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Figure 1: Two groups (rows) illustrating our VMDiff’s capability to generate coherent hybrid ob-
jects. For each group, images from the 2nd to the 5th column are the product of fusing the source
image in the 1st column with the corresponding image in the top left.

ABSTRACT

Creating novel images by fusing visual cues from multiple sources is a funda-
mental yet underexplored problem in image-to-image generation, with broad ap-
plications in artistic creation, virtual reality and visual media. Existing methods
often face two key challenges: coexistent generation, where multiple objects are
simply juxtaposed without true integration, and bias generation, where one ob-
ject dominates the output due to semantic imbalance. To address these issues,
we propose Visual Mixing Diffusion (VMDiff), a simple yet effective diffusion-
based framework that synthesizes a single, coherent object by integrating two in-
put images at both noise and latent levels. Our approach comprises: (1) a hybrid
sampling process that combines guided denoising, inversion, and spherical inter-
polation with adjustable parameters to achieve structure-aware fusion, mitigating
coexistent generation; and (2) an efficient adaptive adjustment module, which in-
troduces a novel similarity-based score to automatically and adaptively search for
optimal parameters, countering semantic bias. Experiments on a curated bench-
mark of 780 concept pairs demonstrate that our method outperforms strong base-
lines in visual quality, semantic consistency, and human-rated creativity. Project.

1 INTRODUCTION

Synthesizing novel images by combining visual elements from multiple sources is a fundamental
challenge in image-to-image generation, with wide applications in virtual reality (Haque et al., 2023;
Chen et al., 2024), digital media (Zheng et al., 2024; Zhao et al., 2024), product design (Ju et al.,
2024; Sheynin et al., 2024; Wang et al., 2024) and film and game (Ceylan et al., 2023; Liu et al.,
2024). In particular, visual composition methods generate high-fidelity images by composing ob-
jects through various strategies, such as combining object words into complex sentences (Liu et al.,
2022), merging multiple objects (Liu et al., 2021), or blending scenes and styles (Zou et al., 2025).

https://annon6.github.io/anon/
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Coexistent generation Bias generation

Figure 2: Failed fusions between two object images. GPT-4o OpenAI (2025) performs coexistent
generations (left), while DreamO (Mou et al., 2025) exhibits bias generations (right). In contrast,
our method achieves a seamless and harmonious fusion of the two objects.

Although these approaches effectively position different objects or parts within an image, they often
struggle to seamlessly integrate distinct elements into a single object. Recent semantic mixing (Li
et al., 2024; Xiong et al., 2024) explores novel object synthesis by combining textual descriptions
of one object with another images or text. In contrast, this work focuses on visual mixing—directly
blending two object images into a single, imaginative, and visually cohesive concept.

However, when existing powerful methods are used to perform this visual mixing task, we identify
two key limitations. First, coexistent generation (see Fig. 2, left) occurs when different objects
merely appear in the same scene—either side-by-side or partially overlapped—without achieving
true visual and semantic integration. While the resulting compositions are spatially coherent, they
remain conceptually disjoint. For example, OpenAI’s recent GPT-4o (OpenAI, 2025) produces an
image where the glass jar and owl overlap but fail to meaningfully fuse. Second, bias generation
(see Fig. 2, right) arises when the model generates only one object while omitting the other. This
asymmetry likely stems from imbalanced representations or unresolved semantic conflicts, leading
to outputs that disproportionately emphasize one object. For instance, DreamO (Mou et al., 2025)
generates the lipstick while entirely neglecting the iron man figurine.

To address these limitations, we develop Visual Mixing Diffusion (VMDiff), a simple yet effec-
tive framework for synthesizing novel, coherent objects that seamlessly integrate two input images.
VMDiff ensures structural plausibility and semantic balance through two key components: a Hy-
brid Sampling Process (HSP) and an Efficient Adaptive Adjustment (EAA). HSP integrates the
two inputs through noise inversion and feature fusion. The inversion refines an initial noise vector
conditioned on a concatenated input object embedding with two parameters and their corresponding
text prompt, ensuring deep information mixing to prevent mere juxtaposition. Subsequently, feature
fusion employs a curvature-respecting interpolation to blend image embeddings, with a scale factor
controlling either object from dominating and thus countering bias generation. EAA automates the
search for optimal parameters by proposing a novel similarity-based score that measures alignment
with both visual/semantic similarity and balance between the fused object and the input object im-
ages/their category labels. By maximizing this score, the EAA dynamically adjusts the influence of
each input, ensuring semantically coherent and visually faithful fusions across diverse object pairs.

Our contributions are summarized as follows: (1) We introduce a hybrid sampling process that con-
structs optimized semantic noise via guided denoising and inversion, combined with a curvature-
aware latent fusion strategy using spherical interpolation for smooth and tunable blending. (2) We
present an efficient adaptive adjustment algorithm that adjusts fusion parameters to achieve seman-
tic and visual balance via a lightweight score-driven search. (3) By integrating them, we propose
VMDiff, a unified and controllable framework for object-level visual concept fusion. Experiments
on a curated benchmark of 780 concept pairs demonstrate that our method achieves superior object
synthesis, excelling in semantic consistency, visual harmony, and user-rated creativity.

2 RELATED WORK

Multi-Concept Generation. Multi-concept generation seeks to synthesize images representing
multiple user-defined concepts, typically from a few reference images per concept. Early works
such as Custom Diffusion (Kumari et al., 2023) and SVDiff (Han et al., 2023) extend single-concept
personalization by fine-tuning on joint data or merging customized models. Later methods (Gu et al.,
2023; Liu et al., 2023b) enhance compositionality by merging LoRA modules or token embeddings
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𝑻𝑻𝟐𝟐:

𝑻𝑻𝟏𝟏: Prompt: A photo of 
𝑻𝑻𝟏𝟏: charizard figurine
creatively fused with 
𝑻𝑻𝟐𝟐: panda figurine .

Figure 3: Overview of our VMDiff framework. Given two input images and their categories, the
Hybrid Sampling Process (HSP) fuses them using noise inversion, scale interpolation (SInp) and
scale concatenation (SCat). Efficient adaptive adjustment (EAA) optimizes fusion parameters θ =
{α, β1, β2, ϵ} via a similarity score (SS) that measures visual, semantic, and balance consistency.

via gradient fusion (Gu et al., 2023) or spatial inversion (Zhang et al., 2024). More recent approaches
further improve efficiency and flexibility: FreeCustom (Ding et al., 2024) employs multi-reference
self-attention and weighted masks for training-free composition, while MIP-Adapter (Huang et al.,
2025) mitigates object confusion with a weighted-merge strategy. OmniGen (Xiao et al., 2025) and
DreamO (Mou et al., 2025) provide unified instruction-based frameworks for diverse generation
tasks. Unlike prior methods that explicitly separate input concepts, our approach introduces a uni-
fied fusion framework that integrates two concept inputs into a novel object with coherent structure
and balanced semantics.

