

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ACCELERATING EIGENVALUE DATASET GENERATION VIA CHEBYSHEV SUBSPACE FILTER

Anonymous authors

Paper under double-blind review

ABSTRACT

Eigenvalue problems are among the most important topics in many scientific disciplines. With the recent surge and development of machine learning, neural eigenvalue methods have attracted significant attention as a forward pass of inference requires only a tiny fraction of the computation time compared to traditional solvers. However, a key limitation is the requirement for large amounts of labeled data in training, including operators and their eigenvalues. To tackle this limitation, we propose a novel method, named **Sorting Chebyshev Subspace Filter (SCSF)**, which significantly accelerates eigenvalue data generation by leveraging similarities between operators—a factor overlooked by existing methods. Specifically, SCSF employs truncated fast Fourier transform sorting to group operators with similar eigenvalue distributions and constructs a Chebyshev subspace filter that leverages eigenpairs from previously solved problems to assist in solving subsequent ones, reducing redundant computations. To the best of our knowledge, SCSF is the first method to accelerate eigenvalue data generation. Experimental results show that SCSF achieves up to a $3.5 \times$ speedup compared to various numerical solvers.

1 INTRODUCTION

Solving eigenvalue problems is an important challenge in fields such as quantum physics (Pfau et al., 2023), fluid dynamics (Schmid, 2010), and structural mechanics (Wen et al., 2022). Traditional numerical solvers, such as the Krylov-Schur algorithm (Stewart, 2002), often suffer from prohibitively high computational costs when tackling complex problems. To overcome these computational challenges, recent advancements in deep learning (Schütt et al., 2017; Li et al., 2020; Luo et al.) have demonstrated remarkable success as one forward pass only necessitates a tiny fraction of the computation time compared to numerical solvers, often in milliseconds.

Despite their success, data-driven approaches face a fundamental limitation: the reliance on labeled datasets. Training neural networks requires large-scale labeled data, which is often generated using computationally expensive traditional methods. It usually takes dozens of hours or even days. For example, the QM9 dataset (Ramakrishnan et al., 2014) contains 1.34×10^5 molecular data points, each produced by solving Hamiltonian operator eigenvalue problems. These calculations typically employ traditional algorithms, whose computational costs can escalate dramatically with increasing problem complexity, like finer grid resolutions or higher accuracy requirements. This scalability issue represents a significant bottleneck for generating the labeled data needed to train deep learning models. Furthermore, the diversity of scientific problems leads to the need for a unique dataset for each scenario, which further intensifies this challenge of computational intractability. As a result, the high computational expense of generating eigenvalue data severely limits the application of data-driven approaches (Zhang et al., 2023).

In particular, the dataset generation process typically involves six key steps, as illustrated in Figure 1 (left). Among these steps, solving the eigenvalue problem is the most computationally demanding (step 4), accounting for 95% of the total processing cost (Hughes, 2012). Existing data generation methods typically compute the eigenvalues of each matrix in the dataset independently. However, operators in the dataset often share similarities, as they describe related physical phenomena, which can largely simplify and accelerate the eigenvalue-solving process. Existing approaches, however, fail to leverage these similarities, leading to significant computational redundancy. Previous works (Wang et al., 2024; Dong et al., 2024) have demonstrated the potential of leveraging similarity to

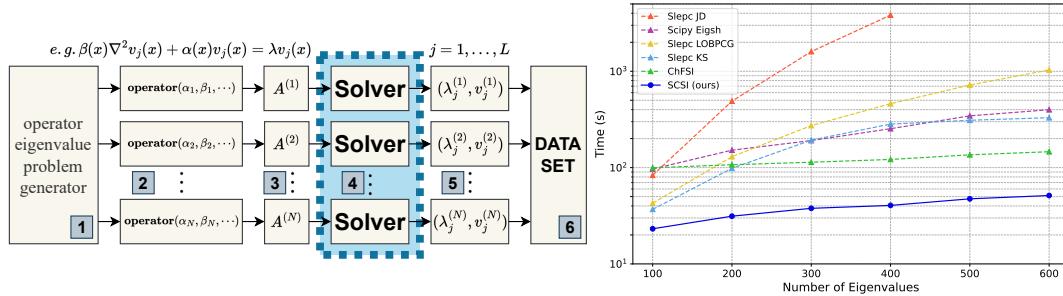


Figure 1: **Left.** Generation process of the eigenvalue dataset: 1. Generate a set of random problem parameters. 2. Derive the corresponding operators based on these parameters. 3. Convert the operators into matrices using discretization methods. 4. Independently solve for the matrix eigenvalues using numerical solvers. 5. Obtain the matrix eigenpairs, converting them into the operator eigenpairs. 6. Assemble the dataset. **Right.** Results of average computation times across various algorithms based on the number of eigenvalues solved on the Helmholtz operator dataset.

significantly reduce generation time of linear system datasets. However, how to effectively exploit matrix similarity to accelerate eigenvalue datasets generating remains an unknown problem.

To address this problem, we introduce a novel data generation approach, named **Sorting Chebyshev Subspace Filter (SCSF)**. SCSF is designed to use the eigenpairs of similar problems to reduce redundant computations in the eigenvalue solving process, thereby accelerating eigenvalue dataset generation. Specifically, at the beginning, SCSF employs a sorting algorithm based on truncated Fast Fourier transform (FFT), which arranges these problems efficiently, enhancing the adjacent correlation between problems in the queue and laying the groundwork for sequential solving. Then, SCSF accelerates the convergence of iterations and significantly reduces computation times by constructing a Chebyshev subspace filter, which solves the problem aided by the eigenpairs from previous problem solving. The core design of SCSF is to identify and exploit the close spectral distributions and invariant subspaces within these eigenvalue problems. SCSF coordinates the sequential resolution of these systems rather than treating them as discrete entities. This improved approach not only alleviates the computational demands of the eigenvalue algorithm but also significantly speeds up the generation of training data for data-driven algorithms. We summarize our contributions as follows:

- To the best of our knowledge, SCSF is the first method to accelerate operator eigenvalue dataset generation by exploiting intrinsic operator similarity through a novel sorting and filtering framework.
- By using truncated FFT sorting and the Chebyshev filtered subspace iteration, we introduce a novel approach that transforms dataset generation into sequence eigenvalue problems.
- Comprehensive experiments demonstrate that SCSF substantially reduces the computational cost of eigenvalue dataset generation. As demonstrated in Figure 1 (right), our method achieves up to a $3.5 \times$ speedup compared to state-of-the-art solvers.

2 PRELIMINARIES

2.1 DISCRETIZATION OF EIGENVALUE PROBLEM

This section outlines the discretization of operator eigenvalue problems into matrix form. Our method focuses on solving these matrix problems, which is the most time-consuming step in generating the required eigenvalue datasets. As shown in Figure 1 (left), these problems are typically solved by numerical discretization methods such as FDM (Strikwerda, 2004; LeVeque, 2002). These discretization techniques embed the infinite-dimensional Hilbert space of operators into an appropriate finite-dimensional space, thereby transforming operator eigenvalue problems into matrix eigenvalue problems. We provide a simple example to clarify the discussed processes. A detailed process can be found in Appendix C. Specifically, we discuss the case that uses FDM to solve the eigenvalue problem of the two-dimensional Poisson operator, transforming it into a matrix eigenvalue problem:

$$k(x, y) \nabla^2 u(x, y) = \lambda u(x, y). \quad (1)$$

108 We map the problem onto a 2×2 grid (i.e., $N_x = N_y = 2$ and $\Delta x = \Delta y$), where both the variable
 109 $u_{i,j}$ and the coefficients $k_{i,j}$ follow a row-major order. This setup facilitates the derivation of the
 110 matrix eigenvalue equation:

$$\begin{bmatrix} k_{1,1} & 0 & 0 & 0 \\ 0 & k_{1,2} & 0 & 0 \\ 0 & 0 & k_{2,1} & 0 \\ 0 & 0 & 0 & k_{2,2} \end{bmatrix} \begin{bmatrix} -4 & 1 & 1 & 0 \\ 1 & -4 & 0 & 1 \\ 1 & 0 & -4 & 1 \\ 0 & 1 & 1 & -4 \end{bmatrix} \begin{bmatrix} u_{1,1} \\ u_{1,2} \\ u_{2,1} \\ u_{2,2} \end{bmatrix} = \lambda \begin{bmatrix} u_{1,1} \\ u_{1,2} \\ u_{2,1} \\ u_{2,2} \end{bmatrix}. \quad (2)$$

111 By employing various methods to generate the parameter matrices $P = \begin{bmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{bmatrix}$. Such as
 112 utilizing Gaussian random fields (GRF) or truncated polynomials, we can derive Poisson operators
 113 characterized by distinct parameters.

114 Typically, training a neural network requires a number of data from 10^3 to 10^5 (Lu et al., 2019). Such
 115 a multitude of eigenvalue systems, derived from the same distribution of operators, naturally **exhibit**
 116 **a high similarity** (Soodhalter et al., 2020). It is precisely this similarity that is key to the effective
 117 acceleration of SCSF. We can conceptualize this as the task of solving a sequential series of matrix
 118 eigenvalue problems:

$$119 \quad A^{(i)} v_j^{(i)} = \lambda_j^{(i)} v_j^{(i)}, \quad j = 1, \dots, L; \quad i = 1, 2, \dots, N \quad (3)$$

120 where L is the number of eigenvalues to be solved, N is the number of eigenvalue problems, the matrix
 121 $A^{(i)} \in \mathbb{C}^{n \times n}$, the eigenvector $v_j^{(i)} \in \mathbb{C}^n$, and the eigenvalue $\lambda_j^{(i)} \in \mathbb{C}$ vary depending on the operator.
 122 We define the eigenpairs as $(\Lambda^{(i)}, V^{(i)})$, with $\Lambda^{(i)} = \text{diag}(\lambda_1^{(i)}, \dots, \lambda_L^{(i)})$, $V^{(i)} = [v_1^{(i)} | \dots | v_L^{(i)}]$, and
 123 $|\lambda_1^{(i)}| \leq |\lambda_2^{(i)}| \leq \dots \leq |\lambda_L^{(i)}|$.

131 2.2 THE CHEBYSHEV POLYNOMIALS AND CHEBYSHEV FILTER

132 This section details the Chebyshev filter, which is constructed using Chebyshev polynomials. Distinguishing by their optimal uniform approximation properties and efficient three-term recurrence
 133 relations, these are among the most widely utilized orthogonal polynomials (Mason & Handscomb,
 134 2002; Rivlin, 2020). This filtering technique is particularly effective for our method because it can
 135 efficiently construct a polynomial that isolates a target spectral interval, allowing us to use the solution
 136 of one eigenvalue problem to significantly accelerate the next.

137 The Chebyshev polynomials $C_m(t)$ of degree m are defined on $[-1, 1]$ and are expressed as

$$138 \quad C_m(t) = \cos(m \cos^{-1}(t)), \quad |t| \leq 1. \quad (4)$$

139 $C_m(t)$ commonly referred to as the Chebyshev polynomial of the first kind, satisfies the following
 140 recurrence relation:

$$141 \quad C_{m+1}(t) = 2tC_m(t) - C_{m-1}(t). \quad (5)$$

142 For a Hermitian matrix $A \in \mathbb{C}^{n \times n}$ and vectors $Y_0 \in \mathbb{C}^{n \times k}$, we use the three-term recurrence relation
 143 that defines Chebyshev polynomials in vector form:

$$144 \quad C_{m+1}(Y_0) = 2AC_m(Y_0) - C_{m-1}(Y_0), \quad C_m(Y_0) \equiv C_m(A)Y_0. \quad (6)$$

145 The computation of $C_m(Y_0)$ and the Chebyshev filter is described in Algorithm 1. Let A' denote
 146 the previously solved related matrix, with (λ'_i, v'_i) in ascending order, and $\{\lambda'_1, \dots, \lambda'_L\} \in [\alpha, \beta]$. In
 147 Algorithm 1, the parameter λ is typically approximated by λ'_1 , while $c = \frac{\alpha+\beta}{2}$ and $e = \frac{\beta-\alpha}{2}$ represent
 148 the center and half-width of the interval $[\alpha, \beta]$, providing estimates for the spectral distribution of A .

