
Regression modeling on DNA encoded libraries

Ralph Ma1

insitro
279 E Grand Ave.,

South San Francisco, CA, 94080
ralphma@insitro.com

Gabriel H. S. Dreiman1

insitro
279 E Grand Ave.,

South San Francisco, CA, 94080
gdreiman@insitro.com

Fiorella Ruggiu1

insitro
279 E Grand Ave.,

South San Francisco, CA, 94080
fioruggiu@insitro.com

Adam J. Riesselman 2

Hippo Harvest
adam@hippoharvest.com

Bowen Liu
insitro

279 E Grand Ave.,
South San Francisco, CA, 94080

bowen@insitro.com

Keith James
insitro

279 E Grand Ave.,
South San Francisco, CA, 94080

keith@insitro.com

Daphne Koller3
insitro

279 E Grand Ave.,
South San Francisco, CA, 94080

daphne@insitro.com

Mohammad M. Sultan3

insitro
279 E Grand Ave.,

South San Francisco, CA, 94080
msultan@insitro.com

Abstract

DNA encoded libraries (DELs) are pooled, combinatorial compound collections
where each member is tagged with its own unique DNA barcode. DELs are used in
drug discovery for early hit finding against protein targets. Recently, several groups
have proposed building machine learning models with quantities derived from DEL
datasets. However, DEL datasets have a low signal-to-noise ratio which makes
modeling them challenging. To that end, we propose a novel graph neural network
(GNN) based regression model that directly predicts enrichment scores from raw
sequencing counts while accounting for multiple sources of technical variation
and intrinsic assay noise. We show that our GNN regression model quantitatively
outperforms standard classification approaches and can be used to find diverse sets
of molecules in external virtual libraries.
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Introduction

Small molecule drug discovery begins with the identification of putative chemical matter that binds
to protein targets of interest. This can be be achieved with experimental techniques such as high-
throughput screening or in silico methodologies such as docking and generative modeling. DNA
encoded library (DEL)[11, 6, 2, 5, 4, 7] screening is a high throughput experimental technique used
to identify diverse sets of chemical matter against targets of interest.

DELs are DNA barcode labeled pooled compound collections (Figure 1.A) that are incubated with
an immobilized protein target in a process referred to as panning. The mixture is then washed to
remove non-binders, and the remaining bound compounds are eluted, amplified, and sequenced to
identify putative binders. DELs provide a quantitative readout for hundreds of millions of compounds.
This readout can contain substantial experimental noise and biases caused by sources such as DEL
members binding the protein immobilization media or differences in starting population (load). This
noise is often controlled for by computing an enrichment metric[6, 11, 7, 5] that compares the
compound population to its starting population and control experiments. Often, multiple replicates
and off-target counter pans are used to improve the signal-to-noise ratio.

Recently, several groups [14, 12] have demonstrated powerful applications of ML to DELs. Mc-
Closkey et al. [14] trained classification models on labels generated with aggregated DEL counts and
used the models to perform inference on large virtual libraries (VLs). This inference yielded diverse
hits for several protein targets. However, their approach required determining a label boundary,
which has no standard process and may bias the dataset. Moreover, classification models struggle to
differentiate between weak and strong binders. This becomes important when prioritizing compounds
for testing due to the multi-billion scale of VLs. Lim et al. [12] improved on the classification
approach by directly modeling an enrichment metric (the ratio between counts from a target and an
off-target pan). Their model was trained using a custom negative-log-likelihood loss function derived
from a Poisson ratio test. However, it is not obvious that their method can be expanded to multiple
off-target experiments or extended to include additional covariates.

By contrast, we introduce a general framework for quantitative modeling of DELs that incorporates
multiple sources of experimental noise. We show that GNNs trained using our framework and
regularized negative binomial loss outperform classification models in replicating experimental
compound rankings generated with proxy measurements of binding affinity on a held out DEL. We
end by examining key metrics from a virtual screen of the Enamine REAL and Wuxi VLs.

Methods

We obtained multiple proprietary DEL panning datasets screened against a challenging protein
target, Interleukin 17A (IL-17A), a relevant target to autoimmune diseases. These datasets include
several control and off-target pans. Here, we present results for a diversity screening library of 100M
compounds (Lib1) that we used for training and a separate expansion library of 2.5M compounds used
for validation (Lib2). The library synthesis, the panning experiments and the bioinformatics decoding
and counting pipeline were performed at DICE Therapeutics. To start the synthesis, DNA barcodes
are assembled. These barcodes have variable regions, codons, that encode the building blocks added
to the synthesis and invariable regions that separate the codons. A unique molecular identifier(UMI)
region is added to each DNA strand in the starting pool of barcodes. The UMI helps to de-bias
the PCR amplification process, in which certain DNA barcodes may be more amplified than others.
For libraries without UMIs, PCR bias can be a source of error. During library synthesis, chemical
building blocks are added sequentially to each well and are encoded by their corresponding codon.
All wells are then pooled back together before the the next building block is installed. Repeating this
process creates a combinatorial chemical library with DNA barcodes corresponding to the chemical
blocks added. However, chemical reactions have different yields and so the compounds attached to
the same DNA encoding consists of a mixture of different products. Truncated product controls by
omitting building blocks are often incorporated into the design of the library to ensure that a possible
truncation is not what is binding. Furthermore, it is possible to have side products and racemization
in the reactions. Combined, these factors confounds the count readout of each compound, making
the readout a noisy signal for binding affinity. Additionally, some reactions and conditions may be
DNA damaging, thereby reducing the DNA that can be decoded at the end of the panning procedure.
To control for the overall imbalance in starting barcodes, the DNA barcodes are sequenced before
the panning experiment (load counts). Finally, the library is incubated with the protein of interest.

