
Published as a Tiny Paper at ICLR 2023

CROSS DOMAIN VULNERABILITY DETECTION USING
GRAPH CONTRASTIVE LEARNING

Mahmoud Zamani, Saquib Irtiza, Shamila C. Wickramasuriya, Latifur Khan & Kevin W. Hamlen
Department of Computer Science
The University of Texas at Dallas
Richardson, TX 75080, USA
{mahmoud.zamani, saquib.irtiza, scw130030, lkhan, hamlen}@utdallas.edu

ABSTRACT

A new approach to software vulnerability detection is proposed and evaluated,
which combines state-of-the-art contrastive learning (CL) via GraphCL with a
new cross-domain control property graph (CDCPG) model that combines source-
and binary-level code features. Self-supervised learning (SSL), including CL, is
critical for addressing the longstanding difficulty of building large, high-quality
data sets for this domain. The proposed method trains on a new graph dataset
generated from code repositories of six widely used C/C++ applications. The
combination of source and binary features affords detection of vulnerabilities that
are invisible at only one level of granularity. Experiments using different augmen-
tation techniques and loss functions to show that GraphCL with CDCPG performs
better than any other evaluated detection strategy in many scenarios.

1 INTRODUCTION

Automatic detection of software vulnerabilities is a high interest cybersecurity research topic be-
cause of the increasing infeasibility of fully auditing large software systems manually. Undetected
vulnerabilities in critical systems can cause significant damage to organization reputation and in-
tegrity, even including loss of life. As software complexity and evolution rates have increased, the
difficulty of finding all exploitable vulnerabilities before the software is deployed has escalated,
opening more doors for threat actors to launch successful attacks against live assets.

Poor true positive and true negative rates of traditional methods (Li et al., 2019; Xu et al., 2017)
and the cost of manually extracting features for machine learning models (Nguyen & Tran, 2010;
Neuhaus et al., 2007) have motivated automatic feature extraction using deep learning techniques
(Li et al., 2018; 2021). Despite their improvement upon prior approaches, these methods overlook
the control-flow, dataflow and syntactic structure of programs. Instead, they consider programs as
natural language instances, which lose many features critical for identifying certain vulnerability
classes. To overcome this issue, subsequent works (Zhou et al., 2019; Chakraborty et al., 2022)
propose graph learning on code property graphs (CPGs) (Yamaguchi et al., 2014), which integrate
abstract syntax trees (ASTs), control-flow graphs (CFGs), and data dependency graphs (DDGs)
to incorporate syntactic and semantic information. Unfortunately, CPGs only include source-level
information, preventing detection of vulnerabilities that can only be seen at the binary level, such as
those introduced during compilation.

To overcome this limitation, we explore a new kind of CPG that includes binary file (BIN) informa-
tion and its relation to source-level CPG features. The binary features augment the source features
by revealing compiler decisions and results of compiler analyses (e.g., abstraction of function and
variable names, reordering of stack variables, etc.) that cannot be inferred from source code alone
and can lead to new vulnerabilities only detectable at binary-level. Our new cross-domain code
property graphs (CDCPGs) can identify vulnerabilities both in the source code and its correspond-
ing compiled binary code. Figure 2 in §A.1 shows a sample CDCPG. Also, most existing methods
use supervised learning models which require a large volume of labeled data to train. Since it is very
expensive to collect such a large dataset in this domain, we use a state-of-the-art self-supervised
learning (SSL), GraphCL, to evaluate our curated dataset. Our key contributions are:

1



Published as a Tiny Paper at ICLR 2023

Figure 1: Data collection along with graph contrastive learning technique. More details in §A.3.

• We develop a new graph type called CDCPG that combines both binary-level code and
source-code level features. We collect graphs for six widely used open-source programs
into a new curated dataset for vulnerability detection. Additionally, the dataset contains
other graph types such as AST, CPG and CFG.

• We evaluated the performance of CDCPG on a contrastive learning model, GraphCL, to see
whether it performs better than other graph types. We also use different loss functions and
augmentation techniques to identify the best performing combination for this algorithm.

