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ABSTRACT

Central to the widespread use of t-distributed stochastic neighbor embedding
(t-SNE) is the conviction that it produces visualizations whose structure roughly
matches that of the input. To the contrary, we prove that (1) the strength of the
input clustering, and (2) the extremity of outlier points, cannot be reliably inferred
from the t-SNE output. We demonstrate the prevalence of these failure modes in
practice as well.

1 INTRODUCTION

t-SNE and related data visualization methods have become staples in modern exploratory data anal-
ysis. They just seem to work: practitioners find that these techniques effortlessly tease out inter-
esting cluster structures in datasets. Consequently they are now used ubiquitously in a wide array
of fields, ranging from single-cell genomics to language model interpretability (Kobak & Berens,
2019; Petukhova et al., 2025). The practical success of these techniques has naturally piqued some
interest in the theoretical community as well.

Existing analysis of t-SNE, for instance, has established that, given high-dimensional data with
spherical, well-separated cluster structure, t-SNE outputs a visualization which preserves that cluster
structure (Arora et al., 2018; Linderman & Steinerberger, 2019). In other words, t-SNE is provably
good at generating true positives in its visualization of clusters. Curiously, t-SNE’s susceptibility
to generate false positives, i.e. fabricated clusters in the output visualization, has remained largely
unstudied. One should note that this is not a purely academic curiosity, since the interpretation of
t-SNE outputs have important consequences downstream in the sciences, like influencing hypothesis
generation, experimental design, and deriving scientific conclusions.

As an illustration of the potential danger of false positives, consider the 2D t-SNE visualization of a
100-dimensional, 100-point dataset (depicted on the right).

Based on this plot, it is tempting to conclude that the input
dataset obviously contains two distinct clusters. In this
case, one would likely design their subsequent data analy-
sis workflow guided by the two tight, well-separated clus-
ters they see. However a closer examination of the orig-
inal (high-dimensional) dataset reveals that the situation
perhaps may not be as clear-cut. By standard distance-
based cluster saliency metrics, the input dataset barely has
any gap between the two clusters with respect to the par-
tition that t-SNE so strongly suggests, see Table 1.

Table 1: Clustering scores (with respect to k-means clustering on the t-SNE plot) according to various popular
cluster saliency metrics. The range in the second column specifies the possible values that can be attained. A
higher value indicates data being highly clustered. Note that k = 25 in the last row.

Metric Type Cluster Score (range) t-SNE (2D) Original Data (100D)

Silhouette [→1, 1] .918 .006
Distance-based Calinski-Harabasz [0,↑] 5590 1.61

Dunn Index [0,↑] 3.65 .998
Neighbor-based k-NN modularity [0, 1] 1.0 .95
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The interpoint distance matrix along with a hierarchical clustering of the points (via complete-
linkage) further elucidates this discrepancy. t-SNE’s two-dimensional visualization features a siz-
able separation between small intra-cluster and large inter-cluster distances. This separation is sig-
nificantly weaker in the original input data, where interpoint distances are near-uniform. One should
not take this to mean that t-SNE is fabricating clusters but rather exaggerating their separation.
Indeed the last row of Table 1 indicates that the t-SNE visualization is consistent with the nearest-
neighbor structure of the original data.

Our work formalizes specific limitations of t-SNE in terms of faithfully depicting distance-based
information in the input. Our theoretical analysis, suffused with experiments, shows that one should
take highly-pronounced well-separated clusters depicted by t-SNE with a grain of salt. Our contri-
butions are as follows:

• Misrepresentation of cluster distances: We prove that both strongly-separated and arbi-
trarily weakly-separated clustered datasets can produce the exact same strongly-separated
clustered visualization, see Theorem 3 and Corollary 4. Moreover, we prove that even a
slight distance perturbation of inputs can have vastly distinct visualizations, see Theorem
5. We identify the property of t-SNE that explains these peculiar behaviors, and use this
understanding to design a targeted adversarial attack that disrupts cluster structure in the
output, see Figure 3.

