
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ACCELERATING EIGENVALUE DATASET GENERATION
VIA CHEBYSHEV SUBSPACE FILTER

Anonymous authors
Paper under double-blind review

ABSTRACT

Eigenvalue problems are among the most important topics in many scientific dis-
ciplines. With the recent surge and development of machine learning, neural
eigenvalue methods have attracted significant attention as a forward pass of infer-
ence requires only a tiny fraction of the computation time compared to traditional
solvers. However, a key limitation is the requirement for large amounts of labeled
data in training, including operators and their eigenvalues. To tackle this limitation,
we propose a novel method, named Sorting Chebyshev Subspace Filter (SCSF),
which significantly accelerates eigenvalue data generation by leveraging similarities
between operators—a factor overlooked by existing methods. Specifically, SCSF
employs truncated fast Fourier transform sorting to group operators with similar
eigenvalue distributions and constructs a Chebyshev subspace filter that leverages
eigenpairs from previously solved problems to assist in solving subsequent ones,
reducing redundant computations. To the best of our knowledge, SCSF is the first
method to accelerate eigenvalue data generation. Experimental results show that
SCSF achieves up to a 3.5× speedup compared to various numerical solvers.

1 INTRODUCTION

Solving eigenvalue problems is an important challenge in fields such as quantum physics (Pfau et al.,
2023), fluid dynamics (Schmid, 2010), and structural mechanics (Wen et al., 2022). Traditional
numerical solvers, such as the Krylov-Schur algorithm (Stewart, 2002), often suffer from prohibitively
high computational costs when tackling complex problems. To overcome these computational
challenges, recent advancements in deep learning (Schütt et al., 2017; Li et al., 2020; Luo et al.)
have demonstrated remarkable success as one forward pass only necessitates a tiny fraction of the
computation time compared to numerical solvers, often in milliseconds.

Despite their success, data-driven approaches face a fundamental limitation: the reliance on labeled
datasets. Training neural networks requires large-scale labeled data, which is often generated using
computationally expensive traditional methods. It usually takes dozens of hours or even days. For
example, the QM9 dataset (Ramakrishnan et al., 2014) contains 1.34× 105 molecular data points,
each produced by solving Hamiltonian operator eigenvalue problems. These calculations typically
employ traditional algorithms, whose computational costs can escalate dramatically with increasing
problem complexity, like finer grid resolutions or higher accuracy requirements. This scalability
issue represents a significant bottleneck for generating the labeled data needed to train deep learning
models. Furthermore, the diversity of scientific problems leads to the need for a unique dataset for
each scenario, which further intensifies this challenge of computational intractability. As a result,
the high computational expense of generating eigenvalue data severely limits the application of
data-driven approaches (Zhang et al., 2023).

In particular, the dataset generation process typically involves six key steps, as illustrated in Figure 1
(left). Among these steps, solving the eigenvalue problem is the most computationally demanding
(step 4), accounting for 95% of the total processing cost (Hughes, 2012). Existing data generation
methods typically compute the eigenvalues of each matrix in the dataset independently. However,
operators in the dataset often share similarities, as they describe related physical phenomena, which
can largely simplify and accelerate the eigenvalue-solving process. Existing approaches, however,
fail to leverage these similarities, leading to significant computational redundancy. Previous works
(Wang et al., 2024; Dong et al., 2024) have demonstrated the potential of leveraging similarity to

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

operator
eigenvalue
problem
generator

DATA
SET

Solver

Solver

1

2 3 4 5

6Solver

100 200 300 400 500 600
Number of Eigenvalues

101

102

103

Ti
m

e
(s

)

Slepc JD
Scipy Eigsh
Slepc LOBPCG
Slepc KS
ChFSI
SCSI (ours)

Figure 1: Left. Generation process of the eigenvalue dataset: 1. Generate a set of random problem
parameters. 2. Derive the corresponding operators based on these parameters. 3. Convert the operators
into matrices using discretization methods. 4. Independently solve for the matrix eigenvalues using
numerical solvers. 5. Obtain the matrix eigenpairs, converting them into the operator eigenpairs. 6.
Assemble the dataset. Right. Results of average computation times across various algorithms based
on the number of eigenvalues solved on the Helmholtz operator dataset.

significantly reduce generation time of linear system datasets. However, how to effectively exploit
matrix similarity to accelerate eigenvalue datasets generating remains an unknown problem.

To address this problem, we introduce a novel data generation approach, named Sorting Chebyshev
Subspace Filter (SCSF). SCSF is designed to use the eigenpairs of similar problems to reduce
redundant computations in the eigenvalue solving process, thereby accelerating eigenvalue dataset
generation. Specifically, at the beginning, SCSF employs a sorting algorithm based on truncated Fast
Fourier transform (FFT), which arranges these problems efficiently, enhancing the adjacent correlation
between problems in the queue and laying the groundwork for sequential solving. Then, SCSF
accelerates the convergence of iterations and significantly reduces computation times by constructing
a Chebyshev subspace filter, which solves the problem aided by the eigenpairs from previous problem
solving. The core design of SCSF is to identify and exploit the close spectral distributions and
invariant subspaces within these eigenvalue problems. SCSF coordinates the sequential resolution
of these systems rather than treating them as discrete entities. This improved approach not only
alleviates the computational demands of the eigenvalue algorithm but also significantly speeds up the
generation of training data for data-driven algorithms. We summarize our contributions as follows:

• To the best of our knowledge, SCSF is the first method to accelerate the operator eigenvalue
data generation.

• By using truncated FFT sorting and the Chebyshev filtered subspace iteration, we introduce
a novel approach that transforms dataset generation into sequence eigenvalue problems.

• Comprehensive experiments demonstrate that SCSF substantially reduces the computational
cost of eigenvalue dataset generation. As demonstrated in Figure 1 (right), our method
achieves up to a 3.5× speedup compared to state-of-the-art solvers.

2 PRELIMINARIES

2.1 DISCRETIZATION OF EIGENVALUE PROBLEM

Our main focus is on solving the matrix eigenvalue problem, the most time-consuming part of
eigenvalue data generation. As shown in Figure 1 (left), these problems are typically solved by
numerical discretization methods such as FDM (Strikwerda, 2004; LeVeque, 2002). These dis-
cretization techniques embed the infinite-dimensional Hilbert space of operators into an appropriate
finite-dimensional space, thereby transforming operator eigenvalue problems into matrix eigenvalue
problems. We provide a simple example to clarify the discussed processes. A detailed process can
be found in Appendix C. Specifically, we discuss the case that uses FDM to solve the eigenvalue
problem of the two-dimensional Poisson operator, transforming it into a matrix eigenvalue problem:

k(x, y)∇2u(x, y) = λu(x, y). (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

We map the problem onto a 2× 2 grid (i.e., Nx = Ny = 2 and ∆x = ∆y), where both the variable
ui,j and the coefficients ki,j follow a row-major order. This setup facilitates the derivation of the
matrix eigenvalue equation:k1,1 0 0 0

0 k1,2 0 0
0 0 k2,1 0
0 0 0 k2,2


−4 1 1 0

1 −4 0 1
1 0 −4 1
0 1 1 −4


u1,1

u1,2

u2,1

u2,2

 = λ

u1,1

u1,2

u2,1

u2,2

 . (2)

By employing various methods to generate the parameter matrices P =

[
k11 k12
k21 k22

]
. Such as

utilizing Gaussian random fields (GRF) or truncated polynomials, we can derive Poisson operators
characterized by distinct parameters.

Typically, training a neural network requires a number of data from 103 to 105 (Lu et al., 2019). Such
a multitude of eigenvalue systems, derived from the same distribution of operators, naturally exhibit
a highly similarity (Soodhalter et al., 2020). It is precisely this similarity that is key to the effective
acceleration of SCSF. We can conceptualize this as the task of solving a sequential series of matrix
eigenvalue problems:

A(i)v
(i)
j = λ

(i)
j v

(i)
j , j = 1, · · · , L; i = 1, 2, · · · , N (3)

where L is the number of eigenvalues to be solved, N is the number of eigenvalue problems, the matrix
A(i) ∈ Cn×n, the eigenvector v(i)j ∈ Cn,and the eigenvalue λ(i)

j ∈ C vary depending on the operator.

We define the eigenpairs as (Λ(i), V (i)), with Λ(i) = diag(λ(i)
1 , . . . , λ

(i)
L), V (i) = [v

(i)
1 | · · · |v(i)L], and

|λ(i)
1 | ⩽ |λ(i)

2 | · · · ⩽ |λ(i)
L |.

2.2 THE CHEBYSHEV POLYNOMIALS AND CHEBYSHEV FILTER

Chebyshev filtered subspace iteration is closely related to Chebyshev orthogonal polynomials (Mason
& Handscomb, 2002; Rivlin, 2020). Chebyshev polynomials are widely used due to their strong
approximation capabilities. The Chebyshev polynomials Cm(t) of degree m are defined on the
interval [−1, 1] and are expressed as

Cm(t) = cos(m cos−1(t)), |t| ≤ 1. (4)

Cm(t) commonly referred to as the Chebyshev polynomial of the first kind, satisfies the following
recurrence relation:

Cm+1(t) = 2tCm(t)− Cm−1(t). (5)

For a Hermitian matrix A ∈ Cn×n and vectors Y0 ∈ Cn×k, we use the three-term recurrence relation
that defines Chebyshev polynomials in vector form:

Cm+1(Y0) = 2ACm(Y0)− Cm−1(Y0), Cm(Y0) ≡ Cm(A)Y0. (6)

The computation of Cm(Y0) and the Chebyshev filter is described in Algorithm 1. Let A′ denote
the previously solved related matrix, with (λ′

i, v
′
i) in ascending order, and {λ′

2, . . . , λ
′
L} ∈ [α, β]. In

Algorithm 1, the parameter λ is typically approximated by λ′
1, while c = α+β

2 and e = β−α
2 represent

the center and half-width of the interval [α, β], providing estimates for the spectral distribution of A.