153 **Algorithm 1:** Chebyshev Filter (Berljafa et al., 2015)

154 **Input:** Matrix $A \in \mathbb{C}^{n \times n}$, vectors $Y_0 \in \mathbb{C}^{n \times k}$, degree $m \in \mathbb{N}$, and parameters $\lambda, c, e \in \mathbb{R}$.

155 **Output:** Filtered vectors $Y_m = C_m(Y_0)$, where each vector $Y_{m,j}$ is filtered with a Chebyshev
 156 polynomial of degree m .

157 1 $A = (A - cI_n)/e$, $\sigma_1 = e/(\lambda - c)$;
 158 2 $Y_1 = \sigma_1 A Y_0$;
 159 3 **for** $i = 1, \dots, m - 1$ **do**
 160 4 $\sigma_{i+1} = 1/(2/\sigma_1 - \sigma_i)$;
 161 5 $Y_{i+1,1:m-1} = Y_{i,1:m-1}$, $Y_{i+1,m:k} = 2\sigma_{i+1} A Y_{i,m:k} - \sigma_{i+1} \sigma_i Y_{i,m:k}$;

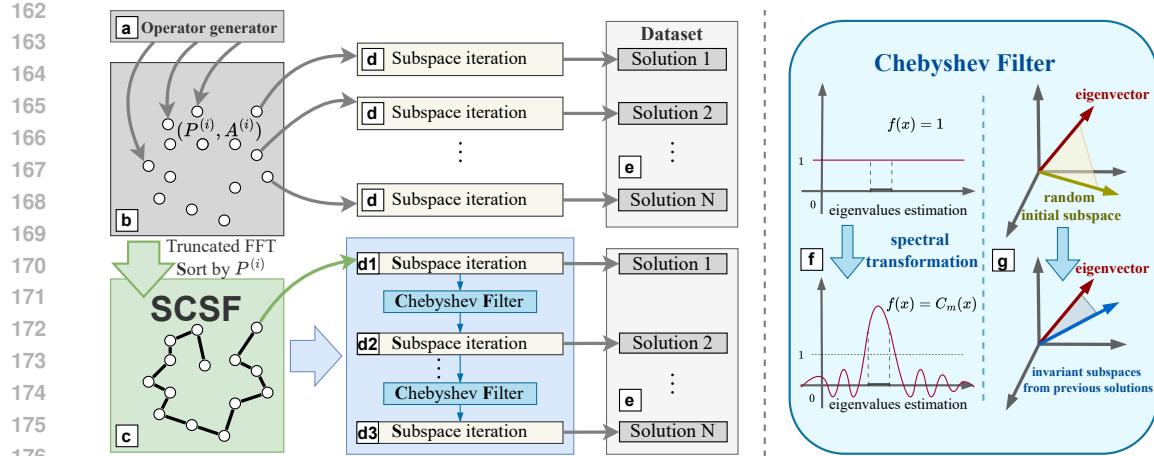


Figure 2: Algorithm Flow Diagram: **a**. Generation of operators to be solved. **b**. Discretization of operators into matrices. **c**. Apply SCSF algorithm to sort matrices, obtaining a sequence with strong correlations. **d**. Other algorithms independently solve eigenvalue problems. **d1, d2, d3**. SCSF algorithm utilizes Chebyshev subspace iterations to sequentially solve the eigenvalue problems. **e**. Assembly of eigenvalue pairs into a dataset. **f**. Amplification of the interval of interest through spectral transformation. **g**. Replacement of initial subspaces with previously solved invariant subspaces.

3 METHOD

In this section, we introduce our novel method, named the sorting Chebyshev subspace filter (SCSF), a fast data generation approach that efficiently solves eigenvalue problems by leveraging intrinsic spectral correlations among operators. SCSF incorporates two key components: (1) a truncated fast Fourier transform (FFT)-based approach for efficiently sorting operator eigenvalue problems and (2) the Chebyshev filtered subspace iteration (ChFSI) employed for sequential solving. By integrating these components, SCSF can use spectral information from the previous eigenvalue problem solving to aid the next eigenvalue problem solving, thus accelerating the eigenvalue data generation.

We first introduce the sorting algorithm that leverages the spectral similarities and provides the time complexity analysis in Section 3.1. Then we give an introduction to the Chebyshev filtered subspace iteration in Section 3.2. Figure 2 shows the overview of our SCSF. Generally, the truncated FFT sorting algorithm ensures that successive matrices in the sequence exhibit close relations. Then ordered sequence enables ChFSI to effectively utilize prior information, thereby accelerating the solution process (Berljafa et al., 2015).

3.1 THE SORTING ALGORITHM

To benefit the successive solving sequence of the eigenvalue problem, we need a sorting algorithm that pulls matrices with similar spectral properties, like invariant subspaces, close enough in the solving sequence, so that solving the current matrix in sequence can be easily boosted by the previous solving. Recalling Section 2.1, the matrix $A^{(i)}$ is the operator matrix derived through numerical discretization (e.g., Finite Difference Method) from the parameter matrix $P^{(i)}$ (e.g., the coefficient $k(x, y)$ in the Poisson equation) (Lu et al., 2022; Li et al., 2020). For instance, in the Poisson equation, the values $k_{i,j}$ from $P^{(i)}$ become part of the discretized sparse matrix $A^{(i)}$, as shown in Eq. 2. A naive strategy is to use the Frobenius distance of the parameter matrices $P^{(i)}$ to perform a greedy sort (Wang et al., 2024). And by repeatedly fetching without reservation from the remaining matrix in the dataset, we can reorganize the solving sequence so that the successive solving can benefit from the re-ordered sequence.

However, the main computational cost of such a naive sorting algorithm arises from repeatedly calculating the distances between different matrices P , which is directly related to the matrix dimension—that is, the resolution of operators. Existing works (Holmes, 2012; Li et al., 2020) have shown that the key variables that affect operators stem from the low-frequency components of the

216

Algorithm 2: The Truncated FFT Sorting Algorithm

218 **Input:** Sequence of eigenvalue problems to be solved $A^{(i)} \in \mathbb{C}^{n \times n}$, corresponding parameter
 219 matrix $P^{(i)} \in \mathbb{C}^{p \times p}$, $i = 1, 2, \dots, N$, p_0 is the truncation threshold for low frequencies,
 220 and $P_{low}^{(i)} \in \mathbb{C}^{p_0 \times p_0}$.

221 **Output:** Sequence for eigenvalue problems seq_{mat} .

222 1 Initialize the list with sequence $seq_0 = \{1, 2, \dots, N\}$, seq_{mat} is an empty list;
 223 2 Set $i_0 = 1$ as the starting point. Remove 1 from seq_0 and append 1 to seq_{mat} ;
 224 3 **for** $i = 1, \dots, N$ **do**
 225 4 Let $P_{low}^{(i)} = \text{Trunc}_{p_0}(\text{FFT}(P^{(i)}))$. Perform truncated FFT on matrix $P^{(i)}$ to extract
 226 low-frequency information;
 227 5 **for** $i = 1, \dots, N - 1$ and $dis = 1000$ **do**
 228 6 **for** each j in seq_0 **do**
 229 7 dis_j = the Frobenius norm of the difference between $P_{low}^{(i_0)}$ and $P_{low}^{(j)}$;
 230 8 **if** $dis_j < dis$ **then**
 231 9 $dis = dis_j$ and $j_{min} = j$;
 232 10 Remove j_{min} from seq_0 , append j_{min} to seq_{mat} and set $i_0 = j_{min}$;
 233 11 Get the sequence for eigenvalue problems seq_{mat} ;

234

235

236

237 parameter matrices P , while high-frequency components often represent noise or irrelevant data.
 238 Based on this insight, to reduce computational overhead during sorting, we first perform a truncated
 239 FFT on the parameter matrices to extract the low-frequency information before sorting. We then sort
 240 by comparing the Frobenius distances between these low-frequency components.

241 As shown in Algorithm 2, suppose we have N eigenvalue problems, the parameter matrices $P^{(i)} \in$
 242 $\mathbb{C}^{p \times p}$, and the low-frequency truncated matrices $P_{low}^{(i)} \in \mathbb{C}^{p_0 \times p_0}$. The computational complexity
 243 of directly using a greedy algorithm is $\mathcal{O}(N^2 p^2)$. Our sorting algorithm’s complexity consists of
 244 two main parts: 1. FFT Computation: The complexity of FFT is $\mathcal{O}(p^2 \log p)$ per matrix. For N
 245 matrices, this totals $\mathcal{O}(N p^2 \log p)$. 2. Greedy Sorting: The subsequent greedy sorting algorithm has
 246 a complexity of $\mathcal{O}(N^2 p_0^2)$. Overall, the total complexity is $\mathcal{O}(N^2 p_0^2 + N p^2 \log p)$. Since $p_0 \ll p$
 247 and $p \ll N$, our sorting algorithm effectively reduces computational cost. **In addition, we conducted**
 248 **a qualitative theoretical analysis of the truncated FFT to demonstrate its rationality. Details can be**
 249 **found in Appendix F.**

250

251

3.2 CHEBYSHEV FILTERED SUBSPACE ITERATION

253

254 After the sorting algorithm, we obtain a sequence of eigenvalue problems that exhibit strong correlations
 255 between consecutive problems. We employ the Chebyshev filtered subspace iteration (Manteuffel,
 256 1977; Saad, 2011; Winkelmann et al., 2019; Berljafa et al., 2015) that leverages the eigenpairs
 257 $(\Lambda^{(i-1)}, V^{(i-1)})$ of the previous problem $A^{(i-1)}$ to accelerate the iterative convergence of the subsequent
 258 problem $A^{(i)}$, thereby significantly enhancing computational performance. We focus on the
 259 most common scenario in eigenvalue problems where the operator is self-adjoint; in this case, the
 260 corresponding matrix A is Hermitian.

261

262 Algorithm 3 outlines the process of ChFSI for solving the i -th eigenvalue problem $A^{(i)}$ ($1 < i \leq N$)
 263 where L eigenvalues need to be solved. The initial approximate invariant subspace $V^{(i-1)}$ and spectral
 264 distribution $\Lambda^{(i-1)}$ are derived from the eigenvectors and eigenvalues of the previous problem $A^{(i-1)}$
 265 in the sequence. **This initialization strategy, illustrated in Figure 2 (g), acts as a “warm start”, where a**
 266 **high-quality initial subspace significantly reduces the computational cost of subsequent iterations.**
 267 **The parameter m denotes the polynomial degree in the filter function, e.g., $m = 20$. As depicted**
 268 **in Figure 2 (f), the Chebyshev filter modifies the operator’s spectrum to amplify the target region,**
 269 **effectively transforming the problem into an equivalent one that is easier to solve.** For the first
 eigenvalue problem $A^{(1)}$ in the sequence, the initial iterative subspace \tilde{V}_0 and initial spectrum $\tilde{\Lambda}_0$ are
 randomly generated.

270

Algorithm 3: Chebyshev Filtered Subspace Iteration

271

Input: Eigenvalue problem $A^{(i)}$, eigenpairs $(\Lambda^{(i-1)}, V^{(i-1)})$ of the previous eigenvalue problem $A^{(i-1)}$ where $\Lambda^{(i-1)} = \text{diag}(\lambda_1^{(i-1)}, \dots, \lambda_L^{(i-1)})$, $V^{(i-1)} = [v_1^{(i-1)} | \dots | v_L^{(i-1)}]$, and filter degree m .

272

Output: Wanted eigenpairs $(\Lambda^{(i)}, V^{(i)})$.