• Misrepresentation of outliers: We prove that, regardless of input, the resulting t-SNE
output is incapable of depicting extreme outliers, in the sense of depicting one point as
substantially far away from all the others, see Theorem 8. In practice, on both synthetic
and real datasets, we observe a more concerning phenomenon that faraway outliers are
often subsumed into the cluster structure of the bulk of points, see Figures 4 and 5.

While there has been some work investigating the shortcomings of t-SNE in various practical settings
(see Section 2.2 for a detailed discussion of the relevant literature), to the best of our knowledge this
is the first work which theoretically analyzes some of the key limitations of t-SNE.

2 RELATED WORK

Confidence in the data visualizations produced by t-SNE and related methods is a contentious subject
in data science (Marx, 2024; de Bodt et al., 2025). Some argue that these methods have merit in terms
of preserving cluster structure and therefore aid in exploratory data analysis, while others warn us
about the distortions introduced by these methods.

2.1 PERFORMANCE GUARANTEES AND ANALYSIS OF T-SNE

Shaham & Steinerberger (2017) were among the first to provide a guarantee on the visualization pro-
duced by optimal SNE embeddings of well-clustered data. Works by Linderman & Steinerberger
(2019) and Arora et al. (2018) refined and extended this analysis, showing that t-SNE outputs pro-
duced using gradient descent yield well-clustered visualizations so long as the input is sufficiently
well-clustered. The latter work established this guarantee in considerable generality, including cases
where the input is sampled from a mixture of well-separated log-concave distributions.

Along with these algorithmic performance guarantee results, there is a line of work that seeks to
establish a more fundamental understanding of t-SNE as an optimization problem. Cai & Ma (2022),
for instance, characterized the distinct phases of gradient-based optimization of t-SNE, and proved
an asymptotic equivalence between the early exaggeration phase of t-SNE and spectral clustering.
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Auffinger & Fletcher (2023) proved a consistency result for a continuous analogue of t-SNE, viewing
the optimization problem as producing a map between distributions rather than just point sets. Jeong
& Wu (2024) and Weinkove (2024) studied the gradient flow of t-SNE. The former showed mild
assumptions under which optima exist, and the latter showed that, even in cases where the gradient
flow diverges the relative interpoint distances stabilize in the limit.

2.2 WEAKNESSES AND CRITICISMS

Bunte et al. (2012) were among the first to investigate the potential shortcomings of using KL-
divergence in a t-SNE visualization and proposed a generalization to other divergences that may be
better suited for specific datasets and user needs. Building upon the precision-recall framework of
Venna et al. (2010), Im et al. (2018) extended this result and explored specific intrinsic structures
within data that may be less suited for t-SNE. They concluded that while t-SNE is more attuned to
reveal intrinsic cluster structure, it usually fails to reveal intrinsic manifold structure.

In terms of analyzing cluster structure specifically, Yang et al. (2021) provided empirical evidence
that t-SNE visualizations are prone to false negatives. They presented a selection of well-clustered
real-world datasets which t-SNE embeddings, even with reasonable parameter-tuning, do not seem
to represent faithfully. They also showed that these practical datasets do not abide by the theoretical
cluster separation conditions that are required by Arora et al. (2018) analysis. Chari & Pachter
(2023) argued that t-SNE and UMAP are unreliable tools for exploratory data analysis. Taking
single-cell genomic data as an important real-world example, they provided systematic empirical
evidence that these embeddings suffer high distortion, and often misrepresent neighborhood and
cluster structure. Curiously, to the best of our knowledge, there is no systematic theoretical study
investigating false positive behavior of t-SNE.

More recently, Snoeck et al. (2025) provided theoretical evidence that, not just t-SNE, but any
embedding technique that attempts to visualize data in constant dimensions is bound to misrepresent
neighborhood structure in most datasets.