Algorithm 1: Chebyshev Filter (Berljafa et al., 2015)

Input: Matrix A ∈ Cn×n, vectors Y0 ∈ Cn×k, degree m ∈ N, and parameters λ, c, e ∈ R.
Output: Filtered vectors Ym = Cm(Y0), where each vector Ym,j is filtered with a Chebyshev

polynomial of degree m.
1 A = (A− cIn)/e, σ1 = e/(λ− c);
2 Y1 = σ1AY0;
3 for i = 1, . . . ,m− 1 do
4 σi+1 = 1/(2/σ1 − σi);
5 Yi+1,1:m−1 = Yi,1:m−1, Yi+1,m:k = 2σi+1AYi,m:k − σi+1σiYi,m:k;

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

PDE operator

SCSF

Operator generator a

b

c

Dataset

Truncated FFT
Sort

Subspace iteration

Subspace iteration

Subspace iteration

Solution 1

Solution 2

Solution N

Subspace iteration

Subspace iteration

Subspace iteration

Chebyshev Filter

Chebyshev Filter

Solution 1

Solution N

Solution 2

Chebyshev Filter

eigenvalues estimation

eigenvalues estimation

spectral
transformation

random
 initial subspace

invariant subspaces
 from previous solutions

eigenvector

eigenvector

d

d

d

e

e

d1

d2

d3

f g

Figure 2: Algorithm Flow Diagram: a. Generation of operators to be solved. b. Discretization
of operators into matrices. c. Apply SCSF algorithm to sort matrices, obtaining a sequence with
strong correlations. d. Other algorithms independently solve eigenvalue problems. d1, d2, d3. SCSF
algorithm utilizes Chebyshev subspace iterations to sequentially solve the eigenvalue problems. e.
Assembly of eigenvalue pairs into a dataset. f. Amplification of the interval of interest through spectral
transformation. g. Replacement of initial subspaces with previously solved invariant subspaces.

3 METHOD

In this section, we introduce our novel method, named the sorting Chebyshev subspace filter (SCSF),
a fast data generation approach that efficiently solves eigenvalue problems by leveraging intrinsic
spectral correlations among operators. SCSF incorporates two key components: (1) a truncated fast
Fourier transform (FFT)-based approach for efficiently sorting operator eigenvalue problems and (2)
the Chebyshev filtered subspace iteration (ChFSI) employed for sequential solving. By integrating
these components, SCSF can use spectral information from the previous eigenvalue problem solving
to aid the next eigenvalue problem solving, thus accelerating the eigenvalue data generation.

We first introduce the sorting algorithm that leverages the spectral similarities and provides the time
complexity analysis in Section 3.1 . Then we give an introduction to the Chebyshev filtered subspace
iteration in Section 3.2. Figure 2 shows the overview of our SCSF. Generally, the truncated FFT
sorting algorithm ensures that successive matrices in the sequence exhibit close relations. Then
ordered sequence enables ChFSI to effectively utilize prior information, thereby accelerating the
solution process (Berljafa et al., 2015).

3.1 THE SORTING ALGORITHM

To benefit the successive solving sequence of the eigenvalue problem, we need a sorting algorithm
that pulls matrices with similar spectral properties, like invariant subspaces, close enough in the
solving sequence, so that solving the current matrix in sequence can be easily boosted by the previous
solving. Recalling Section 2.1, eigenvalue problem, the matrix A(i), is generated from the parameter
matrix P (i) (Lu et al., 2022; Li et al., 2020). A naive strategy is to use the Frobenius distance of the
parameter matrices P (i) to perform a greedy sort (Wang et al., 2024). And by repeatedly fetching
without reservation from the remaining matrix in the dataset, we can reorganize the solving sequence
so that the successive solving can benefit from the re-ordered sequence.

However, the main computational cost of such a naive sorting algorithm arises from repeatedly
calculating the distances between different matrices P , which is directly related to the matrix
dimension—that is, the resolution of operators. Existing works (Holmes, 2012; Li et al., 2020) have
shown that the key variables that affect operators stem from the low-frequency components of the
parameter matrices P , while high-frequency components often represent noise or irrelevant data.
Based on this insight, to reduce computational overhead during sorting, we first perform a truncated
FFT on the parameter matrices to extract the low-frequency information before sorting. We then sort
by comparing the Frobenius distances between these low-frequency components.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 2: The Truncated FFT Sorting Algorithm

Input: Sequence of eigenvalue problems to be solved A(i) ∈ Cn×n, corresponding parameter
matrix P (i) ∈ Cp×p, i = 1, 2, · · · , N , p0 is the truncation threshold for low frequencies,
and P

(i)
low ∈ Cp0×p0 .

Output: Sequence for eigenvalue problems seqmat.
1 Initialize the list with sequence seq0 = {1, 2, · · · , N}, seqmat is an empty list;
2 Set i0 = 1 as the starting point. Remove 1 from seq0 and append 1 to seqmat;
3 for i = 1, · · · , N do
4 Let P (i)

low = Truncp0

(
FFT(P (i))

)
. Perform truncated FFT on matrix P (i) to extract

low-frequency information;
5 for i = 1, · · · , N − 1 and dis = 1000 do
6 for each j in seq0 do
7 disj = the Frobenius norm of the difference between P

(i0)
low and P

(j)
low;

8 if disj < dis then
9 dis = disj and jmin = j;

10 Remove jmin from seq0, append jmin to seqmat and set i0 = jmin;
11 Get the sequence for eigenvalue problems seqmat;

As shown in Algorithm 2, suppose we have N eigenvalue problems, the parameter matrices P (i) ∈
Cp×p, and the low-frequency truncated matrices P

(i)
low ∈ Cp0×p0 . The computational complexity

of directly using a greedy algorithm is O(N2p2). Our sorting algorithm’s complexity consists of
two main parts: 1. FFT Computation: The complexity of FFT is O(p2 log p) per matrix. For N
matrices, this totals O(Np2 log p). 2. Greedy Sorting: The subsequent greedy sorting algorithm has
a complexity of O(N2p20). Overall, the total complexity is O(N2p20 + Np2 log p). Since p0 ≪ p
and p ≪ N , our sorting algorithm effectively reduces computational cost.

3.2 CHEBYSHEV FILTERED SUBSPACE ITERATION

After the sorting algorithm, we obtain a sequence of eigenvalue problems that exhibit strong correla-
tions between consecutive problems. We employ the Chebyshev filtered subspace iteration (Manteuf-
fel, 1977; Saad, 2011; Winkelmann et al., 2019; Berljafa et al., 2015) that leverages the eigenpairs
(Λ(i−1), V (i−1)) of the previous problem A(i−1) to accelerate the iterative convergence of the subse-
quent problem A(i), thereby significantly enhancing computational performance. We focus on the
most common scenario in eigenvalue problems where the operator is self-adjoint; in this case, the
corresponding matrix A is Hermitian.

Algorithm 3 outlines the process of ChFSI for solving the i-th eigenvalue problem A(i) (1 < i ⩽ N)
where L eigenvalues need to be solved. The initial approximate invariant subspace V (i−1) and spectral
distribution Λ(i−1) are derived from the eigenvectors and eigenvalues of the previous problem A(i−1)

in the sequence. The parameter m denotes the polynomial degree in the filter function, e.g., m = 20.
For the first eigenvalue problem A(1) in the sequence, the initial iterative subspace Ṽ0 and initial
spectrum Λ̃0 are randomly generated.

In line 3, the Chebyshev filter is applied using the vector form of Chebyshev polynomials; details
can be found in the preliminaries Section 2.2. After the Chebyshev filtering step, the vector block Ṽ0

spanning the invariant subspace may become linearly dependent. To prevent this, orthonormalization
is performed (line 4) using QR decomposition based on Householder reflectors. Line 5 com-
putes the Rayleigh quotient of A(i) using the orthonormalized Ṽ0, projecting the eigenvalue problem
onto a subspace that approximates the desired eigenspace. In line 6, the reduced eigenvalue
problem is diagonalized, and the computed eigenvectors are projected back to the original problem.
At the end of the Rayleigh-Ritz step, relative residuals of the computed eigenvectors are calculated;
converged eigenpairs are locked, and non-converged vectors are set to be filtered again (line 7).

Assuming m is the degree of the polynomial, n is the dimension of the matrix A, and L is the number
of eigenvalues to be solved, the computational complexity per iteration comprises: 1. Chebyshev

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 3: Chebyshev Filtered Subspace Iteration

Input: Eigenvalue problem A(i), eigenpairs (Λ(i−1), V (i−1)) of the previous eigenvalue
problem A(i−1) where Λ(i−1) = diag(λ(i−1)

1 , . . . , λ
(i−1)
L),

V (i−1) = [v
(i−1)
1 | · · · |v(i−1)

L], and filter degree m.
Output: Wanted eigenpairs (Λ(i), V (i)).

1 Initialize empty arrays/matrices (Λ̃, Ṽ), and set Λ̃0 = Λ(i−1), Ṽ0 = V (i−1);
2 repeat
3 Apply Chebyshev filter: Ṽ0 = Cm(Ṽ0);
4 Perform QR orthonormalization on QR = [Ṽ |Ṽ0];
5 Compute Rayleigh quotient G = Q⊤

0 A
(i)Q;

6 Solve the reduced problem GW = W Λ̃0, and update Ṽ0 = Ṽ0W ;
7 Lock converged eigenpairs into (Λ̃, Ṽ);
8 until the number of converged eigenpairs ≥ L;
9 Return eigenpairs (Λ(i), V (i)) = (Λ̃, Ṽ) ;

filter: O(mn2L) 2. QR factorization: O(nL2) 3. Rayleigh-Ritz procedure: O(n2L + nL2 + L3)
4. Residuals check: O(n2L) . Since m ≫ 1 and n ≫ L, the Chebyshev filtering step is the most
computationally intensive.