273

1 Initialize empty arrays/matrices $(\tilde{\Lambda}, \tilde{V})$, and set $\tilde{\Lambda}_0 = \Lambda^{(i-1)}$, $\tilde{V}_0 = V^{(i-1)}$;

274

2 **repeat**

275

3 Apply Chebyshev filter: $\tilde{V}_0 = C_m(\tilde{V}_0)$;

276

4 Perform QR orthonormalization on $QR = [\tilde{V} | \tilde{V}_0]$;

277

5 Compute Rayleigh quotient $G = Q_0^\top A^{(i)} Q$;

278

6 Solve the reduced problem $GW = W\tilde{\Lambda}_0$, and update $\tilde{V}_0 = \tilde{V}_0 W$;

279

7 Lock converged eigenpairs into $(\tilde{\Lambda}, \tilde{V})$;

280

8 **until** the number of converged eigenpairs $\geq L$;

281

9 Return eigenpairs $(\Lambda^{(i)}, V^{(i)}) = (\tilde{\Lambda}, \tilde{V})$;

282

283

284

285

286

287

In line 3, the Chebyshev filter is applied using the vector form of Chebyshev polynomials; details can be found in the preliminaries Section 2.2. After the Chebyshev filtering step, the vector block \tilde{V}_0 spanning the invariant subspace may become linearly dependent. To prevent this, orthonormalization is performed (line 4) using QR decomposition based on Householder reflectors. Line 5 computes the Rayleigh quotient of $A^{(i)}$ using the orthonormalized \tilde{V}_0 , projecting the eigenvalue problem onto a subspace that approximates the desired eigenspace. In line 6, the reduced eigenvalue problem is diagonalized, and the computed eigenvectors are projected back to the original problem. At the end of the Rayleigh-Ritz step, relative residuals of the computed eigenvectors are calculated; converged eigenpairs are locked, and non-converged vectors are set to be filtered again (line 7).

288

Assuming m is the degree of the polynomial, n is the dimension of the matrix A , and L is the number of eigenvalues to be solved, the computational complexity per iteration comprises: 1. Chebyshev filter: $\mathcal{O}(mn^2L)$ 2. QR factorization: $\mathcal{O}(nL^2)$ 3. Rayleigh-Ritz procedure: $\mathcal{O}(n^2L + nL^2 + L^3)$ 4. Residuals check: $\mathcal{O}(n^2L)$. Since $m \gg 1$ and $n \gg L$, the Chebyshev filtering step is the most computationally intensive.

289

The acceleration of the Chebyshev filtered subspace iteration heavily depends on selecting approximate invariant subspaces and eigenvalues that promote rapid convergence in subsequent iterations. Proper sorting amplifies their impact, reducing the number of iterations required. This underscores the critical importance of the sorting algorithm in our method.

290

291

4 EXPERIMENT

292

4.1 EXPERIMENTAL SETTINGS

293

294

To comprehensively assess the performance of our approach SCSF against other algorithms, we conducted extensive experiments, each simulating the generation of an operator eigenvalue dataset. We primarily compared the average computation times across different numbers of eigenvalues solved and various matrix sizes. These tests encompassed four distinct datasets and five mainstream eigenvalue solving algorithms, with SCSF consistently delivering commendable results. The detailed data is provided in Appendix E.1, and the related work is discussed in Appendix B.

295

296

297

298

299

300

301

Baseline. Our focus solves the eigenvalue problem of matrices derived from self-adjoint differential operators, typically consisting of large Hermitian matrices. We benchmarked against the following mainstream algorithms implemented in libraries widely used: 1. Eigsh from SciPy (implicitly restarted Lanczos method) (Virtanen et al., 2020), 2. Locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm from SLEPc (Knyazev, 2001; Hernandez et al., 2009), 3. Krylov-Schur (KS) algorithm from SLEPc (Stewart, 2002), 4. Jacobi-Davidson (JD) algorithm from SLEPc (Sleijpen & Van der Vorst, 2000), 5. Chebyshev filtered subspace iteration (ChFSI) (Berljafa et al., 2015) with random initialization. For detailed information, please refer to Appendix D.1.

324
 325
 326
 327
 328
 329
 330 Table 1: Comparison of average computation times (in seconds) for eigenvalue problems using
 331 various algorithms. The first row lists different algorithms, the first column details the datasets,
 332 including matrix dimensions and solution precisions (relative residual), and the second column shows
 333 the number of eigenvalues L computed for each matrix. The best algorithm is in **bold**. The symbol ‘-’
 334 denotes the result of a method that fails to converge under the given setting.
 335
 336
 337
 338
 339
 340
 341
 342
 343

Dataset	L	Eigsh	LOBPCG	KS	JD	ChFSI	SCSF (ours)
Poisson	200	14.20	73.03	23.76	270.2	24.00	12.85
	2500	26.27	151.5	45.95	920.8	38.03	25.61
	1e-12	36.86	265.3	72.32	2691	57.41	33.91
Ellipse	200	41.82	139.2	61.77	414.3	43.90	24.08
	4900	62.47	264.1	110.5	1446	60.69	29.88
	1e-10	87.19	459.7	188.7	3386	67.13	34.60
Helmholtz	200	151.7	129.9	98.34	489.6	107.1	31.31
	6400	253.5	460.4	283.0	3829	121.5	40.52
	1e-8	398.8	1031	329.6	-	146.2	51.32
Vibration	200	397.9	333.7	272.0	1230	300.8	85.70
	10000	635.6	1170	768.8	-	310.5	107.2
	1e-8	1037	2716	857.8	-	382.3	131.4

344
 345
 346
 347 **Datasets.** To explore the adaptability of the algorithm across different matrix types, we investigate
 348 four distinct operator eigenvalue problems: 1. Generalized Poisson operator; 2. Second-order elliptic
 349 partial differential operator; 3. Helmholtz operator; 4. Fourth-order vibration equation. For a
 350 thorough description of the datasets and their generation, please refer to Appendix D.2.
 351
 352

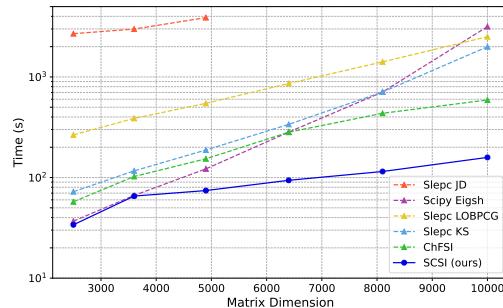
353 All experiments focus on computing the smallest L eigenvalues in absolute value and their corre-
 354 sponding eigenvectors. For the runtime environment, experimental parameters, and parallelism setup,
 355 please see the Appendixes D.3, D.4, and D.6. The hyperparameter analysis experiments, runtimes for
 356 various components of SCSF, the reliability of data generated by traditional algorithms, can be found
 357 in Appendixes E.4, E.3, and E.5.
 358

359 We note that all experiments use relative residual as the metric for solution precision, with its definition
 360 provided in Appendix D.5. SCSF is a numerical algebra algorithm that allows for adjustable solution
 361 precision as needed. It is purely an acceleration technique and does not alter the solution results at
 362 the specified precision. The solution precision for all experiments is set to at least 1e-8, which is
 363 significantly higher than the typical relative error range of neural networks (1e-1 to 1e-5), making it
 364 effectively a ground truth. Therefore, the datasets generated by different numerical algorithms will
 365 not affect the training performance of neural networks.
 366

367 4.2 MAIN EXPERIMENT

368 Table 1 showcases selected experimental data.
 369 From this table, we can infer several conclusions:
 370 First, across all settings, our SCSF consistently has
 371 the lowest computation cost. The most significant
 372 improvements appeared in the Helmholtz dataset,
 373 where SCSF demonstrated speedups of 8 \times , 20 \times ,
 374 6 \times , 95 \times , and 3.5 \times compared to Eigsh, LOBPCG,
 375 KS, JD, and ChFSI algorithms, respectively. These
 376 results confirm that SCSF effectively reduces in-
 377 herent redundancies in sequential eigenvalue prob-
 378 lems, substantially accelerating operator eigenvalue
 379 dataset generation.

380 Moreover, as the number of eigenvalues L solved
 381 per matrix increases, the speed advantage of SCSF
 382 over other algorithms becomes more pronounced.
 383 For instance, on the second-order elliptic operator
 384 dataset, when solving for 200 eigenvalues, SCSF is



385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000

Figure 3: Plot of average computation time versus matrix dimension for solving 400 eigenvalues with a precision of 1e-12 on the generalized Poisson operator dataset.

2.5 times faster than the Krylov-Schur method and 5.5 times faster at 400 eigenvalues. This efficiency stems from SCSF inheriting approximate invariant subspaces from previous solutions, effectively leveraging available information to expand the initial search space. Consequently, SCSF requires minimal additional iterations as L increases, resulting in modest computation time growth.

Besides, the performance disparity across different datasets is significant. For example, on the generalized Poisson operator dataset, SCSF is only about 10% faster than Eigsh, yet it leads by 4-7 times on the Helmholtz dataset. This difference can be attributed to the numerical properties of different operators and the matrix assembly formats, which directly influence algorithmic performance.

We also conducted additional experiments to show that the impact of the matrix dimension is also significant. Results are shown in Figure 3, SCSF performs noticeably better as matrix dimensions increase. Below the matrix dimension of 3600, SCSF and Eigsh show comparable efficiency. However, beyond 5000, SCSF significantly outperforms Eigsh and other algorithms. For more details about matrix dimension influence, we refer to the results in Appendix E.2.

This phenomenon can be explained through operator matrix approximation. A fixed operator has invariant eigenvalues and eigenfunctions. Varying matrix dimensions correspond to embedding the operator in different finite-dimensional linear spaces. For a fixed number of eigenvalues L , larger matrices yield more accurate approximations of the true eigenvalues. That is, larger matrices reduce computational noise and enhance operator similarity visibility, enabling SCSF to utilize these similarities more effectively for superior performance. For comparisons with neural networks, similarity impact, and edge-case performance, see Appendices E.6, E.7, and E.8.

4.3 EFFICACY OF CHEBYSHEV SUBSPACE FILTER

Table 2: Impact of initial subspace modifications on average computation time (in seconds) for different algorithms. ‘*’ denotes the modified version. The first row lists algorithms, and the first column shows the number of eigenvalues L computed. The best algorithm is in **bold**, and ‘-’ indicates the result of a method that fails to converge under the given setting.

L	Eigsh	Eigsh*	LOBPCG	LOBPCG*	KS	KS*	JD	JD*	SCSF (ours)
200	151.7	150.2	129.9	95.9	98.34	100.6	489.6	760.1	31.31
300	208.8	206.3	270.1	199.8	179.9	185.2	1803	3101	38.67
400	253.5	249.1	460.4	362.1	283.0	292.2	3829	6374	40.52
500	324.6	315.3	717.3	573.7	314.2	317.4	-	-	46.70
600	398.8	394.7	1031	866.0	329.6	335.7	-	-	51.32

To analyze the efficacy of the Chebyshev subspace filter, we conducted the following experiments. After sorting, the initial vector or subspace for the existing algorithms was set to the eigenvectors from the previous problem (the modified version ‘*’). We compared the computational time across different methods. All experiments were conducted on the Helmholtz operator dataset, with a matrix dimension of 6400 and a tolerance of 1e-8. The results are shown in Table 2.

First, the computation time for SCSF in all experiments was minimal, clearly demonstrating the efficacy of the Chebyshev subspace filter. This also highlights that the Chebyshev subspace filter is the optimal choice for leveraging problem similarity to reduce redundancy.

Second, the impact of initial setup modifications varied across algorithms: 1. LOBPCG accelerated significantly due to its subspace-based logic, similar to SCSF, where initialization strongly influences convergence. 2. Eigsh and KS remained largely unaffected as they rely on initial vectors and Krylov iteration, making problem similarity less impactful. 3. JD showed a performance decline. This is because its performance is sensitive to the size of the initial subspace. Our modification altered the default dimension of the initial subspace.

4.4 EFFICACY OF SORTING ALGORITHMS

We analyze the performance of the sorting algorithm module from two perspectives: 1. Comparing the performance of SCSF algorithm with and without ‘sorting’ as shown in Table 3. 2. Evaluating the

432
 433 Table 3: Performance comparison of SCSF with and without sorting. The first column lists the
 434 number of eigenvalues L computed, while subsequent columns display average computation times,
 435 average iteration counts, total Flop counts, and filter Flop counts. Experiments used the matrix
 436 dimension of 2500 and precision 1e-12 on the generalized Poisson operator dataset.

