Under review as a conference paper at ICLR 2026

ACCELERATING EIGENVALUE DATASET GENERATION
VIA CHEBYSHEV SUBSPACE FILTER

Anonymous authors
Paper under double-blind review

ABSTRACT

Eigenvalue problems are among the most important topics in many scientific dis-
ciplines. With the recent surge and development of machine learning, neural
eigenvalue methods have attracted significant attention as a forward pass of infer-
ence requires only a tiny fraction of the computation time compared to traditional
solvers. However, a key limitation is the requirement for large amounts of labeled
data in training, including operators and their eigenvalues. To tackle this limitation,
we propose a novel method, named Sorting Chebyshev Subspace Filter (SCSF),
which significantly accelerates eigenvalue data generation by leveraging similarities
between operators—a factor overlooked by existing methods. Specifically, SCSF
employs truncated fast Fourier transform sorting to group operators with similar
eigenvalue distributions and constructs a Chebyshev subspace filter that leverages
eigenpairs from previously solved problems to assist in solving subsequent ones,
reducing redundant computations. To the best of our knowledge, SCSF is the first
method to accelerate eigenvalue data generation. Experimental results show that
SCSF achieves up to a 3.5 speedup compared to various numerical solvers.

1 INTRODUCTION

Solving eigenvalue problems is an important challenge in fields such as quantum physics (Pfau et al.|
2023)), fluid dynamics (Schmid| [2010), and structural mechanics (Wen et al. 2022). Traditional
numerical solvers, such as the Krylov-Schur algorithm (Stewart, 2002), often suffer from prohibitively
high computational costs when tackling complex problems. To overcome these computational
challenges, recent advancements in deep learning (Schiitt et al., 2017; |Li et al., 2020} Luo et al.)
have demonstrated remarkable success as one forward pass only necessitates a tiny fraction of the
computation time compared to numerical solvers, often in milliseconds.

Despite their success, data-driven approaches face a fundamental limitation: the reliance on labeled
datasets. Training neural networks requires large-scale labeled data, which is often generated using
computationally expensive traditional methods. It usually takes dozens of hours or even days. For
example, the QMO dataset (Ramakrishnan et al.,|2014) contains 1.34 X 105 molecular data points,
each produced by solving Hamiltonian operator eigenvalue problems. These calculations typically
employ traditional algorithms, whose computational costs can escalate dramatically with increasing
problem complexity, like finer grid resolutions or higher accuracy requirements. This scalability
issue represents a significant bottleneck for generating the labeled data needed to train deep learning
models. Furthermore, the diversity of scientific problems leads to the need for a unique dataset for
each scenario, which further intensifies this challenge of computational intractability. As a result,
the high computational expense of generating eigenvalue data severely limits the application of
data-driven approaches (Zhang et al.l 2023)).

In particular, the dataset generation process typically involves six key steps, as illustrated in Figure|[T]
(left). Among these steps, solving the eigenvalue problem is the most computationally demanding
(step 4), accounting for 95% of the total processing cost (Hughes} 2012)). Existing data generation
methods typically compute the eigenvalues of each matrix in the dataset independently. However,
operators in the dataset often share similarities, as they describe related physical phenomena, which
can largely simplify and accelerate the eigenvalue-solving process. Existing approaches, however,
fail to leverage these similarities, leading to significant computational redundancy. Previous works
(Wang et al., 2024} |Dong et al., 2024)) have demonstrated the potential of leveraging similarity to

Under review as a conference paper at ICLR 2026

-4~ Slepc D K

-4~ Scipy Eigsh S
Slepc LOBPCG
Slepc KS

1034 -4~ ChFsI
—e— SCSl (ours)

operator s » s S k-
eigenvalue DATA E A —— S [
problem SET 102
generator

[(6]

100 200 300 400 500 600
Number of Eigenvalues

Figure 1: Left. Generation process of the eigenvalue dataset: 1. Generate a set of random problem
parameters. 2. Derive the corresponding operators based on these parameters. 3. Convert the operators
into matrices using discretization methods. 4. Independently solve for the matrix eigenvalues using
numerical solvers. 5. Obtain the matrix eigenpairs, converting them into the operator eigenpairs. 6.
Assemble the dataset. Right. Results of average computation times across various algorithms based
on the number of eigenvalues solved on the Helmholtz operator dataset.

significantly reduce generation time of linear system datasets. However, how to effectively exploit
matrix similarity to accelerate eigenvalue datasets generating remains an unknown problem.

To address this problem, we introduce a novel data generation approach, named Sorting Chebyshev
Subspace Filter (SCSF). SCSF is designed to use the eigenpairs of similar problems to reduce
redundant computations in the eigenvalue solving process, thereby accelerating eigenvalue dataset
generation. Specifically, at the beginning, SCSF employs a sorting algorithm based on truncated Fast
Fourier transform (FFT), which arranges these problems efficiently, enhancing the adjacent correlation
between problems in the queue and laying the groundwork for sequential solving. Then, SCSF
accelerates the convergence of iterations and significantly reduces computation times by constructing
a Chebyshev subspace filter, which solves the problem aided by the eigenpairs from previous problem
solving. The core design of SCSF is to identify and exploit the close spectral distributions and
invariant subspaces within these eigenvalue problems. SCSF coordinates the sequential resolution
of these systems rather than treating them as discrete entities. This improved approach not only
alleviates the computational demands of the eigenvalue algorithm but also significantly speeds up the
generation of training data for data-driven algorithms. We summarize our contributions as follows:

* To the best of our knowledge, SCSF is the first method to accelerate the operator eigenvalue
data generation.

* By using truncated FFT sorting and the Chebyshev filtered subspace iteration, we introduce
a novel approach that transforms dataset generation into sequence eigenvalue problems.

» Comprehensive experiments demonstrate that SCSF substantially reduces the computational
cost of eigenvalue dataset generation. As demonstrated in Figure [I] (right), our method
achieves up to a 3.5x speedup compared to state-of-the-art solvers.

2 PRELIMINARIES

2.1 DISCRETIZATION OF EIGENVALUE PROBLEM

Our main focus is on solving the matrix eigenvalue problem, the most time-consuming part of
eigenvalue data generation. As shown in Figure [I] (left), these problems are typically solved by
numerical discretization methods such as FDM (Strikwerda) 2004; [LeVeque, |2002). These dis-
cretization techniques embed the infinite-dimensional Hilbert space of operators into an appropriate
finite-dimensional space, thereby transforming operator eigenvalue problems into matrix eigenvalue
problems. We provide a simple example to clarify the discussed processes. A detailed process can
be found in Appendix [C] Specifically, we discuss the case that uses FDM to solve the eigenvalue
problem of the two-dimensional Poisson operator, transforming it into a matrix eigenvalue problem:

k(z,y)Viu(z,y) = u(z,y). (1

L L R S

Under review as a conference paper at ICLR 2026

We map the problem onto a 2 x 2 grid (i.e., N, = N, = 2 and Az = Ay), where both the variable
u; ; and the coefficients k; ; follow a row-major order. This setup facilitates the derivation of the
matrix eigenvalue equation:

]C171 0 0 0 —4 1 1 0 ’LL171 U171
0 kl’g 0 0 1 —4 0 1 Ur2| _ U1,2
0 0 ke 0|1 0 —4 1| usa| = Muoa| 2
0 0 0 k272 0 1 1 —4 ’LL272 u272
By employing various methods to generate the parameter matrices P = [i; Z;;] . Such as

utilizing Gaussian random fields (GRF) or truncated polynomials, we can derive Poisson operators
characterized by distinct parameters.

Typically, training a neural network requires a number of data from 103 to 10° (Lu et al.}[2019). Such
a multitude of eigenvalue systems, derived from the same distribution of operators, naturally exhibit
a highly similarity (Soodhalter et al.,|2020)). It is precisely this similarity that is key to the effective
acceleration of SCSF. We can conceptualize this as the task of solving a sequential series of matrix
eigenvalue problems:

A = 2Oy =12, N 3)
where L is the number of eigenvalues to be solved, IV is the number of eigenvalue problems, the matrix
A ¢ €™, the eigenvector vgi) € C™,and the eigenvalue)\gi) € C vary depending on the operator.
We define the eigenpairs as (A®, V1), with AD = diag(A\”, ..., A, V@ = p{?]... |p{)], and
AT < AP

2.2 THE CHEBYSHEV POLYNOMIALS AND CHEBYSHEV FILTER

Chebyshev filtered subspace iteration is closely related to Chebyshev orthogonal polynomials (Mason
& Handscomb) |2002; Rivlin, [2020). Chebyshev polynomials are widely used due to their strong
approximation capabilities. The Chebyshev polynomials C,,(t) of degree m are defined on the
interval [—1, 1] and are expressed as

Cp(t) = cos(mcos™ (1)), |t| < 1. 4)

C),(t) commonly referred to as the Chebyshev polynomial of the first kind, satisfies the following
recurrence relation:

Crns1(t) = 26Ci (£) — Conr (2).)

For a Hermitian matrix A € C™*" and vectors Yy € C"**, we use the three-term recurrence relation
that defines Chebyshev polynomials in vector form:

Cm+1(YO) == 2AOm(YEJ) - Om—l(YO)7 Cm(YO) = Cm(A)YO (6)
The computation of C,(Yp) and the Chebyshev filter is described in Algorithm|l] Let A’ denote
the previously solved related matrix, with (A}, v}) in ascending order, and {\;,..., A} } € [o, 8]. In
Algorithm the parameter) is typically approximated by A}, while ¢ = O‘Tw and e = 5=2 represent
the center and half-width of the interval [«, (], providing estimates for the spectral distribution of A.

Algorithm 1: Chebyshev Filter (Berljafa et al., 2015)

Input: Matrix A € C™*", vectors Yy € crxk degree m € N, and parameters A, c,e € R.
Output: Filtered vectors Y,,, = C,,,(Yp), where each vector Y,,,, ; is filtered with a Chebyshev
polynomial of degree m.