The acceleration of the Chebyshev filtered subspace iteration heavily depends on selecting approxi-
mate invariant subspaces and eigenvalues that promote rapid convergence in subsequent iterations.
Proper sorting amplifies their impact, reducing the number of iterations required. This underscores
the critical importance of the sorting algorithm in our method.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

To comprehensively assess the performance of our approach SCSF against other algorithms, we
conducted extensive experiments, each simulating the generation of an operator eigenvalue dataset.
We primarily compared the average computation times across different numbers of eigenvalues
solved and various matrix sizes. These tests encompassed four distinct datasets and five mainstream
eigenvalue solving algorithms, with SCSF consistently delivering commendable results. The detailed
data is provided in Appendix E.1, and the related work is discussed in Appendix B.

Baseline. Our focus solves the eigenvalue problem of matrices derived from self-adjoint differential
operators, typically consisting of large Hermitian matrices. We benchmarked against the following
mainstream algorithms implemented in libraries widely used: 1. Eigsh from SciPy (implicitly restarted
Lanczos method) (Virtanen et al., 2020), 2. Locally optimal block preconditioned conjugate gradient
(LOBPCG) algorithm from SLEPc (Knyazev, 2001; Hernandez et al., 2009), 3. Krylov-Schur (KS)
algorithm from SLEPc (Stewart, 2002), 4. Jacobi-Davidson (JD) algorithm from SLEPc (Sleijpen &
Van der Vorst, 2000), 5. Chebyshev filtered subspace iteration (ChFSI) (Berljafa et al., 2015) with
random initialization. For detailed information, please refer to Appendix D.1.

Datasets. To explore the adaptability of the algorithm across different matrix types, we investigate
four distinct operator eigenvalue problems: 1. Generalized Poisson operator; 2. Second-order elliptic
partial differential operator; 3. Helmholtz operator; 4. Fourth-order vibration equation. For a
thorough description of the datasets and their generation, please refer to Appendix D.2.

All experiments focus on computing the smallest L eigenvalues in absolute value and their corre-
sponding eigenvectors. For the runtime environment, experimental parameters, and parallelism setup,
please see the Appendixes D.3, D.4, and D.6. The hyperparameter analysis experiments, runtimes for
various components of SCSF, the reliability of data generated by traditional algorithms, can be found
in Appendixex E.4, E.3, and E.5.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Dataset L Eigsh LOBPCG KS JD ChFSI SCSF (ours)

Poisson 200 14.20 73.03 23.76 270.2 24.00 12.85
2500 300 26.27 151.5 45.95 920.8 38.03 25.61
1e-12 400 36.86 265.3 72.32 2691 57.41 33.91

Ellipse 200 41.82 139.2 61.77 414.3 43.90 24.08
4900 300 62.47 264.1 110.5 1446 60.69 29.88
1e-10 400 87.19 459.7 188.7 3386 67.13 34.60

Helmholtz 200 151.7 129.9 98.34 489.6 107.1 31.31
6400 400 253.5 460.4 283.0 3829 121.5 40.52
1e-8 600 398.8 1031 329.6 - 146.2 51.32

Vibration 200 397.9 333.7 272.0 1230 300.8 85.70
10000 400 635.6 1170 768.8 - 310.5 107.2
1e-8 600 1037 2716 857.8 - 382.3 131.4

Table 1: Comparison of average computation times (in seconds) for eigenvalue problems using
various algorithms. The first row lists different algorithms, the first column details the datasets,
including matrix dimensions and solution precisions (relative residual), and the second column shows
the number of eigenvalues L computed for each matrix. The best algorithm is in bold. The symbol ’-’
denotes the result of a method that fails to converge under the given setting.

We note that all experiments use relative residual as the metric for solution precision, with its definition
provided in Appendix D.5. SCSF is a numerical algebra algorithm that allows for adjustable solution
precision as needed. It is purely an acceleration technique and does not alter the solution results at
the specified precision. The solution precision for all experiments is set to at least 1e-8, which is
significantly higher than the typical relative error range of neural networks (1e-1 to 1e-5), making it
effectively a ground truth. Therefore, the datasets generated by different numerical algorithms will
not affect the training performance of neural networks.

4.2 MAIN EXPERIMENT

3000 4000 5000 6000 7000 8000 9000 10000
Matrix Dimension

101

102

103

Ti
m

e
(s

)

Slepc JD
Scipy Eigsh
Slepc LOBPCG
Slepc KS
ChFSI
SCSI (ours)

Figure 3: Plot of average computation time ver-
sus matrix dimension for solving 400 eigenval-
ues with a precision of 1e-12 on the generalized
Poisson operator dataset.

Table 1 showcases selected experimental data.
From this table, we can infer several conclusions:
First, across all settings, our SCSF consistently has
the lowest computation cost. The most significant
improvements appeared in the Helmholtz dataset,
where SCSF demonstrated speedups of 8×, 20×,
6×, 95×, and 3.5× compared to Eigsh, LOBPCG,
KS, JD, and ChFSI algorithms, respectively. These
results confirm that SCSF effectively reduces in-
herent redundancies in sequential eigenvalue prob-
lems, substantially accelerating operator eigenvalue
dataset generation.

Moreover, as the number of eigenvalues L solved
per matrix increases, the speed advantage of SCSF
over other algorithms becomes more pronounced.
For instance, on the second-order elliptic operator
dataset, when solving for 200 eigenvalues, SCSF is
2.5 times faster than the Krylov-Schur method and 5.5 times faster at 400 eigenvalues. This efficiency
stems from SCSF inheriting approximate invariant subspaces from previous solutions, effectively
leveraging available information to expand the initial search space. Consequently, SCSF requires
minimal additional iterations as L increases, resulting in modest computation time growth.

Besides, the performance disparity across different datasets is significant. For example, on the gener-
alized Poisson operator dataset, SCSF is only about 10% faster than Eigsh, yet it leads by 4-7 times
on the Helmholtz dataset. This difference can be attributed to the numerical properties of different
operators and the matrix assembly formats, which directly influence algorithmic performance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

We also conducted additional experiments to show that the impact of the matrix dimension is also
significant. Results are shown in Figure 3, SCSF performs noticeably better as matrix dimensions
increase. Below the matrix dimension of 3600, SCSF and Eigsh show comparable efficiency. However,
beyond 5000, SCSF significantly outperforms Eigsh and other algorithms. For more details about
matrix dimension influence, we refer to the results in Appendix E.2.

This phenomenon can be explained through operator matrix approximation. A fixed operator has
invariant eigenvalues and eigenfunctions. Varying matrix dimensions correspond to embedding
the operator in different finite-dimensional linear spaces. For a fixed number of eigenvalues L,
larger matrices yield more accurate approximations of the true eigenvalues. That is, larger matrices
reduce computational noise and enhance operator similarity visibility, enabling SCSF to utilize
these similarities more effectively for superior performance. For comparisons with neural networks,
similarity impact, and edge-case performance, see Appendices E.6, E.7, and E.8.

4.3 EFFICACY OF CHEBYSHEV SUBSPACE FILTER

L Eigsh Eigsh* LOBPCG LOBPCG* KS KS* JD JD* SCSF (ours)

200 151.7 150.2 129.9 95.9 98.34 100.6 489.6 760.1 31.31
300 208.8 206.3 270.1 199.8 179.9 185.2 1803 3101 38.67
400 253.5 249.1 460.4 362.1 283.0 292.2 3829 6374 40.52
500 324.6 315.3 717.3 573.7 314.2 317.4 - - 46.70
600 398.8 394.7 1031 866.0 329.6 335.7 - - 51.32

Table 2: Impact of initial subspace modifications on average computation time (in seconds) for
different algorithms. ’*’ denotes the modified version. The first row lists algorithms, and the first
column shows the number of eigenvalues L computed. The best algorithm is in bold, and ’-’ indicates
the result of a method that fails to converge under the given setting.

To analyze the efficacy of the Chebyshev subspace filter, we conducted the following experiments.
After sorting, the initial vector or subspace for the existing algorithms was set to the eigenvectors
from the previous problem (the modified version ’*’). We compared the computational time across
different methods. All experiments were conducted on the Helmholtz operator dataset, with a matrix
dimension of 6400 and a tolerance of 1e-8. The results are shown in Table 2.

First, the computation time for SCSF in all experiments was minimal, clearly demonstrating the
efficacy of the Chebyshev subspace filter. This also highlights that the Chebyshev subspace filter is
the optimal choice for leveraging problem similarity to reduce redundancy.

Second, the impact of initial setup modifications varied across algorithms: 1. LOBPCG accelerated
significantly due to its subspace-based logic, similar to SCSF, where initialization strongly influences
convergence. 2. Eigsh and KS remained largely unaffected as they rely on initial vectors and Krylov
iteration, making problem similarity less impactful. 3. JD showed a performance decline. This is
because its performance is sensitive to the size of the initial subspace. Our modification altered the
default dimension of the initial subspace.

L
Time (s) Iteration Flops Filter Flops

w/o sort sort w/o sort sort w/o sort sort w/o sort sort

20 8.248 2.971 19.70 9.880 519.7 298.4 485.8 280.8
100 14.18 9.891 18.77 15.38 1984 1332 1798 970.1
200 18.45 12.85 36.30 33.67 4459 3944 3654 3192
300 34.59 25.61 47.50 39.18 8967 7544 6985 5702
400 42.60 33.91 47.43 45.18 12022 11182 9087 8338

Table 3: Performance comparison of SCSF with and without sorting. The first column lists the
number of eigenvalues L computed, while subsequent columns display average computation times,
average iteration counts, total Flop counts, and filter Flop counts. Experiments used the matrix
dimension of 2500 and precision 1e-12 on the generalized Poisson operator dataset.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.4 EFFICACY OF SORTING ALGORITHMS

We analyze the performance of the sorting algorithm module from two perspectives: 1. Comparing
the performance of SCSF algorithm with and without ’sorting’ as shown in Table 3. 2. Evaluating the
effectiveness of different sorting algorithms as detailed in Tables 4 and 5. We note that if the setting is
’w/o sort’, SCSF is approximately equivalent to directly using the Chebyshev subspace filter. Unlike
the ChFSI used in the main experiments, the initialization of each solve in the ’w/o sort’ SCSF is set
based on the information obtained from solving the previous problem (following the default unsorted
sequence).