L	Time (s)		Iteration		Flops		Filter Flops	
	w/o sort	sort	w/o sort	sort	w/o sort	sort	w/o sort	sort
20	8.248	2.971	19.70	9.880	519.7	298.4	485.8	280.8
100	14.18	9.891	18.77	15.38	1984	1332	1798	970.1
200	18.45	12.85	36.30	33.67	4459	3944	3654	3192
300	34.59	25.61	47.50	39.18	8967	7544	6985	5702
400	42.60	33.91	47.43	45.18	12022	11182	9087	8338

445
 446
 447 effectiveness of different sorting algorithms as detailed in Tables 4 and 5. We note that if the setting is
 448 ‘w/o sort’, SCSF is approximately equivalent to directly using the Chebyshev subspace filter. Unlike
 449 the ChFSI used in the main experiments, the initialization of each solve in the ‘w/o sort’ SCSF is set
 450 based on the information obtained from solving the previous problem (following the default unsorted
 451 sequence).

452 Firstly, Table 3 indicates that incorporating sorting
 453 can improve SCSF speed to 1.3 to 2.8 times, reduce
 454 the number of iterations by 5% to 50%, and decrease
 455 total Flops by 7% to 43%. The effect of sorting is
 456 more pronounced with smaller numbers of solutions
 457 L . This is because when L is large, the inherited
 458 subspace already contains most of the necessary cor-
 459 relation information, diminishing the impact of sort-
 460 ing. Moreover, the Flops in the Filter component
 461 constitute over 70% of SCSF’s computational load.
 462 A detailed time analysis of different aspects of SCSF
 463 can be found in Appendix E.3. Additionally, the ‘w/o
 464 sort’ SCSF achieves a computational speedup of 1.2
 465 to 1.5 times compared to the ChFSI used in the main
 466 experiments. The primary difference lies in their initialization strategies: ChFSI uses random initial-
 467 ization for each solve, whereas the ‘w/o sort’ SCSF leverages information from the previous problem
 468 for initialization. This indicates that, even without sorting, there is a certain level of similarity between
 469 problems in the dataset. Such similarity can effectively accelerate the solving process.

470 Secondly, as shown in Table 4, our designed truncated FFT
 471 sorting algorithm incurs significantly lower time cost com-
 472 pared to the complete greedy sorting in SKR (Wang et al.,
 473 2024), with its benefits becoming more pronounced as the
 474 dataset size increases. In the truncated FFT sorting algo-
 475 rithm, the FFT contributes minimally to computational
 476 overhead but significantly reduces the time required for
 477 subsequent greedy sorting. **Table 5 validates the accuracy**
 478 **of our efficient sorting against the expensive greedy ap-**
 479 **proach.** To ensure fairness, we averaged the results over
 480 100 independent runs to eliminate fluctuations. The re-
 481 sults for ‘Greedy’ and ‘Ours’ are identical because the
 482 sequences produced by both algorithms are over 98% iden-
 483 tical. Consequently, the downstream solver incurs exactly the same operation cost, demonstrating that
 484 our low-cost sorting achieves the same acceleration performance as the high-cost greedy approach.

485 Furthermore, our experiments demonstrate that the choice of the truncation threshold, p_0 , is robust.
 486 We found that excellent performance is achieved with a relatively small p_0 (e.g., $p_0 = 20$), a value
 487 much smaller than the parameter matrix dimension p . This is because performance stabilizes once a

448 Table 4: Comparison of average computa-
 449 tion times (in seconds) for different sorting
 450 algorithms, with the first column indicating
 451 dataset size. Experiments used the matrix di-
 452 mension of 6400 on the Helmholtz dataset.

Size	Greedy Total	Truncated FFT Sort (ours)		
		FFT	Greedy	Total
10^2	0.114	0.0016	0.0147	0.0163
10^3	7.328	0.0164	1.421	1.438
10^4	592.7	0.1658	150.9	151.1

470 Table 5: Comparison of average com-
 471 putation times and iteration counts for
 472 different sorting algorithms using SCSF.
 473 Experiments used the matrix dimension
 474 of 6400 on the Helmholtz dataset, preci-
 475 sion 1e-8, and targeting 400 eigenvalues.

	w/o sort	Greedy	Ours
Time (s)	66.66	40.52	40.52
Iteration	10.4	5.5	5.5

486 sufficient number of low-frequency components are captured, making it unnecessary to retain a large
487 number of components. For related experiments, please refer to Appendix E.4.3.
488

489 5 CONCLUSIONS AND FUTURE WORK 490

491 **Conclusions** In this paper, we addressed the critical bottleneck of generating large-scale eigenvalue
492 datasets for training neural operators. We introduced SCSF, the first method to accelerate eigenvalue
493 dataset generation by exploiting operator similarity. By integrating a truncated FFT sorting algorithm
494 with a Chebyshev subspace filter, SCSF transforms the generation task into an efficient sequential
495 solving problem. Our method achieves up to a $3.5 \times$ speedup over traditional solvers, significantly
496 reducing computational redundancy. By lowering a key barrier to entry, SCSF provides a valuable
497 tool for advancing research in the AI for Science community.
498

499 **Limitations and Future Work** Despite SCSF’s demonstrated efficiency, we have identified three
500 key directions for future development. First, we aim to extend the current framework from Hermitian
501 linear operators to non-Hermitian and non-linear operators. Second, the correlation between operators
502 is currently measured using the Frobenius norm of their parameter matrices. We plan to explore more
503 effective, problem-specific metrics rather than relying on a fixed one. Finally, SCSF’s effectiveness
504 hinges on a continuous mapping between parameters and operators, rendering it ineffective when this
505 mapping is discontinuous. Future work will involve measuring correlation directly from the operators
506 or their matrix representations to bypass the challenges of discontinuous parameterization.
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 Khaled Akkad and David He. A dynamic mode decomposition based deep learning technique for
543 prognostics. *Journal of Intelligent Manufacturing*, 34(5):2207–2224, 2023.

544 Daniel J Alford-Lago, Christopher W Curtis, Alexander T Ihler, and Opal Issan. Deep learning
545 enhanced dynamic mode decomposition. *Chaos: An Interdisciplinary Journal of Nonlinear
546 Science*, 32(3), 2022.

547 Amartya S Banerjee, Lin Lin, Wei Hu, Chao Yang, and John E Pask. Chebyshev polynomial
548 filtered subspace iteration in the discontinuous galerkin method for large-scale electronic structure
549 calculations. *The Journal of chemical physics*, 145(15), 2016.

550 Albert P Bartók, Sandip De, Carl Poelking, Noam Bernstein, James R Kermode, Gábor Csányi, and
551 Michele Ceriotti. Machine learning unifies the modeling of materials and molecules. *Science
552 advances*, 3(12):e1701816, 2017.

553 Mario Berljafa, Daniel Wortmann, and Edoardo Di Napoli. An optimized and scalable eigensolver
554 for sequences of eigenvalue problems. *Concurrency and Computation: Practice and Experience*,
555 27(4):905–922, 2015.

556 Lipman Bers, Fritz John, and Martin Schechter. *Partial differential equations*. American Mathematical
557 Soc., 1964.

558 L. C. Blum and J.-L. Reymond. 970 million druglike small molecules for virtual screening in the
559 chemical universe database GDB-13. *J. Am. Chem. Soc.*, 131:8732, 2009.

560 Johannes Brandstetter, Rianne van den Berg, Max Welling, and Jayesh K Gupta. Clifford neural
561 layers for pde modeling. *arXiv preprint arXiv:2209.04934*, 2022.

562 Steven L Brunton, Bernd R Noack, and Petros Koumoutsakos. Machine learning for fluid mechanics.
563 *Annual review of fluid mechanics*, 52(1):477–508, 2020.

564 Stefan Chmiela, Alexandre Tkatchenko, Huziel E Sauceda, Igor Poltavsky, Kristof T Schütt, and
565 Klaus-Robert Müller. Machine learning of accurate energy-conserving molecular force fields.
566 *Science advances*, 3(5):e1603015, 2017.

567 Zhijie Deng, Jiaxin Shi, and Jun Zhu. Neuralef: Deconstructing kernels by deep neural networks. In
568 *International Conference on Machine Learning*, pp. 4976–4992. PMLR, 2022.

569 Huanshuo Dong, Hong Wang, Haoyang Liu, Jian Luo, and Jie Wang. Accelerating pde data generation
570 via differential operator action in solution space. *arXiv preprint arXiv:2402.05957*, 2024.

571 Lawrence C Evans. *Partial differential equations*, volume 19. American Mathematical Society, 2022.

572 Gene H Golub and Charles F Van Loan. *Matrix computations*. JHU press, 2013.

573 Zhongkai Hao, Songming Liu, Yichi Zhang, Chengyang Ying, Yao Feng, Hang Su, and Jun Zhu.
574 Physics-informed machine learning: A survey on problems, methods and applications. *arXiv
575 preprint arXiv:2211.08064*, 2022.

576 Trygve Helgaker, Poul Jorgensen, and Jeppe Olsen. *Molecular electronic-structure theory*. John
577 Wiley & Sons, 2013.

578 V. Hernandez, J. E. Roman, A. Tomas, and V. Vidal. A survey of software for sparse eigenvalue
579 problems. Technical Report STR-6, Universitat Politècnica de València, 2009. Available at
580 <https://slepc.upv.es>.

581 Philip Holmes. *Turbulence, coherent structures, dynamical systems and symmetry*. Cambridge
582 university press, 2012.

583 Thomas JR Hughes. *The finite element method: linear static and dynamic finite element analysis*.
584 Courier Corporation, 2012.

594 Tomoharu Iwata and Yoshinobu Kawahara. Neural dynamic mode decomposition for end-to-end
 595 modeling of nonlinear dynamics. *Journal of Computational Dynamics*, 10(2):268–280, 2023.
 596

597 Anubhav Jain, Joseph Montoya, Shyam Dwaraknath, Nils ER Zimmermann, John Dagdelen, Matthew
 598 Horton, Patrick Huck, Donny Winston, Shreyas Cholia, Shyue Ping Ong, et al. The materials
 599 project: Accelerating materials design through theory-driven data and tools. *Handbook of Materials
 600 Modeling: Methods: Theory and Modeling*, pp. 1751–1784, 2020.

601 Claes Johnson. *Numerical solution of partial differential equations by the finite element method*.
 602 Courier Corporation, 2012.
 603

604 Scott Kirklin, James E Saal, Bryce Meredig, Alex Thompson, Jeff W Doak, Muratahan Aykol,
 605 Stephan Rühl, and Chris Wolverton. The open quantum materials database (oqmd): assessing the
 606 accuracy of dft formation energies. *npj Computational Materials*, 1(1):1–15, 2015.

607 Charles Kittel and Paul McEuen. *Introduction to solid state physics*. John Wiley & Sons, 2018.
 608

609 Andrew V Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal block pre-
 610 conditioned conjugate gradient method. *SIAM journal on scientific computing*, 23(2):517–541,
 611 2001.

612 Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
 613 Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces. *arXiv
 614 preprint arXiv:2108.08481*, 2021.

615 Randall J LeVeque. *Finite volume methods for hyperbolic problems*, volume 31. Cambridge university
 616 press, 2002.

617 Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
 618 Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
 619 *arXiv preprint arXiv:2010.08895*, 2020.

620 Ning Liu, Yue Yu, Huaiqian You, and Neeraj Tatikola. Ino: Invariant neural operators for learning
 621 complex physical systems with momentum conservation. In *International Conference on Artificial
 622 Intelligence and Statistics*, pp. 6822–6838. PMLR, 2023.

623 Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for
 624 identifying differential equations based on the universal approximation theorem of operators. *arXiv
 625 preprint arXiv:1910.03193*, 2019.

626 Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang, and
 627 George Em Karniadakis. A comprehensive and fair comparison of two neural operators (with
 628 practical extensions) based on fair data. *Computer Methods in Applied Mechanics and Engineering*,
 629 393:114778, 2022.

630 Jian Luo, Jie Wang, Hong Wang, Zijie Geng, Hanzhu Chen, Yufei Kuang, et al. Neural krylov
 631 iteration for accelerating linear system solving. In *The Thirty-eighth Annual Conference on Neural
 632 Information Processing Systems*.

633 Jian Luo, Jie Wang, Hong Wang, Zijie Geng, Hanzhu Chen, Yufei Kuang, et al. Neural krylov
 634 iteration for accelerating linear system solving. *Advances in Neural Information Processing
 635 Systems*, 37:128636–128667, 2024.