3 PRELIMINARIES

Given an input dataset1 X = {x1, . . . , xn} ↓ RD, the goal of t-SNE is to come up with an embed-
ding Y = {y1, . . . , yn} ↓ Rd (where d ↔ D, typically d = 2) that approximately maintains the
neighborhood structure in X . t-SNE accomplishes this by assigning affinities to input data points
which encode how likely an input point is to be a neighbor to a given point. The goal then is to find a
configuration of the embedded points Y that induces a similar neighborhood affinity. Specifically, let
P = P (X) ↗ Rn→n

+ and Q = Q(Y ) ↗ Rn→n
+ be the input and embedded affinity matrices describ-

ing the pairwise neighborhood similarities in the input and output, respectively. t-SNE constructs P
by first computing neighborhood affinities for each point i defined as (for any j ↘= i)2

Pj|i(X;ωi) :=
exp(→≃xi → xj≃2/(2ω2

i ))∑
k ↑=i exp(→≃xj → xk≃2/(2ω2

i ))
, (1)

where ωi encodes the (point-dependent) neighborhood scaling. It is worth noting that P·|i is a valid
probability distribution over [n]. The matrix P is then constructed based on a crucial parameter
called the perplexity (denoted as ε and taking values in [1, n→ 1]), as follows:

(1) For each i, select the neighborhood scale ω↓
i such that the entropy of the neighborhood

distribution P·|i(X;ω↓
i ) is log ε.

(2) Define P = [Pij ]i,j↔[n] where Pij :=
1
2n (Pi|j(ω

↓
j )+Pj|i(ω

↓
i )) if i ↘= j and zero otherwise.

To avoid the so-called crowding problem (see Van der Maaten & Hinton (2008) for details), the
output affinity matrix Q is computed based on a t-distribution. Specifically, for i ↘= j

Qij(Y ) :=
(1 + ≃yi → yj≃2)↗1

∑
k,l;k ↑=l(1 + ≃yk → yl≃2)↗1

Qii = 0. (2)

1Without loss of generality, we shall assume that the input dimension D = n→ 1.
2When X and ω→

i are clear from context, we will often drop it from the notation.
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As indicated before, the objective then is to minimize the gap between the input and output affinities
P and Q. This is accomplished by minimizing relative entropy (KL-divergence) between the P and
Q affinities (viewed as probability distributions).

minimizeY LX(Y ) := KL(P (X)≃Q(Y )) =
∑

i,j
i ↑=j

Pij(X) log
(Pij(X)

Qij(Y )

)
.

This highly non-convex objective is usually optimized by initializing at a good starting point via an
early exaggeration phase, followed by performing standard gradient descent methods and returning
an embedding Y that corresponds to a local minimum of the objective. Our central task is to study
the nature of the these (local minimum) embeddings returned by t-SNE and their relation to the
space of input datasets.
Definition 1. For an n-point dataset X ↓ Rn↗1

and perplexity parameter ε ↗ [1, n→ 1], define

t-SNEω(X) := {Y ↓ Rd : ⇐Y LX(Y ) = 0}
as the set of outputs Y ↓ Rd

that are stationary to the t-SNE objective on a given input X .

Furthermore, for a set of n-point datasets Xn, we define: t-SNEω(Xn) =
⋃

X↔Xn
t-SNEω(X). If

Xn is the set of all n-point datasets, we denote t-SNEω(Xn) as Im(t-SNEω,n) to indicate the entire

image of the t-SNE map.

All the supporting proofs for our formal statements can be found in the Appendix,
and the code related to our experimental demonstrations is available on Github at
https://github.com/anon594/iclr26 submission8125.

