A B

performing

40 (OpenAl, 2025), B '
which ranked sec- 'S ‘ LY
ond with 59 votes S 4D p , !?

(12.9%). Other

baselines—DreamO D C
(56 votes, 12.3%), ,
MIP-Adapter (17 @ @

votes, 3.7%), and

OmniGen (17 votes, . _ . . .
3.7%)—received Figure 19: An example of a user study comparing various multi-concept gen-

eration, mixing and image editing methods.

notably fewer votes.
In the “doll fig-
urine—corgi” case, VMDIff earned 78.95% of preferences. Even in more challenging cases like
“apple—panda figurine” (see Fig. [19), it maintained an edge with 75.00% over GPT-40’s 5.26%.
These results indicate that VMDIff better aligns with human preferences for visual coherence,



creativity, and concept integration, consistently outperforming existing methods across diverse

fusion scenarios.

Table 6: User study with multi-concept generation methods.

image-image A(Our VMDiff) | B(DreamO) | C(MIP-Adapter) | D( OmniGen) | E(GPT-40)

coffee cup-ultraman figurine 43(56.58%) 11(14.47%) 7(9.21%) 3(3.95%) 12(15.79%)

sheep-car 57(75.00%) 4(5.26%) 1(1.32%) 2(2.63%) 12(15.79%)

doll figurine-corgi 60(78.95%) 1(1.32%) 3(3.95%) 3(3.95%) 9(11.84%)
lime-glass jar 45(59.21%) 22(28.95%) 1(1.32%) 0(0.00%) 8(10.53%)

cake-owl 45(59.21%) 5(6.58%) 3(3.95%) 9(11.84%) 14(18.42%)
apple-panda figurine 57(75.00%) 13(17.11%) 2(2.63%) 0(0.00%) 4(5.26%)

Table 7: User study with mixing and image editing methods.

image-image A(Our VMDiff) | B(Stable Flow) C(ATIH) D(Conceptlab) | E(FreeBlend)
astronaut figurine-monkey king figurine 62(81.58%) 2(2.63%) 7(9.21%) 1(1.32%) 4(5.26%)
man-pikachu figurine 68(89.47%) 0(0.00%) 4(5.26%) 1(1.32%) 3(3.95%)
doll figurine-panda 62(81.58%) 0(0.00%) 13(17.11%) 1(1.32%) 0(0.00%)
iron man figurine-charizard figurine 69(90.79%) 3(3.95%) 3(3.95%) 0(0.00%) 1(1.32%)
squirtle-wolf 66(86.84%) 0(0.00%) 4(5.26%) 1(1.32%) 5(6.58%)
ultraman figurine-venusaur figurine 70(92.11%) 0(0.00%) 3(3.95%) 0(0.00%) 3(3.95%)

D LIMITATIONS

Our method effectively fuses two input images into a coherent hybrid object that captures

broad conceptual information;
lies on iterative optimization,
A promising remedy is to
train a lightweight predic-
tion/refinement module that
guides the fusion in a single
forward pass, thereby reducing
runtime while maintaining—or
even improving—rvisual quality
and semantic balance. Second,
in a small fraction of cases
the fused outputs do not fully
align with human preferences
(Fig. 20), exhibiting semantic

inconsistencies or stylistic imbalance.

however, it has two main limitations. First, inference re-
which increases computational cost and latency (Table [g).

Original image Failure result Original image Failure result
» F u
e
u ol \\
A T e
(S T——

<

Figure 20: Examples of failure cases where our method produces
fused outputs with suboptimal semantic or stylistic coherence.

Although repeated noise resampling and selection can

mitigate these failures, this heuristic has limited controllability. In future work, we will pursue more

controllable, preference-aligned

fusion via explicit human feedback, aesthetic priors, or learned

alignment objectives, enabling results that more reliably reflect human intent and aesthetics.

Table

8: Runtime comparison across methods.

E STATEMENT ON LLM

Methods Avg. Time / Pair
Ours 2 min 46 sec
ATIH 10 sec
Stable Flow 27 sec
Conceptlab 13 min 45 sec
FreeCustom 22 sec
OmniGen 53 sec
Freeblend 12 sec
MIP-Adapter 12 sec
DreamO 8 sec
USAGE

In accordance with the ICLR policy on the use of Large Language Models (LLMs), we hereby

declare that an LLM (ChatGPT,

GPT-5) was used solely to aid or polish the writing of this paper,
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such as improving grammar and wording. All ideas, technical content, and experimental results are
entirely our own. Further details are described within the paper. The authors take full responsibility
for the accuracy and integrity of the content.