A=(A—-cl,)/e, o1=e/(A—c);
Y1 = 01AYy;
fori=1,....m—1do
oiy1 =1/(2/01 — 04);
Yit1,1:m—1 = Yitm—1, Yit1,mk = 20i41AYim:k — 0i410:Yi m:ks

Under review as a conference paper at ICLR 2026

E] Operator generator Dataset

/‘H@ Subspace iteration }—; Solution 1

g A0 ﬂ@ Subspace iteration
o O O J : .
o ' [e]

_A@ Subspace iteration }—b' Solution N

/ Chebysheyv Filter \

eigenvector

0

fl@)=1

@ o) eigenvalues estimation
Truncated FFT | spectral
Sort [d1] Subspace iteration | [Solution 1] @“’ ansformation | [g] eigenvector
S C S F Chebyshev Filter

invariant subspaces

f(z) = Cnm(2)
[d2] Subspace iteration | [Solution 2 | ‘
‘from previous solutions

VALY, VAV, i evious solutions
ChebyShev Filter E] 0 eigenvalues estimation
[d3] Subspace iteration | [Solution N | & j
1

Figure 2: Algorithm Flow Diagram: a. Generation of operators to be solved. b. Discretization
of operators into matrices. ¢. Apply SCSF algorithm to sort matrices, obtaining a sequence with
strong correlations. d. Other algorithms independently solve eigenvalue problems. d1, d2, d3. SCSF
algorithm utilizes Chebyshev subspace iterations to sequentially solve the eigenvalue problems. e.
Assembly of eigenvalue pairs into a dataset. f. Amplification of the interval of interest through spectral
transformation. g. Replacement of initial subspaces with previously solved invariant subspaces.

1‘

3 METHOD

In this section, we introduce our novel method, named the sorting Chebyshev subspace filter (SCSF),
a fast data generation approach that efficiently solves eigenvalue problems by leveraging intrinsic
spectral correlations among operators. SCSF incorporates two key components: (1) a truncated fast
Fourier transform (FFT)-based approach for efficiently sorting operator eigenvalue problems and (2)
the Chebyshev filtered subspace iteration (ChFSI) employed for sequential solving. By integrating
these components, SCSF can use spectral information from the previous eigenvalue problem solving
to aid the next eigenvalue problem solving, thus accelerating the eigenvalue data generation.

We first introduce the sorting algorithm that leverages the spectral similarities and provides the time
complexity analysis in Section . Then we give an introduction to the Chebysheyv filtered subspace
iteration in Section [3.2] Figur% shows the overview of our SCSF. Generally, the truncated FFT
sorting algorithm ensures that successive matrices in the sequence exhibit close relations. Then
ordered sequence enables ChFSI to effectively utilize prior information, thereby accelerating the
solution process (Berljafa et al., 2015)).

3.1 THE SORTING ALGORITHM

To benefit the successive solving sequence of the eigenvalue problem, we need a sorting algorithm
that pulls matrices with similar spectral properties, like invariant subspaces, close enough in the
solving sequence, so that solving the current matrix in sequence can be easily boosted by the previous
solving. Recalling Sectionlm eigenvalue problem, the matrix A, is generated from the parameter
matrix P4 (Lu et al., 2022} [Li et al.| [2020). A naive strategy is to use the Frobenius distance of the
parameter matrices P(") to perform a greedy sort (Wang et al., 2024). And by repeatedly fetching
without reservation from the remaining matrix in the dataset, we can reorganize the solving sequence
so that the successive solving can benefit from the re-ordered sequence.

However, the main computational cost of such a naive sorting algorithm arises from repeatedly
calculating the distances between different matrices P, which is directly related to the matrix
dimension—that is, the resolution of operators. Existing works (Holmes|, 2012} |Li et al., 2020) have
shown that the key variables that affect operators stem from the low-frequency components of the
parameter matrices P, while high-frequency components often represent noise or irrelevant data.
Based on this insight, to reduce computational overhead during sorting, we first perform a truncated
FFT on the parameter matrices to extract the low-frequency information before sorting. We then sort
by comparing the Frobenius distances between these low-frequency components.

BOW N -

e % 9 & W

10
11

Under review as a conference paper at ICLR 2026

Algorithm 2: The Truncated FFT Sorting Algorithm

Input: Sequence of eigenvalue problems to be solved A(*) € C"*", corresponding parameter
matrix P(Y) € CP*P j =1,2,--- , N, py is the truncation threshold for low frequencies,
and Pl(;)u € Cpoxpo,

Output: Sequence for eigenvalue problems seq,,, .-

Initialize the list with sequence seqo = {1,2,--- , N}, s€q,,,+ is an empty list;

Set 7p = 1 as the starting point. Remove 1 from seqy and append 1 to seq,,,,+;

fori=1,--- ,Ndo

Let Pl(;)U = Truncy, (FFT(P(i))). Perform truncated FFT on matrix P(%) to extract

low-frequency information;

fori=1,--- ,N — 1 and dis = 1000 do

for each j in seqy do

dis; = the Frobenius norm of the difference between Pl(otfu) and Pl((fql
if dis; < dis then
| dis = disj and jpin = J;
Remove j,,,, from seqp, append j,irn to seq,, . and set ig = Jmin;
Get the sequence for eigenvalue problems seq,,, ;;

As shown in Algorithm suppose we have NV eigenvalue problems, the parameter matrices P(*) €
CP*P, and the low-frequency truncated matrices Pl(;l)u € CPo*Po, The computational complexity
of directly using a greedy algorithm is O(N?p?). Our sorting algorithm’s complexity consists of
two main parts: 1. FFT Computation: The complexity of FFT is O(p? log p) per matrix. For N
matrices, this totals O(Np? log p). 2. Greedy Sorting: The subsequent greedy sorting algorithm has
a complexity of O(N?p?). Overall, the total complexity is O(N2p2 + Np? logp). Since py < p
and p < N, our sorting algorithm effectively reduces computational cost.

3.2 CHEBYSHEV FILTERED SUBSPACE ITERATION

After the sorting algorithm, we obtain a sequence of eigenvalue problems that exhibit strong correla-
tions between consecutive problems. We employ the Chebysheyv filtered subspace iteration (Manteuf+
fel, [1977;Saad, 2011; |Winkelmann et al.,|2019; Berljata et al.l 2015) that leverages the eigenpairs
(AC=1 v (@=1)) of the previous problem A®~1) to accelerate the iterative convergence of the subse-
quent problem A, thereby significantly enhancing computational performance. We focus on the
most common scenario in eigenvalue problems where the operator is self-adjoint; in this case, the
corresponding matrix A is Hermitian.

Algorithmoutlines the process of ChFSI for solving the i-th eigenvalue problem A®) (1 < i < N)
where L eigenvalues need to be solved. The initial approximate invariant subspace V (“~1) and spectral
distribution A~V are derived from the eigenvectors and eigenvalues of the previous problem A~
in the sequence. The parameter m denotes the polynomial degree in the filter function, e.g., m = 20.
For the first eigenvalue problem A() in the sequence, the initial iterative subspace Vp and initial
spectrum Ao are randomly generated.

In 1ine 3, the Chebyshev filter is applied using the vector form of Chebyshev polynomials; details
can be found in the preliminaries Section After the Chebyshev filtering step, the vector block Vj
spanning the invariant subspace may become linearly dependent. To prevent this, orthonormalization
is performed (1ine 4)using QR decomposition based on Householder reflectors. Line 5 com-
putes the Rayleigh quotient of A() using the orthonormalized Vj, projecting the eigenvalue problem
onto a subspace that approximates the desired eigenspace. In 1ine 6, the reduced eigenvalue
problem is diagonalized, and the computed eigenvectors are projected back to the original problem.
At the end of the Rayleigh-Ritz step, relative residuals of the computed eigenvectors are calculated;
converged eigenpairs are locked, and non-converged vectors are set to be filtered again (1ine 7).

Assuming m is the degree of the polynomial, n is the dimension of the matrix A, and L is the number
of eigenvalues to be solved, the computational complexity per iteration comprises: 1. Chebyshev

e X9 R W N =

Under review as a conference paper at ICLR 2026

Algorithm 3: Chebyshev Filtered Subspace Iteration

Input: Eigenvalue problem A(), eigenpairs (A~1), V(=) of the previous eigenvalue
problem A=) where AG—1 = diag(AS™Y, ... (1),
V-1 = D) Y], and filter degree m.
Output: Wanted eigenpairs (A, V(@)
Initialize empty arrays/matrices (A, V), and set Ag = AG—D 1, = V-1,
repeat
Apply Chebyshev filter: Vo = C,, (V):
Perform QR orthonormalization on QR = [V |V,];
Compute Rayleigh quotient G = QJ AW Q;
Solve the reduced problem GW = W]\O, and update VO = VOW;
Lock converged eigenpairs into (A, V);
until the number of converged eigenpairs > L;
Return eigenpairs (A, V) = (A, V) ;

filter: O(mn?L) 2. QR factorization: O(nL?) 3. Rayleigh-Ritz procedure: O(n?L + nL? + L3)
4. Residuals check: O(n2L) . Since m > 1 and n > L, the Chebyshev filtering step is the most
computationally intensive.