4 MISREPRESENTATION OF CLUSTER DISTANCES

Previous works by Linderman & Steinerberger (2019) and Arora et al. (2018) have identified that
clustered inputs induce clustered t-SNE visualizations in the sense that sufficiently well-separated
Gaussian-shaped clusters in the input must produce corresponding well-separated clusters in the
visualization. A key question for practitioners left unanswered by these analyses is: when does a
clustered output imply a clustered input? More generally, what information can be deduced about the
input given a visualization? We answer this question by providing theoretical and practical evidence
that the strength of cluster separation in the input, unfortunately, cannot be reliably inferred from
the low-dimensional visualization.

To quantify strength of cluster separation in a dataset, we employ well-known distance-based clus-
ter indices such as the average silhouette score (Rousseeuw, 1987), the Calinski-Harabasz index
(Caliński & Harabasz, 1974), and the Dunn index (Dunn, 1974). For sake of readability, we focus
on presenting our results with respect to the average silhouette score. Our results hold identically
for the other indices as well (see Appendix A).
Definition 2. Given a partition C1 ⇒ C2 ⇒ · · · ⇒ Ck = [n] of n points {x1, . . . , xn} = X , the

silhouette score of a point xi (w.r.t. the partition), denoted S(i), is the normalized difference between

the average within- and the closest across-cluster distances from xi:

S(i) := b(i)→ a(i)

max{b(i), a(i)} a(i) :=
∑

j↔C(i)

≃xi → xj≃
|C(i)|→ 1

b(i) := min
m↔[k]

Cm ↑=C(i)

∑

j↔Cm

≃xi → xj≃
|Cm| ,

where C(i)
is the cluster to which i belongs. Note that if |C(i)| = 1, then S(i) is defined to be zero.

The average silhouette score then is simply the average across all points in X:

S̄(X;Cm↔[k]) :=
1

n

∑

i↔[n]

S(i).

Observe that the (average) silhouette score ranges from →1 to 1 with higher scores reflecting large
separation between clusters relative to cluster diameter. A score of zero reflects minimal separation
between clusters, while negative values reflect cluster overlaps.

4

https://github.com/anon594/iclr26_submission8125


216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 1: Visualizations of single-cell data (top row) versus an impostor dataset with arbitrarily small cluster
separation (bottom row). Based on the 2D t-SNE visualization (left column), it is difficult to distinguish which
dataset (real or impostor) may have produced the plot. Plotting the input interpoint distance matrices (middle
column) suggests that the clusters in the impostor dataset are significantly less separated than in the original
dataset. The corresponding dendrograms (right column, produced using the Ward’s method) further elucidate
the relative strength of pairwise distances. It is worth emphasizing that the impostor dataset retains the relative
rank ordering of the pairwise distances (and therefore the ordering of nearest neighbors), and only distorts the
distances to make the differences much finer. Note that the color coding in all of the scatterplots corresponds
to a stable cut in the hierarchical clustering given by the dendrogram of the original dataset, and the bottom left
labels correspond to silhouette scores with respect to that clustering.

4.1 DIFFERENT INPUTS, SAME OUTPUT

Defining the strength of a clustering with respect to this cluster index, we show that any stationary
t-SNE output (where the clusters may be well-separated or otherwise) can be produced by an input
with minimal distance separation between the clusters:

Theorem 3. Fix any n > k > 1, and n-point dataset X ↓ Rn↗1
with partition C1⇒ · · ·⇒Ck = [n]

such that |Cm↔[k]| > 1 and S̄(X;Cm↔[k]) is well defined. For all 0 < ϑ ⇑ 1, there exists n-point

dataset Xε ↓ Rn↗1
such that

S̄(Xε;Cm↔[k]) = ϑ · S̄(X;Cm↔[k]),

yet, for any ε ↗ [1, n→ 1]:
t-SNEω(X) = t-SNEω(Xε).

It is important to understand the implications of this result. For any high-dimensional dataset X
(that contains well-separated clusters), we can always find an impostor dataset Xε with minimal
distance separation such that all t-SNE (local as well as global) stationary points of X and Xε

match perfectly! In other words it is impossible to distinguish between X and Xε based on the
low-dimensional t-SNE visualization.