636 Thomas A Manteuffel. The tchebychev iteration for nonsymmetric linear systems. *Numerische
 637 Mathematik*, 28:307–327, 1977.

638 John C Mason and David C Handscomb. *Chebyshev polynomials*. Chapman and Hall/CRC, 2002.
 639

640 Stephan Mohr, William Dawson, Michael Wagner, Damien Caliste, Takahito Nakajima, and Luigi
 641 Genovese. Efficient computation of sparse matrix functions for large-scale electronic structure
 642 calculations: The chess library. *Journal of Chemical Theory and Computation*, 13(10):4684–4698,
 643 2017.

648 Takaaki Murata, Kai Fukami, and Koji Fukagata. Nonlinear mode decomposition with convolutional
 649 neural networks for fluid dynamics. *Journal of Fluid Mechanics*, 882:A13, 2020.
 650

651 David Pfau, Simon Axelrod, Halvard Sutterud, Ingrid von Glehn, and James S Spencer. Natural
 652 quantum monte carlo computation of excited states. *arXiv preprint arXiv:2308.16848*, 2023.
 653

654 Andreas Pieper, Moritz Kreutzer, Andreas Alvermann, Martin Galgon, Holger Fehske, Georg Hager,
 655 Bruno Lang, and Gerhard Wellein. High-performance implementation of chebyshev filter diag-
 656 onalization for interior eigenvalue computations. *Journal of Computational Physics*, 325:226–243,
 657 2016.
 658

659 Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-no: U-shaped neural
 660 operators. *arXiv preprint arXiv:2204.11127*, 2022.
 661

662 Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole von Lilienfeld. Quantum
 663 chemistry structures and properties of 134 kilo molecules. *Scientific Data*, 1, 2014.
 664

665 Theodore J Rivlin. *Chebyshev polynomials*. Courier Dover Publications, 2020.
 666

667 Matthias Rupp, Alexandre Tkatchenko, Klaus-Robert Müller, and O Anatole Von Lilienfeld. Fast
 668 and accurate modeling of molecular atomization energies with machine learning. *Physical review
 669 letters*, 108(5):058301, 2012.
 670

671 J Jon Ryu, Xiangxiang Xu, HS Erol, Yuheng Bu, Lizhong Zheng, and Gregory W Wornell. Operator
 672 svd with neural networks via nested low-rank approximation. *arXiv preprint arXiv:2402.03655*,
 673 2024.
 674

675 Yousef Saad. *Numerical methods for large eigenvalue problems: revised edition*. SIAM, 2011.
 676

677 Peter J Schmid. Dynamic mode decomposition of numerical and experimental data. *Journal of fluid
 678 mechanics*, 656:5–28, 2010.
 679

680 Kristof T Schütt, Farhad Arbabzadah, Stefan Chmiela, Klaus R Müller, and Alexandre Tkatchenko.
 681 Quantum-chemical insights from deep tensor neural networks. *Nature communications*, 8(1):
 682 13890, 2017.
 683

684 Gerard LG Sleijpen and Henk A Van der Vorst. A jacobi–davidson iteration method for linear
 685 eigenvalue problems. *SIAM review*, 42(2):267–293, 2000.
 686

687 Justin S Smith, Olexandr Isayev, and Adrian E Roitberg. Ani-1: an extensible neural network
 688 potential with dft accuracy at force field computational cost. *Chemical science*, 8(4):3192–3203,
 689 2017.
 690

691 Kirk M Soodhalter, Eric de Sturler, and Misha E Kilmer. A survey of subspace recycling iterative
 692 methods. *GAMM-Mitteilungen*, 43(4):e202000016, 2020.
 693

694 Gilbert W Stewart. A krylov–schur algorithm for large eigenproblems. *SIAM Journal on Matrix
 695 Analysis and Applications*, 23(3):601–614, 2002.
 696

697 John C Strikwerda. *Finite difference schemes and partial differential equations*. SIAM, 2004.
 698

699 Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
 700 Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
 701 Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
 702 Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
 703 Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
 704 Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
 705 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. *Nature
 706 Methods*, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.
 707

708 Hong Wang, Zhongkai Hao, Jie Wang, Zijie Geng, Zhen Wang, Bin Li, and Feng Wu. Ac-
 709 celerating data generation for neural operators via krylov subspace recycling. *arXiv preprint
 710 arXiv:2401.09516*, 2024.

702 Gege Wen, Zongyi Li, Kamayr Azizzadenesheli, Anima Anandkumar, and Sally M Benson. U-
 703 fno—an enhanced fourier neural operator-based deep-learning model for multiphase flow. *Advances*
 704 *in Water Resources*, 163:104180, 2022.

705 Jan Winkelmann, Paul Springer, and Edoardo Di Napoli. Chase: Chebyshev accelerated subspace
 706 iteration eigensolver for sequences of hermitian eigenvalue problems. *ACM Transactions on*
 707 *Mathematical Software (TOMS)*, 45(2):1–34, 2019.

708 Yaqiang Xue, Guoyong Jin, Hu Ding, and Mingfei Chen. Free vibration analysis of in-plane
 709 functionally graded plates using a refined plate theory and isogeometric approach. *Composite*
 710 *Structures*, 192:193–205, 2018.

711 Enrui Zhang, Adar Kahana, Eli Turkel, Rishikesh Ranade, Jay Pathak, and George Em Karniadakis.
 712 A hybrid iterative numerical transferable solver (hints) for pdes based on deep operator network
 713 and relaxation methods. *arXiv preprint arXiv:2208.13273*, 2022.

714 Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao
 715 Lin, Zhao Xu, Keqiang Yan, Keir Adams, Maurice Weiler, Xiner Li, Tianfan Fu, Yucheng
 716 Wang, Haiyang Yu, YuQing Xie, Xiang Fu, Alex Strasser, Shenglong Xu, Yi Liu, Yuanqi Du,
 717 Alexandra Saxton, Hongyi Ling, Hannah Lawrence, Hannes Stärk, Shurui Gui, Carl Edwards,
 718 Nicholas Gao, Adriana Ladera, Tailin Wu, Elyssa F. Hofgard, Aria Mansouri Tehrani, Rui Wang,
 719 Ameya Daigavane, Montgomery Bohde, Jerry Kurtin, Qian Huang, Tuong Phung, Minkai Xu,
 720 Chaitanya K. Joshi, Simon V. Mathis, Kamayr Azizzadenesheli, Ada Fang, Alán Aspuru-Guzik,
 721 Erik Bekkers, Michael Bronstein, Marinka Zitnik, Anima Anandkumar, Stefano Ermon, Pietro
 722 Liò, Rose Yu, Stephan Günnemann, Jure Leskovec, Heng Ji, Jimeng Sun, Regina Barzilay,
 723 Tommi Jaakkola, Connor W. Coley, Xiaoning Qian, Xiaofeng Qian, Tess Smidt, and Shuiwang Ji.
 724 Artificial intelligence for science in quantum, atomistic, and continuum systems. *arXiv preprint*
 725 *arXiv:2307.08423*, 2023.

726 Yunkai Zhou and Yousef Saad. A chebyshev–davidson algorithm for large symmetric eigenproblems.
 727 *SIAM Journal on Matrix Analysis and Applications*, 29(3):954–971, 2007.

728 Yunkai Zhou, Yousef Saad, Murilo L Tiago, and James R Chelikowsky. Parallel self-consistent-
 729 field calculations via chebyshev-filtered subspace acceleration. *Physical Review E—Statistical,*
 730 *Nonlinear, and Soft Matter Physics*, 74(6):066704, 2006a.

731 Yunkai Zhou, Yousef Saad, Murilo L Tiago, and James R Chelikowsky. Self-consistent-field
 732 calculations using chebyshev-filtered subspace iteration. *Journal of Computational Physics*, 219
 733 (1):172–184, 2006b.

734 Yunkai Zhou, James R Chelikowsky, and Yousef Saad. Chebyshev-filtered subspace iteration method
 735 free of sparse diagonalization for solving the kohn–sham equation. *Journal of Computational*
 736 *Physics*, 274:770–782, 2014.

737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

756 **A USAGE OF LLMs**
757758 Throughout the preparation of this manuscript, Large Language Models (LLMs) were utilized as a
759 writing and editing tool. Specifically, we employed LLMs to improve the clarity and readability of
760 the text, refine sentence structures, and correct grammatical errors. All final content, including the
761 core scientific claims, experimental design, and conclusions, was conceived and written by us, and
762 we take full responsibility for the final version of this paper.
763764 **B RELATED WORK**
765766 **B.1 EIGENVALUE DATASETS AND NEURAL EIGENVALUE METHODS**
767768 Eigenvalue datasets are widely utilized in neural eigenvalue methods. In molecular chemistry research,
769 eigenvalue algorithms are commonly employed to determine critical molecular properties, such as
770 orbital energy levels (Kittel & McEuen, 2018). These properties form the foundation of datasets and
771 are obtained by solving the eigenvalue problem of the Schrödinger equation and the Hamiltonian
772 operator (Helgaker et al., 2013). Prominent datasets in this domain include QM7 (Blum & Reymond,
773 2009), QM9 (Ramakrishnan et al., 2014), ANI-1 (Smith et al., 2017), and MD17 (Chmiela et al.,
774 2017). In materials science, eigenvalue algorithms are often applied to solve for electronic band
775 structures and density of states in materials. Representative datasets in this field include the materials
776 project (Jain et al., 2020) and OQMD (Kirklin et al., 2015). These datasets have been extensively
777 used to train and validate neural eigenvalue methods (Schütt et al., 2017; Bartók et al., 2017; Rupp
778 et al., 2012), driving advancements in molecular property prediction and materials design. In fluid
779 dynamics and structural mechanics, eigenvalue algorithms are frequently utilized for modal analysis.
780 Recently, many data-driven modal analysis algorithms have emerged, requiring eigenvalue datasets
781 corresponding to differential operators for training (Murata et al., 2020; Iwata & Kawahara, 2023;
782 Alford-Lago et al., 2022; Brunton et al., 2020; Akkad & He, 2023). Additionally, some studies
783 leverage operator eigenvalue datasets to optimize algorithms. For instance, Luo et al. accelerates the
784 solution of linear systems by predicting the eigenfunctions of operators.
785786 **B.2 EIGENVALUE DATA GENERATION ALGORITHMS**
787788 Training data-driven algorithms require a large amount of labeled eigenvalue data. Typically, the
789 generation of these high-precision data is obtained by traditional algorithms. In the field of computational
790 mathematics, solving operator eigenvalue problems often involves utilizing various discretization
791 methods such as finite difference methods (FDM) (Strikwerda, 2004), finite element methods
792 (FEM) (Hughes, 2012; Johnson, 2012). These discretization methods transform operator eigenvalue
793 problems into matrix eigenvalue problems, which are then solved using the corresponding matrix
794 algorithms. For larger matrices, the Krylov-Schur algorithm (Stewart, 2002), Jacobi-Davidson (Sleijpen & Van der Vorst, 2000), and locally optimal block preconditioned conjugate gradient (LOBPCG)
795 (Knyazev, 2001) are among the most frequently employed algorithms (Golub & Van Loan, 2013).
796797 Nonetheless, traditional methods were not designed for dataset generation, resulting in high
798 computational costs, which have become a significant barrier to the advancement of data-driven
799 approaches (Zhang et al., 2023; Hao et al., 2022). Recent data augmentation research (Brandstetter
800 et al., 2022; Liu et al., 2023) has led to the development of methods that preserve symmetries and
801 conservation laws, enhancing model generalization and data efficiency. Wang et al. (2024); Dong
802 et al. (2024) report acceleration in the process of solving linear equations, thereby speeding up the
803 generation of PDE datasets.
804805 However, these improvements largely focus on neural networks or the rapid solution of linear
806 system-based PDEs, without discussing optimizations in the generation of eigenvalue datasets.
807808 **B.3 CHEBYSHEV FILTER TECHNIQUE**
809810 The Chebyshev filter technique originates from polynomial approximation theory, where the core
811 concept involves using Chebyshev polynomials to accelerate the convergence of eigenvalues (Zhou
812 & Saad, 2007). This technique constructs a polynomial filter that selectively amplifies spectral
813 components in a specified interval, thereby speeding up the solution of specific eigenvalues. This
814

810 technique is particularly effective in dealing with sequence eigenvalue problems (Saad, 2011; Zhou
 811 et al., 2006a) and has been applied in various contexts, such as stability analysis in electronic
 812 structure (Pieper et al., 2016; Banerjee et al., 2016) and quantum chemical computations (Mohr et al.,
 813 2017; Zhou et al., 2014; 2006b).