Semantic Mixing. Creativity, spanning domains from scientific theories to culinary recipes, has
long been a key driver of progress in artificial intelligence (Boden, 2004; Maher, 2010; Wang et al.,
2023; Xiong et al., 2025b). In this context, semantic mixing has emerged as a promising approach for
generating novel objects by fusing features from multiple concepts into a single coherent representa-
tion. Unlike traditional style transfer (Zhang et al., 2023; Tang et al., 2023; Ke et al., 2023) or image
editing (Avrahami et al., 2025; Dong & Han, 2023; Brooks et al., 2023; Gal et al., 2023)—which
emphasize texture transfer or localized modifications while preserving layout—semantic mixing
focuses on concept-level integration within a single entity. Conceptlab (Richardson et al., 2024)
interpolates token embeddings to synthesize imaginative entities, while TP2O (Li et al., 2024) en-
hances controllability by aligning and blending prompt embeddings. However, both operate purely
in the textual domain and lack support for real visual content. MagicMix (Liew et al., 2022) fuses
image latents with text prompts during denoising, preserving spatial structure, while ATIH (Xiong
et al., 2024) improves semantic alignment through more coordinated integration of visual and tex-
tual inputs. FreeBlend (Zhou et al., 2025) performs staged interpolation in latent space to produce
blended objects. In contrast, our method integrates structural and semantic cues from real image
concepts, generating hybrid objects that are both visually coherent and semantically balanced.

3 VISUAL MIXING DIFFUSION

In this section, we present a Visual Mixing Diffusion (VMDiff) for synthesizing novel objects im-
ages in Fig. 3. Our method consists of two key components. We introduce a Hybrid Sampling
Process (HSP, §3.1) that generates a new object image by blending two distinct inputs using learned
scale factors and noise. An Efficient Adaptive Adjustment (EAA, §3.2) dynamically adjusts the
scale factors and noise based on a Similarity Score (SS), ensuring high-quality object synthesis.

3.1 HYBRID SAMPLING PROCESS

Given two distinct images I1 and I2, along with their respective category labels T1 and T2 (e.g., Iron
Man and Duck), we first construct a guiding prompt PG: “A photo of < T1 > creatively fused with
< T2 >.” and sample an initial Gaussian noise ϵ ∼ N (0, I). For convenience, we denote an input
data D = {I1, I2, T1, T2, PG}. We first employ pretrained image/text encoders EI(·)/ET (·) of Flux-



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Krea (Lee et al., 2025) to project both visual and textual modalities into a unified image-language
latent space. Specifically, these embeddings are extracted by z1 = EI(I1), z2 = EI(I2), zp =
ET (PG). Using these embeddings, HSP includes blending noise and mixing denoise.

Blending Noise (BNoise): Directly sampling standard Gaussian noise to generate a blend of two ob-
jects frequently produces incomplete results, with key features such as arms or legs missing (Fig. 4).
This occurs because random noise contains no information about the input objects. Our solution is
to refine an initial noise vector ϵ, transforming it into a visually and semantically-informed estimate
that faithfully represents the source data. Inspired by Rectified Flow (Albergo & Vanden-Eijnden,
2023), this is achieved through a guided denoising and inversion process. Using inputs ϵ, z1, z2, zp,
we denoise to an intermediate timestep tden, and invert to a refined noise ϵb, which is defined as:

x̂t = xtden ⇐

denoise: t decreases from T to tden, starting xT=ϵ︷ ︸︸ ︷
xt−1 = xt − (σt − σt−1)vϕ(xt, t, zSCat(z1, z2;β1, β2), γden, zp),

ϵb = x̂T︸︷︷︸
BNoise

⇐ x̂t+1 = x̂t + (σt+1 − σt)vϕ(x̂t, t, zSCat(z1, z2;β1, β2), γinv, zp)︸ ︷︷ ︸
inversion: t increases from tden to T, starting x̂t=xtden

,
(1)

where xt and x̂t are latent variables at timestep t, vϕ denotes the noise prediction network, σt con-
trols the sampler parameter. For conditioning, we adopt parameters from (Bai et al., 2025): a high
denoising strength γden = 5 ensures strong guidance, while an inversion strength of γinv = 0 is used
to reduce distortion in the noise space. The total number of timesteps T is 999, with a predefined
intermediate denoising timestep at tden = 652. In equation 1, zp provides the semantic information,
while zSCat provides visual information. Here, we introduce two learnable factors β1, β2 ∈ R+ to
create a scale concatenation (SCat) of the input latents: zSCat(z1, z2;β1, β2) = concat(β1z1, β2z2).

Interp before BNoiseRandom noise Interp after BNoise OursOriginal Image

Figure 4: Different BNoise strategies.

Discussion on BNoise: concatenate
vs. interpolate. We hypothesize that
interpolating mismatched embeddings
obscures subtle features, while con-
catenation preserves them, allowing
the inversion process to refine noise
containing the full concept. To test
this, we compare Interpolate before BNoise: Blend embeddings first, then refine the noise, and
Interpolate after BNoise: Refine noise from each embedding first, then blend the results. Fig. 4
shows that both interpolation methods fail to capture intricate details (e.g., legs), whereas our con-
catenation yields superior visual quality and faithfulness by preserving input details and ensuring a
coherent denoising pathway. Quantitative results in Appdx. A.

Mixing Denoise (MDeNoise): Using the blended noise ϵb, we denoise it to finally produces a cross-
object fusion by mixing the inputs, z1, z2, zp. Specifically, we formulate this process as:

I = D(x0), where x0 ⇐

MDeNoise: t decreases from T to 0, starting xT=ϵb︷ ︸︸ ︷
xt−1 = xt − (σt − σt−1)vϕ(xt, t, zSInp(z1, z2;α), γgen, zp) . (2)

Here, γgen = 4.0 is a fixed guidance scale, and the decoder D(·) generate the final fusion image
I using the Flux-Krea decoder (Lee et al., 2025). The scale interpolation (SInp), zSInp(z1, z2;α),
mixes the two visual embeddings z1 and z2 into a single coherent representation, which is imple-
mented by a spherical interpolation (Shoemake, 1985): zSInp(α) = sin(α·δ)

sin(δ) z1 + sin((1−α)·δ)
sin(δ) z2,

where δ = cos−1(z1 · z2), and 0 ≤ α ≤ 1 is a learnable factor to control the mixing ratio. This
MDeNoise process in equation 2 outputs the final fusion image I .

𝜶𝜶 = 𝟎𝟎.𝟒𝟒𝟒𝟒Original Image

SInp
Concatenation

𝜶𝜶 = 𝟎𝟎.𝟒𝟒𝟏𝟏 𝜶𝜶 = 𝟎𝟎.𝟒𝟒𝟒𝟒 𝜶𝜶 = 𝟎𝟎.𝟒𝟒𝟒𝟒 𝜶𝜶 = 𝟎𝟎.𝟒𝟒𝟒𝟒

Figure 5: Different MDeNoise generations across α.