As a consequence, the same well-separated clustered visualization can be produced by a sequence
of impostor datasets containing clusters ranging from well-separated to minimally separated,

5
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Corollary 4. For all n ⇓ 4 even, and partition C1 ⇒ C2 = [n] such that |C1| = |C2| = n
2 . There

exist a sequence of n-point datasets in Rn↗1
, {Xε}0<ε↘1, with

S̄(Xε;C1, C2) = ϑ

such that for any ε ↗ [1, n→ 1], we have Y ↗
⋂

0<ε↘1 t-SNEω(Xε) with

S̄(Y ;C1, C2) = 1.

The above shows that Y , a perfectly clustered visualization according to silhouette score, is a local
(and global, see the proof in Appendix) minimizer for any member of a set of inputs of arbitrary

silhouette score. Thus, even from a visualization which is perfectly clustered, the strength of the
input’s cluster structure cannot be inferred.

Note that the existence of an impostor Xε is not just theoretical; it can be constructed practically as
well (see Appendix A.7 for an explicit construction). Hence this phenomenon can be demonstrated
in real-world scenarios, see Figure 1. In this case, we select a preprocessed version of the well-
known PBMC3k single-cell genomics dataset (2638 points, 50 dimensions; 10x Genomics (2019))
as X . We show that there is an “impostor dataset” Xε that is essentially indistinguishable from the
real dataset in terms of its 2D t-SNE visualization, yet has a much weaker cluster separation than the
original dataset. The difference between impostor and original can be quantified by silhouette score
and visualized in terms of the interpoint distance matrix and dendrogram.

It is worth emphasizing that while the distance information in the original and impostor dataset
is dramatically different, the ordinal relationship between neighbors is identical between the
datasets––as demonstrated by the corresponding structure in the dendrograms. This observation
indicates that t-SNE is not fabricating clusters in its visualization of the impostor, but rather exag-
gerating their salience.

4.2 DIVERSE OUTPUTS, SIMILAR INPUTS

The previous section established that inputs with vastly different metric structure can yield the exact
same t-SNE output. We continue with a complementary result: that near-isometric inputs can yield
an arbitrarily rich diversity of outputs.

Theorem 5. Fix any n ⇓ 2 and ε ↗ [1, n → 1]. For all ϑ > 0 and all Y, Y ≃ ↗ Im(t-SNEω,n), there

exists n-point datasets X = {x1, . . . , xn} and X ≃ = {x≃
1, . . . , x

≃
n} ↓ Rn↗1

such that ⇔i ↘= j

1→ ϑ ⇑ ≃xi → xj≃2

≃x≃
i → x≃

j≃2
⇑ 1 + ϑ,

yet Y ↗ t-SNEω(X) and Y ≃ ↗ t-SNEω(X ≃).

Thus even minor interpoint distance perturbations of the input dataset can develop into massive
changes in the visualization. Figure 2 demonstrates this phenomenon quite clearly. We start with a
dataset X that is a regular unit simplex (all pairwise distances are unit length). By systematically
perturbing the input X ever so slightly (ϑ ⇑ 0.01), t-SNE produces strikingly different outputs.

The key observation behind our main Theorems 3 and 5 is the simple yet seemingly counter-intuitive
fact that t-SNE is not only invariant under multiplicative scaling of the input squared distances,
but also additive shifts thereof – a property also investigated by Lee & Verleysen (2011; 2014).
Specifically given a dataset X = {x1, . . . , xn}, for any dataset X ≃ = {x≃

1, . . . , x
≃
n} and C ↗ R

such that, ≃x≃
i → x≃

j≃2 = ≃xi → xj≃2 + C ⇓ 0 for i ↘= j, we have t-SNEω(X) = t-SNEω(X ≃) (see
Lemma 15 for a formal statement, and Lee & Verleysen (2011), Section 4). As a consequence, for
any input dataset, we can simply pump up the interpoint distances and construct an impostor dataset
which has the same visualization profile but is arbitrarily close to a regular simplex (and hence is
arbitrarily unclustered)3. This observation also leads to the following seemingly bizarre fact.