814 Due to the chaotic and disordered nature of eigenvalue problems in the dataset, directly applying the
 815 Chebyshev filter technique fails to accelerate dataset generation. To further adapt this technique to
 816 the generation of operator eigenvalue datasets, we have developed a specialized sorting algorithm that
 817 transforms dataset generation into sequence eigenvalue problems. Throughout the solving process,
 818 eigenpairs obtained from previous solutions are used to construct Chebyshev filters, accelerating
 819 subsequent solutions.

821 C FROM DIFFERENTIAL OPERATOR TO MATRIX EIGENVALUE PROBLEM: AN 822 EXAMPLE

824 C.1 OVERVIEW

826 The general methodology for solving the eigenvalue problems of differential operators numerically,
 827 employing techniques such as Finite Difference Method (FDM), Finite Element Method (FEM), and
 828 Spectral Method, can be delineated through the following pivotal steps (Strikwerda, 2004; Hughes,
 829 2012; Johnson, 2012; LeVeque, 2002):

- 830 1. Mesh Generation: This step involves dividing the domain, over which the differential operator
 831 is defined, into a discrete grid. The grid could be composed of various shapes, including squares,
 832 triangles, or more complex forms, depending on the problem’s geometry.
- 834 2. Operator Discretization: The differential operator is transformed into its discrete counterpart.
 835 Essentially, this maps the operator from an infinite-dimensional Hilbert space to a finite-dimensional
 836 representation.
- 837 3. Matrix Assembly: In this phase, the discretized operator is represented in a matrix form. For linear
 838 differential operators, this involves creating a system of matrix eigenvalue problems. For nonlinear
 839 operators, iterative methods akin to Newton’s iteration are employed, transforming the problem into a
 840 sequence of matrix eigenvalue problems.
- 841 4. Applying Boundary Conditions: This involves discretizing and applying boundary conditions
 842 specific to the differential operator in question, which are then incorporated into the matrix system.
- 843 5. Solving the Matrix Eigenvalue Problem: This stage, often the most computationally intensive,
 844 entails solving the matrix for its eigenvalues and eigenvectors, which correspond to the eigenvalues
 845 and eigenfunctions of the original differential operator.
- 846 6. Obtaining the Numerical Solution: The final step involves mapping the obtained numerical
 847 solutions back onto the original domain, analyzing them for accuracy and stability, and interpreting
 848 them in the context of the initial problem.

850 C.2 EXAMPLE

852 To illustrate how the FDM can transform the wave equation into a system of matrix eigenvalue
 853 problems, let’s consider a concrete and straightforward example. Assume we aim to solve a one-
 854 dimensional wave equation’s operator eigenvalue problem, expressed as

$$855 -\frac{d^2u}{dx^2} = \lambda u,$$

857 over the interval $[0, L]$. The boundary conditions are $u(0) = u(L) = 0$, signifying fixed-end
 858 conditions. In this context, $u(x)$ denotes the eigenfunction, and λ represents the eigenvalue.

- 859 1. Mesh Generation: Using the central difference quotient, we divide the interval $[0, L]$ into $N + 1$
 860 evenly spaced points, including the endpoints. The distance between adjacent points is denoted as
 861 $\Delta x = \frac{L}{N}$.
- 863 2. Operator Discretization: This step involves formulating the difference equation. At each interior
 864 node, which excludes the endpoints and totals $N - 1$ points, we apply a central difference

864 approximation for the second derivative, represented as
 865

$$866 \quad \frac{d^2u}{dx^2} \approx \frac{u(x_{i+1}) - 2u(x_i) + u(x_{i-1})}{(\Delta x)^2}$$

868
 869 3. Matrix Assembly: In this phase, the discretized operator is represented in a matrix form. Following
 870 the approximation, we construct the matrix A , an $N - 1 \times N - 1$ tridiagonal matrix, crucial for the
 871 computations. The matrix A is constructed as:

$$872 \quad A = \frac{1}{(\Delta x)^2} \begin{bmatrix} -2 & 1 & 0 & \cdots & 0 \\ 1 & -2 & 1 & \cdots & 0 \\ 0 & 1 & -2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & -2 \end{bmatrix}$$

872
 873 4. Applying Boundary Conditions: For the wave equation with boundary conditions $u(0) = u(L) =$
 874 0, these fixed-end conditions are integrated into the matrix equation. In the FDM framework, the
 875 values at the endpoints (u_0 and u_N) are zero, directly reflecting the boundary conditions. The impact
 876 of these conditions is encapsulated in the matrix A , affecting the entries related to u_1 and u_{N-1}
 877 (the grid points adjacent to the boundaries). The tridiagonal matrix A incorporates these boundary
 878 conditions, ensuring that the computed eigenfunctions satisfy $u(0) = u(L) = 0$.

879
 880 5. Solving the Matrix Eigenvalue Problem: The final computational step involves solving the matrix
 881 eigenvalue problem, expressed as $Au = \lambda u$. This includes determining the eigenvalues λ and
 882 corresponding eigenvectors u , which are discrete approximations of the eigenfunctions of the original
 883 differential equation.

884
 885 6. Obtaining the Numerical Solution: By solving the eigenvalue problem, we obtain numerical
 886 solutions that approximate the behavior of the original differential equation. These solutions reveal
 887 the eigenvalues and eigenvectors and provide insights into the physical phenomena modeled by the
 888 equation.

893 D DETAILS OF EXPERIMENTAL SETUP

894 D.1 BASELINE

895 The baseline algorithms were implemented using the following numerical computing libraries:

- 896 • Eigsh: A SciPy (v1.14.1) implementation wrapping ARPACK’s SSEUPD and DSEUPD
 897 functions, which compute eigenvalues and eigenvectors using the Implicitly Restarted
 898 Lanczos Method. The default parameters were used.
- 899 • Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG): Implemented in
 900 SLEPc (v3.21.1) with default parameters.
- 901 • Krylov-Schur (KS): Implemented in SLEPc (v3.21.1) with default parameters.
- 902 • Jacobi-Davidson (JD): Implemented in SLEPc (v3.21.1). The implementation uses ‘bcgsl’
 903 as the linear equation solver, ‘bjacobi’ as the preconditioner, and sets the linear equation
 904 solving precision to 1e-5.
- 905 • ChFSI: Implemented in ChASE (v1.6) with default parameters.

906 D.2 DATASET

907 All operators in this paper use Dirichlet boundary conditions.

908 1. Generalized Poisson Operator

909 We consider two-dimensional generalized Poisson operators, which can be described by the following
 910 equation (Li et al., 2020; Rahman et al., 2022; Kovachki et al., 2021; Lu et al., 2022):
 911

$$912 \quad -\nabla \cdot (K(x, y) \nabla h(x, y)) = \lambda h(x, y),$$

918 In our experiment, $K(x, y)$ is derived using the Gaussian Random Field (GRF) method. We convert
 919 these operators into matrices using the central difference scheme of FDM. The parameters inherent to
 920 the GRF serve as the foundation for our sort scheme.

921 **2. Second-Order Elliptic Partial Differential Operator**

923 We consider general two-dimensional second-order elliptic partial differential operators, which are
 924 frequently described by the following generic form (Evans, 2022; Bers et al., 1964):

925
$$\mathcal{L}u \equiv a_{11}u_{xx} + a_{12}u_{xy} + a_{22}u_{yy} + a_1u_x + a_2u_y + a_0u = \lambda u,$$

 926

927 where $a_0, a_1, a_2, a_{11}, a_{12}, a_{22}$ are constants, and f represents the source term, depending on x, y .
 928 The variables u, u_x, u_y are the dependent variables and their partial derivatives. The equation is
 929 classified as elliptic if $4a_{11}a_{22} > a_{12}^2$.

930 In our experiments, $a_{11}, a_{22}, a_1, a_2, a_0$ are uniformly sampled within the range $(-1, 1)$, while the
 931 coupling term a_{12} is sampled within $(-0.01, 0.01)$. We then select equations that satisfy the elliptic
 932 condition to form our dataset. We convert these operators into matrices using the central difference
 933 scheme of FDM. The coefficients $a_0, a_1, a_2, a_{11}, a_{12}, a_{22}$ serve as the foundation for our sort scheme.

934 **3. Helmholtz Operator**

936 We consider two-dimensional Helmholtz operators, which can be described by the following equation
 937 (Zhang et al., 2022):

938
$$\nabla \cdot (p(x, y)\nabla u(x, y)) + k^2(x, y) = \lambda u(x, y),$$

 939

940 Physical Contexts in which the Helmholtz operator appears: 1. Acoustics; 2. Electromagnetism; 3.
 941 Quantum Mechanics.

942 In Helmholtz operators, k is the wavenumber, related to the frequency of the wave and the properties
 943 of the medium in which the wave is propagating. In our experiment, $p(x, y)$ and $k(x, y)$ are derived
 944 using the GRF method. The parameters inherent to the GRF serve as the foundation for our sort
 945 scheme.

946 **4. Vibration Equation**

948 We consider the vibration equation for thin plates, which can be described by the following eigenvalue
 949 problem (Xue et al., 2018):

950
$$\nabla^2(D(x, y)\nabla^2 u(x, y)) = \lambda \rho(x, y)u(x, y),$$

 951

952 Physical contexts in which the vibration equation appears: 1. Structural dynamics of thin plates; 2.
 953 Modal analysis in mechanical engineering; 3. Vibrational behavior of elastic materials.

955 In this equation, $D(x, y)$ represents the flexural rigidity of the plate, $\rho(x, y)$ is the density distribution,
 956 and λ corresponds to the eigenvalue, which is related to the natural frequencies of the system. The
 957 eigenfunction $u(x, y)$ describes the mode shapes of vibration.

958 In our experiment, $D(x, y)$ and $\rho(x, y)$ are derived using the GRF method. The parameters inherent
 959 to the GRF serve as the foundation for our sorting scheme.

961 **D.3 ENVIRONMENT**

963 To ensure consistency in our evaluations, all comparative experiments were conducted under uniform
 964 computing environments. Specifically, the environments used are detailed as follows:

965

- 966 • Platform: Docker version 4.33.1 (windows 11)
- 967 • Operating System: Ubuntu 22.04.3 LTS
- 968 • Processor: CPU AMD Ryzen 9 8945HS w, clocked at 4.00 GHz

972 D.4 EXPERIMENTAL PARAMETER CONFIGURATION
973974 All baseline methods were implemented using their default parameters from respective libraries.
975976 For SCSF, the following configurations were adopted:
977

- 978 The size of the inherited subspace varies according to the number of eigenvalues to be
979 computed. Specifically, when calculating 20, 100, 200, 300, and 400 eigenvalues, the
980 corresponding subspace sizes are set to 4, 20, 40, 60, and 80, respectively.
981
- 982 The filter degree parameter m is consistently set to 20 across all experiments.
983
- 984 Truncation threshold for low frequencies p_0 is consistently set to 20 across all experiments.
985
- 986 Each experiment generates a dataset consisting of 1,000 samples. In this paper, the Experimental
987 tables report the average solving time for each eigenvalue problem.
988

989 D.5 ERROR METRICS

990 • Relative Residual Error:
991992 To estimate the bias of the eigenpair $(\tilde{v}, \tilde{\lambda})$ predictions, we employ relative residual error as
993 follows:
994

995
$$\text{Relative Residual Error} = \frac{\|\mathcal{L}\tilde{v} - \tilde{\lambda}\tilde{v}\|_2}{\|\mathcal{L}\tilde{v}\|_2}.$$

996

997 Here, \tilde{v} represents the eigenfunction predicted by the model, and $\tilde{\lambda}$ denotes the eigenvalue
998 predicted by the model. When $\tilde{\lambda}$ is the true eigenvalue and \tilde{v} is the true eigenfunction, the
999 Relative Residual Error equals 0.
1000

1001 D.6 RELATIONSHIP WITH PARALLELIZATION AND EXPERIMENTAL SETTING

1002 The SCSF framework is designed to be complementary to parallel computing architectures; the
1003 relationship is both orthogonal and synergistic. Fundamentally, SCSF accelerates the serial processing
1004 of a sequence of related eigenvalue problems. In a practical, large-scale setting, a total dataset of
1005 N problems can be partitioned into M independent chunks. Subsequently, M instances of the
1006 SCSF algorithm can be executed in parallel across M computing units, with each computing unit
1007 responsible for solving one chunk.
10081009 To ensure a fair and direct comparison of algorithmic efficiency under practical, parallelized conditions,
1010 all experiments reported in this paper were conducted using the Message Passing Interface
1011 (MPI) with 8 cores in parallel.
10121013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 **E EXPERIMENTAL DATA AND SUPPLEMENTARY EXPERIMENTS**
 1027

1028 **E.1 MAIN EXPERIMENTAL DATA**
 1029

1030 As shown in Tables 7, 6, 9, SCSF showed the best performance among all tested configurations
 1031

1032 Table 6: Comparison of average computation times (in seconds) for eigenvalue problems using
 1033 various algorithms on the generalized Poisson operator dataset. The first row lists different algorithms,
 1034 and the first column shows the number of eigenvalues L computed for each matrix. Matrix dimension
 1035 = 2500, precision = 1e-12.