The acceleration of the Chebyshev filtered subspace iteration heavily depends on selecting approxi-
mate invariant subspaces and eigenvalues that promote rapid convergence in subsequent iterations.
Proper sorting amplifies their impact, reducing the number of iterations required. This underscores
the critical importance of the sorting algorithm in our method.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

To comprehensively assess the performance of our approach SCSF against other algorithms, we
conducted extensive experiments, each simulating the generation of an operator eigenvalue dataset.
We primarily compared the average computation times across different numbers of eigenvalues
solved and various matrix sizes. These tests encompassed four distinct datasets and five mainstream
eigenvalue solving algorithms, with SCSF consistently delivering commendable results. The detailed
data is provided in Appendix and the related work is discussed in Appendix

Baseline. Our focus solves the eigenvalue problem of matrices derived from self-adjoint differential
operators, typically consisting of large Hermitian matrices. We benchmarked against the following
mainstream algorithms implemented in libraries widely used: 1. Eigsh from SciPy (implicitly restarted
Lanczos method) (Virtanen et al.;2020), 2. Locally optimal block preconditioned conjugate gradient
(LOBPCG) algorithm from SLEPc (Knyazev}, 2001} Hernandez et al.,|2009)), 3. Krylov-Schur (KS)
algorithm from SLEPc (Stewart, 2002), 4. Jacobi-Davidson (JD) algorithm from SLEPc (Sleijpen &
'Van der Vorst, [2000), 5. Chebyshev filtered subspace iteration (ChFSI) (Berljafa et al., [2015) with
random initialization. For detailed information, please refer to Appendix [D.]

Datasets. To explore the adaptability of the algorithm across different matrix types, we investigate
four distinct operator eigenvalue problems: 1. Generalized Poisson operator; 2. Second-order elliptic
partial differential operator; 3. Helmholtz operator; 4. Fourth-order vibration equation. For a
thorough description of the datasets and their generation, please refer to Appendix [D.2]

All experiments focus on computing the smallest L eigenvalues in absolute value and their corre-
sponding eigenvectors. For the runtime environment, experimental parameters, and parallelism setup,
please see the Appendixes[D.3] and[D.6] The hyperparameter analysis experiments, runtimes for
various components of SCSF, the reliability of data generated by traditional algorithms, can be found

in Appendixex and

Under review as a conference paper at ICLR 2026

Dataset L Eigsh LOBPCG KS D ChFSI SCSF (ours)
Poisson 200 14.20 73.03 23.76 270.2 24.00 12.85
2500 300 26.27 151.5 45.95 920.8 38.03 25.61
le-12 400 36.86 265.3 72.32 2691 57.41 3391
Ellipse 200 41.82 139.2 61.77 414.3 43.90 24.08
4900 300 62.47 264.1 110.5 1446 60.69 29.88
le-10 400 87.19 459.7 188.7 3386 67.13 34.60
Helmbholtz 200 151.7 129.9 98.34 489.6 107.1 31.31
6400 400 253.5 460.4 283.0 3829 121.5 40.52
le-8 600 398.8 1031 329.6 - 146.2 51.32
Vibration 200 397.9 333.7 272.0 1230 300.8 85.70
10000 400 635.6 1170 768.8 - 310.5 107.2
le-8 600 1037 2716 857.8 - 382.3 131.4

Table 1: Comparison of average computation times (in seconds) for eigenvalue problems using
various algorithms. The first row lists different algorithms, the first column details the datasets,
including matrix dimensions and solution precisions (relative residual), and the second column shows
the number of eigenvalues L computed for each matrix. The best algorithm is in bold. The symbol ’-’
denotes the result of a method that fails to converge under the given setting.

We note that all experiments use relative residual as the metric for solution precision, with its definition
provided in Appendix [D.5] SCSF is a numerical algebra algorithm that allows for adjustable solution
precision as needed. It is purely an acceleration technique and does not alter the solution results at
the specified precision. The solution precision for all experiments is set to at least 1e-8, which is
significantly higher than the typical relative error range of neural networks (le-1 to le-5), making it
effectively a ground truth. Therefore, the datasets generated by different numerical algorithms will
not affect the training performance of neural networks.

4.2 MAIN EXPERIMENT

Table [I] showcases selected experimental data.

From this table, we can infer several conclusions: [—
First, across all settings, our SCSF consistently has T
the lowest computation cost. The most significant B
improvements appeared in the Helmholtz dataset, e
where SCSF demonstrated speedups of 8x, 20X,
6x, 95, and 3.5x compared to Eigsh, LOBPCG,
KS, JD, and ChFSI algorithms, respectively. These ™
results confirm that SCSF effectively reduces in- Siepc LOBRCS
herent redundancies in sequential eigenvalue prob- B L
lems, substantially accelerating operator eigenvalue w8

dataset generation. . Matrix Dimension
) Figure 3: Plot of average computation time ver-
Moreover, as the number of eigenvalues L solved gyg matrix dimension for solving 400 eigenval-

per matrix increases, the speed advantage of SCSF s with a precision of 1e-12 on the generalized
over other algorithms becomes more pronounced. pojsson operator dataset.

For instance, on the second-order elliptic operator

dataset, when solving for 200 eigenvalues, SCSF is

2.5 times faster than the Krylov-Schur method and 5.5 times faster at 400 eigenvalues. This efficiency
stems from SCSF inheriting approximate invariant subspaces from previous solutions, effectively
leveraging available information to expand the initial search space. Consequently, SCSF requires
minimal additional iterations as L increases, resulting in modest computation time growth.

Time (s)

- Slepc JD
-4 Scipy Eigsh

Besides, the performance disparity across different datasets is significant. For example, on the gener-
alized Poisson operator dataset, SCSF is only about 10% faster than Eigsh, yet it leads by 4-7 times
on the Helmbholtz dataset. This difference can be attributed to the numerical properties of different
operators and the matrix assembly formats, which directly influence algorithmic performance.

Under review as a conference paper at ICLR 2026

We also conducted additional experiments to show that the impact of the matrix dimension is also
significant. Results are shown in Figure 3| SCSF performs noticeably better as matrix dimensions
increase. Below the matrix dimension of 3600, SCSF and Eigsh show comparable efficiency. However,
beyond 5000, SCSF significantly outperforms Eigsh and other algorithms. For more details about
matrix dimension influence, we refer to the results in Appendix[E.2]

This phenomenon can be explained through operator matrix approximation. A fixed operator has
invariant eigenvalues and eigenfunctions. Varying matrix dimensions correspond to embedding
the operator in different finite-dimensional linear spaces. For a fixed number of eigenvalues L,
larger matrices yield more accurate approximations of the true eigenvalues. That is, larger matrices
reduce computational noise and enhance operator similarity visibility, enabling SCSF to utilize
these similarities more effectively for superior performance. For comparisons with neural networks,
similarity impact, and edge-case performance, see Appendices[E.6] and[E.§]

4.3 EFFICACY OF CHEBYSHEV SUBSPACE FILTER

L ‘Eigsh Eigsh* LOBPCG LOBPCG* KS KS* D JD* SCSF (ours)

200 | 151.7 1502 129.9 95.9 98.34 100.6 489.6 760.1 31.31
300 | 208.8 206.3 270.1 199.8 1799 1852 1803 3101 38.67
400 | 2535 249.1 460.4 362.1 283.0 2922 3829 6374 40.52
500 | 3246 3153 717.3 573.7 3142 3174 - - 46.70
600 | 398.8 3947 1031 866.0 329.6 335.7 - - 51.32

Table 2: Impact of initial subspace modifications on average computation time (in seconds) for
different algorithms. **’ denotes the modified version. The first row lists algorithms, and the first
column shows the number of eigenvalues L computed. The best algorithm is in bold, and ’-’ indicates
the result of a method that fails to converge under the given setting.

To analyze the efficacy of the Chebyshev subspace filter, we conducted the following experiments.
After sorting, the initial vector or subspace for the existing algorithms was set to the eigenvectors
from the previous problem (the modified version **”). We compared the computational time across
different methods. All experiments were conducted on the Helmholtz operator dataset, with a matrix
dimension of 6400 and a tolerance of 1e-8. The results are shown in Table[2

First, the computation time for SCSF in all experiments was minimal, clearly demonstrating the
efficacy of the Chebyshev subspace filter. This also highlights that the Chebyshev subspace filter is
the optimal choice for leveraging problem similarity to reduce redundancy.

Second, the impact of initial setup modifications varied across algorithms: 1. LOBPCG accelerated
significantly due to its subspace-based logic, similar to SCSF, where initialization strongly influences
convergence. 2. Eigsh and KS remained largely unaffected as they rely on initial vectors and Krylov
iteration, making problem similarity less impactful. 3. JD showed a performance decline. This is
because its performance is sensitive to the size of the initial subspace. Our modification altered the
default dimension of the initial subspace.

I Time (s) Iteration Flops Filter Flops
w/o sort sort w/o sort sort w/o sort sort w/o sort sort
20 8.248 2.971 19.70 9.880 519.7 298.4 485.8 280.8
100 14.18 9.891 18.77 15.38 1984 1332 1798 970.1
200 18.45 12.85 36.30 33.67 4459 3944 3654 3192
300 34.59 25.61 47.50 39.18 8967 7544 6985 5702
400 42.60 3391 47.43 45.18 12022 11182 9087 8338

Table 3: Performance comparison of SCSF with and without sorting. The first column lists the
number of eigenvalues L computed, while subsequent columns display average computation times,
average iteration counts, total Flop counts, and filter Flop counts. Experiments used the matrix
dimension of 2500 and precision le-12 on the generalized Poisson operator dataset.

Under review as a conference paper at ICLR 2026

4.4 EFFICACY OF SORTING ALGORITHMS

We analyze the performance of the sorting algorithm module from two perspectives: 1. Comparing
the performance of SCSF algorithm with and without *sorting” as shown in Table[3] 2. Evaluating the
effectiveness of different sorting algorithms as detailed in Tables[dand[5] We note that if the setting is
"w/o sort’, SCSF is approximately equivalent to directly using the Chebyshev subspace filter. Unlike
the ChFSI used in the main experiments, the initialization of each solve in the w/o sort’ SCSF is set
based on the information obtained from solving the previous problem (following the default unsorted
sequence).