3See Algorithm 1 for a formalization of this process.
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Figure 2: Various different 2D t-SNE visualizations produced by adversarial perturbations of a 200-point unit
regular simplex. Each pair of perturbations satisfies the conditions of Theorem 5 for ε = 0.01.

Lemma 6. Fix any n ⇓ 2 and ε ↗ [1, n → 1]. For any ϑ > 0, define the set of ϑ-perturbations of a

unit simplex as !ε := {X = {x1, . . . , xn} ↓ Rn↗1 : ⇔i ↘= j, ≃xi → xj≃2 ↗ [1 → ϑ, 1 + ϑ]}. Then,

for all ϑ > 0
Im(t-SNEω,n) = t-SNEω(!ε).

In other words there is a set of datasets !ε arbitrarily close to a regular unit simplex that generates
all possible stationary t-SNE outputs! This result indicates that t-SNE outputs are highly unstable on
near-simplex inputs (cf. Figure 2), which has real-world consequences since many high-dimensional
datasets fall into this regime (Beyer et al., 1999; Aggarwal et al., 2001) due to the concentration of
measure phenomenon (Ledoux, 2001).

4.2.1 A SIMPLE ADVERSARIAL ATTACK: POISON POINTS

The previous lemma tells us that on intrinsically high-dimensional (near-simplex) data, small per-
turbations of all the interpoint distances can have outsize effects on the t-SNE output. We observe
that such datasets are susceptible to a much simpler adversarial attack: namely, the insertion of just
a single data point, placed between clusters.

Consider a dataset X sampled from a mixture of two high-dimensional Gaussians. t-SNE, as ex-
pected, reveals the two underlying clusters (cf. Figure 3, first panel). However, we can add just a
single “poison point” to X and destroy the clustered visualization (see Figure 3 second panel). This
failure mode of t-SNE is also observed on a real high-dimensional datasets (see Figure 5 left vs.
center).

The success of the poison point attack can be attributed to additive invariance as follows. Given an
input dataset in !ε from a clustered, high-dimensional distribution, the squared interpoint distances
occupy a tight band between 1 → ϑ and 1 + ϑ due to concentration of measure. Since t-SNE is
invariant under additive scaling, the dataset appears identically as if all the (square) distances are in
the range [0, 2ϑ]. Thus, from t-SNE’s perspective, the variation between inter-cluster distance (↖ 2ϑ)
and intra-cluster (↖ 0) is large. However, when the single point is added at the mean, the minimum
(non-squared) distance from any point to the rest of the set is approximately halved. As a result,
almost all distances remain in the range [1→ ϑ, 1+ ϑ], but, as t-SNE sees it, the effective inter-cluster
(↖ (1 + ϑ)→ 1

4 (1→ ϑ) = 3
4 + 5

4ϑ) and intra-cluster (↖ (1→ ϑ)→ 1
4 (1→ ϑ) = 3

4 → 3
4ϑ) gap has been

reduced, causing the cluster structure to go unrecognized in some cases.

We observe that single poison point attacks can destroy or significantly weaken cluster structure
for very large datasets, see Figure 11. While the attack is not guaranteed to work, we find that its
efficacy seems to scale with the number of points added, though care must be taken to ensure that
poison points are far enough away from each other so as not to form their own cluster.

We explore this phenomenon further in the next section, where we contrast it with t-SNE’s strikingly
indifferent response to the injection of outlier points.