Size Greedy Truncated FFT Sort (ours)
Total FFT Greedy Total

102 0.114 0.0016 0.0147 0.0163
103 7.328 0.0164 1.421 1.438
104 592.7 0.1658 150.9 151.1

Table 4: Comparison of average computa-
tion times (in seconds) for different sorting
algorithms, with the first column indicating
dataset size. Experiments used the matrix di-
mension of 6400 on the Helmholtz dataset.

Firstly, Table 3 indicates that incorporating sorting
can improve SCSF speed to 1.3 to 2.8 times, reduce
the number of iterations by 5% to 50%, and decrease
total Flops by 7% to 43%. The effect of sorting is
more pronounced with smaller numbers of solutions
L. This is because when L is large, the inherited
subspace already contains most of the necessary cor-
relation information, diminishing the impact of sort-
ing. Moreover, the Flops in the Filter component
constitute over 70% of SCSF’s computational load.
A detailed time analysis of different aspects of SCSF
can be found in Appendix E.3. Additionally, the ’w/o
sort’ SCSF achieves a computational speedup of 1.2
to 1.5 times compared to the ChFSI used in the main
experiments. The primary difference lies in their initialization strategies: ChFSI uses random initial-
ization for each solve, whereas the ’w/o sort’ SCSF leverages information from the previous problem
for initialization. This indicates that, even without sorting, there is a certain level of similarity between
problems in the dataset. Such similarity can effectively accelerate the solving process.

w/o sort Greedy Ours

Time (s) 66.66 40.52 40.52
Iteration 10.4 5.5 5.5

Table 5: Comparison of average com-
putation times and iteration counts for
different sorting algorithms using SCSF.
Experiments used the matrix dimension
of 6400 on the Helmholtz dataset, preci-
sion 1e-8, and targeting 400 eigenvalues.

Secondly, as shown in Table 4, our designed truncated FFT
sorting algorithm incurs significantly lower time cost com-
pared to the complete greedy sorting in SKR (Wang et al.,
2024), with its benefits becoming more pronounced as the
dataset size increases. In the truncated FFT sorting algo-
rithm, the FFT contributes minimally to computational
overhead but significantly reduces the time required for
subsequent greedy sorting. Table 5 shows SCSF solution
times for matrices sorted using either greedy or truncated
FFT sorting are nearly identical, highlighting its effective-
ness.

Furthermore, our experiments show that as long as the
truncated FFT is configured with reasonable parameters
(e.g., truncating at p0 = 20, where p0 is much smaller than the dimension p of the parameter matrix
P), it achieves excellent performance without the need for a large p0. For related experiments, please
refer to Appendix E.4.3.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we addressed the critical bottleneck of generating large-scale eigenvalue datasets for
training neural operators. We introduced SCSF, the first method to accelerate eigenvalue dataset
generation by exploiting operator similarity. By integrating a truncated FFT sorting algorithm
with a Chebyshev subspace filter, SCSF transforms the generation task into an efficient sequential
solving problem. Our method achieves up to a 3.5x speedup over traditional solvers, significantly
reducing computational redundancy. By lowering a key barrier to entry, SCSF provides a valuable
tool for advancing research in the AI for Science community. For future work, we identify two
primary directions. First, extending SCSF to handle nonlinear eigenvalue problems would broaden
its applicability. Second, developing more effective distance metrics for the sorting algorithm could
further improve its efficiency by better capturing operator similarity.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Khaled Akkad and David He. A dynamic mode decomposition based deep learning technique for
prognostics. Journal of Intelligent Manufacturing, 34(5):2207–2224, 2023.

Daniel J Alford-Lago, Christopher W Curtis, Alexander T Ihler, and Opal Issan. Deep learning
enhanced dynamic mode decomposition. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 32(3), 2022.

Amartya S Banerjee, Lin Lin, Wei Hu, Chao Yang, and John E Pask. Chebyshev polynomial
filtered subspace iteration in the discontinuous galerkin method for large-scale electronic structure
calculations. The Journal of chemical physics, 145(15), 2016.

Albert P Bartók, Sandip De, Carl Poelking, Noam Bernstein, James R Kermode, Gábor Csányi, and
Michele Ceriotti. Machine learning unifies the modeling of materials and molecules. Science
advances, 3(12):e1701816, 2017.

Mario Berljafa, Daniel Wortmann, and Edoardo Di Napoli. An optimized and scalable eigensolver
for sequences of eigenvalue problems. Concurrency and Computation: Practice and Experience,
27(4):905–922, 2015.

Lipman Bers, Fritz John, and Martin Schechter. Partial differential equations. American Mathematical
Soc., 1964.

L. C. Blum and J.-L. Reymond. 970 million druglike small molecules for virtual screening in the
chemical universe database GDB-13. J. Am. Chem. Soc., 131:8732, 2009.

Johannes Brandstetter, Rianne van den Berg, Max Welling, and Jayesh K Gupta. Clifford neural
layers for pde modeling. arXiv preprint arXiv:2209.04934, 2022.

Steven L Brunton, Bernd R Noack, and Petros Koumoutsakos. Machine learning for fluid mechanics.
Annual review of fluid mechanics, 52(1):477–508, 2020.

Stefan Chmiela, Alexandre Tkatchenko, Huziel E Sauceda, Igor Poltavsky, Kristof T Sch"̈utt, and
Klaus-Robert M"̈uller. Machine learning of accurate energy-conserving molecular force fields.
Science advances, 3(5):e1603015, 2017.

Zhijie Deng, Jiaxin Shi, and Jun Zhu. Neuralef: Deconstructing kernels by deep neural networks. In
International Conference on Machine Learning, pp. 4976–4992. PMLR, 2022.

Huanshuo Dong, Hong Wang, Haoyang Liu, Jian Luo, and Jie Wang. Accelerating pde data generation
via differential operator action in solution space. arXiv preprint arXiv:2402.05957, 2024.

Lawrence C Evans. Partial differential equations, volume 19. American Mathematical Society, 2022.

Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

Zhongkai Hao, Songming Liu, Yichi Zhang, Chengyang Ying, Yao Feng, Hang Su, and Jun Zhu.
Physics-informed machine learning: A survey on problems, methods and applications. arXiv
preprint arXiv:2211.08064, 2022.

Trygve Helgaker, Poul Jorgensen, and Jeppe Olsen. Molecular electronic-structure theory. John
Wiley & Sons, 2013.

V. Hernandez, J. E. Roman, A. Tomas, and V. Vidal. A survey of software for sparse eigenvalue
problems. Technical Report STR-6, Universitat Politècnica de València, 2009. Available at
https://slepc.upv.es.

Philip Holmes. Turbulence, coherent structures, dynamical systems and symmetry. Cambridge
university press, 2012.

Thomas JR Hughes. The finite element method: linear static and dynamic finite element analysis.
Courier Corporation, 2012.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tomoharu Iwata and Yoshinobu Kawahara. Neural dynamic mode decomposition for end-to-end
modeling of nonlinear dynamics. Journal of Computational Dynamics, 10(2):268–280, 2023.

Anubhav Jain, Joseph Montoya, Shyam Dwaraknath, Nils ER Zimmermann, John Dagdelen, Matthew
Horton, Patrick Huck, Donny Winston, Shreyas Cholia, Shyue Ping Ong, et al. The materials
project: Accelerating materials design through theory-driven data and tools. Handbook of Materials
Modeling: Methods: Theory and Modeling, pp. 1751–1784, 2020.

Claes Johnson. Numerical solution of partial differential equations by the finite element method.
Courier Corporation, 2012.

Scott Kirklin, James E Saal, Bryce Meredig, Alex Thompson, Jeff W Doak, Muratahan Aykol,
Stephan Rühl, and Chris Wolverton. The open quantum materials database (oqmd): assessing the
accuracy of dft formation energies. npj Computational Materials, 1(1):1–15, 2015.

Charles Kittel and Paul McEuen. Introduction to solid state physics. John Wiley & Sons, 2018.

Andrew V Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal block pre-
conditioned conjugate gradient method. SIAM journal on scientific computing, 23(2):517–541,
2001.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces. arXiv
preprint arXiv:2108.08481, 2021.

Randall J LeVeque. Finite volume methods for hyperbolic problems, volume 31. Cambridge university
press, 2002.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
arXiv preprint arXiv:2010.08895, 2020.

Ning Liu, Yue Yu, Huaiqian You, and Neeraj Tatikola. Ino: Invariant neural operators for learning
complex physical systems with momentum conservation. In International Conference on Artificial
Intelligence and Statistics, pp. 6822–6838. PMLR, 2023.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for
identifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang, and
George Em Karniadakis. A comprehensive and fair comparison of two neural operators (with
practical extensions) based on fair data. Computer Methods in Applied Mechanics and Engineering,
393:114778, 2022.

Jian Luo, Jie Wang, Hong Wang, Zijie Geng, Hanzhu Chen, Yufei Kuang, et al. Neural krylov
iteration for accelerating linear system solving. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems.

Jian Luo, Jie Wang, Hong Wang, Zijie Geng, Hanzhu Chen, Yufei Kuang, et al. Neural krylov
iteration for accelerating linear system solving. Advances in Neural Information Processing
Systems, 37:128636–128667, 2024.