Firstly, Table [3]indicates that incorporating sorting

can improve SCSF speed to 1.3 to 2.8 times, reduce
the number of iterations by 5% to 50%, and decrease Size

Greedy Truncated FFT Sort (ours)
Total FFT Greedy Total

total Flops by 7% to 43%. The effect of sorting is
more pronounced with smaller numbers of solutions 10> 0.114 0.0016 0.0147 0.0163
L. This is because when L is large, the inherited 10 7.328 0.0164 1.421 1.438
subspace already contains most of the necessary cor- 10* | 5927 | 0.1658 1509 1511

relation information, diminishing the impact of sort-

ing. Moreover, the Flops in the Filter component Table 4: Comparison of average computa-
constitute over 70% of SCSF’s computational load. tion times (in seconds) for different sorting
A detailed time analysis of different aspects of SCSF algorithms, with the first column indicating
can be found in Appendix [E.3] Additionally, the 'w/o dataset size. Experiments used the matrix di-
sort” SCSF achieves a computational speedup of 1.2 mension of 6400 on the Helmholtz dataset.
to 1.5 times compared to the ChFSI used in the main

experiments. The primary difference lies in their initialization strategies: ChFSI uses random initial-
ization for each solve, whereas the *w/o sort” SCSF leverages information from the previous problem
for initialization. This indicates that, even without sorting, there is a certain level of similarity between
problems in the dataset. Such similarity can effectively accelerate the solving process.

Secondly, as shown in Tabled] our designed truncated FFT
sorting algorithm incurs significantly lower time cost com- | wlosort Greedy — Ours
pared to the complete greedy sorting in SKR (Wangetal,) | 66.66 4052 4052
2024)), with its benefits becoming more pronounced as the Iteration 104 55 55
dataset size increases. In the truncated FFT sorting algo-
rithm, the FFT contributes minimally to computational
overhead but significantly reduces the time required for
subsequent greedy sorting. Table 5] shows SCSF solution
times for matrices sorted using either greedy or truncated
FFT sorting are nearly identical, highlighting its effective-
ness.

Table 5: Comparison of average com-
putation times and iteration counts for
different sorting algorithms using SCSF.
Experiments used the matrix dimension
of 6400 on the Helmholtz dataset, preci-
sion le-8, and targeting 400 eigenvalues.
Furthermore, our experiments show that as long as the

truncated FFT is configured with reasonable parameters

(e.g., truncating at pg = 20, where pg is much smaller than the dimension p of the parameter matrix
P), it achieves excellent performance without the need for a large py. For related experiments, please

refer to Appendix [E.4.3]

5 CONCLUSIONS AND FUTURE WORK

In this paper, we addressed the critical bottleneck of generating large-scale eigenvalue datasets for
training neural operators. We introduced SCSF, the first method to accelerate eigenvalue dataset
generation by exploiting operator similarity. By integrating a truncated FFT sorting algorithm
with a Chebyshev subspace filter, SCSF transforms the generation task into an efficient sequential
solving problem. Our method achieves up to a 3.5x speedup over traditional solvers, significantly
reducing computational redundancy. By lowering a key barrier to entry, SCSF provides a valuable
tool for advancing research in the Al for Science community. For future work, we identify two
primary directions. First, extending SCSF to handle nonlinear eigenvalue problems would broaden
its applicability. Second, developing more effective distance metrics for the sorting algorithm could
further improve its efficiency by better capturing operator similarity.

Under review as a conference paper at ICLR 2026

REFERENCES

Khaled Akkad and David He. A dynamic mode decomposition based deep learning technique for
prognostics. Journal of Intelligent Manufacturing, 34(5):2207-2224, 2023.

Daniel J Alford-Lago, Christopher W Curtis, Alexander T Ihler, and Opal Issan. Deep learning
enhanced dynamic mode decomposition. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 32(3), 2022.

Amartya S Banerjee, Lin Lin, Wei Hu, Chao Yang, and John E Pask. Chebyshev polynomial
filtered subspace iteration in the discontinuous galerkin method for large-scale electronic structure
calculations. The Journal of chemical physics, 145(15), 2016.

Albert P Barték, Sandip De, Carl Poelking, Noam Bernstein, James R Kermode, Gabor Csanyi, and
Michele Ceriotti. Machine learning unifies the modeling of materials and molecules. Science
advances, 3(12):e1701816, 2017.

Mario Berljafa, Daniel Wortmann, and Edoardo Di Napoli. An optimized and scalable eigensolver
for sequences of eigenvalue problems. Concurrency and Computation: Practice and Experience,
27(4):905-922, 2015.

Lipman Bers, Fritz John, and Martin Schechter. Partial differential equations. American Mathematical
Soc., 1964.

L. C. Blum and J.-L. Reymond. 970 million druglike small molecules for virtual screening in the
chemical universe database GDB-13. J. Am. Chem. Soc., 131:8732, 2009.

Johannes Brandstetter, Rianne van den Berg, Max Welling, and Jayesh K Gupta. Clifford neural
layers for pde modeling. arXiv preprint arXiv:2209.04934, 2022.

Steven L Brunton, Bernd R Noack, and Petros Koumoutsakos. Machine learning for fluid mechanics.
Annual review of fluid mechanics, 52(1):477-508, 2020.

Stefan Chmiela, Alexandre Tkatchenko, Huziel E Sauceda, Igor Poltavsky, Kristof T Sch¥utt, and
Klaus-Robert M"uller. Machine learning of accurate energy-conserving molecular force fields.
Science advances, 3(5):e1603015, 2017.

Zhijie Deng, Jiaxin Shi, and Jun Zhu. Neuralef: Deconstructing kernels by deep neural networks. In
International Conference on Machine Learning, pp. 4976-4992. PMLR, 2022.

Huanshuo Dong, Hong Wang, Haoyang Liu, Jian Luo, and Jie Wang. Accelerating pde data generation
via differential operator action in solution space. arXiv preprint arXiv:2402.05957, 2024.

Lawrence C Evans. Partial differential equations, volume 19. American Mathematical Society, 2022.
Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

Zhongkai Hao, Songming Liu, Yichi Zhang, Chengyang Ying, Yao Feng, Hang Su, and Jun Zhu.
Physics-informed machine learning: A survey on problems, methods and applications. arXiv
preprint arXiv:2211.08064, 2022.

Trygve Helgaker, Poul Jorgensen, and Jeppe Olsen. Molecular electronic-structure theory. John
Wiley & Sons, 2013.

V. Hernandez, J. E. Roman, A. Tomas, and V. Vidal. A survey of software for sparse eigenvalue
problems. Technical Report STR-6, Universitat Politecnica de Valéncia, 2009. Available at
https://slepc.upv.es.

Philip Holmes. Turbulence, coherent structures, dynamical systems and symmetry. Cambridge
university press, 2012.

Thomas JR Hughes. The finite element method: linear static and dynamic finite element analysis.
Courier Corporation, 2012.

10

Under review as a conference paper at ICLR 2026

Tomoharu Iwata and Yoshinobu Kawahara. Neural dynamic mode decomposition for end-to-end
modeling of nonlinear dynamics. Journal of Computational Dynamics, 10(2):268-280, 2023.

Anubhav Jain, Joseph Montoya, Shyam Dwaraknath, Nils ER Zimmermann, John Dagdelen, Matthew
Horton, Patrick Huck, Donny Winston, Shreyas Cholia, Shyue Ping Ong, et al. The materials
project: Accelerating materials design through theory-driven data and tools. Handbook of Materials
Modeling: Methods: Theory and Modeling, pp. 1751-1784, 2020.

Claes Johnson. Numerical solution of partial differential equations by the finite element method.
Courier Corporation, 2012.

Scott Kirklin, James E Saal, Bryce Meredig, Alex Thompson, Jeff W Doak, Muratahan Aykol,
Stephan Riihl, and Chris Wolverton. The open quantum materials database (oqmd): assessing the
accuracy of dft formation energies. npj Computational Materials, 1(1):1-15, 2015.

Charles Kittel and Paul McEuen. Introduction to solid state physics. John Wiley & Sons, 2018.

Andrew V Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal block pre-
conditioned conjugate gradient method. SIAM journal on scientific computing, 23(2):517-541,
2001.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces. arXiv
preprint arXiv:2108.08481, 2021.

Randall J LeVeque. Finite volume methods for hyperbolic problems, volume 31. Cambridge university
press, 2002.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
arXiv preprint arXiv:2010.08895, 2020.

Ning Liu, Yue Yu, Huaiqgian You, and Neeraj Tatikola. Ino: Invariant neural operators for learning
complex physical systems with momentum conservation. In International Conference on Artificial
Intelligence and Statistics, pp. 6822-6838. PMLR, 2023.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for
identifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang, and
George Em Karniadakis. A comprehensive and fair comparison of two neural operators (with
practical extensions) based on fair data. Computer Methods in Applied Mechanics and Engineering,
393:114778, 2022.

Jian Luo, Jie Wang, Hong Wang, Zijie Geng, Hanzhu Chen, Yufei Kuang, et al. Neural krylov
iteration for accelerating linear system solving. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems.

Jian Luo, Jie Wang, Hong Wang, Zijie Geng, Hanzhu Chen, Yufei Kuang, et al. Neural krylov
iteration for accelerating linear system solving. Advances in Neural Information Processing
Systems, 37:128636-128667, 2024.

Thomas A Manteuffel. The tchebychev iteration for nonsymmetric linear systems. Numerische
Mathematik, 28:307-327, 1977.

John C Mason and David C Handscomb. Chebyshev polynomials. Chapman and Hall/CRC, 2002.

Stephan Mohr, William Dawson, Michael Wagner, Damien Caliste, Takahito Nakajima, and Luigi
Genovese. Efficient computation of sparse matrix functions for large-scale electronic structure
calculations: The chess library. Journal of Chemical Theory and Computation, 13(10):4684-4698,
2017.