Discussion on MDeNoise: interpolate
vs. concatenate. MDeNoise prioritizes
fusing its two inputs, unlike BNoise
which preserves them. While concatena-
tion retains more input information, its
rigid separation often creates disjointed
representations and generations. How-
ever, interpolation enables seamless in-
tegration. To demonstrate this, we com-
pare with a concatenation-fusion variant: zSInp is replaced by zSCat(α) = concat(αz1, (1 − α)z2)
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in equation 2 (Fig. 5), which tends to produce isolated objects rather than a unified hybrid. Our
interpolation instead creates a single, coherent entity with harmonious consistency.

HSP: Overall, for a given input D, the hybrid sampling process combines the BNoise (equation 1)
and MDeNoise (equation 2). To simplify the notation, we formalize this process as the function:

I(θ) = HSP(D; θ, θ̂) = D(x0), (3)

where θ = {α, β1, β2, ϵ} are learnable parameters, and θ̂ = {γden = 5, γinv = 0, γgen = 4, T =
999, tden = 652} are fixed defaults in this paper.

3.2 EFFICIENT ADAPTIVE ADJUSTMENT (EAA)

The HSP process yields distinct fusion results I(θ) defined in equation 3 with parameters θ, defaults
θ̂ and inputs D, making parameter selection critical for high-quality synthesis. We propose an
adaptive framework to jointly adjust θ = {α, β1, β2, ϵ}, aiming to achieve both semantic coherence
and visual fidelity. Inspired by prior work (Li et al., 2024; Xiong et al., 2024), we first introduce a
Similarity Score (SS) to guide this search: (For simplicity, input D and defaults θ̂ are not shown.)

S(θ) = SI1(θ) + SI2(θ)︸ ︷︷ ︸
visual similarity

+ST1
(θ) + ST2

(θ)︸ ︷︷ ︸
semantic similarity

− |SI1(θ)− SI2(θ)|︸ ︷︷ ︸
visual balance

− |ST1
(θ)− ST2

(θ)|︸ ︷︷ ︸
semantic balance

, (4)

where SIi(θ) (i = 1, 2) is the visual similarity between I(θ) and the source image Ii, computed via
a DINO encoder (Oquab et al., 2024), while STi

(θ) (i = 1, 2) is the semantic similarity between
I(θ) and the category label Ti, measured using CLIP (Radford et al., 2021). This scoring function
is designed to optimize two key objectives for successful fusion: (i) maximizing similarity, and (ii)
enforcing balance. The first two terms ensure that the generated image I(θ) retains high perceptual
and semantic fidelity to both input images and their corresponding category labels. By maximizing
similarity to both sources, these terms preserve the core features of the original concepts. The final
two terms—penalizing the absolute differences—explicitly enforce balance, preventing the model
from overfitting to one input and encouraging a fair integration of both objects’ features. Together,
these components create a unified SS objective that balances fidelity and symmetry, offering a prin-
cipled framework for optimizing feature fusion parameters.

Our EAA Algorithm. To maximize this objective S(θ) in equation 4, we present a hierarchical
adjustment strategy that learns the parameters θ = {α, β1, β2, ϵ} using the acceptance threshold
Th = 2.4. The key loop iterates from k = 1 to K = 3, performing these steps:

➀ Sample (initial) Gaussian noise: ϵ ∼ N (0, I), initialize the parameters: α =
0.5, β1 = β2 = 1.0.

➁ Searching α: Fixed β1 = β2 = 1.0 and ϵ, perform a golden section search (Teukolsky
et al., 1992) to find the optimal mixing factor α∗:

α∗ = arg max
α∈[0,1]

S(α, β1, β2, ϵ). (5)

➂ Adjusting β1, β2: Fixed α∗, ϵ, if S(α∗, β1, β2, ϵ) ≤ Th, then update the noise factors:
β∗
1 = β1 & β∗

2 = arg max
β2∈R+

S(α∗, β1, β2, ϵ), if S1 > S2,

β∗
2 = β2 & β∗

1 = arg max
β1∈R+

S(α∗, β1, β2, ϵ), otherwise.
, (6)

where S1 = SI1 + ST1
, S2 = SI2 + ST2

, and S1 > S2 indicates that the mixing noise
favors the object I1, and vice versa.

➃ Acceptance criterion:
ϵ∗ = ϵ & return θ∗ = {α∗, β∗

1 , β
∗
2 , ϵ

∗}, if S(α∗, β∗
1 , β

∗
2 , ϵ) > Th,

return θ∗ = {α∗, β∗
1 , β

∗
2 , ϵ

∗} & break, if k > K,

turn to the step ➀ to resample ϵ & k ++, otherwise.
, (7)
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where the fused object image I(θ) is defined in equation 3. Our adaptive loop efficiently explores a
low-dimensional yet expressive parameter space θ = {α, β1, β2, ϵ}, yielding conceptually balanced
and perceptually smooth fusion results (Fig. 9). By reusing intermediate predictions and limiting
optimization to scalar-level searches (via golden section search), the method enhances sample effi-
ciency—avoiding the computational overhead of gradient-based latent-space backpropagation.

Discussion on resampling ϵ. During our blending process, sampling random Gaussian noise can
occasionally yield low-quality or failed fusions. While first-order optimization is an intuitive solu-
tion, it offers no significant advantage over simple zero-order resampling for diffusion generation,
despite its higher cost (Ma et al., 2025). Consequently, we adopt a zero-order resampling strategy to
search for ϵ, and a small number of resamples K = 3 proves sufficient for high-quality fusion. For
fair comparison, this resampling is disabled, K = 1, and the random seed is fixed at 42.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We introduce IIOF (Image-Image Object Fusion), a new benchmark of 780 image pairs
derived from 40 objects across four classes (i.e., animals, fruits, artificial objects, and character
figurines). Most images are from PIE-Bench (Ju et al., 2024) and Pexels1; figurines were self-
captured for quality. To evaluate order-sensitive methods, we also generate all ordered pairs (1,560
total), ensuring a comprehensive and fair benchmark. More details in Appdx. B.

Implementation Details. Our method builds upon Flux-Krea (Lee et al., 2025), implementing EI
with Redux (Black Forest Labs, 2024) for latent-space alignment. We generate all images at 512×
512 resolution using the FlowMatchEulerDiscreteScheduler (Lipman et al., 2022) with 20 denoising
steps. For the Efficient Adaptive Adjustment (EAA) module, we use Grounded-SAM (Ren et al.,
2024) and the query “most prominent object” to localize main regions for visual and semantic
similarity computation. Each parameter search for α and β involves at most 10 image generations.
All experiments are conducted on two NVIDIA RTX 4090 GPUs.

Evaluation Metrics. To evaluate our method, we use two metric families: Semantic Align-
ment (SA) and Single-entity Coherence (SCE). SA is computed on the generated prompt PG

using VQAScore (Lin et al., 2024b) and LLaVA-Critic (Xiong et al., 2025a). VQAScore em-
ploys CLIP-FlanT5 (Roberts et al., 2022) and LLaVA (Liu et al., 2023a), denoted as VQASA

T5 and
VQASA

LLaVA, respectively; the LLaVA-Critic score is LCSA. SCE assesses if the image forms a uni-
fied concept by asking: “A photo of a seamless fusion of <T1> and <T2> into a single coherent
entity.” Its scores are VQASCE

T5 , VQASCE
LLaVA, and LCSCE. We also compute the SS score and the

balance metric Bsim = |SI1(θ)−SI2(θ)|+ |ST1
(θ)−ST2

(θ)|, where STi
(θ) are normalized to [0, 1]

using empirical bounds 0.15 and 0.45 to align the scales of visual and textual modalities.