Thomas A Manteuffel. The tchebychev iteration for nonsymmetric linear systems. Numerische
Mathematik, 28:307–327, 1977.

John C Mason and David C Handscomb. Chebyshev polynomials. Chapman and Hall/CRC, 2002.

Stephan Mohr, William Dawson, Michael Wagner, Damien Caliste, Takahito Nakajima, and Luigi
Genovese. Efficient computation of sparse matrix functions for large-scale electronic structure
calculations: The chess library. Journal of Chemical Theory and Computation, 13(10):4684–4698,
2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Takaaki Murata, Kai Fukami, and Koji Fukagata. Nonlinear mode decomposition with convolutional
neural networks for fluid dynamics. Journal of Fluid Mechanics, 882:A13, 2020.

David Pfau, Simon Axelrod, Halvard Sutterud, Ingrid von Glehn, and James S Spencer. Natural
quantum monte carlo computation of excited states. arXiv preprint arXiv:2308.16848, 2023.

Andreas Pieper, Moritz Kreutzer, Andreas Alvermann, Martin Galgon, Holger Fehske, Georg Hager,
Bruno Lang, and Gerhard Wellein. High-performance implementation of chebyshev filter diago-
nalization for interior eigenvalue computations. Journal of Computational Physics, 325:226–243,
2016.

Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-no: U-shaped neural
operators. arXiv preprint arXiv:2204.11127, 2022.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific Data, 1, 2014.

Theodore J Rivlin. Chebyshev polynomials. Courier Dover Publications, 2020.

Matthias Rupp, Alexandre Tkatchenko, Klaus-Robert Müller, and O Anatole Von Lilienfeld. Fast
and accurate modeling of molecular atomization energies with machine learning. Physical review
letters, 108(5):058301, 2012.

J Jon Ryu, Xiangxiang Xu, HS Erol, Yuheng Bu, Lizhong Zheng, and Gregory W Wornell. Operator
svd with neural networks via nested low-rank approximation. arXiv preprint arXiv:2402.03655,
2024.

Yousef Saad. Numerical methods for large eigenvalue problems: revised edition. SIAM, 2011.

Peter J Schmid. Dynamic mode decomposition of numerical and experimental data. Journal of fluid
mechanics, 656:5–28, 2010.

Kristof T Schütt, Farhad Arbabzadah, Stefan Chmiela, Klaus R Müller, and Alexandre Tkatchenko.
Quantum-chemical insights from deep tensor neural networks. Nature communications, 8(1):
13890, 2017.

Gerard LG Sleijpen and Henk A Van der Vorst. A jacobi–davidson iteration method for linear
eigenvalue problems. SIAM review, 42(2):267–293, 2000.

Justin S Smith, Olexandr Isayev, and Adrian E Roitberg. Ani-1: an extensible neural network
potential with dft accuracy at force field computational cost. Chemical science, 8(4):3192–3203,
2017.

Kirk M Soodhalter, Eric de Sturler, and Misha E Kilmer. A survey of subspace recycling iterative
methods. GAMM-Mitteilungen, 43(4):e202000016, 2020.

Gilbert W Stewart. A krylov–schur algorithm for large eigenproblems. SIAM Journal on Matrix
Analysis and Applications, 23(3):601–614, 2002.

John C Strikwerda. Finite difference schemes and partial differential equations. SIAM, 2004.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Hong Wang, Zhongkai Hao, Jie Wang, Zijie Geng, Zhen Wang, Bin Li, and Feng Wu. Ac-
celerating data generation for neural operators via krylov subspace recycling. arXiv preprint
arXiv:2401.09516, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Gege Wen, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, and Sally M Benson. U-
fno—an enhanced fourier neural operator-based deep-learning model for multiphase flow. Advances
in Water Resources, 163:104180, 2022.

Jan Winkelmann, Paul Springer, and Edoardo Di Napoli. Chase: Chebyshev accelerated subspace
iteration eigensolver for sequences of hermitian eigenvalue problems. ACM Transactions on
Mathematical Software (TOMS), 45(2):1–34, 2019.

Yaqiang Xue, Guoyong Jin, Hu Ding, and Mingfei Chen. Free vibration analysis of in-plane
functionally graded plates using a refined plate theory and isogeometric approach. Composite
Structures, 192:193–205, 2018.

Enrui Zhang, Adar Kahana, Eli Turkel, Rishikesh Ranade, Jay Pathak, and George Em Karniadakis.
A hybrid iterative numerical transferable solver (hints) for pdes based on deep operator network
and relaxation methods. arXiv preprint arXiv:2208.13273, 2022.

Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao
Lin, Zhao Xu, Keqiang Yan, Keir Adams, Maurice Weiler, Xiner Li, Tianfan Fu, Yucheng
Wang, Haiyang Yu, YuQing Xie, Xiang Fu, Alex Strasser, Shenglong Xu, Yi Liu, Yuanqi Du,
Alexandra Saxton, Hongyi Ling, Hannah Lawrence, Hannes Stärk, Shurui Gui, Carl Edwards,
Nicholas Gao, Adriana Ladera, Tailin Wu, Elyssa F. Hofgard, Aria Mansouri Tehrani, Rui Wang,
Ameya Daigavane, Montgomery Bohde, Jerry Kurtin, Qian Huang, Tuong Phung, Minkai Xu,
Chaitanya K. Joshi, Simon V. Mathis, Kamyar Azizzadenesheli, Ada Fang, Alán Aspuru-Guzik,
Erik Bekkers, Michael Bronstein, Marinka Zitnik, Anima Anandkumar, Stefano Ermon, Pietro
Liò, Rose Yu, Stephan Günnemann, Jure Leskovec, Heng Ji, Jimeng Sun, Regina Barzilay,
Tommi Jaakkola, Connor W. Coley, Xiaoning Qian, Xiaofeng Qian, Tess Smidt, and Shuiwang Ji.
Artificial intelligence for science in quantum, atomistic, and continuum systems. arXiv preprint
arXiv:2307.08423, 2023.

Yunkai Zhou and Yousef Saad. A chebyshev–davidson algorithm for large symmetric eigenproblems.
SIAM Journal on Matrix Analysis and Applications, 29(3):954–971, 2007.

Yunkai Zhou, Yousef Saad, Murilo L Tiago, and James R Chelikowsky. Parallel self-consistent-
field calculations via chebyshev-filtered subspace acceleration. Physical Review E—Statistical,
Nonlinear, and Soft Matter Physics, 74(6):066704, 2006a.

Yunkai Zhou, Yousef Saad, Murilo L Tiago, and James R Chelikowsky. Self-consistent-field
calculations using chebyshev-filtered subspace iteration. Journal of Computational Physics, 219
(1):172–184, 2006b.

Yunkai Zhou, James R Chelikowsky, and Yousef Saad. Chebyshev-filtered subspace iteration method
free of sparse diagonalization for solving the kohn–sham equation. Journal of Computational
Physics, 274:770–782, 2014.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A USAGE OF LLMS

Throughout the preparation of this manuscript, Large Language Models (LLMs) were utilized as a
writing and editing tool. Specifically, we employed LLMs to improve the clarity and readability of
the text, refine sentence structures, and correct grammatical errors. All final content, including the
core scientific claims, experimental design, and conclusions, was conceived and written by us, and
we take full responsibility for the final version of this paper.

B RELATED WORK

B.1 EIGENVALUE DATASETS AND NEURAL EIGENVALUE METHODS

Eigenvalue datasets are widely utilized in neural eigenvalue methods. In molecular chemistry research,
eigenvalue algorithms are commonly employed to determine critical molecular properties, such as
orbital energy levels (Kittel & McEuen, 2018). These properties form the foundation of datasets and
are obtained by solving the eigenvalue problem of the Schrödinger equation and the Hamiltonian
operator (Helgaker et al., 2013). Prominent datasets in this domain include QM7 (Blum & Reymond,
2009), QM9 (Ramakrishnan et al., 2014), ANI-1 (Smith et al., 2017), and MD17 (Chmiela et al.,
2017). In materials science, eigenvalue algorithms are often applied to solve for electronic band
structures and density of states in materials. Representative datasets in this field include the materials
project (Jain et al., 2020) and OQMD (Kirklin et al., 2015). These datasets have been extensively
used to train and validate neural eigenvalue methods (Schütt et al., 2017; Bartók et al., 2017; Rupp
et al., 2012), driving advancements in molecular property prediction and materials design. In fluid
dynamics and structural mechanics, eigenvalue algorithms are frequently utilized for modal analysis.
Recently, many data-driven modal analysis algorithms have emerged, requiring eigenvalue datasets
corresponding to differential operators for training (Murata et al., 2020; Iwata & Kawahara, 2023;
Alford-Lago et al., 2022; Brunton et al., 2020; Akkad & He, 2023). Additionally, some studies
leverage operator eigenvalue datasets to optimize algorithms. For instance, Luo et al. accelerates the
solution of linear systems by predicting the eigenfunctions of operators.

B.2 EIGENVALUE DATA GENERATION ALGORITHMS

Training data-driven algorithms require a large amount of labeled eigenvalue data. Typically, the
generation of these high-precision data is obtained by traditional algorithms. In the field of computa-
tional mathematics, solving operator eigenvalue problems often involves utilizing various discretiza-
tion methods such as finite difference methods (FDM) (Strikwerda, 2004), finite element methods
(FEM) (Hughes, 2012; Johnson, 2012). These discretization methods transform operator eigenvalue
problems into matrix eigenvalue problems, which are then solved using the corresponding matrix
algorithms. For larger matrices, the Krylov-Schur algorithm (Stewart, 2002), Jacobi-Davidson (Slei-
jpen & Van der Vorst, 2000), and locally optimal block preconditioned conjugate gradient (LOBPCG)
(Knyazev, 2001) are among the most frequently employed algorithms (Golub & Van Loan, 2013).