11

Under review as a conference paper at ICLR 2026

Takaaki Murata, Kai Fukami, and Koji Fukagata. Nonlinear mode decomposition with convolutional
neural networks for fluid dynamics. Journal of Fluid Mechanics, 882:A13, 2020.

David Pfau, Simon Axelrod, Halvard Sutterud, Ingrid von Glehn, and James S Spencer. Natural
quantum monte carlo computation of excited states. arXiv preprint arXiv:2308.16848, 2023.

Andreas Pieper, Moritz Kreutzer, Andreas Alvermann, Martin Galgon, Holger Fehske, Georg Hager,
Bruno Lang, and Gerhard Wellein. High-performance implementation of chebyshev filter diago-
nalization for interior eigenvalue computations. Journal of Computational Physics, 325:226-243,
2016.

Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-no: U-shaped neural
operators. arXiv preprint arXiv:2204.11127, 2022.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific Data, 1, 2014.

Theodore J Rivlin. Chebyshev polynomials. Courier Dover Publications, 2020.

Matthias Rupp, Alexandre Tkatchenko, Klaus-Robert Miiller, and O Anatole Von Lilienfeld. Fast
and accurate modeling of molecular atomization energies with machine learning. Physical review
letters, 108(5):058301, 2012.

J Jon Ryu, Xiangxiang Xu, HS Erol, Yuheng Bu, Lizhong Zheng, and Gregory W Wornell. Operator
svd with neural networks via nested low-rank approximation. arXiv preprint arXiv:2402.03655,
2024.

Yousef Saad. Numerical methods for large eigenvalue problems: revised edition. SIAM, 2011.

Peter J Schmid. Dynamic mode decomposition of numerical and experimental data. Journal of fluid
mechanics, 656:5-28, 2010.

Kristof T Schiitt, Farhad Arbabzadah, Stefan Chmiela, Klaus R Miiller, and Alexandre Tkatchenko.
Quantum-chemical insights from deep tensor neural networks. Nature communications, 8(1):
13890, 2017.

Gerard LG Sleijpen and Henk A Van der Vorst. A jacobi—davidson iteration method for linear
eigenvalue problems. SIAM review, 42(2):267-293, 2000.

Justin S Smith, Olexandr Isayev, and Adrian E Roitberg. Ani-1: an extensible neural network
potential with dft accuracy at force field computational cost. Chemical science, 8(4):3192-3203,
2017.

Kirk M Soodhalter, Eric de Sturler, and Misha E Kilmer. A survey of subspace recycling iterative
methods. GAMM-Mitteilungen, 43(4):¢202000016, 2020.

Gilbert W Stewart. A krylov—schur algorithm for large eigenproblems. SIAM Journal on Matrix
Analysis and Applications, 23(3):601-614, 2002.

John C Strikwerda. Finite difference schemes and partial differential equations. SIAM, 2004.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, ilhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antonio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, 17:261-272, 2020. doi: 10.1038/s41592-019-0686-2.

Hong Wang, Zhongkai Hao, Jie Wang, Zijie Geng, Zhen Wang, Bin Li, and Feng Wu. Ac-
celerating data generation for neural operators via krylov subspace recycling. arXiv preprint
arXiv:2401.09516, 2024.

12

Under review as a conference paper at ICLR 2026

Gege Wen, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, and Sally M Benson. U-
fno—an enhanced fourier neural operator-based deep-learning model for multiphase flow. Advances
in Water Resources, 163:104180, 2022.

Jan Winkelmann, Paul Springer, and Edoardo Di Napoli. Chase: Chebyshev accelerated subspace
iteration eigensolver for sequences of hermitian eigenvalue problems. ACM Transactions on
Mathematical Software (TOMS), 45(2):1-34, 2019.

Yaqgiang Xue, Guoyong Jin, Hu Ding, and Mingfei Chen. Free vibration analysis of in-plane
functionally graded plates using a refined plate theory and isogeometric approach. Composite
Structures, 192:193-205, 2018.

Enrui Zhang, Adar Kahana, Eli Turkel, Rishikesh Ranade, Jay Pathak, and George Em Karniadakis.
A hybrid iterative numerical transferable solver (hints) for pdes based on deep operator network
and relaxation methods. arXiv preprint arXiv:2208.13273, 2022.

Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao
Lin, Zhao Xu, Keqiang Yan, Keir Adams, Maurice Weiler, Xiner Li, Tianfan Fu, Yucheng
Wang, Haiyang Yu, YuQing Xie, Xiang Fu, Alex Strasser, Shenglong Xu, Yi Liu, Yuanqi Du,
Alexandra Saxton, Hongyi Ling, Hannah Lawrence, Hannes Stirk, Shurui Gui, Carl Edwards,
Nicholas Gao, Adriana Ladera, Tailin Wu, Elyssa F. Hofgard, Aria Mansouri Tehrani, Rui Wang,
Ameya Daigavane, Montgomery Bohde, Jerry Kurtin, Qian Huang, Tuong Phung, Minkai Xu,
Chaitanya K. Joshi, Simon V. Mathis, Kamyar Azizzadenesheli, Ada Fang, Alan Aspuru-Guzik,
Erik Bekkers, Michael Bronstein, Marinka Zitnik, Anima Anandkumar, Stefano Ermon, Pietro
Lio, Rose Yu, Stephan Giinnemann, Jure Leskovec, Heng Ji, Jimeng Sun, Regina Barzilay,
Tommi Jaakkola, Connor W. Coley, Xiaoning Qian, Xiaofeng Qian, Tess Smidt, and Shuiwang Ji.
Artificial intelligence for science in quantum, atomistic, and continuum systems. arXiv preprint
arXiv:2307.08423, 2023.

Yunkai Zhou and Yousef Saad. A chebyshev—davidson algorithm for large symmetric eigenproblems.
SIAM Journal on Matrix Analysis and Applications, 29(3):954-971, 2007.

Yunkai Zhou, Yousef Saad, Murilo L Tiago, and James R Chelikowsky. Parallel self-consistent-
field calculations via chebyshev-filtered subspace acceleration. Physical Review E—Statistical,
Nonlinear, and Soft Matter Physics, 74(6):066704, 2006a.

Yunkai Zhou, Yousef Saad, Murilo L Tiago, and James R Chelikowsky. Self-consistent-field
calculations using chebyshev-filtered subspace iteration. Journal of Computational Physics, 219
(1):172-184, 2006b.

Yunkai Zhou, James R Chelikowsky, and Yousef Saad. Chebyshev-filtered subspace iteration method
free of sparse diagonalization for solving the kohn—sham equation. Journal of Computational
Physics, 274:770-782, 2014.

13

Under review as a conference paper at ICLR 2026

A USAGE OF LLMs

Throughout the preparation of this manuscript, Large Language Models (LLMs) were utilized as a
writing and editing tool. Specifically, we employed LLMs to improve the clarity and readability of
the text, refine sentence structures, and correct grammatical errors. All final content, including the
core scientific claims, experimental design, and conclusions, was conceived and written by us, and
we take full responsibility for the final version of this paper.

B RELATED WORK

B.1 EIGENVALUE DATASETS AND NEURAL EIGENVALUE METHODS

Eigenvalue datasets are widely utilized in neural eigenvalue methods. In molecular chemistry research,
eigenvalue algorithms are commonly employed to determine critical molecular properties, such as
orbital energy levels (Kittel & McEuen| |2018). These properties form the foundation of datasets and
are obtained by solving the eigenvalue problem of the Schrodinger equation and the Hamiltonian
operator (Helgaker et al.| [2013)). Prominent datasets in this domain include QM7 (Blum & Reymond)
2009), QM9 (Ramakrishnan et al., 2014), ANI-1 (Smith et al., 2017), and MD17 (Chmiela et al.}
2017). In materials science, eigenvalue algorithms are often applied to solve for electronic band
structures and density of states in materials. Representative datasets in this field include the materials
project (Jain et al., [2020) and OQMD (Kirklin et al.l 2015). These datasets have been extensively
used to train and validate neural eigenvalue methods (Schiitt et al.; 2017} |Bartok et al., 2017; Rupp
et al}2012), driving advancements in molecular property prediction and materials design. In fluid
dynamics and structural mechanics, eigenvalue algorithms are frequently utilized for modal analysis.
Recently, many data-driven modal analysis algorithms have emerged, requiring eigenvalue datasets
corresponding to differential operators for training (Murata et al.,[2020} Iwata & Kawahara, 2023},
Alford-Lago et al., 2022} Brunton et al.| 2020; |]Akkad & Hel 2023). Additionally, some studies
leverage operator eigenvalue datasets to optimize algorithms. For instance, |Luo et al.| accelerates the
solution of linear systems by predicting the eigenfunctions of operators.

B.2 EIGENVALUE DATA GENERATION ALGORITHMS

Training data-driven algorithms require a large amount of labeled eigenvalue data. Typically, the
generation of these high-precision data is obtained by traditional algorithms. In the field of computa-
tional mathematics, solving operator eigenvalue problems often involves utilizing various discretiza-
tion methods such as finite difference methods (FDM) (Strikwerdal, [2004), finite element methods
(FEM) (Hughes, 2012} Johnson, 2012). These discretization methods transform operator eigenvalue
problems into matrix eigenvalue problems, which are then solved using the corresponding matrix
algorithms. For larger matrices, the Krylov-Schur algorithm (Stewart, |2002)), Jacobi-Davidson (Slei-
jpen & Van der Vorst, 2000), and locally optimal block preconditioned conjugate gradient (LOBPCG)
(Knyazev, 2001)) are among the most frequently employed algorithms (Golub & Van Loan, [2013)).

Nonetheless, traditional methods were not designed for dataset generation, resulting in high com-
putational costs, which have become a significant barrier to the advancement of data-driven ap-
proaches (Zhang et al.l 2023} |[Hao et al., [2022)). Recent data augmentation research (Brandstetter
et al.} 2022} |Liu et al.,[2023) has led to the development of methods that preserve symmetries and
conservation laws, enhancing model generalization and data efficiency. Wang et al.| (2024)); Dong
et al.|(2024) report acceleration in the process of solving linear equations, thereby speeding up the
generation of PDE datasets.