2 DATA COLLECTION AND PROPOSED METHOD

We consider open-source software repositories of six different applications, from which we collect
functions marked as vulnerable according to the Common Vulnerabilities and Exposures (CVE)
database (MITRE, 2023) and their corresponding binary code from compiled binaries. Then we
use Joern (Yamaguchi et al., 2014), a C/C++ analysis framework, to generate AST, CFG, and CPG
graphs from the source codes. We also generate BIN graphs from the corresponding binary code us-
ing the Binary Analysis Platform (BAP) (Brumley et al., 2011). The resulting graphs are combined
into a CDCPG by introducing new edge types that relate syntactic and semantic features of both
domains that correspond. Next, we train GraphCL on these graphs using various loss functions (In-
foNCE and Jensen-Shannon Divergence (JSD)) and augmentation techniques (edge addition (EA),
edge removal (ER), node dropping (ND), feature masking (FM), and feature dropping (FD)) to de-
termine the best performing combination. Figure 1 summarizes and §A.3 details the pipeline.

3 EVALUATION

Our evaluation uses F1-micro and F1-macro metrics to account for data imbalance. F1-micro gives
equal weight to all the instances, whereas F1-macro gives equal weight to each class. This allows
both minority and majority classes to contribute equally towards F1-macro. Our experiments are
conducted on each application separately for all the graph types, loss functions, and augmentation
techniques mentioned in §2. Table 1 shows the results.

Table 1: F1-scores using ND augmentation and JSD loss function with GraphCL algorithm on all
graphs. Results show that CDCPG outperforms other graph types for the TCPDump application.

Graph Type AST CFG CPG BIN CDCPG
F1-Micro 0.85 0.63 0.63 0.63 1.00
F1-Macro 0.46 0.39 0.39 0.39 1.00

4 CONCLUSION

Combining source-level and binary-level code data into a single graph called CDCPG facilitates
detection of vulnerabilities at both levels. Contrastive learning with multiple graph augmentation
methods and loss functions indicates that the approach is more effective than prior approaches.

2



Published as a Tiny Paper at ICLR 2023

ACKNOWLEDGMENTS

This research was supported in part by DARPA Award N6600121C4024 and ARO Award
W911NF2110032.

URM STATEMENT

The authors acknowledge that at least one key author of this work meets the URM criteria of ICLR
2023 Tiny Papers Track.

REFERENCES

David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz. BAP: A binary analysis
platform. In Proc. Int. Conf. Computer Aided Verification, pp. 463–469, 2011.

Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. Deep learning based
vulnerability detection: Are we there yet? IEEE Trans. Software Engineering, 48:3280–3296,
2022.

Yuekang Li, Yinxing Xue, Hongxu Chen, Xiuheng Wu, Cen Zhang, Xiaofei Xie, Haijun Wang,
and Yang Liu. Cerebro: Context-aware adaptive fuzzing for effective vulnerability detection. In
Proc. ACM Joint Meeting European Software Engineering Conf. and Sym. Foundations Software
Engineering, pp. 533–544, 2019.

Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun Deng, and Yuyi
Zhong. Vuldeepecker: A deep learning-based system for vulnerability detection. Proc. Annual
Network & Distributed System Security Sym., 2018.

Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, and Zhaoxuan Chen. Sysevr: A framework
for using deep learning to detect software vulnerabilities. IEEE Trans. Dependable and Secure
Computing, 19(4):2244–2258, 2021.

MITRE. Common vulnerabilities and exposures. www.cve.org, 2023. Accessed: 2023-04-23.

Stephan Neuhaus, Thomas Zimmermann, Christian Holler, and Andreas Zeller. Predicting vulner-
able software components. In Proc. ACM Conf. Computer and Communications Security, pp.
529–540, 2007.

Viet Hung Nguyen and Le Minh Sang Tran. Predicting vulnerable software components with de-
pendency graphs. In Proc. Int. Workshop Security Measurements and Metrics, 2010.

Zhengzi Xu, Bihuan Chen, Mahinthan Chandramohan, Yang Liu, and Fu Song. Spain: Security
patch analysis for binaries towards understanding the pain and pills. In Proc. IEEE/ACM Int.
Conf. Software Engineering, pp. 462–472, 2017.

Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. Modeling and discovering vul-
nerabilities with code property graphs. In Proc. IEEE Sym. Security & Privacy, pp. 590–604,
2014.

Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. Devign: Effective vulner-
ability identification by learning comprehensive program semantics via graph neural networks.
Advances in Neural Information Processing Systems, 32, 2019.