Nonetheless, traditional methods were not designed for dataset generation, resulting in high com-
putational costs, which have become a significant barrier to the advancement of data-driven ap-
proaches (Zhang et al., 2023; Hao et al., 2022). Recent data augmentation research (Brandstetter
et al., 2022; Liu et al., 2023) has led to the development of methods that preserve symmetries and
conservation laws, enhancing model generalization and data efficiency. Wang et al. (2024); Dong
et al. (2024) report acceleration in the process of solving linear equations, thereby speeding up the
generation of PDE datasets.

However, these improvements largely focus on neural networks or the rapid solution of linear
system-based PDEs, without discussing optimizations in the generation of eigenvalue datasets.

B.3 CHEBYSHEV FILTER TECHNIQUE

The Chebyshev filter technique originates from polynomial approximation theory, where the core
concept involves using Chebyshev polynomials to accelerate the convergence of eigenvalues (Zhou
& Saad, 2007). This technique constructs a polynomial filter that selectively amplifies spectral
components in a specified interval, thereby speeding up the solution of specific eigenvalues. This

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

technique is particularly effective in dealing with sequence eigenvalue problems (Saad, 2011; Zhou
et al., 2006a) and has been applied in various contexts, such as stability analysis in electronic
structure (Pieper et al., 2016; Banerjee et al., 2016) and quantum chemical computations (Mohr et al.,
2017; Zhou et al., 2014; 2006b).

Due to the chaotic and disordered nature of eigenvalue problems in the dataset, directly applying the
Chebyshev filter technique fails to accelerate dataset generation. To further adapt this technique to
the generation of operator eigenvalue datasets, we have developed a specialized sorting algorithm that
transforms dataset generation into sequence eigenvalue problems. Throughout the solving process,
eigenpairs obtained from previous solutions are used to construct Chebyshev filters, accelerating
subsequent solutions.

C FROM DIFFERENTIAL OPERATOR TO MATRIX EIGENVALUE PROBLEM: AN
EXAMPLE

C.1 OVERVIEW

The general methodology for solving the eigenvalue problems of differential operators numerically,
employing techniques such as Finite Difference Method (FDM), Finite Element Method (FEM), and
Spectral Method, can be delineated through the following pivotal steps (Strikwerda, 2004; Hughes,
2012; Johnson, 2012; LeVeque, 2002):

1. Mesh Generation: This step involves dividing the domain, over which the differential operator
is defined, into a discrete grid. The grid could be composed of various shapes, including squares,
triangles, or more complex forms, depending on the problem’s geometry.

2. Operator Discretization: The differential operator is transformed into its discrete counterpart.
Essentially, this maps the operator from an infinite-dimensional Hilbert space to a finite-dimensional
representation.

3. Matrix Assembly: In this phase, the discretized operator is represented in a matrix form. For linear
differential operators, this involves creating a system of matrix eigenvalue problems. For nonlinear
operators, iterative methods akin to Newton’s iteration are employed, transforming the problem into a
sequence of matrix eigenvalue problems.

4. Applying Boundary Conditions: This involves discretizing and applying boundary conditions
specific to the differential operator in question, which are then incorporated into the matrix system.

5. Solving the Matrix Eigenvalue Problem: This stage, often the most computationally intensive,
entails solving the matrix for its eigenvalues and eigenvectors, which correspond to the eigenvalues
and eigenfunctions of the original differential operator.

6. Obtaining the Numerical Solution: The final step involves mapping the obtained numerical
solutions back onto the original domain, analyzing them for accuracy and stability, and interpreting
them in the context of the initial problem.

C.2 EXAMPLE

To illustrate how the FDM can transform the wave equation into a system of matrix eigenvalue
problems, let’s consider a concrete and straightforward example. Assume we aim to solve a one-
dimensional wave equation’s operator eigenvalue problem, expressed as

−d2u

dx2
= λu,

over the interval [0, L]. The boundary conditions are u(0) = u(L) = 0, signifying fixed-end
conditions. In this context, u(x) denotes the eigenfunction, and λ represents the eigenvalue.

1. Mesh Generation: Using the central difference quotient, we divide the interval [0, L] into N + 1
evenly spaced points, including the endpoints. The distance between adjacent points is denoted as
∆x = L

N .

2. Operator Discretization: This step involves formulating the difference equation. At each inte-
rior node, which excludes the endpoints and totals N − 1 points, we apply a central difference

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

approximation for the second derivative, represented as

d2u

dx2
≈ u(xi+1)− 2u(xi) + u(xi−1)

(∆x)2

3. Matrix Assembly: In this phase, the discretized operator is represented in a matrix form. Following
the approximation, we construct the matrix A, an N − 1×N − 1 tridiagonal matrix, crucial for the
computations. The matrix A is constructed as:

A =
1

(∆x)2


−2 1 0 · · · 0
1 −2 1 · · · 0
0 1 −2 · · · 0
...

...
...

. . .
...

0 0 0 · · · −2


4. Applying Boundary Conditions: For the wave equation with boundary conditions u(0) = u(L) =
0, these fixed-end conditions are integrated into the matrix equation. In the FDM framework, the
values at the endpoints (u0 and uN) are zero, directly reflecting the boundary conditions. The impact
of these conditions is encapsulated in the matrix A, affecting the entries related to u1 and uN−1

(the grid points adjacent to the boundaries). The tridiagonal matrix A incorporates these boundary
conditions, ensuring that the computed eigenfunctions satisfy u(0) = u(L) = 0.

5. Solving the Matrix Eigenvalue Problem: The final computational step involves solving the matrix
eigenvalue problem, expressed as Au = λu. This includes determining the eigenvalues λ and
corresponding eigenvectors u, which are discrete approximations of the eigenfunctions of the original
differential equation.

6. Obtaining the Numerical Solution: By solving the eigenvalue problem, we obtain numerical
solutions that approximate the behavior of the original differential equation. These solutions reveal
the eigenvalues and eigenvectors and provide insights into the physical phenomena modeled by the
equation.

D DETAILS OF EXPERIMENTAL SETUP

D.1 BASELINE

The baseline algorithms were implemented using the following numerical computing libraries:

• Eigsh: A SciPy (v1.14.1) implementation wrapping ARPACK’s SSEUPD and DSEUPD
functions, which compute eigenvalues and eigenvectors using the Implicitly Restarted
Lanczos Method. The default parameters were used.

• Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG): Implemented in
SLEPc (v3.21.1) with default parameters.

• Krylov-Schur (KS): Implemented in SLEPc (v3.21.1) with default parameters.
• Jacobi-Davidson (JD): Implemented in SLEPc (v3.21.1). The implementation uses ’bcgsl’

as the linear equation solver, ’bjacobi’ as the preconditioner, and sets the linear equation
solving precision to 1e-5.

• ChFSI: Implemented in ChASE (v1.6) with default parameters.

D.2 DATASET

All operators in this paper use Dirichlet boundary conditions.

1. Generalized Poisson Operator

We consider two-dimensional generalized Poisson operators, which can be described by the following
equation (Li et al., 2020; Rahman et al., 2022; Kovachki et al., 2021; Lu et al., 2022):

−∇ · (K(x, y)∇h(x, y)) = λh(x, y),

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

In our experiment, K(x, y) is derived using the Gaussian Random Field (GRF) method. We convert
these operators into matrices using the central difference scheme of FDM. The parameters inherent to
the GRF serve as the foundation for our sort scheme.

2. Second-Order Elliptic Partial Differential Operator

We consider general two-dimensional second-order elliptic partial differential operators, which are
frequently described by the following generic form (Evans, 2022; Bers et al., 1964):

Lu ≡ a11uxx + a12uxy + a22uyy + a1ux + a2uy + a0u = λu,

where a0, a1, a2, a11, a12, a22 are constants, and f represents the source term, depending on x, y.
The variables u, ux, uy are the dependent variables and their partial derivatives. The equation is
classified as elliptic if 4a11a22 > a212.

In our experiments, a11, a22, a1, a2, a0 are uniformly sampled within the range (−1, 1), while the
coupling term a12 is sampled within (−0.01, 0.01). We then select equations that satisfy the elliptic
condition to form our dataset. We convert these operators into matrices using the central difference
scheme of FDM. The coefficients a0, a1, a2, a11, a12, a22 serve as the foundation for our sort scheme.

3. Helmholtz Operator

We consider two-dimensional Helmholtz operators, which can be described by the following equa-
tion (Zhang et al., 2022):

∇ · (p(x, y)∇u(x, y)) + k2(x, y) = λu(x, y),

Physical Contexts in which the Helmholtz operator appears: 1. Acoustics; 2. Electromagnetism; 3.
Quantum Mechanics.

In Helmholtz operators, k is the wavenumber, related to the frequency of the wave and the properties
of the medium in which the wave is propagating. In our experiment, p(x, y) and k(x, y) are derived
using the GRF method. The parameters inherent to the GRF serve as the foundation for our sort
scheme.

4. Vibration Equation

We consider the vibration equation for thin plates, which can be described by the following eigenvalue
problem (Xue et al., 2018):

∇2
(
D(x, y)∇2u(x, y)

)
= λρ(x, y)u(x, y),

Physical contexts in which the vibration equation appears: 1. Structural dynamics of thin plates; 2.
Modal analysis in mechanical engineering; 3. Vibrational behavior of elastic materials.

In this equation, D(x, y) represents the flexural rigidity of the plate, ρ(x, y) is the density distribution,
and λ corresponds to the eigenvalue, which is related to the natural frequencies of the system. The
eigenfunction u(x, y) describes the mode shapes of vibration.

In our experiment, D(x, y) and ρ(x, y) are derived using the GRF method. The parameters inherent
to the GRF serve as the foundation for our sorting scheme.