However, these improvements largely focus on neural networks or the rapid solution of linear
system-based PDEs, without discussing optimizations in the generation of eigenvalue datasets.

B.3 CHEBYSHEV FILTER TECHNIQUE

The Chebyshev filter technique originates from polynomial approximation theory, where the core
concept involves using Chebyshev polynomials to accelerate the convergence of eigenvalues (Zhou
& Saad, [2007)). This technique constructs a polynomial filter that selectively amplifies spectral
components in a specified interval, thereby speeding up the solution of specific eigenvalues. This

14

Under review as a conference paper at ICLR 2026

technique is particularly effective in dealing with sequence eigenvalue problems (Saad, |[2011; Zhou
et al., 2006a) and has been applied in various contexts, such as stability analysis in electronic
structure (Pieper et al.,[2016; Banerjee et al.,|2016)) and quantum chemical computations (Mohr et al.;
2017} Zhou et al. 2014; 2006b).

Due to the chaotic and disordered nature of eigenvalue problems in the dataset, directly applying the
Chebyshev filter technique fails to accelerate dataset generation. To further adapt this technique to
the generation of operator eigenvalue datasets, we have developed a specialized sorting algorithm that
transforms dataset generation into sequence eigenvalue problems. Throughout the solving process,
eigenpairs obtained from previous solutions are used to construct Chebysheyv filters, accelerating
subsequent solutions.

C FROM DIFFERENTIAL OPERATOR TO MATRIX EIGENVALUE PROBLEM: AN
EXAMPLE

C.1 OVERVIEW

The general methodology for solving the eigenvalue problems of differential operators numerically,
employing techniques such as Finite Difference Method (FDM), Finite Element Method (FEM), and
Spectral Method, can be delineated through the following pivotal steps (Strikwerdal, 2004} [Hughes),
20125 Johnson, 2012; [Le Vequel 2002):

1. Mesh Generation: This step involves dividing the domain, over which the differential operator
is defined, into a discrete grid. The grid could be composed of various shapes, including squares,
triangles, or more complex forms, depending on the problem’s geometry.

2. Operator Discretization: The differential operator is transformed into its discrete counterpart.
Essentially, this maps the operator from an infinite-dimensional Hilbert space to a finite-dimensional
representation.

3. Matrix Assembly: In this phase, the discretized operator is represented in a matrix form. For linear
differential operators, this involves creating a system of matrix eigenvalue problems. For nonlinear
operators, iterative methods akin to Newton’s iteration are employed, transforming the problem into a
sequence of matrix eigenvalue problems.

4. Applying Boundary Conditions: This involves discretizing and applying boundary conditions
specific to the differential operator in question, which are then incorporated into the matrix system.

5. Solving the Matrix Eigenvalue Problem: This stage, often the most computationally intensive,
entails solving the matrix for its eigenvalues and eigenvectors, which correspond to the eigenvalues
and eigenfunctions of the original differential operator.

6. Obtaining the Numerical Solution: The final step involves mapping the obtained numerical
solutions back onto the original domain, analyzing them for accuracy and stability, and interpreting
them in the context of the initial problem.

C.2 EXAMPLE

To illustrate how the FDM can transform the wave equation into a system of matrix eigenvalue
problems, let’s consider a concrete and straightforward example. Assume we aim to solve a one-
dimensional wave equation’s operator eigenvalue problem, expressed as
d*u)
Tdzz T
over the interval [0, L]. The boundary conditions are u(0) = u(L) = 0, signifying fixed-end
conditions. In this context, u(x) denotes the eigenfunction, and)\ represents the eigenvalue.

1. Mesh Generation: Using the central difference quotient, we divide the interval [0, L] into N + 1
evenly spaced points, including the endpoints. The distance between adjacent points is denoted as
Az =L,

N

2. Operator Discretization: This step involves formulating the difference equation. At each inte-
rior node, which excludes the endpoints and totals N — 1 points, we apply a central difference

15

Under review as a conference paper at ICLR 2026

approximation for the second derivative, represented as

Puu(wipn) = 2u(@i) +u(@ia)
da? (Az)?

3. Matrix Assembly: In this phase, the discretized operator is represented in a matrix form. Following
the approximation, we construct the matrix A, an N — 1 x N — 1 tridiagonal matrix, crucial for the
computations. The matrix A is constructed as:

-2 1 0 0
-2 1 0
_ 1 0 1 -2 0
(Az)? N

0 0 0 - =2

4. Applying Boundary Conditions: For the wave equation with boundary conditions «(0) = u(L) =
0, these fixed-end conditions are integrated into the matrix equation. In the FDM framework, the
values at the endpoints (ug and u) are zero, directly reflecting the boundary conditions. The impact
of these conditions is encapsulated in the matrix A, affecting the entries related to u; and uy_1
(the grid points adjacent to the boundaries). The tridiagonal matrix A incorporates these boundary
conditions, ensuring that the computed eigenfunctions satisfy u(0) = u(L) = 0.

5. Solving the Matrix Eigenvalue Problem: The final computational step involves solving the matrix
eigenvalue problem, expressed as Au = Au. This includes determining the eigenvalues A and
corresponding eigenvectors w, which are discrete approximations of the eigenfunctions of the original
differential equation.

6. Obtaining the Numerical Solution: By solving the eigenvalue problem, we obtain numerical
solutions that approximate the behavior of the original differential equation. These solutions reveal
the eigenvalues and eigenvectors and provide insights into the physical phenomena modeled by the
equation.

D DETAILS OF EXPERIMENTAL SETUP

D.1 BASELINE
The baseline algorithms were implemented using the following numerical computing libraries:

* Eigsh: A SciPy (v1.14.1) implementation wrapping ARPACK’s SSEUPD and DSEUPD
functions, which compute eigenvalues and eigenvectors using the Implicitly Restarted
Lanczos Method. The default parameters were used.

* Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG): Implemented in
SLEPc (v3.21.1) with default parameters.

* Krylov-Schur (KS): Implemented in SLEPc (v3.21.1) with default parameters.

* Jacobi-Davidson (JD): Implemented in SLEPc (v3.21.1). The implementation uses bcgsl’
as the linear equation solver, ’bjacobi’ as the preconditioner, and sets the linear equation
solving precision to le-5.

* ChFSI: Implemented in ChASE (v1.6) with default parameters.

D.2 DATASET

All operators in this paper use Dirichlet boundary conditions.
1. Generalized Poisson Operator

We consider two-dimensional generalized Poisson operators, which can be described by the following
equation (Li et al.|[2020; Rahman et al., [2022; |Kovachki et al., 2021} [Lu et al.| 2022):

—V - (K(z,9)Vh(z,y)) = Ah(z,y),

16

Under review as a conference paper at ICLR 2026

In our experiment, K (z,y) is derived using the Gaussian Random Field (GRF) method. We convert
these operators into matrices using the central difference scheme of FDM. The parameters inherent to
the GRF serve as the foundation for our sort scheme.

2. Second-Order Elliptic Partial Differential Operator

We consider general two-dimensional second-order elliptic partial differential operators, which are
frequently described by the following generic form (Evans| [2022; |Bers et al., [1964):

Lu=aj1Ugg + A12Ugy + A22Uyy + A1UL + A2Uy + GoU = Au,

where ag, a1, asz,a11,a12, aso are constants, and f represents the source term, depending on z, y.
The variables u, u,, u, are the dependent variables and their partial derivatives. The equation is
classified as elliptic if 4a;;a20 > a%Q.

In our experiments, a11, a2, a1, a2, ag are uniformly sampled within the range (—1, 1), while the
coupling term ;2 is sampled within (—0.01,0.01). We then select equations that satisfy the elliptic
condition to form our dataset. We convert these operators into matrices using the central difference
scheme of FDM. The coefficients ag, a1, as, ai1, a12, ass serve as the foundation for our sort scheme.

3. Helmbholtz Operator

We consider two-dimensional Helmholtz operators, which can be described by the following equa-
tion (Zhang et al., 2022):

V- (p(xv y)Vu(x, y)) + k2(1', y) =)\u(x, y)v
Physical Contexts in which the Helmholtz operator appears: 1. Acoustics; 2. Electromagnetism; 3.
Quantum Mechanics.

In Helmbholtz operators, k is the wavenumber, related to the frequency of the wave and the properties
of the medium in which the wave is propagating. In our experiment, p(x, y) and k(x, y) are derived
using the GRF method. The parameters inherent to the GRF serve as the foundation for our sort
scheme.

4. Vibration Equation

We consider the vibration equation for thin plates, which can be described by the following eigenvalue
problem (Xue et al.| 2018)):

V2(D(z,y)Vul(z,y)) = Aoz, y)u(z,y),
Physical contexts in which the vibration equation appears: 1. Structural dynamics of thin plates; 2.
Modal analysis in mechanical engineering; 3. Vibrational behavior of elastic materials.

In this equation, D(x, y) represents the flexural rigidity of the plate, p(x, y) is the density distribution,
and A corresponds to the eigenvalue, which is related to the natural frequencies of the system. The
eigenfunction u(x, y) describes the mode shapes of vibration.

In our experiment, D(x,y) and p(z, y) are derived using the GRF method. The parameters inherent
to the GRF serve as the foundation for our sorting scheme.

D.3 ENVIRONMENT

To ensure consistency in our evaluations, all comparative experiments were conducted under uniform
computing environments. Specifically, the environments used are detailed as follows:

¢ Platform: Docker version 4.33.1 (windows 11)
* Operating System: Ubuntu 22.04.3 LTS
* Processor: CPU AMD Ryzen 9 8945HS w, clocked at 4.00 GHz

17

Under review as a conference paper at ICLR 2026

D.4 EXPERIMENTAL PARAMETER CONFIGURATION

All baseline methods were implemented using their default parameters from respective libraries.