4.2 MAIN RESULTS

We compare with leading methods across three categories: (i) multi-concept generation (e.g.,
OmniGen (Xiao et al., 2025), FreeCustom (Ding et al., 2024), MIP-Adapter (Huang et al.,
2025), DreamO (Mou et al., 2025)), (ii) mixing-based (e.g., ATIH (Xiong et al., 2024), Concept-
lab (Richardson et al., 2024), FreeBlend (Zhou et al., 2025)), and (iii) image editing (e.g., Stable
Flow (Avrahami et al., 2025)). We also include qualitative results from GPT-4o (OpenAI, 2025).
Inputs vary: multi-concept methods use two images and a text prompt; ATIH and Stable Flow use
one image and text; Conceptlab uses text only. More examples in Appdx. G.

Qualitative Comparison. Fig. 6 compares our method with multi-concept generation baselines
(e.g., MIP-Adapter, OmniGen, DreamO, GPT-4o), highlighting two observations. First, baselines
output often merely overlay features rather than fusing them—for example, a lime enclosed in a
glass jar without integration—while our method creates a coherent hybrid. Second, baselines fre-
quently favor one concept, such as generating either a doll or a corgi but not a unified blend. In
contrast, our approach balances both concepts, producing structurally unified and semantically con-
sistent results. This demonstrates our method’s superior ability to achieve fine-grained visual fusion.

1https://www.pexels.com/

https://www.pexels.com/
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Figure 6: Comparisons with Multi-Concept Generation Methods. Our approach yields hybrid
objects with improved structural coherence and visual balance over existing methods.

Table 1: Quantitative comparisons on our IIOF dataset.
Models VQASA

T5↑ VQASCE
T5 ↑ LCSA ↑ LCSCE↑ VQASA

LLaVA ↑ VQASCE
LLaVA↑ SS ↑ Bsim↓

Our VMDiff 0.639 0.540 8.372 8.392 0.390 0.413 2.068 0.324
FreeCustom (CVPR (Ding et al., 2024)) 0.579 0.452 6.958 6.946 0.360 0.388 1.580 0.776

MIP-Adapter (AAAI (Huang et al., 2025)) 0.621 0.512 8.301 8.076 0.389 0.417 1.866 0.483
OmniGen (CVPR (Xiao et al., 2025)) 0.570 0.469 7.550 7.233 0.352 0.348 1.705 0.617

Conceptlab (TOG (Richardson et al., 2024)) 0.573 0.483 7.589 7.728 0.362 0.395 – –
ATIH (NeurIPS (Xiong et al., 2024) ) 0.523 0.465 7.275 6.816 0.317 0.367 – –

Stable Flow (CVPR (Avrahami et al., 2025)) 0.460 0.372 6.020 5.024 0.266 0.294 – –
DreamO (SIGGRAPH Asia (Mou et al., 2025) ) 0.591 0.467 7.592 7.013 0.370 0.346 1.793 0.644

FreeBlend (arXiv (Zhou et al., 2025)) 0.588 0.507 7.836 7.788 0.341 0.383 1.870 0.479

Fig. 7 qualitatively compares our method with mixing/editing baselines (e.g., Conceptlab, ATIH,
FreeBlend, Stable Flow). Conceptlab often biases toward one concept, while Stable Flow and ATIH
make only subtle edits, such as color or texture transfer. FreeBlend frequently loses original in-
formation and yields fragmented outputs. In contrast, our approach synthesizes novel objects that
structurally and visually integrate both concepts, achieving a deeper, more harmonious fusion and
demonstrating superior blending capability.

Quantitative Comparison. Table 1 presents quantitative comparisons on key metrics, including
VQASA

T5 , VQASA
LLaVA, VQASCE

T5 , VQASCE
LLaVA, LCSA, LCSCE, similarity score (SS), and fusion

balance Bsim. Although MIP attains the highest VQASCE
LLaVA, it ranks only second or below on the

other VQA, LC, SS, and Bsim metrics, indicating that its improvements are not holistic. In contrast,
our method consistently outperforms all baselines on most metrics, demonstrating strong capability
in generating coherent and natural blended objects. These results reinforce our qualitative findings
and confirm the effectiveness of our approach in achieving high-quality visual fusion.
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Figure 7: Comparisons with Mixing and Image Editing Methods. Our method produces more
coherent and balanced hybrids, while baselines often favor one concept or apply minimal edits.

Table 2: Quantitative ablation study on our IIOF dataset.
Models VQASA

T5↑ VQASCE
T5 ↑ LCSA ↑ LCSCE↑ VQASA

LLaVA ↑ VQASCE
LLaVA↑ SS ↑ Bsim↓

Baseline 1 0.497 0.438 7.261 7.077 0.287 0.314 1.570 0.682
Baseline 2 0.508 0.441 7.426 7.291 0.298 0.325 1.586 0.693

Baseline 2+α-search 0.625 0.532 8.278 8.276 0.382 0.405 2.025 0.358
Baseline 2+α-search+β1, β2-search 0.639 0.540 8.372 8.392 0.390 0.413 2.068 0.324
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Figure 8: User studies.

User Study. To evaluate the perceptual qual-
ity of our fusions, we conducted two user stud-
ies (Fig. 8). 76 participants each rated 12 re-
sults—6 from Multi-Concept Generation and 6
from Mixing/Editing—yielding 912 total votes.
Our VMDiff received the highest preference in
both groups: 67.3% and 87.1%, respectively.
GPT-4o and ATIH ranked second, but with sig-
nificantly lower votes (12.9% and 7.5%). These
results indicate that our VMDiff aligns better
with human preferences in visual coherence and creativity. More details in Appdx. C.

4.3 ABLATION STUDY

We conducted an ablation study to evaluate the contributions of our VMDiff’s key components,
as shown in Fig. 9 and Table 2. Progressively adding each element—(i) baseline 1: random
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Figure 10: Visualizing the updated process of our EAA based on two input images I1 (doll
figurine) and I2 (rabbit). The α parameter (blue) improves fusion quality, while β (orange) enhances
semantic balance. The green curve (similarity) rises and the dark blue curve (imbalance) falls over
iterations. The final output is a coherent hybrid with high similarity and minimal imbalance.

noise+MDeNoise (α = 0.5), (ii) baseline 2: baseline 1+BNoise (β1 = β2 = 1), (iii) base-
line 2 + MDeNoise (α search), and (iv) baseline 2 + BNoise (β1, β2 search) + MDeNoise (α
search)—yielded consistent improvements. Without noise refinement, outputs lacked detail. Its

Baseline 2+𝜶𝜶 search
Baseline 2+𝜶𝜶 search

+𝜷𝜷𝟏𝟏, 𝜷𝜷𝟐𝟐 searchBaseline 2Baseline 1Original Image

Figure 9: Ablation study in VMDiff. Noise refinement improves
detail and structure, while adaptive α and β search progressively
enhance semantic balance and visual coherence.

inclusion enhanced structural
fidelity and preserved input
features. Adaptive α improved
fusion balance, while adaptive
β refined noise influence for
greater visual harmony. Fig. 10
illustrates the optimization
process for a representative
case (doll figurine + rabbit).
Throughout iterations, simi-
larity S(θ) (green) increased
steadily, while the blending
balance metric (dark blue)
decreased. The α search (light
blue) rapidly boosted similarity,
and β search (orange) smoothed
visual-textual alignment. These results confirm that our EAA design effectively optimizes both
similarity and symmetry for high-quality blending. Limitations are discussed in Appdx. D.