L	Eigsh	LOBPCG	KS	JD	ChFSI	SCSF (ours)
150	9.15	46.8	14.9	138	17.3	7.95
200	14.2	73.0	23.8	270	24.0	12.9
250	19.8	109	34.3	553	30.2	19.0
300	26.3	152	45.6	921	38.0	25.7
350	31.5	203	58.4	1732	45.8	29.8
400	36.9	265	72.3	2691	57.4	33.9
450	42.8	342	87.3	3708	74.2	38.3

1046
 1047 Table 7: Comparison of average computation times (in seconds) for eigenvalue problems using various
 1048 algorithms on the second-order elliptic operator dataset. The first row lists different algorithms, and
 1049 the first column shows the number of eigenvalues L computed for each matrix. Matrix dimension =
 1050 4900, precision = 1e-10.

L	Eigsh	LOBPCG	KS	JD	ChFSI	SCSF (ours)
150	31.35	91.80	40.65	214.80	38.37	19.62
200	41.82	139.20	61.77	414.30	43.90	24.08
250	52.17	197.04	84.65	861.44	53.42	28.00
300	62.47	264.10	110.50	1446.00	60.69	29.88
350	74.59	355.18	147.01	2324.88	64.94	31.52
400	87.19	459.70	188.70	3386.00	67.13	34.60
450	100.28	577.67	235.56	4629.38	76.32	40.05

1062
 1063 Table 8: Comparison of average computation times (in seconds) for eigenvalue problems using
 1064 various algorithms on the Helmholtz operator dataset. The first row lists different algorithms, and the
 1065 first column shows the number of eigenvalues L computed for each matrix. Matrix dimension = 6400,
 1066 precision = 1e-8. The symbol ‘-’ denotes data not recorded due to excessive computation times.

L	Eigsh	LOBPCG	KS	JD	ChFSI	SCSF (ours)
200	151.70	129.90	98.34	489.60	107.12	31.31
300	190.84	273.08	192.88	1601.08	113.73	37.78
400	253.50	460.40	283.00	3829.00	121.53	40.52
500	344.60	720.33	310.21	-	135.73	47.41
600	398.80	1031.00	329.60	-	146.24	51.32

1076 **E.2 ANALYSIS OF THE INFLUENCE OF MATRIX DIMENSION**
 1077

1078 As demonstrated in Table 10, the impact of matrix dimension on algorithm performance reveals several
 1079 key insights. For matrices below dimension 3600, SCSF and Eigsh show comparable efficiency.
 However, SCSF’s advantages become increasingly pronounced as matrix dimensions grow larger.

1080
 1081 Table 9: Comparison of average computation times (in seconds) for eigenvalue problems using
 1082 various algorithms on the Vibration operator dataset. The first row lists different algorithms, and
 1083 the first column shows the number of eigenvalues L computed for each matrix. Matrix dimension
 1084 = 10000, precision = 1e-8. The symbol ‘-’ denotes data not recorded due to excessive computation
 1085 times.

L	Eigsh	LOBPCG	KS	JD	ChFSI	SCSF (ours)
200	397.9	333.7	272.0	1230	300.8	85.70
300	516.8	750.0	520.0	3600	305.0	96.50
400	635.6	1170	768.8	-	310.5	107.2
500	820.0	1950	810.0	-	350.0	120.0
600	1037	2716	857.8	-	382.3	131.4

1093
 1094 Table 10: Comparison of different algorithm computation time (in seconds) for varying matrix
 1095 dimensions using the generalized Poisson operator dataset. Results show average computation times
 1096 for solving 400 eigenvalues with a precision of 1e-12.

Matrix Dimension	Eigsh	LOBPCG	KS	JD	ChFSI	SCSF (ours)
2500	36.86	265.30	72.32	2691.00	57.41	33.91
3600	66.41	387.20	116.50	2990.00	102.4	65.41
4225	89.13	467.74	151.36	3548.13	126.2	70.79
4900	121.90	546.20	187.80	3886.00	153.5	74.23
5625	186.21	691.83	251.19	-	216.8	85.11
6400	282.80	860.00	337.70	-	282.2	93.86
8100	707.95	1412.54	707.95	-	435.1	114.82
10000	3162.28	2511.89	1995.26	-	590.3	158.49

1109
 1110 At dimension 10000, SCSF achieves remarkable speedups: 20 \times faster than Eigsh, 16 \times faster than
 1111 LOBPCG, 13 \times faster than KS, and 3.7 \times faster than ChFSI. This phenomenon can be attributed to
 1112 how larger matrix dimensions result in fewer errors and noise in the computed eigenvalues, allowing
 1113 SCSF to better exploit similarities between problems. Additionally, the JD algorithm becomes
 1114 computationally intractable at and above dimension 5625, while SCSF maintains stable performance
 1115 even at high dimensions.

1118 E.3 ANALYSIS OF COMPUTATIONAL TIMES FOR SCSF COMPONENTS

1119
 1120 Table 11: Analysis of Computational Times (in seconds) for SCSF Components.

All	Filter (line 3)	QR (line 4)	RR (line 5)	Resid (line 6)	Sort
9.89e+0	7.41e+0	3.12e-1	9.76e-1	7.95e-1	1.51e-2

1126
 1127 We conducted a statistical analysis of the average time consumption for each component of the
 1128 SCSF algorithm on the generalized Poisson operator dataset, with a matrix dimension of 2500 and
 1129 the number of eigenvalues to be solved set to 100. The results are presented in Table 11. The
 1130 notation ‘line x’ within parentheses corresponds to line x in Algorithm 3, ‘ALL’ denotes the total time
 1131 consumption, and ‘sort’ represents the average time required by the sorting algorithm. It is evident
 1132 that the filtering process accounts for over 70% of the total time consumption, which aligns with our
 1133 theoretical analysis in Section 3.2.

1134 E.4 ANALYSIS OF HYPERPARAMETERS
11351136 E.4.1 DEGREE PARAMETER
11371138 Table 12: Average Computational Times (in seconds) of SCSF under Different Degree Parameters m .
1139

Deg	12	16	20	24	28	32	36	40
Time (s)	43.92	39.79	40.52	40.64	40.85	41.13	41.19	43.50

1144 We investigated the impact of different degree parameters m on the performance of SCSF. As shown in
1145 Table 12, the experiments were conducted on the Helmholtz operator dataset with a matrix dimension
1146 of 6400, a solution accuracy of 1e-8, 400 eigenvalues to be solved, and an inherited subspace size
1147 of 80. The degree parameter m , as described in Algorithm 3, primarily controls the order of the
1148 Chebyshev polynomial. The results indicate that varying m within the range of 12 to 40 has a minimal
1149 effect on the computation time of SCSF. Therefore, as long as m is chosen within a reasonable range,
1150 its specific value does not significantly influence the performance. In the main experiments of this
1151 paper, m is fixed at 20.
1152

1153 E.4.2 SUBSPACE DIMENSION
11541155 Table 13: Average Computational Times (in seconds) of SCSF under Different Subspace Dimension.
1156

Dim	50	60	70	80	90	100	110	120
Time (s)	43.28	44.35	42.43	40.52	39.65	37.43	38.28	38.58

1161 We examine the influence of different inherited subspace sizes on the performance of SCSF. As
1162 presented in Table 13, the experiments are conducted on the Helmholtz operator dataset with a matrix
1163 dimension of 6400, a solution accuracy of 1e-8, 400 eigenvalues to be computed, and a degree
1164 parameter m set to 20.
1165

1166 The results demonstrate that as the inherited subspace size increases, the computation time of SCSF
1167 initially decreases and then rises, reaching its minimum around a size of 100. The reduction in
1168 computation time at the front end is attributed to the enriched initial subspace with more available
1169 information as the inherited subspace grows. Conversely, the increase in computation time at the
1170 back end is due to the significantly higher overhead of performing Chebyshev filtering with a larger
1171 inherited subspace.
1172

1173 Overall, as long as the inherited subspace size is set within a reasonable range, its impact on SCSF
1174 remains minimal. In our experiments, we consistently set the inherited subspace size to 20% of the
1175 number of eigenvalues to be computed.
1176

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188 E.4.3 TRUNCATION THRESHOLD FOR LOW FREQUENCIES
11891190 Table 14: Average computational times (in seconds) of SCSF under different truncation thresholds.
1191

	No sort	$p_0 = 10$	$p_0 = 20$	$p_0 = 30$	$p_0 = 40$	Greedy
One-sided distance	0.95	0.89	0.85	0.85	0.85	0.85
Sort time (s)	0	110	151	193	246	593
Average solve time (s)	66.7	52.2	40.5	40.5	40.5	40.5

1192
1193 We measure the similarity between matrices by computing the cosine of the principal angles between
1194 their 10-dimensional invariant subspaces (spanned by the smallest 10 eigenvectors in modulus) (one-
1195 sided distance). Smaller values indicate higher similarity. As presented in Table 14, the experiments
1196 are conducted on the Helmholtz operator dataset with a matrix, a solution accuracy of 1e-8, 400
1197 eigenvalues to be computed, and a degree parameter m set to 20, 10k data problems, parameter matrix
1198 P with dimension $p = 80$, and varying truncation frequencies p_0

1199 The results demonstrate that sorting significantly increases inter-problem correlation in the dataset
1200 (explaining the performance gain). The truncation parameter p_0 affects sorting time, sorting quality,
1201 and solver time. For $p_0 \geq 20$, solver time becomes stable, showing diminishing returns. This reflects
1202 the interplay between sorting and Chebyshev iteration. In the main experiments of this paper, p_0 is
1203 fixed at 20.

1204 E.5 RELIABILITY OF GENERATED DATA AS GROUND TRUTH

1205 A key concern was whether the data generated by our method, which relies on numerical solvers, is a
1206 reliable ‘ground truth’ for training neural networks. To address this, we trained a NeurKIItt (Luo et al.,
1207 2024) model on generalized Poisson datasets generated by various solvers (including our SCSF) at
1208 different matrix dimensions. The precision for all solvers was set to a high tolerance of 10^{-12} .

1209 Table 15: Impact of data generation method on the performance of a trained NeurKIItt model. The
1210 consistent final loss indicates that data from all tested solvers serves as a reliable ground truth.

1211 Generation Method	1212 Matrix Dimension	1213 Generation Time	1214 NeurKIItt Principal Angle Loss
Eigsh	2500 / 6400 / 10000	10h / 80h / 800h	0.06 / 0.06 / 0.06
LOBPCG	2500 / 6400 / 10000	70h / 240h / 700h	0.06 / 0.06 / 0.06
ChFSI	2500 / 6400 / 10000	16h / 44h / 160h	0.06 / 0.06 / 0.06
SCSF (ours)	2500 / 6400 / 10000	9h / 26h / 45h	0.06 / 0.06 / 0.06

1226 E.6 COMPARISON WITH SUPERVISED AND UNSUPERVISED NEURAL NETWORK METHODS

1227 To clarify the significance of accelerating dataset generation for the dominant supervised learning
1228 paradigm, we conducted an experiment comparing the performance and resource trade-offs of
1229 different categories of eigensolvers. We evaluated our method (SCSF), a traditional solver (Eigsh),
1230 a supervised neural network (NeurKIItt Luo et al. (2024)), and two state-of-the-art unsupervised
1231 neural networks (NeuralEF Deng et al. (2022) and NeuralSVD Ryu et al. (2024)) on a 2D Helmholtz
1232 problem (solving for the smallest 100 eigenvalues, matrix dimension 6400).