For SCSF, the following configurations were adopted:

* The size of the inherited subspace varies according to the number of eigenvalues to be
computed. Specifically, when calculating 20, 100, 200, 300, and 400 eigenvalues, the
corresponding subspace sizes are set to 4, 20, 40, 60, and 80, respectively.

* The filter degree parameter m is consistently set to 20 across all experiments.
* Truncation threshold for low frequencies py is consistently set to 20 across all experiments.

» Each experiment generates a dataset consisting of 1,000 samples. In this paper, the Experi-
mental tables report the average solving time for each eigenvalue problem.

D.5 ERROR METRICS

* Relative Residual Error: ~
To estimate the bias of the eigenpair (7,) predictions, we employ relative residual error as
follows: B
[1£0 — Aol
£]2
Here, v represents the eigenfunction predicted by the model, and) denotes the eigenvalue

predicted by the model. When \ is the true eigenvalue and v is the true eigenfunction, the
Relative Residual Error equals 0.

Relative Residual Error =

D.6 RELATIONSHIP WITH PARALLELIZATION AND EXPERIMENTAL SETTING

The SCSF framework is designed to be complementary to parallel computing architectures; the
relationship is both orthogonal and synergistic. Fundamentally, SCSF accelerates the serial processing
of a sequence of related eigenvalue problems. In a practical, large-scale setting, a total dataset of
N problems can be partitioned into M independent chunks. Subsequently, M instances of the
SCSF algorithm can be executed in parallel across M computing units, with each computing unit
responsible for solving one chunk.

To ensure a fair and direct comparison of algorithmic efficiency under practical, parallelized condi-
tions, all experiments reported in this paper were conducted using the Message Passing Interface
(MPI) with 8 cores in parallel.

18

Under review as a conference paper at ICLR 2026

E EXPERIMENTAL DATA AND SUPPLEMENTARY EXPERIMENTS

E.1 MAIN EXPERIMENTAL DATA

As shown in Tables[7] [6] Ol SCSF showed the best performance among all tested configurations

L | Eigsh LOBPCG KS JD ChFSI SCSF (ours)
150 | 9.15 46.8 149 138 17.3 7.95
200 | 14.2 73.0 23.8 270 24.0 12.9
250 | 19.8 109 343 553 30.2 19.0
300 | 26.3 152 45.6 921 38.0 25.7
350 | 31.5 203 584 1732 458 29.8
400 | 36.9 265 723 2691 574 33.9
450 | 42.8 342 87.3 3708 742 383

Table 6: Comparison of average computation times (in seconds) for eigenvalue problems using
various algorithms on the generalized Poisson operator dataset. The first row lists different algorithms,
and the first column shows the number of eigenvalues L computed for each matrix. Matrix dimension
= 2500, precision = le-12.

L Eigsh LOBPCG KS JD ChFSI SCSF (ours)
150 | 31.35 91.80 40.65 21480 38.37 19.62
200 | 41.82 139.20 61.77 41430 43.90 24.08
250 | 52.17 197.04 84.65 861.44 53.42 28.00
300 | 62.47 264.10 110.50 1446.00 60.69 29.88
350 | 74.59 355.18 147.01 232488 64.94 31.52
400 | 87.19 459.70 188.70 3386.00 67.13 34.60
450 | 100.28 577.67 235.56 462938 76.32 40.05

Table 7: Comparison of average computation times (in seconds) for eigenvalue problems using various
algorithms on the second-order elliptic operator dataset. The first row lists different algorithms, and
the first column shows the number of eigenvalues L computed for each matrix. Matrix dimension =
4900, precision = le-10.

L Eigsh LOBPCG KS JD ChFSI SCSF (ours)
200 | 151.70 129.90 98.34 489.60 107.12 31.31
300 | 190.84 273.08 192.88 1601.08 113.73 37.78
400 | 253.50 460.40 283.00 3829.00 121.53 40.52
500 | 344.60 720.33 310.21 - 135.73 47.41
600 | 398.80 1031.00 329.60 - 146.24 51.32

Table 8: Comparison of average computation times (in seconds) for eigenvalue problems using
various algorithms on the Helmholtz operator dataset. The first row lists different algorithms, and the
first column shows the number of eigenvalues L computed for each matrix. Matrix dimension = 6400,
precision = le-8. The symbol ’-’ denotes data not recorded due to excessive computation times.

19

Under review as a conference paper at ICLR 2026

L | Eigsh LOBPCG KS JD ChFSI SCSF (ours)
200 | 3979 333.7 272.0 1230 300.8 85.70
300 | 516.8 750.0 520.0 3600 305.0 96.50
400 | 635.6 1170 768.8 - 310.5 107.2
500 | 820.0 1950 810.0 - 350.0 120.0
600 | 1037 2716 857.8 - 382.3 131.4

Table 9: Comparison of average computation times (in seconds) for eigenvalue problems using
various algorithms on the Vibration operator dataset. The first row lists different algorithms, and
the first column shows the number of eigenvalues L computed for each matrix. Matrix dimension
= 10000, precision = le-8. The symbol ’-’ denotes data not recorded due to excessive computation
times.

E.2 ANALYSIS OF THE INFLUENCE OF MATRIX DIMENSION

Matrix Dimension Eigsh LOBPCG KS JD ChFSI SCSF (ours)
2500 36.86 265.30 72.32 2691.00 57.41 33.91
3600 66.41 387.20 116.50 2990.00 102.4 65.41
4225 89.13 467.74 151.36 3548.13 126.2 70.79
4900 121.90 546.20 187.80 3886.00 153.5 74.23
5625 186.21 691.83 251.19 - 216.8 85.11
6400 282.80 860.00 337.70 - 282.2 93.86
8100 707.95 1412.54 707.95 - 435.1 114.82
10000 3162.28 2511.89 1995.26 - 590.3 158.49

Table 10: Comparison of different algorithms’ computation time (in seconds) for varying matrix
dimensions using the generalized Poisson operator dataset. Results show average computation times
for solving 400 eigenvalues with a precision of le-12.

As demonstrated in Table[I0] the impact of matrix dimension on algorithm performance reveals several
key insights. For matrices below dimension 3600, SCSF and Eigsh show comparable efficiency.
However, SCSF’s advantages become increasingly pronounced as matrix dimensions grow larger.
At dimension 10000, SCSF achieves remarkable speedups: 20x faster than Eigsh, 16 faster than
LOBPCG, 13 x faster than KS, and 3.7 x faster than ChFSI. This phenomenon can be attributed to
how larger matrix dimensions result in fewer errors and noise in the computed eigenvalues, allowing
SCSF to better exploit similarities between problems. Additionally, the JD algorithm becomes
computationally intractable at and above dimension 5625, while SCSF maintains stable performance
even at high dimensions.

E.3 ANALYSIS OF COMPUTATIONAL TIMES FOR SCSF COMPONENTS

All Filter (line 3) QR (line4) RR (line 5) Resid (line 6) Sort
9.89¢+0 7.41e+0 3.12e-1 9.76e-1 7.95e-1 1.51e-2

Table 11: Analysis of Computational Times (in seconds) for SCSF Components.

We conducted a statistical analysis of the average time consumption for each component of the SCSF
algorithm on the generalized Poisson operator dataset, with a matrix dimension of 2500 and the
number of eigenvalues to be solved set to 100. The results are presented in Table[IT] The notation
"line x" within parentheses corresponds to line x in Algorithm [3] "ALL" denotes the total time
consumption, and "sort" represents the average time required by the sorting algorithm. It is evident

20

Under review as a conference paper at ICLR 2026

that the filtering process accounts for over 70% of the total time consumption, which aligns with our
theoretical analysis in Section[3.2]

E.4 ANALYSIS OF HYPERPARAMETERS

E.4.1 DEGREE PARAMETER

Deg 12 16 20 24 28 32 36 40
Time (s) 43.92 39.79 40.52 40.64 40.85 41.13 41.19 43.50

Table 12: Average Computational Times (in seconds) of SCSF under Different Degree Parameters m.

We investigated the impact of different degree parameters m on the performance of SCSF. As shown in
Table[T2] the experiments were conducted on the Helmholtz operator dataset with a matrix dimension
of 6400, a solution accuracy of 1e-8, 400 eigenvalues to be solved, and an inherited subspace size
of 80. The degree parameter m, as described in Algorithm (3} primarily controls the order of the
Chebyshev polynomial. The results indicate that varying m within the range of 12 to 40 has a minimal
effect on the computation time of SCSF. Therefore, as long as m is chosen within a reasonable range,
its specific value does not significantly influence the performance. In the main experiments of this
paper, m is fixed at 20.

E.4.2 SUBSPACE DIMENSION

Dim 50 60 70 80 90 100 110 120
Time (s) 43.28 4435 4243 4052 39.65 37.43 38.28 38.58

Table 13: Average Computational Times (in seconds) of SCSF under Different Subspace Dimension.

We examine the influence of different inherited subspace sizes on the performance of SCSF. As
presented in Table[I3] the experiments are conducted on the Helmholtz operator dataset with a matrix
dimension of 6400, a solution accuracy of le-8, 400 eigenvalues to be computed, and a degree
parameter m set to 20.

The results demonstrate that as the inherited subspace size increases, the computation time of SCSF
initially decreases and then rises, reaching its minimum around a size of 100. The reduction in
computation time at the front end is attributed to the enriched initial subspace with more available
information as the inherited subspace grows. Conversely, the increase in computation time at the
back end is due to the significantly higher overhead of performing Chebyshev filtering with a larger
inherited subspace.

Overall, as long as the inherited subspace size is set within a reasonable range, its impact on SCSF
remains minimal. In our experiments, we consistently set the inherited subspace size to 20% of the
number of eigenvalues to be computed.