4.4 MULTI-IMAGE FUSION AND BACKBONE GENERALIZATION.

lipstick strawberryultraman 
figurine glass jar lipstickrocking 

horse
astronaut
figurine strawberryglass jar tomato strawberryman pineapple strawberrylipstick

Figure 11: Multi-image fusion.
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Multi-image fusion. We also explore extending VMDiff beyond pairwise fusion. Figure 11 shows
preliminary three-image results obtained by sequentially applying our pipeline (e.g., first fusing
(I1, I2) and then fusing the hybrid with I3). The method can still produce single coherent enti-
ties that blend attributes from all three categories, indicating that our formulation can, in principle,
scale to more inputs. However, compared with the pairwise case, these hybrids exhibit stronger
information loss and imbalance across sources, so in this work we focus on image pairs and leave
permutation-invariant, learned aggregation of multiple image embeddings to future work.
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Figure 12: Each column shows an input pair (top) and the fused outputs when plugging our
framework into Flux-1.0-dev+Redux, SDXL+IP-adapter(Ye et al., 2023), and SD-3.5+SD-3.5-
IP-adapter(Team, 2024). All backbones use the same images and fusion prompt.

Backbone generalization. We evaluate VMDiff on three backbones with identical settings: Flux-
dev+Redux, SDXL (Lin et al., 2024a)+IP-Adapter (Ye et al., 2023), and SD-3.5 (AI, 2024)+SD-3.5-
IP-Adapter (Team, 2024) (Fig. 12). All three run under our HSP+EAA framework, so VMDiff is not
tied to Flux-Krea, but the quality and tendency toward a single hybrid object strongly depend on how
image information is encoded. Flux+Redux maps images into a semantic latent space shared with
text, allowing BNoise+SInp to operate directly on rich, text-like image embeddings and thus best
preserve instance-level geometry and appearance from both sources. For SDXL and especially SD-
3.5, IP-Adapter injects image features as extra attention tokens; interpolating these tokens mainly
modulates high-level semantics and, in our results, often weakens retention of input-specific struc-
ture. VMDiff therefore benefits most from backbones that preserve detailed instance information in
a text-compatible embedding space. Our SDXL and SD-3.5 experiments should be viewed as fea-
sibility checks under this weaker image interface, and we expect that adding Redux-style semantic
image encoders to such models would narrow the quality gap to Flux-Krea.

5 CONCLUSION

In this paper, we presented VMDiff, a novel unified and controllable framework for visual concept
fusion that synthesizes coherent new objects directly from two input images. Our approach en-
ables fine-grained control by semantically integrating concepts at both the noise and latent levels.
VMDiff consists of two core components: (1) a hybrid sampling process that constructs optimized
semantic noise through guided denoising and inversion, followed by a curvature-aware latent fusion
using spherical interpolation, and (2) an efficient adaptive adjustment algorithm that refines fusion
parameters via a lightweight, score-driven search. Experimental results on a curated benchmark
demonstrate VMDiff’s superior performance, excelling in semantic consistency, visual harmony,
and user-rated creativity, thereby establishing a new paradigm for hybrid object synthesis. This
work offers practical and valuable insights for professionals developing combinational characters,
directly applicable to diverse fields from film and animation to figures and industrial design.
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SUPPLEMENTARY MATERIALS

This supplementary material provides additional technical details and extended results to support
the main paper. We begin in Section A with two key discussions: the necessity of adjusting β1

and β2 in our hierarchical parameter search, and a quantitative comparison of BNoise fusion strate-
gies—concatenation versus interpolation. Section B describes the construction of our proposed
IIOF benchmark dataset, including the criteria for category selection and object pairing strategies.
Section C presents a comprehensive user study, providing human preference validation of our fu-
sion results. In Section D, we outline the current limitations of our method, discuss remaining
challenges, and suggest possible directions for future improvement. Section E contains our formal
statement on the use of LLMs in this work, in accordance with ICLR policy. Section F details the
full inference pipeline of our VMDiff framework. Finally, Section G showcases extensive qualita-
tive results, further demonstrating the effectiveness and generalization ability of our method across
diverse fusion scenarios.

A ADDITIONAL DISCUSSIONS
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Figure 13: Illustration of our hierarchical parameter adjustment. The top row shows results from
searching α; the bottom row refines the fusion by fixing α and adjusting β2. Consistent with
Sec. 3.2, once the overall score S exceeds the acceptance threshold Th=2.4, the fusion becomes
visually coherent and balanced; when α-only optimization underperforms, the second-stage β2

refinement raises S above the threshold.

Discussion on the necessity of adjusting β1, β2. As shown in Fig. 13, global optimization over α
alone occasionally fails to yield well-fused results. To mitigate this, we first fix α∗ (corresponding
to the best similarity score in Eq. 4) and then perform a local refinement by optimizing β1, β2. This
adjustment allows the model to precisely calibrate the noise contribution of each object, enhancing
both visual coherence and semantic balance in the final output.

Discussion on BNoise. As shown in Table 3 on the IIOF dataset, Ours (Concat before inversion)
achieves state-of-the-art performance on most metrics. Although it ranks second on the LC metric,
its substantial advantage on SS demonstrates that concatenation more effectively preserves and in-
tegrates complementary information from both inputs. In summary, concatenation before inversion
yields superior visual quality and semantic faithfulness by retaining fine-grained details and guiding
a more coherent denoising pathway, compared with either form of interpolation.

Table 3: Quantitative Evaluation of BNoise Fusion: Concatenation vs. Interpolation.
Models VQASA

T5↑ VQASCE
T5 ↑ LCSA ↑ LCSCE↑ VQASA

LLaVA ↑ VQASCE
LLaVA↑ SS ↑ Bsim↓

Random noise 0.497 0.438 7.261 7.077 0.287 0.314 1.570 0.682
Interp Before Inversion 0.504 0.441 7.439 7.390 0.293 0.321 1.551 0.678
Interp After Inversion 0.486 0.430 7.278 7.112 0.283 0.311 1.532 0.712

Ours(Concat Before Inversion) 0.508 0.442 7.426 7.291 0.298 0.325 1.586 0.693

Discussion on additional ablation of BNoise and the α/β search. To better understand the contri-
butions of BNoise and the EAA search, we conduct an additional ablation on 1,184 pairs from IIOF,
summarized in Fig. 14 and Table 4. We compare four variants: (i) Baseline 1, which uses random
noise plus MDeNoise with a fixed α = 0.5 (no BNoise, no search); (ii) Baseline 2, which augments
Baseline 1 with BNoise by setting β1 = β2 = 1 (semantic noise injected, no search); (iii) Baseline 1
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+ β1, β2-search, which augments Baseline 1 with BNoise and an EAA search over (β1, β2); and (iv)
Random noise + α-search, which applies EAA only to α without BNoise.