1233 The results, presented in Table 16, highlight the distinct characteristics of each approach. Unsu-
1234 pervised methods obviate the need for pre-generated datasets but require substantial ‘solving time’
1235 for each new operator, as they essentially perform an optimization from scratch. In contrast, super-
1236 vised methods offer near-instantaneous inference but demand significant upfront investment in both
1237 data generation and model training. Our method, SCSF, dramatically reduces the data generation
1238 bottleneck for these powerful supervised models.

1239 As shown in Table 15, the final performance of the trained NeurKIItt model (measured by Principal
1240 Angle Loss) was identical regardless of which high-precision solver was used for data generation or

1242 Table 16: Comparison of different eigensolver paradigms on a 2D Helmholtz problem. ‘Solving
 1243 Time’ for unsupervised methods refers to the entire optimization process required to find the solution
 1244 for a single operator instance.

1246 Category	1247 Algorithm	1248 Solving Time	1249 Training Time	1250 Dataset Gen. Time	1251 Relative Residual
1247 Our Method	1248 SCSF (random init)	1249 1 min	1250 -	1251 -	1252 10^{-8}
1247 Traditional	1248 Eigsh	1249 1 min	1250 -	1251 -	1252 10^{-8}
1247 Supervised NN	1248 NeurKIItt	1249 0.1s	1250 3h	1251 20h	1252 10^{-2}
1247 Unsupervised NN	1248 NeuralEF	1249 2h	1250 -	1251 -	1252 10^{-2}
1247 Unsupervised NN	1248 NeuralSVD	1249 3h	1250 -	1251 -	1252 10^{-2}

1252
 1253 the specific matrix dimension (for dimensions ≥ 2500). This demonstrates that the discretization
 1254 and solver errors are orders of magnitude smaller than the neural network’s approximation error,
 1255 confirming that the generated data serves as a highly reliable ground truth for training purposes.

1257 E.7 PERFORMANCE BOUNDS AND THE IMPACT OF DATASET SIMILARITY

1259 To provide theoretical insight into SCSF’s performance bounds, we conducted an experiment to
 1260 quantify the relationship between dataset similarity and acceleration. We generated a sequence
 1261 of Helmholtz operator problems where each subsequent problem is a slight perturbation of the
 1262 previous one. The magnitude of this perturbation reflects the dataset’s internal similarity. A smaller
 1263 perturbation size indicates higher similarity. The experiment was run on the Helmholtz dataset
 1264 (dimension 6400, $L = 200$ eigenvalues).

1265 Table 17: Average solution time (seconds) as a function of dataset similarity (perturbation size).
 1266 Lower perturbation implies higher similarity. The experiment was run on the Helmholtz dataset
 1267 (dim = 6400, $L = 200$).

1269 Perturbation Size	1270 Eigsh	1271 LOBPCG	1272 ChFSI	1273 SCSF (w/o sort)	1274 SCSF
1271 50%	1272 151	1273 130	1274 107	1275 76	1276 27
1271 10%	1272 150	1273 129	1274 107	1275 48	1276 23
1271 1%	1272 152	1273 130	1274 107	1275 14	1276 6
1271 0% (Identical)	1272 151	1273 130	1274 107	1275 2	1276 2
Standard Generation		1272 152	1273 130	1274 107	1275 31
Independent Problems		1272 152	1273 130	1274 107	1275 107

1277 The results in Table 17 show that SCSF’s performance is strongly correlated with dataset similarity. As
 1278 problems become more similar (perturbation size decreases), the speedup increases dramatically. The
 1279 experiment also highlights the effectiveness of our sorting algorithm; SCSF consistently outperforms
 1280 SCSF without sorting (‘SCSF w/o sort’) across various similarity levels. In the theoretical limit of
 1281 identical problems (0% perturbation), the solution is found in just a few iterations. Conversely, for
 1282 completely independent problems, SCSF’s performance gracefully degrades to that of ChFSI, as
 1283 expected.

1285 E.8 ANALYSIS OF FAILURE CASES: DISCONTINUOUS DATASETS

1287 The core assumption of SCSF is that the dataset is generated from a process with underlying continuity,
 1288 allowing our sorting algorithm to group similar problems effectively. To investigate the behavior
 1289 of SCSF when this assumption is violated, We simulated a gradual mixing of the two datasets
 1290 (Helmholtz and Poisson). We varied the proportion of Helmholtz operators from 100% (a fully
 1291 continuous dataset) down to 0% (a different fully continuous dataset), with mixed ratios in between
 1292 representing varying degrees of discontinuity. (dimension 6400, $L = 200$ eigenvalues) and solved
 1293 them sequentially.

1294 Table 18 presents the results. As expected, the performance gain of SCSF is reduced in this discontin-
 1295 uous scenario because the inter-problem correlation is disrupted, diminishing the effectiveness of the
 1296 sorting module. However, even in this challenging case, SCSF still provides a notable speedup over

1296 Table 18: Performance on a discontinuous dataset created by mixing Helmholtz and Poisson problems.
 1297 All times are in seconds.

Helmholtz %	Eigsh	LOBPCG	ChFSI	SCSF (w/o sort)	SCSF
100% (Helmholtz)	152	130	107	46	31
75%	154	203	116	94	78
50% (1:1 mix)	154	280	132	118	98
25%	152	359	141	108	80
0% (Poisson)	149	454	153	81	52

1306
 1307
 1308 baseline solvers, demonstrating a degree of robustness. The performance of ‘SCSF’ approaches that
 1309 of ‘SCSF (w/o sort)’, confirming that the sorting component’s benefit is tied to dataset continuity.

1311 E.9 COST-BENEFIT ANALYSIS OF THE SORTING ALGORITHM

1314 To address the trade-off between the cost of sorting and its benefits, we analyzed its computational
 1315 overhead. Our analysis shows that the cost of the Truncated FFT Sort is negligible in the context of
 1316 large-scale dataset generation. For example, as shown in Table 4 of the main paper, sorting a dataset
 1317 of 10^4 samples takes approximately 151 seconds. In contrast, solving a single eigenvalue problem
 1318 from the Helmholtz dataset can take over 250 seconds with a standard solver like Eigsh. For a full
 1319 dataset of this size, the sorting overhead constitutes less than 0.1% of the total generation time.

1320 The benefit, however, is substantial. As shown in Table 3, sorting reduces the number of solver
 1321 iterations by 5-50% and total floating-point operations (Flops) by 7-43%. Furthermore, our Truncated
 1322 FFT Sort is significantly more cost-effective than a naive greedy sort, achieving nearly identical
 1323 final solver performance at a fraction of the computational cost (see Tables 4 and 5). Given this
 1324 highly favorable cost-benefit ratio, the sorting step is a crucial and efficient component of the SCSF
 1325 framework.

1327 E.10 SENSITIVITY TO PARAMETERIZATION

1329 To assess the sensitivity of the proposed parameter sorting to different PDE parameterizations, we
 1330 conducted an additional experiment comparing two distinct discretization methods for the Helmholtz
 1331 problem: the Finite Difference Method (FDM) (utilized in the main text) and the Finite Element
 1332 Method (FEM/Galerkin).

1333 As shown in Table 19, SCSF demonstrates consistent speedups across both discretization schemes.
 1334 For the FEM dataset, we utilized a dimension of 10,000 with a tolerance of 1e-8.

1336 Table 19: Comparison of SCSF performance under different parameterizations (Helmholtz). Times
 1337 are in seconds. ‘-’ indicates non-convergence or excessive time cost.

Dataset	L	Eigsh	LOBPCG	KS	JD	ChFSI	SCSF (ours)
FDM (Central Diff)	200	151.7	129.9	98.34	489.6	107.1	31.31
	400	253.5	460.4	283.0	3829	121.5	40.52
	600	398.8	1031	329.6	-	146.2	51.32
FEM (Galerkin)	200	623.1	515.7	365.6	1885	450.9	116.7
	400	938.5	1746	1166	-	481.3	142.9
	600	1499	-	1299	-	599.9	196.3

1347
 1348
 1349 These results confirm that SCSF remains highly effective regardless of the discretization scheme,
 provided the relationship between parameters and operators remains continuous.

1350
1351E.11 GENERALIZATION OF TRUNCATION LEVEL (p_0)1352
1353
1354

To justify this universal constant, we calculated the ratio of the Frobenius norm of high-frequency components (frequency > 20) to the total norm for each dataset. The results are presented in Table 20.

1355
1356
1357

Table 20: Ratio of high-frequency component energy (frequency $> p_0 = 20$) to total energy across different PDE datasets.

1358
1359
1360
1361

Dataset	Poisson	Ellipse	Helmholtz	Vibration
High-frequency Ratio ($> p_0$)	3.4%	3.7%	4.4%	4.8%

1362
1363
1364

As shown, high-frequency components account for less than 5% of the total energy across all diverse PDE families. This confirms that $p_0 = 20$ consistently captures over 95% of the structural information inherent in the parameter matrices.

1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

1404 **F THEORETICAL ANALYSIS OF TRUNCATED FFT SORTING**
1405

1406 Our sorting algorithm approximates the distance between operators to optimize the solving sequence.
1407 To analyze the theoretical validity of this approximation, we consider the isometric property of the
1408 Discrete Fourier Transform (DFT). Let $P^{(i)}$ and $P^{(j)}$ denote the discretized parameter matrices
1409 (e.g., diffusion coefficients) for two distinct problems. By Parseval's identity, the DFT is a unitary
1410 transformation (up to a scaling factor), implying that the Frobenius distance in the spatial domain is
1411 strictly equivalent to that in the frequency domain:

1412
$$\|P^{(i)} - P^{(j)}\|_F^2 = \|\text{FFT}(P^{(i)}) - \text{FFT}(P^{(j)})\|_F^2,$$

1413

1414 where $\text{FFT}(\cdot)$ denotes the normalized DFT. The SCSF algorithm computes a proxy distance using a
1415 truncated spectrum, retaining only frequencies within a low-frequency bandwidth p_0 . Consequently,
1416 the exact distance can be decomposed into the sorting metric and a residual truncation error:

1417
$$\|P^{(i)} - P^{(j)}\|_F^2 = \underbrace{\|\text{Trunc}_{p_0}(\Delta \hat{P})\|_F^2}_{\text{SCSF Metric}} + \underbrace{\|(I - \text{Trunc}_{p_0})(\Delta \hat{P})\|_F^2}_{\text{Truncation Error } \epsilon_{ij}},$$

1418
1419

1420 where $\Delta \hat{P} = \text{FFT}(P^{(i)} - P^{(j)})$ and Trunc_{p_0} is the truncation operator.
1421

1422 The magnitude of the error term ϵ_{ij} is governed by the spectral decay properties of the underlying
1423 physical operators. The parameter matrices in our dataset, generated via Gaussian Random Fields
1424 (GRF) or representing physical media, typically exhibit smoothness or piecewise smoothness corre-
1425 sponding to Sobolev regularity H^s with $s > 0$. Harmonic analysis dictates that the spectral energy
1426 of such functions decays polynomially or exponentially with frequency magnitude $|\mathbf{k}|$. Specifically,
1427 the Fourier coefficients satisfy $|\hat{P}_{\mathbf{k}}| \lesssim |\mathbf{k}|^{-s}$. Therefore, the truncation error is bounded by the tail
1428 energy of the spectrum:

1429
$$\epsilon_{ij} = \sum_{|\mathbf{k}| > p_0} |\Delta \hat{P}_{\mathbf{k}}|^2 \approx \mathcal{O}(p_0^{-2s+d}),$$

1430

1431 where d is the spatial dimension. This decay rate implies that the high-frequency components
1432 contribute negligibly to the global topological distance between operators. This is also the fundamental
1433 reason why truncated FFT sorting is effective.

1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457