Algorithm 1: VMDiff with Efficient Adaptive Adjustment (VMDIiff-EAA)
Input: images I, I, labels T, Ts, prompt Pg, threshold 7'H, max rounds K
Output: fused image [* and parameters 0* = {a*, 57, 55, ¢*}
Compute embeddings z1 = £7(11), 22 = Er(12), zp = Er(Pa);
Initialize o = 0.5, 81 = B2 = 1.0;  Spest = —00, bpest = T
for k =1to K do
Sample noise € ~ N (0, I);
zscar = concat(f 21, faze), T = €
for t =T to t4, do
L Tp—1 = 2 — (0r — 04—1)Vg (24, t, Zscat, Vden, Zp)
for ¢t = ty,, toT do
L Tpg1 = & + (0pr1 — 01) V6 (Et, t, Zscar, Vinvs Zp)
€r = :%T;
a* = GoldenSearch(a € [0,1], f(a) = S(«, b1, B2, €r))s
(Sv Sh ) sz ) STl ) STQ) = Score(a*a B1, Ba, er);
if S > S, then
L Shest = S5 Opest = {a*7ﬁ1)627 57-}
if S > T H then
| return I(6*), 6*
Sl = S[1 + STl, SQ = S[2 + STQ;
if S; > S5 then
‘l 55 = GoldenSearch(Bg S [ﬁmim ﬂmax]a f(62))
else
L ﬁik = GOldensearCh(ﬂl S [ﬁminaﬂmax]a f(ﬁl))
(S’,-) = Score(a*, 87, 55, €+);
if S’ > Sp., then
L Sbesl = S/; gbesl = {a*vﬁikvﬂ;7 Gr}
if S > T H then
Normalize z1, z2 and compute spherical interpolation ZSInp(a*);
T = €p;
fort =T to 0 do
L Tt—1 = Tt — (Ut - Ut—l)v¢($ta t7 ZSInp(a*)y'Ygem Zp)
I =D(xp); returnl, 6*
if 05e;r # @ then

Decode best parameters 6. via MixingDenoise;
return I, Opeq

return J;

F ALGORITHM

Algorithm |1| outlines the complete inference process of our proposed framework, VMDIff, which
integrates a noise refinement step and an efficient adaptive adjustment (EAA) loop. Given two input
images I, I» and their category labels 77,75, we construct a prompt P and initialize the fusion
parameters 6 = {«, 31, B2, €}.

The algorithm begins by sampling initial Gaussian noise ¢, which is refined through a denoising-
inversion procedure to produce a structure-aware latent representation ¢,.. The core loop involves:

* Searching for the optimal interpolation factor o using Golden Section Search to maximize
the similarity score S(6).



* Conditionally adjusting the noise scaling factors 31, 52 when the current fusion score is
below a threshold T'H, guiding the fusion toward balance between the two source objects.

* Returning a fused image I(#*) once a satisfactory similarity score is achieved.

This design ensures a lightweight and interpretable optimization routine over a low-dimensional
parameter space. The algorithm reliably produces perceptually and semantically coherent hybrid
images, as validated in our experiments.

G MORE RESULTS

In this section, we present additional qualitative results with resampling disabled, to evaluate
VMDiff under a deterministic setting and further demonstrate its effectiveness and generalization.
Fig. [T] shows generations at 1024 x 1024 resolution. Figs. 21} 22} 23] 24] 25} [26] 27} [28] and [29]
provide diverse fusion examples spanning animals, fruits, artificial objects, and character figurines.
In all figures, the leftmost column displays the source images, and the adjacent columns show the
fused outputs.

These examples are generated from our IIOF dataset and cover a wide range of visual appearances
and semantic attributes. Across varied fusion types—such as person—fruit, animal—object, and ob-
ject—object—the results consistently exhibit structural coherence, balanced integration, and high vi-
sual fidelity. This indicates that VMDiff can integrate symbolic and structural cues into stylistically
consistent hybrids, regardless of whether the source concepts are semantically similar or dissimilar.

Overall, these results substantiate the strong generalization of VMDIff, yielding novel, imaginative,
and structurally plausible hybrid objects from diverse real-world inputs, even without resampling or
seed variation.
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Figure 21: More Results. The primary source (astronaut figurine, top-left) is fused with secondary
inputs (left column), with results shown on the right.
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Figure 22: More Results. The primary source (coffee cup, top-left) is fused with secondary inputs
(left column), with results shown on the right.

Original Image 0% Results

Figure 23: More Results. The primary source (charizard figurine, top-left) is fused with secondary
inputs (left column), with results shown on the right.
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Figure 24: More Results. The primary source (apple, top-left) is fused with secondary inputs (left
column), with results shown on the right.

Original Image Our Results

Figure 25: More Results. The primary source (panda figurine, top-left) is fused with secondary
inputs (left column), with results shown on the right.
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Figure 26: More Results. The primary source (owl, top-left) is fused with secondary inputs (left
column), with results shown on the right.
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Figure 27: More Results. The primary source (doll figurine, top-left) is fused with secondary inputs
(left column), with results shown on the right.
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Figure 28: More Results. The primary source (bird, top-left) is fused with secondary inputs (left
column), with results shown on the right.
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Figure 29: More Results. The primary source (Iron man figurine, top-left) is fused with secondary
inputs (left column), with results shown on the right.
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