21

Under review as a conference paper at ICLR 2026

E.4.3 TRUNCATION THRESHOLD FOR LOW FREQUENCIES

Nosort po=10 p9g=20 po=30 po=40 Greedy

One-sided distance 0.95 0.89 0.85 0.85 0.85 0.85
Sort time (s) 0 110 151 193 246 593
Average solve time (s) 66.7 52.2 40.5 40.5 40.5 40.5

Table 14: Average Computational Times (in seconds) of SCSF under Different Truncation Thresholds.

We measure the similarity between matrices by computing the cosine of the principal angles between
their 10-dimensional invariant subspaces (spanned by the smallest 10 eigenvectors in modulus) (one-
sided distance). Smaller values indicate higher similarity. As presented in Table[T4] the experiments
are conducted on the Helmholtz operator dataset with a matrix, a solution accuracy of le-8, 400
eigenvalues to be computed, and a degree parameter m set to 20, 10k data problems, parameter matrix
P with dimension p = 80, and varying truncation frequencies pg

The results demonstrate that sorting significantly increases inter-problem correlation in the dataset
(explaining the performance gain). The truncation parameter pg affects sorting time, sorting quality,
and solver time. For pg > 20, solver time becomes stable, showing diminishing returns. This reflects
the interplay between sorting and Chebyshev iteration. In the main experiments of this paper, pg is
fixed at 20.

E.5 RELIABILITY OF GENERATED DATA AS GROUND TRUTH

A key concern was whether the data generated by our method, which relies on numerical solvers, is a
reliable "ground truth" for training neural networks. To address this, we trained a NeurKItt (Luo et al.
2024) model on generalized Poisson datasets generated by various solvers (including our SCSF) at
different matrix dimensions. The precision for all solvers was set to a high tolerance of 10712

Generation Method ~ Matrix Dimension ~ Generation Time NeurKItt Principal Angle Loss

Eigsh 2500/ 6400/ 10000 10h / 80h / 800h 0.06/0.06/0.06
LOBPCG 2500/ 6400 /10000 70h/240h /700h 0.06/0.06/0.06
ChFSI 2500/ 6400/ 10000 16h/44h/160h 0.06/0.06/0.06
SCSF (ours) 2500/ 6400 / 10000 %h/26h/45h 0.06/0.06/0.06

Table 15: Impact of data generation method on the performance of a trained NeurKItt model. The
consistent final loss indicates that data from all tested solvers serves as a reliable ground truth.

E.6 COMPARISON WITH SUPERVISED AND UNSUPERVISED NEURAL NETWORK METHODS

To clarify the significance of accelerating dataset generation for the dominant supervised learning
paradigm, we conducted an experiment comparing the performance and resource trade-offs of
different categories of eigensolvers. We evaluated our method (SCSF), a traditional solver (Eigsh),
a supervised neural network (NeurKItt (Luo et al.l [2024)), and two state-of-the-art unsupervised
neural networks (NeuralEF (Deng et al.,|2022) and NeuralSVD [Ryu et al.|(2024))) on a 2D Helmbholtz
problem (solving for the smallest 100 eigenvalues, matrix dimension 6400).

The results, presented in Table[16] highlight the distinct characteristics of each approach. Unsu-
pervised methods obviate the need for pre-generated datasets but require substantial "solving time"
for each new operator, as they essentially perform an optimization from scratch. In contrast, super-
vised methods offer near-instantaneous inference but demand significant upfront investment in both
data generation and model training. Our method, SCSF, dramatically reduces the data generation
bottleneck for these powerful supervised models.

As shown in Table[I5] the final performance of the trained NeurKItt model (measured by Principal
Angle Loss) was identical regardless of which high-precision solver was used for data generation or

22

Under review as a conference paper at ICLR 2026

Category Algorithm Solving Time Training Time Dataset Gen. Time Relative Residual
Our Method SCSF (random init) 1 min - - 108
Traditional Eigsh 1 min - - 108
Supervised NN NeurKItt 0.1s 3h 20h 102
Unsupervised NN NeuralEF 2h - - 1072
Unsupervised NN NeuralSVD 3h - - 1072

Table 16: Comparison of different eigensolver paradigms on a 2D Helmholtz problem. "Solving
Time" for unsupervised methods refers to the entire optimization process required to find the solution
for a single operator instance.

the specific matrix dimension (for dimensions > 2500). This demonstrates that the discretization
and solver errors are orders of magnitude smaller than the neural network’s approximation error,
confirming that the generated data serves as a highly reliable ground truth for training purposes.

E.7 PERFORMANCE BOUNDS AND THE IMPACT OF DATASET SIMILARITY

To provide theoretical insight into SCSF’s performance bounds, we conducted an experiment to
quantify the relationship between dataset similarity and acceleration. We generated a sequence
of Helmholtz operator problems where each subsequent problem is a slight perturbation of the
previous one. The magnitude of this perturbation reflects the dataset’s internal similarity. A smaller
perturbation size indicates higher similarity. The experiment was run on the Helmholtz dataset
(dimension 6400, L = 200 eigenvalues).

Perturbation Size Eigsh LOBPCG ChFSI SCSF (w/o sort) SCSF
50% 151 130 107 76 27
10% 150 129 107 48 23
1% 152 130 107 14 6
0% (Identical) 151 130 107 2 2
Standard Generation 152 130 107 82 31
Independent Problems 152 130 107 107 107

Table 17: Average solution time (seconds) as a function of dataset similarity (perturbation size).
Lower perturbation implies higher similarity. The experiment was run on the Helmholtz dataset
(dim = 6400, L = 200).

The results in Table[I7|show that SCSF’s performance is strongly correlated with dataset similarity. As
problems become more similar (perturbation size decreases), the speedup increases dramatically. The
experiment also highlights the effectiveness of our sorting algorithm; SCSF consistently outperforms
SCSF without sorting (‘SCSF w/o sort*) across various similarity levels. In the theoretical limit of
identical problems (0% perturbation), the solution is found in just a few iterations. Conversely, for
completely independent problems, SCSF’s performance gracefully degrades to that of ChFSI, as
expected.

E.8 ANALYSIS OF FAILURE CASES: DISCONTINUOUS DATASETS

The core assumption of SCSF is that the dataset is generated from a process with underlying continuity,
allowing our sorting algorithm to group similar problems effectively. To investigate the behavior
of SCSF when this assumption is violated, we simulated an extreme failure case by creating a
discontinuous dataset. We mixed problems from the Helmholtz and Poisson datasets (1:1 ratio,
dimension 6400, L = 200 eigenvalues) and solved them sequentially.

Table [I8] presents the results. As expected, the performance gain of SCSF is reduced in this discontin-
uous scenario because the inter-problem correlation is disrupted, diminishing the effectiveness of the
sorting module. However, even in this challenging case, SCSF still provides a notable speedup over
baseline solvers, demonstrating a degree of robustness. The performance of ‘SCSF* approaches that
of ‘SCSF (w/o sort)‘, confirming that the sorting component’s benefit is tied to dataset continuity.

23

Under review as a conference paper at ICLR 2026

Metric Eigsh LOBPCG ChFSI SCSF (w/osort) SCSF
Time (s) 154 280 132 118 98

Table 18: Performance on a discontinuous dataset created by mixing Helmholtz and Poisson problems.
All times are in seconds.

E.9 COST-BENEFIT ANALYSIS OF THE SORTING ALGORITHM

To address the trade-off between the cost of sorting and its benefits, we analyzed its computational
overhead. Our analysis shows that the cost of the Truncated FFT Sort is negligible in the context of
large-scale dataset generation. For example, as shown in Table 4] of the main paper, sorting a dataset
of 10* samples takes approximately 151 seconds. In contrast, solving a single eigenvalue problem
from the Helmholtz dataset can take over 250 seconds with a standard solver like Eigsh. For a full
dataset of this size, the sorting overhead constitutes less than 0.1% of the total generation time.

The benefit, however, is substantial. As shown in Table (3| sorting reduces the number of solver
iterations by 5-50% and total floating-point operations (Flops) by 7-43%. Furthermore, our Truncated
FFT Sort is significantly more cost-effective than a naive greedy sort, achieving nearly identical
final solver performance at a fraction of the computational cost (see Tables [and [5)). Given this
highly favorable cost-benefit ratio, the sorting step is a crucial and efficient component of the SCSF
framework.

24

	Introduction
	Preliminaries
	Discretization of Eigenvalue Problem
	The Chebyshev Polynomials and Chebyshev Filter

	Method
	The Sorting Algorithm
	Chebyshev Filtered Subspace Iteration

	Experiment
	Experimental Settings
	Main Experiment
	Efficacy of Chebyshev Subspace Filter
	Efficacy of Sorting Algorithms

	Conclusions and Future Work
	Usage of LLMs
	Related work
	Eigenvalue Datasets and Neural Eigenvalue Methods
	Eigenvalue Data Generation Algorithms
	Chebyshev Filter Technique

	From Differential Operator to Matrix Eigenvalue Problem: An Example
	Overview
	Example

	Details of Experimental Setup
	Baseline
	Dataset
	Environment
	Experimental Parameter Configuration
	Error Metrics
	Relationship with Parallelization and Experimental Setting

	Experimental Data and Supplementary Experiments
	Main Experimental Data
	Analysis of the Influence of Matrix Dimension
	Analysis of Computational Times for SCSF Components
	Analysis of Hyperparameters
	Degree Parameter
	Subspace Dimension
	Truncation Threshold for Low Frequencies

	Reliability of Generated Data as Ground Truth
	Comparison with Supervised and Unsupervised Neural Network Methods
	Performance Bounds and the Impact of Dataset Similarity
	Analysis of Failure Cases: Discontinuous Datasets
	Cost-Benefit Analysis of the Sorting Algorithm