D.3 ENVIRONMENT

To ensure consistency in our evaluations, all comparative experiments were conducted under uniform
computing environments. Specifically, the environments used are detailed as follows:

• Platform: Docker version 4.33.1 (windows 11)
• Operating System: Ubuntu 22.04.3 LTS
• Processor: CPU AMD Ryzen 9 8945HS w, clocked at 4.00 GHz

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D.4 EXPERIMENTAL PARAMETER CONFIGURATION

All baseline methods were implemented using their default parameters from respective libraries.

For SCSF, the following configurations were adopted:

• The size of the inherited subspace varies according to the number of eigenvalues to be
computed. Specifically, when calculating 20, 100, 200, 300, and 400 eigenvalues, the
corresponding subspace sizes are set to 4, 20, 40, 60, and 80, respectively.

• The filter degree parameter m is consistently set to 20 across all experiments.
• Truncation threshold for low frequencies p0 is consistently set to 20 across all experiments.
• Each experiment generates a dataset consisting of 1,000 samples. In this paper, the Experi-

mental tables report the average solving time for each eigenvalue problem.

D.5 ERROR METRICS

• Relative Residual Error:
To estimate the bias of the eigenpair (ṽ, λ̃) predictions, we employ relative residual error as
follows:

Relative Residual Error =
||Lṽ − λ̃ṽ||2

||Lṽ||2
.

Here, ṽ represents the eigenfunction predicted by the model, and λ̃ denotes the eigenvalue
predicted by the model. When λ̃ is the true eigenvalue and ṽ is the true eigenfunction, the
Relative Residual Error equals 0.

D.6 RELATIONSHIP WITH PARALLELIZATION AND EXPERIMENTAL SETTING

The SCSF framework is designed to be complementary to parallel computing architectures; the
relationship is both orthogonal and synergistic. Fundamentally, SCSF accelerates the serial processing
of a sequence of related eigenvalue problems. In a practical, large-scale setting, a total dataset of
N problems can be partitioned into M independent chunks. Subsequently, M instances of the
SCSF algorithm can be executed in parallel across M computing units, with each computing unit
responsible for solving one chunk.

To ensure a fair and direct comparison of algorithmic efficiency under practical, parallelized condi-
tions, all experiments reported in this paper were conducted using the Message Passing Interface
(MPI) with 8 cores in parallel.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E EXPERIMENTAL DATA AND SUPPLEMENTARY EXPERIMENTS

E.1 MAIN EXPERIMENTAL DATA

As shown in Tables 7, 6, 9, SCSF showed the best performance among all tested configurations

L Eigsh LOBPCG KS JD ChFSI SCSF (ours)
150 9.15 46.8 14.9 138 17.3 7.95
200 14.2 73.0 23.8 270 24.0 12.9
250 19.8 109 34.3 553 30.2 19.0
300 26.3 152 45.6 921 38.0 25.7
350 31.5 203 58.4 1732 45.8 29.8
400 36.9 265 72.3 2691 57.4 33.9
450 42.8 342 87.3 3708 74.2 38.3

Table 6: Comparison of average computation times (in seconds) for eigenvalue problems using
various algorithms on the generalized Poisson operator dataset. The first row lists different algorithms,
and the first column shows the number of eigenvalues L computed for each matrix. Matrix dimension
= 2500, precision = 1e-12.

L Eigsh LOBPCG KS JD ChFSI SCSF (ours)
150 31.35 91.80 40.65 214.80 38.37 19.62
200 41.82 139.20 61.77 414.30 43.90 24.08
250 52.17 197.04 84.65 861.44 53.42 28.00
300 62.47 264.10 110.50 1446.00 60.69 29.88
350 74.59 355.18 147.01 2324.88 64.94 31.52
400 87.19 459.70 188.70 3386.00 67.13 34.60
450 100.28 577.67 235.56 4629.38 76.32 40.05

Table 7: Comparison of average computation times (in seconds) for eigenvalue problems using various
algorithms on the second-order elliptic operator dataset. The first row lists different algorithms, and
the first column shows the number of eigenvalues L computed for each matrix. Matrix dimension =
4900, precision = 1e-10.

L Eigsh LOBPCG KS JD ChFSI SCSF (ours)
200 151.70 129.90 98.34 489.60 107.12 31.31
300 190.84 273.08 192.88 1601.08 113.73 37.78
400 253.50 460.40 283.00 3829.00 121.53 40.52
500 344.60 720.33 310.21 - 135.73 47.41
600 398.80 1031.00 329.60 - 146.24 51.32

Table 8: Comparison of average computation times (in seconds) for eigenvalue problems using
various algorithms on the Helmholtz operator dataset. The first row lists different algorithms, and the
first column shows the number of eigenvalues L computed for each matrix. Matrix dimension = 6400,
precision = 1e-8. The symbol ’-’ denotes data not recorded due to excessive computation times.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

L Eigsh LOBPCG KS JD ChFSI SCSF (ours)
200 397.9 333.7 272.0 1230 300.8 85.70
300 516.8 750.0 520.0 3600 305.0 96.50
400 635.6 1170 768.8 - 310.5 107.2
500 820.0 1950 810.0 - 350.0 120.0
600 1037 2716 857.8 - 382.3 131.4

Table 9: Comparison of average computation times (in seconds) for eigenvalue problems using
various algorithms on the Vibration operator dataset. The first row lists different algorithms, and
the first column shows the number of eigenvalues L computed for each matrix. Matrix dimension
= 10000, precision = 1e-8. The symbol ’-’ denotes data not recorded due to excessive computation
times.

E.2 ANALYSIS OF THE INFLUENCE OF MATRIX DIMENSION

Matrix Dimension Eigsh LOBPCG KS JD ChFSI SCSF (ours)
2500 36.86 265.30 72.32 2691.00 57.41 33.91
3600 66.41 387.20 116.50 2990.00 102.4 65.41
4225 89.13 467.74 151.36 3548.13 126.2 70.79
4900 121.90 546.20 187.80 3886.00 153.5 74.23
5625 186.21 691.83 251.19 - 216.8 85.11
6400 282.80 860.00 337.70 - 282.2 93.86
8100 707.95 1412.54 707.95 - 435.1 114.82
10000 3162.28 2511.89 1995.26 - 590.3 158.49

Table 10: Comparison of different algorithms’ computation time (in seconds) for varying matrix
dimensions using the generalized Poisson operator dataset. Results show average computation times
for solving 400 eigenvalues with a precision of 1e-12.

As demonstrated in Table 10, the impact of matrix dimension on algorithm performance reveals several
key insights. For matrices below dimension 3600, SCSF and Eigsh show comparable efficiency.
However, SCSF’s advantages become increasingly pronounced as matrix dimensions grow larger.
At dimension 10000, SCSF achieves remarkable speedups: 20× faster than Eigsh, 16× faster than
LOBPCG, 13× faster than KS, and 3.7× faster than ChFSI. This phenomenon can be attributed to
how larger matrix dimensions result in fewer errors and noise in the computed eigenvalues, allowing
SCSF to better exploit similarities between problems. Additionally, the JD algorithm becomes
computationally intractable at and above dimension 5625, while SCSF maintains stable performance
even at high dimensions.

E.3 ANALYSIS OF COMPUTATIONAL TIMES FOR SCSF COMPONENTS

All Filter (line 3) QR (line 4) RR (line 5) Resid (line 6) Sort
9.89e+0 7.41e+0 3.12e-1 9.76e-1 7.95e-1 1.51e-2

Table 11: Analysis of Computational Times (in seconds) for SCSF Components.

We conducted a statistical analysis of the average time consumption for each component of the SCSF
algorithm on the generalized Poisson operator dataset, with a matrix dimension of 2500 and the
number of eigenvalues to be solved set to 100. The results are presented in Table 11. The notation
"line x" within parentheses corresponds to line x in Algorithm 3, "ALL" denotes the total time
consumption, and "sort" represents the average time required by the sorting algorithm. It is evident

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

that the filtering process accounts for over 70% of the total time consumption, which aligns with our
theoretical analysis in Section 3.2.

E.4 ANALYSIS OF HYPERPARAMETERS

E.4.1 DEGREE PARAMETER

Deg 12 16 20 24 28 32 36 40
Time (s) 43.92 39.79 40.52 40.64 40.85 41.13 41.19 43.50

Table 12: Average Computational Times (in seconds) of SCSF under Different Degree Parameters m.

We investigated the impact of different degree parameters m on the performance of SCSF. As shown in
Table 12, the experiments were conducted on the Helmholtz operator dataset with a matrix dimension
of 6400, a solution accuracy of 1e-8, 400 eigenvalues to be solved, and an inherited subspace size
of 80. The degree parameter m, as described in Algorithm 3, primarily controls the order of the
Chebyshev polynomial. The results indicate that varying m within the range of 12 to 40 has a minimal
effect on the computation time of SCSF. Therefore, as long as m is chosen within a reasonable range,
its specific value does not significantly influence the performance. In the main experiments of this
paper, m is fixed at 20.

E.4.2 SUBSPACE DIMENSION

Dim 50 60 70 80 90 100 110 120
Time (s) 43.28 44.35 42.43 40.52 39.65 37.43 38.28 38.58

Table 13: Average Computational Times (in seconds) of SCSF under Different Subspace Dimension.

We examine the influence of different inherited subspace sizes on the performance of SCSF. As
presented in Table 13, the experiments are conducted on the Helmholtz operator dataset with a matrix
dimension of 6400, a solution accuracy of 1e-8, 400 eigenvalues to be computed, and a degree
parameter m set to 20.

The results demonstrate that as the inherited subspace size increases, the computation time of SCSF
initially decreases and then rises, reaching its minimum around a size of 100. The reduction in
computation time at the front end is attributed to the enriched initial subspace with more available
information as the inherited subspace grows. Conversely, the increase in computation time at the
back end is due to the significantly higher overhead of performing Chebyshev filtering with a larger
inherited subspace.