Baseline 1+𝜷𝜷𝟏𝟏, 𝜷𝜷𝟐𝟐search Random noise+𝜶𝜶searchBaseline 2Baseline 1Original Image

Figure 14: Ablation of BNoise and the α/β search. Each column shows the original image pair
(left) and fused results from different variants: Baseline 1 (random noise + MDeNoise with fixed
α=0.5), Baseline 2 (Baseline 1 + BNoise with β1=β2=1), Baseline 1 + β-search, and Random
noise + α-search. BNoise (columns 2–3) provides a more informative initialization that preserves
structures from both sources, while β-search further balances semantic content in the noise. In
contrast, random-noise + α-search alone often loses details, confirming the complementary roles of
BNoise and the α/β search.

Table 4: Quantitative ablation of BNoise and the α/β search on the IIOF dataset.
Models VQASA

T5↑ VQASCE
T5 ↑ LCSA ↑ LCSCE↑ VQASA

LLaVA ↑ VQASCE
LLaVA↑ SS ↑ Bsim↓

Baseline 1 0.496 0.419 7.186 7.065 0.283 0.320 1.563 0.691
Baseline 2 0.503 0.420 7.326 7.191 0.290 0.326 1.580 0.705

Baseline 1+β1, β2-search 0.553 0.461 7.723 7.679 0.320 0.359 1.760 0.553
Random noise+α-search 0.603 0.508 8.009 8.017 0.357 0.394 1.972 0.354

Qualitatively, Baseline 1 often loses information from the sources, whereas Baseline 2 preserves
more structures from both inputs, confirming that the semantic noise ϵb obtained via the denoise–
invert cycle provides a more informative initialization than pure Gaussian noise. Adding β-search
on top of BNoise further improves all SA/SCE and SS scores and reduces the imbalance metric
Bsim from 0.691 to 0.553, indicating that (β1, β2) effectively rebalance how each source contributes
to the noise. The random-noise+α-search variant achieves higher SA/SCE and lower Bsim than
Baseline 1, but still misses fine details and parts from the inputs, as seen in Fig. 14, due to the lack of
a semantically informed noise initialization. Taken together, these results highlight complementary
roles: BNoise produces a conditional, information-carrying noise ϵb, while the EAA search over α
and (β1, β2) adjusts the contributions of the two sources in the mixed embeddings and in the noise,
respectively. This motivates our full HSP+EAA design, which combines both components to obtain
the most faithful and balanced hybrids.

panda figurine cat cat pepper lime lime pepper pineapple rocking horse rocking horse pineapplepanda figurine

Figure 15: Effect of swapping the order of T1 and T2 in the prompt.
Discussion on name order. Fusion is, in principle, sensitive to the order of the category names in the
guiding prompt, since the text encoder need not be strictly commutative. To probe this effect, we fix
the image pair (I1, I2) and all hyperparameters, and only swap the order of the category tokens T1
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and T2 in the prompt, using the “Random noise + MDeNoise (α = 0.5)” baseline (Fig. 15). For most
pairs (left and middle examples), the two orderings produce almost identical hybrids, indicating that
our fusion behaves approximately symmetric with respect to name order. In a few harder cases
(right), the leading token receives slightly more emphasis and extra attributes may appear, but both
generations remain single, coherent hybrids rather than collapsing to one source. In the full VMDiff
pipeline, this mild asymmetry is further reduced by the symmetric fusion score S(θ) and EAA
search, which explicitly discourage strong bias toward a single category.

Discussion on fusion strategy. To better understand why we favor interpolation over concatenation,
we also test a weighted concatenation variant zcat(α) = concat(αz1, (1−α)z2), and fix the source
images while varying α from 0.1 to 0.8 (Fig. 16). As the figure shows, relatively large changes in
α are required to noticeably alter the result, confirming that α exerts much weaker control in the
concatenation space than in the interpolated space. More importantly, across all settings the fusion
remains stitching-like: one region of the image is dominated by the strawberry and the other by the
jar, with a clear boundary between them. This suggests that separating z1 and z2 into distinct blocks
encourages the network to treat them as two pieces to be glued together, rather than a single coherent
object. In contrast, our MDeNoise stage mixes z1 and z2 via spherical interpolation within the
same latent subspace, leading to much more integrated hybrids with smoothly shared geometry and
appearance (see Fig. 21). These observations support our choice of slerp-based mixing in MDeNoise
rather than concatenation-based fusion.
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Effect of weighted concatenation 𝒛𝒛 𝜶𝜶 = 𝜶𝜶𝒛𝒛𝟏𝟏 , 𝟏𝟏 − 𝜶𝜶 𝒛𝒛𝟐𝟐 under different 𝜶𝜶

Figure 16: Behaviour of weighted concatenation zcat(α) = concat(αz1, (1−α)z2) under dif-
ferent α. We fix the source images and vary α from 0.1 to 0.8. Large changes in α are required
to noticeably alter the result, and across all settings the fusion remains stitching-like: one region is
dominated by the strawberry and the other by the jar, with a clear boundary between them.

Why MIP-Adapter scores higher on SA/SCE. At first glance, MIP-Adapter appears visually weaker
than DreamO and OmniGen, yet it achieves higher SA/SCE scores in Table 1. This is because our
metrics are explicitly designed to measure semantic fusion quality rather than photo-realism. SA
and SCE are LMM-based scores that reward (i) strong alignment with the fusion prompt and (ii) the
presence of a single fused entity that simultaneously reflects both source categories. As illustrated
in Fig. 17, MIP-Adapter typically produces one coherent object that clearly contains cues from both
inputs, even though many fine-grained instance details are washed out. DreamO and OmniGen, on
the other hand, often generate highly realistic and aesthetically pleasing images, but they frequently
either omit one concept or render two separate objects instead of a single hybrid. Such behaviours
are explicitly penalized by SA/SCE (and SS), which explains why MIP-Adapter scores higher in
Table 1 despite being less visually appealing than DreamO and OmniGen in Fig. 17 and receiving
lower user preference in Table 6.

B DATASETS

To systematically evaluate our fusion framework, we construct a comprehensive benchmark dataset
named IIOF (Image-Image Object Fusion), specifically tailored for assessing diverse and semanti-
cally rich visual concept mixing.
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Figure 17: Additional qualitative comparisons on IIOF.

We meticulously selected 40 distinct object categories, strategically organized into four semantic
groups: Animals, Fruits, Artificial Objects, and Character Figurines. Each group comprises 10
unique classes, a design choice that ensures both intra-group consistency and ample inter-group
diversity. A complete list of all selected categories is provided in Table 5.