5 MISREPRESENTATION OF OUTLIERS

Most analysis on t-SNE, including the previous section, is concerned with whether it faithfully
depicts global structure, specifically cluster structure. In this section, we consider how t-SNE repre-
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Figure 3: t-SNE versus PCA’s radically different responses to the injection of a single “poison” point in the
input dataset. The original dataset, visualized in panels 1 and 3, consists of 400 points sampled from a mixture
of two Gaussians in R2000. The poison point is then placed at the mean of the previously sampled points; the
resulting 401 point dataset is visualized in panels 2 and 4. Note that this behavior persists for larger datasets,
see Appendix B.1.

sents points that drastically deviate from the global structure: namely, outliers. It is natural to hope
that data visualization methods can enable the identification of outliers. Unfortunately, we find that
t-SNE may arbitrarily suppress the severity of outliers present in the input dataset.

This phenomenon has been observed empirically in prior work, though to our knowledge we are
the first to formalize it (Schubert & Gertz, 2017). An intuitive explanation of t-SNE’s response
to outliers can be made based on the asymmetry of the input and output affinity matrices of t-
SNE. Roughly speaking, the input affinity behaves like a normalized, symmetrized nearest neighbor
graph, whereas the output affinity behaves more like a radius neighbors graph. This means the output
affinity is optimized to represent the outlier point in close proximity with at least some points, even
if it was extremely far from those points in the input.

To begin to formalize this observation, we provide a geometric definition of an outlier.
Definition 7. Fix X ↓ RD

, x0 ↗ X , and ϖ ↗ R+. We say X is an (ϖ, x0)-outlier configuration if

there exists a hyperplane separating x0 and X \ {x0} with margin width at least

ϖ ·max{1, diam(X \ {x0})},
Define the outlier number of a dataset, denoted ϖ(X), as the largest ϖ for which there exists x0 ↗ X
such that X is an (ϖ, x0)-outlier configuration.

This definition can be generalized to accommodate more than one outlier, but for the purposes of
theoretical analysis we consider just one. Note that the outlier extremity ϖ is defined relative to the
diameter of the rest of the points, unless that diameter is below 1. The choice of a threshold here
is important and intuitive: it allows us to have a suitable notion of outlier in extreme cases such as
when diam(X \ {x0}) = 0.

Our main theorem establishes that any stationary t-SNE output, regardless of its input, is incapable
of depicting extreme outliers.
Theorem 8. Fix n > 2 and ε ↗ [1, n → 1]. Let Y = {y0, y1, . . . , yn↗1} ↗ Im(t-SNEω,n) be a

stationary t-SNE embedding. Without loss of generality let y0 be the outlier point. Then we have:

ϖ(Y ) = ϖ(Y, y0) ⇑
√
1 +

(
1 +

2

n→ 2

)( 12

1 +
∑n↗1

i=1 P0|i(X)

)
= 3.602 + o(1)

for all X = {x0, x1, . . . , xn↗1} such that Y ↗ t-SNEω(X).

The result is proven via analysis of the t-SNE gradient: we argue that if the outlier is too far away,
its gradient is nonzero, thus violating stationarity. Key to this analysis is a comparison between the
aggregate behavior of the outlier point’s affinities in the input versus the output; in other words, the
comparison between

∑n
i=1 Pi0 and

∑n
i=1 Qi0. This is where the fundamental asymmetry of t-SNE

comes in. While the latter is dependent on the position of the outlier point y0, per Lemma 18, the
former has a lower bound of 1/(2n) due to the normalization of the conditional affinity probabilities.