Overall, as long as the inherited subspace size is set within a reasonable range, its impact on SCSF
remains minimal. In our experiments, we consistently set the inherited subspace size to 20% of the
number of eigenvalues to be computed.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

E.4.3 TRUNCATION THRESHOLD FOR LOW FREQUENCIES

No sort p0 = 10 p0 = 20 p0 = 30 p0 = 40 Greedy
One-sided distance 0.95 0.89 0.85 0.85 0.85 0.85
Sort time (s) 0 110 151 193 246 593
Average solve time (s) 66.7 52.2 40.5 40.5 40.5 40.5

Table 14: Average Computational Times (in seconds) of SCSF under Different Truncation Thresholds.

We measure the similarity between matrices by computing the cosine of the principal angles between
their 10-dimensional invariant subspaces (spanned by the smallest 10 eigenvectors in modulus) (one-
sided distance). Smaller values indicate higher similarity. As presented in Table 14, the experiments
are conducted on the Helmholtz operator dataset with a matrix, a solution accuracy of 1e-8, 400
eigenvalues to be computed, and a degree parameter m set to 20, 10k data problems, parameter matrix
P with dimension p = 80, and varying truncation frequencies p0

The results demonstrate that sorting significantly increases inter-problem correlation in the dataset
(explaining the performance gain). The truncation parameter p0 affects sorting time, sorting quality,
and solver time. For p0 ≥ 20, solver time becomes stable, showing diminishing returns. This reflects
the interplay between sorting and Chebyshev iteration. In the main experiments of this paper, p0 is
fixed at 20.

E.5 RELIABILITY OF GENERATED DATA AS GROUND TRUTH

A key concern was whether the data generated by our method, which relies on numerical solvers, is a
reliable "ground truth" for training neural networks. To address this, we trained a NeurKItt (Luo et al.,
2024) model on generalized Poisson datasets generated by various solvers (including our SCSF) at
different matrix dimensions. The precision for all solvers was set to a high tolerance of 10−12.

Generation Method Matrix Dimension Generation Time NeurKItt Principal Angle Loss

Eigsh 2500 / 6400 / 10000 10h / 80h / 800h 0.06 / 0.06 / 0.06
LOBPCG 2500 / 6400 / 10000 70h / 240h / 700h 0.06 / 0.06 / 0.06
ChFSI 2500 / 6400 / 10000 16h / 44h / 160h 0.06 / 0.06 / 0.06
SCSF (ours) 2500 / 6400 / 10000 9h / 26h / 45h 0.06 / 0.06 / 0.06

Table 15: Impact of data generation method on the performance of a trained NeurKItt model. The
consistent final loss indicates that data from all tested solvers serves as a reliable ground truth.

E.6 COMPARISON WITH SUPERVISED AND UNSUPERVISED NEURAL NETWORK METHODS

To clarify the significance of accelerating dataset generation for the dominant supervised learning
paradigm, we conducted an experiment comparing the performance and resource trade-offs of
different categories of eigensolvers. We evaluated our method (SCSF), a traditional solver (Eigsh),
a supervised neural network (NeurKItt (Luo et al., 2024)), and two state-of-the-art unsupervised
neural networks (NeuralEF (Deng et al., 2022) and NeuralSVD Ryu et al. (2024)) on a 2D Helmholtz
problem (solving for the smallest 100 eigenvalues, matrix dimension 6400).

The results, presented in Table 16, highlight the distinct characteristics of each approach. Unsu-
pervised methods obviate the need for pre-generated datasets but require substantial "solving time"
for each new operator, as they essentially perform an optimization from scratch. In contrast, super-
vised methods offer near-instantaneous inference but demand significant upfront investment in both
data generation and model training. Our method, SCSF, dramatically reduces the data generation
bottleneck for these powerful supervised models.

As shown in Table 15, the final performance of the trained NeurKItt model (measured by Principal
Angle Loss) was identical regardless of which high-precision solver was used for data generation or

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Category Algorithm Solving Time Training Time Dataset Gen. Time Relative Residual

Our Method SCSF (random init) 1 min - - 10−8

Traditional Eigsh 1 min - - 10−8

Supervised NN NeurKItt 0.1s 3h 20h 10−2

Unsupervised NN NeuralEF 2h - - 10−2

Unsupervised NN NeuralSVD 3h - - 10−2

Table 16: Comparison of different eigensolver paradigms on a 2D Helmholtz problem. "Solving
Time" for unsupervised methods refers to the entire optimization process required to find the solution
for a single operator instance.

the specific matrix dimension (for dimensions ≥ 2500). This demonstrates that the discretization
and solver errors are orders of magnitude smaller than the neural network’s approximation error,
confirming that the generated data serves as a highly reliable ground truth for training purposes.

E.7 PERFORMANCE BOUNDS AND THE IMPACT OF DATASET SIMILARITY

To provide theoretical insight into SCSF’s performance bounds, we conducted an experiment to
quantify the relationship between dataset similarity and acceleration. We generated a sequence
of Helmholtz operator problems where each subsequent problem is a slight perturbation of the
previous one. The magnitude of this perturbation reflects the dataset’s internal similarity. A smaller
perturbation size indicates higher similarity. The experiment was run on the Helmholtz dataset
(dimension 6400, L = 200 eigenvalues).

Perturbation Size Eigsh LOBPCG ChFSI SCSF (w/o sort) SCSF

50% 151 130 107 76 27
10% 150 129 107 48 23
1% 152 130 107 14 6
0% (Identical) 151 130 107 2 2

Standard Generation 152 130 107 82 31
Independent Problems 152 130 107 107 107

Table 17: Average solution time (seconds) as a function of dataset similarity (perturbation size).
Lower perturbation implies higher similarity. The experiment was run on the Helmholtz dataset
(dim = 6400, L = 200).

The results in Table 17 show that SCSF’s performance is strongly correlated with dataset similarity. As
problems become more similar (perturbation size decreases), the speedup increases dramatically. The
experiment also highlights the effectiveness of our sorting algorithm; SCSF consistently outperforms
SCSF without sorting (‘SCSF w/o sort‘) across various similarity levels. In the theoretical limit of
identical problems (0% perturbation), the solution is found in just a few iterations. Conversely, for
completely independent problems, SCSF’s performance gracefully degrades to that of ChFSI, as
expected.

E.8 ANALYSIS OF FAILURE CASES: DISCONTINUOUS DATASETS

The core assumption of SCSF is that the dataset is generated from a process with underlying continuity,
allowing our sorting algorithm to group similar problems effectively. To investigate the behavior
of SCSF when this assumption is violated, we simulated an extreme failure case by creating a
discontinuous dataset. We mixed problems from the Helmholtz and Poisson datasets (1:1 ratio,
dimension 6400, L = 200 eigenvalues) and solved them sequentially.

Table 18 presents the results. As expected, the performance gain of SCSF is reduced in this discontin-
uous scenario because the inter-problem correlation is disrupted, diminishing the effectiveness of the
sorting module. However, even in this challenging case, SCSF still provides a notable speedup over
baseline solvers, demonstrating a degree of robustness. The performance of ‘SCSF‘ approaches that
of ‘SCSF (w/o sort)‘, confirming that the sorting component’s benefit is tied to dataset continuity.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Metric Eigsh LOBPCG ChFSI SCSF (w/o sort) SCSF

Time (s) 154 280 132 118 98

Table 18: Performance on a discontinuous dataset created by mixing Helmholtz and Poisson problems.
All times are in seconds.

E.9 COST-BENEFIT ANALYSIS OF THE SORTING ALGORITHM

To address the trade-off between the cost of sorting and its benefits, we analyzed its computational
overhead. Our analysis shows that the cost of the Truncated FFT Sort is negligible in the context of
large-scale dataset generation. For example, as shown in Table 4 of the main paper, sorting a dataset
of 104 samples takes approximately 151 seconds. In contrast, solving a single eigenvalue problem
from the Helmholtz dataset can take over 250 seconds with a standard solver like Eigsh. For a full
dataset of this size, the sorting overhead constitutes less than 0.1% of the total generation time.

The benefit, however, is substantial. As shown in Table 3, sorting reduces the number of solver
iterations by 5-50% and total floating-point operations (Flops) by 7-43%. Furthermore, our Truncated
FFT Sort is significantly more cost-effective than a naive greedy sort, achieving nearly identical
final solver performance at a fraction of the computational cost (see Tables 4 and 5). Given this
highly favorable cost-benefit ratio, the sorting step is a crucial and efficient component of the SCSF
framework.

24

	Introduction
	Preliminaries
	Discretization of Eigenvalue Problem
	The Chebyshev Polynomials and Chebyshev Filter

	Method
	The Sorting Algorithm
	Chebyshev Filtered Subspace Iteration

	Experiment
	Experimental Settings
	Main Experiment
	Efficacy of Chebyshev Subspace Filter
	Efficacy of Sorting Algorithms

	Conclusions and Future Work
	Usage of LLMs
	Related work
	Eigenvalue Datasets and Neural Eigenvalue Methods
	Eigenvalue Data Generation Algorithms
	Chebyshev Filter Technique

	From Differential Operator to Matrix Eigenvalue Problem: An Example
	Overview
	Example

	Details of Experimental Setup
	Baseline
	Dataset
	Environment
	Experimental Parameter Configuration
	Error Metrics
	Relationship with Parallelization and Experimental Setting

	Experimental Data and Supplementary Experiments
	Main Experimental Data
	Analysis of the Influence of Matrix Dimension
	Analysis of Computational Times for SCSF Components
	Analysis of Hyperparameters
	Degree Parameter
	Subspace Dimension
	Truncation Threshold for Low Frequencies

	Reliability of Generated Data as Ground Truth
	Comparison with Supervised and Unsupervised Neural Network Methods
	Performance Bounds and the Impact of Dataset Similarity
	Analysis of Failure Cases: Discontinuous Datasets
	Cost-Benefit Analysis of the Sorting Algorithm