For each chosen class, we sourced one high-quality, representative image. The majority of these
images were obtained from established public benchmarks such as PIE-Bench (Ju et al., 2024)
and popular stock image platforms like Pexels2. Recognizing the scarcity of high-quality, pub-
licly available data for character figurines, we self-captured these images under controlled condi-
tions, ensuring consistent lighting and resolution to maintain visual quality and diversity across
the dataset. Figure 18 showcases all the selected images, providing a visual overview of the
dataset’s content. Additionally, each selected image is paired with its corresponding textual cat-
egory name, as detailed in Table 5, to facilitate evaluations for prompt-based fusion methods.

Table 5: List of Objects in the IIOF Dataset by
Category.

Category Object Names

Animals wolf, panda, owl, rabbit, horse,
giraffe, corgi, cat, bird, sheep

Fruits
apple, orange, strawberry, durian,
lime, pear, pineapple, watermelon,
tomato, pepper

Artificial
Objects

lipstick, violin, coffee cup, rocking
horse, glass jar, car, teapot, cake, man,
teddy bear

Character
Figurines

iron man figurine, monkey king
figurine, doll figurine, pikachu
figurine, charizard figurine, ultraman
figurine, astronaut figurine, venusaur
figurine, panda figurine, squirtle
figurine

Initially, we derived 780 unique image pairs
by combining each of the 40 objects with ev-
ery other object once, without considering in-
put order. However, to ensure a comprehensive
evaluation and enable fair comparison across
all methods, particularly those sensitive to in-
put order (e.g., ATIH (Xiong et al., 2024)),
we further expanded IIOF to include all pos-
sible ordered pairs among the 40 categories.
This expansion yielded a total of 1,560 im-
age pairs, where each combination (A,B) is
present alongside its reverse (B,A). This ex-
haustive pairing strategy allows us to rigorously
assess fusion performance across a wide spec-
trum of semantic relationships—ranging from
semantically close concepts to challenging dis-
tant combinations, such as fusing a ’violin’ with
a ’panda’ or a ’horse’ with ’lipstick’. This also
critically highlights our model’s ability to gen-
eralize and compose novel concepts effectively across diverse domains.

2https://www.pexels.com/

https://www.pexels.com/
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Figure 18: Original Object Image Set.

C USER STUDY

To evaluate the perceptual quality and human preference for the novel images generated by our
fusion framework, we conducted two user studies. These studies assessed our method, VMD-
iff, against state-of-the-art baselines in two main categories: Multi-Concept Generation meth-
ods and Mixing and Image Editing methods. The overall vote distributions are visualized in
Fig. 8, while detailed per-example preferences are presented in Table 6 and Table 7. An ex-
ample user study question for the Multi-Concept Generation group and the Mixing and Image
Editing group is provided in Fig. 19. A total of 76 participants completed the survey, each
evaluating 12 fused results (6 from each group), contributing a total of 912 votes. Participants
were asked to select the fusion result that best integrated the given concepts in terms of visual
quality, creativity, and semantic consistency. As shown in Fig. 8, our method consistently re-
ceived the highest number of votes in both evaluation groups. In the Mixing and Image Edit-
ing category (left pie chart), VMDiff garnered a significant 397 votes (87.1%) of the total. This
considerably surpassed other methods such as Stable Flow (Avrahami et al., 2025) (5 votes,
1.1%), ATIH (Xiong et al., 2024) (34 votes, 7.5%), Conceptlab (Richardson et al., 2024) (4
votes, 0.9%) and FreeBlend (Zhou et al., 2025) (16 votes, 3.5%). For instance, as illustrated in
Fig. 19, for the “astronaut figurine-monkey king figurine” fusion, our method obtained 81.58%
of the votes, demonstrating its strong capability in seamlessly integrating distinct visual elements.

Figure 19: An example of a user study comparing various multi-concept gen-
eration, mixing and image editing methods.

In the Multi-
Concept Generation
category (right
pie chart), VMD-
iff led with 307
votes (67.3%),
significantly out-
performing GPT-
4o (OpenAI, 2025),
which ranked sec-
ond with 59 votes
(12.9%). Other
baselines—DreamO
(56 votes, 12.3%),
MIP-Adapter (17
votes, 3.7%), and
OmniGen (17 votes,
3.7%)—received
notably fewer votes.
In the “doll fig-
urine–corgi” case, VMDiff earned 78.95% of preferences. Even in more challenging cases like
“apple–panda figurine” (see Fig. 19), it maintained an edge with 75.00% over GPT-4o’s 5.26%.
These results indicate that VMDiff better aligns with human preferences for visual coherence,
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creativity, and concept integration, consistently outperforming existing methods across diverse
fusion scenarios.

Table 6: User study with multi-concept generation methods.
image-image A(Our VMDiff) B(DreamO) C(MIP-Adapter) D( OmniGen) E(GPT-4o)

coffee cup-ultraman figurine 43(56.58%) 11(14.47%) 7(9.21%) 3(3.95%) 12(15.79%)
sheep-car 57(75.00%) 4(5.26%) 1(1.32%) 2(2.63%) 12(15.79%)

doll figurine-corgi 60(78.95%) 1(1.32%) 3(3.95%) 3(3.95%) 9(11.84%)
lime-glass jar 45(59.21%) 22(28.95%) 1(1.32%) 0(0.00%) 8(10.53%)

cake-owl 45(59.21%) 5(6.58%) 3(3.95%) 9(11.84%) 14(18.42%)
apple-panda figurine 57(75.00%) 13(17.11%) 2(2.63%) 0(0.00%) 4(5.26%)

Table 7: User study with mixing and image editing methods.
image-image A(Our VMDiff) B(Stable Flow) C(ATIH) D(Conceptlab) E(FreeBlend)

astronaut figurine-monkey king figurine 62(81.58%) 2(2.63%) 7(9.21%) 1(1.32%) 4(5.26%)
man-pikachu figurine 68(89.47%) 0(0.00%) 4(5.26%) 1(1.32%) 3(3.95%)
doll figurine-panda 62(81.58%) 0(0.00%) 13(17.11%) 1(1.32%) 0(0.00%)

iron man figurine-charizard figurine 69(90.79%) 3(3.95%) 3(3.95%) 0(0.00%) 1(1.32%)
squirtle-wolf 66(86.84%) 0(0.00%) 4(5.26%) 1(1.32%) 5(6.58%)

ultraman figurine-venusaur figurine 70(92.11%) 0(0.00%) 3(3.95%) 0(0.00%) 3(3.95%)

D LIMITATIONS

Our method effectively fuses two input images into a coherent hybrid object that captures
broad conceptual information; however, it has two main limitations. First, inference re-
lies on iterative optimization, which increases computational cost and latency (Table 8).

Original image Failure result Original image Failure result

Figure 20: Examples of failure cases where our method produces
fused outputs with suboptimal semantic or stylistic coherence.