The input-agnostic nature of this result is striking: even if the input is an extreme outlier configu-
ration, a t-SNE output cannot depict its extremity past roughly ϖ = 3.6. This behavior stands in

8
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Figure 4: t-SNE’s response to ϑ-outliers, compared with PCA. Top row: given data monitoring financial
activity (n = 5050, D = 30) where one percent of users are committing fraud, PCA succeeds and t-SNE fails
at representing the fraudulent users as outliers. Note that all of the fraudulent users register as (ϑ > 0)-outliers
with respect to the regular users; in the top right we show how t-SNE and PCA represent those ϑ-values in their
output. Middle row: a similar analysis on a synthetic dataset comprised of a Gaussian sample plus an outlier.
Bottom row: mixture of two Gaussians plus 1, 10, and 100 outliers. t-SNE shows the outliers are essentially
part of the cluster structure, while for PCA the outliers overtake the structure of the embedding.

stark contrast to that of principal component analysis (PCA), as shown in Figure 4 on both real and
synthetic data models. PCA tends to preserve the ϖ outlier number, while t-SNE seldom depicts
outliers past ϖ > 0.2 in practice, and sometimes even depicts them as within the convex hull of the
rest of the points (hence ϖ = 0). Furthermore, when faced with multiple outliers, (Figure 4, bottom)
t-SNE gracefully accommodates them into the global structure of the bulk of the data.

Our result suggests that t-SNE is the wrong tool to use in situations involving outlier detection.
Consider, for instance, a dataset of financial transactions where the goal is to detect fraudulent user,
studied by Pozzolo et al. (2015). In this dataset, only 0.172% percent of the points (492 out of
284, 807) are fraudulent and by many standard statistical metrics register as outliers. Comparing the
t-SNE and PCA plots on a random representative subset of this data (5050 points, of which 50 are
fraudulent), we see that t-SNE mixes the frauds with the bulk of the points while PCA keeps them
separated for the most part, see Figure 4, top row.

Finally, note the distinction between t-SNE’s muted response to outliers and its dramatic sensitivity
to poison points. We illustrate this distinction on a dataset of BBC news articles (Greene & Cunning-
ham, 2006), see Figure 5. Given RoBERTa (Liu et al., 2019) sentence embeddings of these articles
(n = 2225, D = 1024), we find that injecting 220 poison points (see Appendix B.1 for the explicit
construction) can halve the silhouette score of the t-SNE embedding with respect to the ground-truth
labelling, whereas injecting 1100 large-ϖ-outliers slightly improves the silhouette score.

9
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Figure 5: t-SNE’s susceptibility to poison points in contrast with its muted response to outliers, on the BBC
news article classification dataset. The bottom left label denotes silhouette score of the original points (without
the injected points) with respect to the true labels (business, entertainment, politics, sport, tech).

6 DISCUSSION

Our study of t-SNE has established in considerable generality that one cannot infer the degree of
cluster separation or the extremity of outliers from a t-SNE plot, see Theorems 3, 5, and 8. The
proofs and intuitions behind these statements guided us to the surprising empirical observation that
one cannot even infer the existence of clusters in the presence of outliers. In particular, the injection
of a small subset of adversarially chosen points can largely mask the cluster structure, while sizable
injections of outlier points are reliably masked within the cluster structure, see Figures 3, 4, 5, and
13.

We have identified two properties of t-SNE that give rise to these idiosyncratic behaviors: (1) addi-
tive invariance with respect to the squared interpoint distances, and (2) the asymmetry between the
input and output affinity matrices. While we have uncovered significant false positive failure modes
that arise from these properties, we cannot completely rule out their utility. For instance, though
additive invariance may lead to exaggerated clusters, its robustness vis-a-vis high-dimensional ran-
dom noise has been discussed in prior work, see e.g. Lee & Verleysen (2011; 2014); Karoui (2010);
Karoui & Wu (2015); Landa & Cheng (2023)

t-SNE belongs to a wide selection of data visualization techniques that are yet to be understood
fully (McInnes et al., 2018; Jacomy et al., 2014; Tang et al., 2016; Amid & Warmuth, 2019). Our
preliminary experiments (see Appendices A.3 and B.2) suggest that the failure modes discussed
in this paper may extend to other force-based dimension reduction techniques. Our hope is that
this work inspires the reader to explore this fascinating landscape further and pursue the essential
question: what can be provably deduced from a visualization?
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