A APPENDIX

A.1 SAMPLE OF CDCPG GRAPH

Figure 2 shows a sample CDCPG graph generated for the code snippet in Figure 3. The paths
labeled with blue and grey arrows belong to the CPG generated from the source-level code, whereas
the path represented by black arrows are the ones that belong to the CPG of the binary-level code.
The dotted purple lines show the mapping between the different components in the source and binary
level subgraphs.

3

www.cve.org


Published as a Tiny Paper at ICLR 2023

Figure 2: Cross-Domain Code Property Graph (CDCPG) generated from the snippet in Figure 3.

Figure 3: Code Snippet from which the CDCPG in Figure 2 is generated.

A.2 ADDITIONAL EXPERIMENTS

We conducted further evaluation on just CDCPG graphs using different augmentation techniques
and loss functions to find the optimal parameters for GraphCL on the vulnerability detection task.
Table 2 shows the scores averaged across all the six applications in the dataset. The highest scores
for each augmentation mode are in bold. JSD is the better performing loss function because it
gives the highest score for three out of the five augmentation techniques using both the metrics.
Node Dropping (ND) is the best performing augmentation technique for JSD loss, since it gives the
highest scores for both F1-Micro and F1-Macro.

Table 2: Evaluation of different augmentations and loss functions using CDCPG for all applications

Mode InfoNCE-F1Mi InfoNCE-F1Ma JSD-F1Mi JSD-F1Ma
EA 0.852 0.522 0.863 0.565
ER 0.843 0.585 0.825 0.600
ND 0.738 0.522 0.885 0.650
FM 0.843 0.522 0.883 0.468
FD 0.875 0.555 0.768 0.425

A.3 DATASET DESCRIPTION

Tables 3 and 4 summarize our dataset, which spans six applications popular in the open source
community, including many with security-critical functionalities. We selected these applications
based on the number of security issues reported against them and also depending on the importance
of the applications. We generated five types of graphs (AST, CFG, CPG, BIN, and CDCPG) for all
the applications.

BAP generates CFGs from binary code, which we combine with Call Graphs (CGs) to facilitate
analysis between different functions. Binary attributes are extracted from the combined graph to
form the binary CPGs. Finally, to determine the relationship between executable and original source
code, a Debug With Arbitrary Record Format (DWARF) table is generated during compilation.

4



Published as a Tiny Paper at ICLR 2023

Table 3: List of target applications and their descriptions
Application Description
Sudo Delegates security privileges to other users or tasks
Poftpd Ftp server with configurable features
Libtiff Tagged Image File Format (TIFF) library
Libpng Portable Network Graphics (PNG) library
Freetype Renders text into bitmaps
TinTin Console telnet client for online gaming
Tcpdump Data network packet analyzer
OpenSSH Secure networking utility for Secure Shell protocol

Table 4: App dataset. The last two columns report vulnerable and non-vulnerable functions, resp.
App Name Graph Types Edges Nodes Graphs Vul. Non-Vul.

LibPNG

CPG 1845382 82413

324 25 299
CFG 3104607 12487
BIN 7861098 28248
AST 2628710 81777

CDCPG 8415974 116839

LibTIFF

CPG 5125862 79009

438 33 405
CFG 4498837 13142
BIN 9156127 47104
AST 3679494 78132

CDCPG 5746318 116839

TCPDump

CPG 2074116 33461 100 15 85
CFG 328240 6018 100 15 85
BIN 607635 13679 100 15 85
AST 6092203 57465 200 26 174

CDCPG 4017677 48944 100 15 85

Sudo

CPG 5636108 41858

187 9 178
CFG 740870 6213
BIN 2664002 25731
AST 4384746 41506

CDCPG 1617438 71463

TinTin

CPG 8764300 44903

270 4 266
CFG 1006857 6636
BIN 3747693 24376
AST 586926 44363

CDCPG 2361790 78414

OpenSSH

CPG 5750707 70560

100 21 79
CFG 732305 1003
BIN 1965966 36199
AST 4186296 70352

CDCPG 10937966 112250

5


	Introduction
	Data Collection and Proposed Method
	Evaluation
	Conclusion
	Appendix
	Sample of CDCPG Graph
	Additional Experiments
	Dataset Description