A promising remedy is to
train a lightweight predic-
tion/refinement module that
guides the fusion in a single
forward pass, thereby reducing
runtime while maintaining—or
even improving—visual quality
and semantic balance. Second,
in a small fraction of cases
the fused outputs do not fully
align with human preferences
(Fig. 20), exhibiting semantic
inconsistencies or stylistic imbalance. Although repeated noise resampling and selection can
mitigate these failures, this heuristic has limited controllability. In future work, we will pursue more
controllable, preference-aligned fusion via explicit human feedback, aesthetic priors, or learned
alignment objectives, enabling results that more reliably reflect human intent and aesthetics.

Table 8: Runtime comparison across methods.
Methods Avg. Time / Pair
Ours 2 min 46 sec
ATIH 10 sec
Stable Flow 27 sec
Conceptlab 13 min 45 sec
FreeCustom 22 sec
OmniGen 53 sec
Freeblend 12 sec
MIP-Adapter 12 sec
DreamO 8 sec

E STATEMENT ON LLM USAGE

In accordance with the ICLR policy on the use of Large Language Models (LLMs), we hereby
declare that an LLM (ChatGPT, GPT-5) was used solely to aid or polish the writing of this paper,
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such as improving grammar and wording. All ideas, technical content, and experimental results are
entirely our own. Further details are described within the paper. The authors take full responsibility
for the accuracy and integrity of the content.

Algorithm 1: VMDiff with Efficient Adaptive Adjustment (VMDiff-EAA)
Input: images I1, I2, labels T1, T2, prompt PG, threshold TH , max rounds K
Output: fused image I∗ and parameters θ∗ = {α∗, β∗

1 , β
∗
2 , ϵ

∗}
1 Compute embeddings z1 = EI(I1), z2 = EI(I2), zp = ET (PG);
2 Initialize α = 0.5, β1 = β2 = 1.0; Sbest = −∞, θbest = ∅;
3 for k = 1 to K do
4 Sample noise ϵ ∼ N (0, I);
5 zSCat = concat(β1z1, β2z2), xT = ϵ;
6 for t = T to tden do
7 xt−1 = xt − (σt − σt−1)vϕ(xt, t, zSCat, γden, zp)

8 for t = tden to T do
9 xt+1 = x̂t + (σt+1 − σt)vϕ(x̂t, t, zSCat, γinv, zp)

10 ϵr = x̂T ;
11 α∗ = GoldenSearch(α ∈ [0, 1], f(α) = S(α, β1, β2, ϵr));
12 (S, SI1 , SI2 , ST1

, ST2
) = Score(α∗, β1, β2, ϵr);

13 if S > Sbest then
14 Sbest = S; θbest = {α∗, β1, β2, ϵr}
15 if S ≥ TH then
16 return I(θ∗), θ∗

17 S1 = SI1 + ST1
, S2 = SI2 + ST2

;
18 if S1 > S2 then
19 β∗

2 = GoldenSearch(β2 ∈ [βmin, βmax], f(β2))
20 else
21 β∗

1 = GoldenSearch(β1 ∈ [βmin, βmax], f(β1))

22 (S′, ·) = Score(α∗, β∗
1 , β

∗
2 , ϵr);

23 if S′ > Sbest then
24 Sbest = S′; θbest = {α∗, β∗

1 , β
∗
2 , ϵr}

25 if S′ ≥ TH then
26 Normalize z1, z2 and compute spherical interpolation zSInp(α

∗);
27 xT = ϵr;
28 for t = T to 0 do
29 xt−1 = xt − (σt − σt−1)vϕ(xt, t, zSInp(α

∗), γgen, zp)

30 I = D(x0); return I, θ∗

31 if θbest ̸= ∅ then
32 Decode best parameters θbest via MixingDenoise;
33 return I, θbest

34 return ∅;

F ALGORITHM

Algorithm 1 outlines the complete inference process of our proposed framework, VMDiff, which
integrates a noise refinement step and an efficient adaptive adjustment (EAA) loop. Given two input
images I1, I2 and their category labels T1, T2, we construct a prompt PG and initialize the fusion
parameters θ = {α, β1, β2, ϵ}.

The algorithm begins by sampling initial Gaussian noise ϵ, which is refined through a denoising-
inversion procedure to produce a structure-aware latent representation ϵr. The core loop involves:

• Searching for the optimal interpolation factor α using Golden Section Search to maximize
the similarity score S(θ).
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• Conditionally adjusting the noise scaling factors β1, β2 when the current fusion score is
below a threshold TH , guiding the fusion toward balance between the two source objects.

• Returning a fused image I(θ∗) once a satisfactory similarity score is achieved.

This design ensures a lightweight and interpretable optimization routine over a low-dimensional
parameter space. The algorithm reliably produces perceptually and semantically coherent hybrid
images, as validated in our experiments.

G MORE RESULTS

In this section, we present additional qualitative results with resampling disabled, to evaluate
VMDiff under a deterministic setting and further demonstrate its effectiveness and generalization.
Fig. 1 shows generations at 1024 × 1024 resolution. Figs. 21, 22, 23, 24, 25, 26, 27, 28, and 29
provide diverse fusion examples spanning animals, fruits, artificial objects, and character figurines.
In all figures, the leftmost column displays the source images, and the adjacent columns show the
fused outputs.

These examples are generated from our IIOF dataset and cover a wide range of visual appearances
and semantic attributes. Across varied fusion types—such as person–fruit, animal–object, and ob-
ject–object—the results consistently exhibit structural coherence, balanced integration, and high vi-
sual fidelity. This indicates that VMDiff can integrate symbolic and structural cues into stylistically
consistent hybrids, regardless of whether the source concepts are semantically similar or dissimilar.

Overall, these results substantiate the strong generalization of VMDiff, yielding novel, imaginative,
and structurally plausible hybrid objects from diverse real-world inputs, even without resampling or
seed variation.
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Figure 21: More Results. The primary source (astronaut figurine, top-left) is fused with secondary
inputs (left column), with results shown on the right.
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Figure 22: More Results. The primary source (coffee cup, top-left) is fused with secondary inputs
(left column), with results shown on the right.
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Figure 23: More Results. The primary source (charizard figurine, top-left) is fused with secondary
inputs (left column), with results shown on the right.
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Figure 24: More Results. The primary source (apple, top-left) is fused with secondary inputs (left
column), with results shown on the right.
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Figure 25: More Results. The primary source (panda figurine, top-left) is fused with secondary
inputs (left column), with results shown on the right.
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Figure 26: More Results. The primary source (owl, top-left) is fused with secondary inputs (left
column), with results shown on the right.
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Figure 27: More Results. The primary source (doll figurine, top-left) is fused with secondary inputs
(left column), with results shown on the right.



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Original Image

11

13

15

3

1

5

9

7

2

10

12

14

16

8

4

6

32 41

8765

12109

13 161514

11

Our Results

Figure 28: More Results. The primary source (bird, top-left) is fused with secondary inputs (left
column), with results shown on the right.
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Figure 29: More Results. The primary source (Iron man figurine, top-left) is fused with secondary
inputs (left column), with results shown on the right.
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