2



Figure 1: A. Diagram of DEL panning experiment. The sequencing counts can be attributed to both
target specific binding (green) and non-target binding modes (red). B. Model schematics. Both
classification and regression use a GIN-E encoder. The classification network maps the encoder
output to a single class prediction. The regression network has multiple heads, each predicting an
enrichment value from a reduced embedding of the encoder output. A linear sum of the enrichments
and covariates is used to predict observed counts.

During this process, the DNA barcodes may stick to the protein (not a major risk for IL-17A) and
the media of the experiment, including the beads and the protein’s immobilization tags. This can be
controlled by negative control pans which consist of running the panning experiment with the same
experimental media, but without the protein or with an alternative control protein. Finally, problems
with promiscuous compounds, compounds that may bind to multiple proteins, can be mediated by
analyzing panning experiments for multiple proteins. Within our datasets, we had access to several
such negative control panning data.

Classification Model

To provide a competitive baseline, we built and optimized a classification model using the same
GNN architecture as the regression model GIN-E (Graph Isomorphism network with virtual node
[15]). We assigned binary labels for binders (positives) and non-binders (negatives) using a two-step
thresholding process. First, we discarded compounds with on-target unique molecular identifier
(UMI) counts below a noise threshold. Second, we normalized compound UMIs in each pan by
the sum of all UMIs in the pan to yield molecular frequencies (MFs). We then calculated the ratio
between the on-target and max control or off-target MF. If a compound’s MF ratio exceeded a
positive cutoff or fell below a negative cutoff, we assigned it a positive or negative label, respectively.
Compounds with ratios falling between the cutoffs were discarded. This yielded ~74K positives and
~5.6M negatives. We experimented with combinations of sampling schemes and losses to address
the class imbalance, and found that Focal Loss [13] without balanced sampling performed best.
Additionally, we regularized the model with dropout in the layers after graph readout and with input
augmentations.

Regression Model

We used negative binomial regression to model the UMI from each panning experiment. This
approach for denoising counts has previously been shown by [8] who used a regularized negative
binomial regression model to de-noise UMI readouts from single cell RNA sequencing. They defined
enrichment as the Pearson residual after regressing the count on sequencing depth. Similarly, we
modeled the enrichment for each compound as the residual after accounting for various covariates
such as binding to beads. As a generalization of Poisson regression, negative binomial regression
incorporates a dispersion parameter α in addition to a mean variable µ. For one target pan and two no-
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target control pans, Ci,target ∼ NB(µi,target, αtarget), Ci,control1 ∼ NB(µi,control1 , αcontrol1), and
Ci,control2 ∼ NB(µi,control2 , αcontrol2) represent the UMI counts of ith compound in the respective
panning experiments. We modeled µi as the combination of enrichment from binding to the target
(Ri,target), enrichment from binding to the non-target media (Ri,control1 , Ri,control2 ), and observed
count of the compound in the original starting population load (Si).

µi,control1 = σ(Ri,control1 + β1Si + β2) (1)

µi,control2 = σ(Ri,control2 + β3Si + β4) (2)

µi,target = σ(Ri,target + β5max(Ri,control1 , Ri,control2) + β6Si + β7) (3)

βi are learned from the data and σ represents the softplus function, which we found to be more stable
during training than the typical exponential function. The dispersion parameter, α, of the negative
binomial is a single scalar, learned for each experiment. We related Ri,target and Ri,control to each
compound’s structure by deriving their values with a GNN operating on the compound’s molecular
graph. A shared encoding network generates a 128 dimensional embedding vector from atom and
bond features. This embedding vector is then transformed into Ri,target, Ri,control1 , and Ri,control2
by separate feed forward networks (Fig 1.B). For our experiments, we used a GIN-E network with
virtual node [15, 9, 10] for the initial encoding and two layers in each of our feed forward networks.
During training, we summed the negative log likelihood of the observed counts for the target and
control pans. Furthermore, we L2 regularized the enrichment values, which empirically prevented
over-fitting. For a single example with count ci for each panning experiment , the loss can be written:

P (ci|µi, α) =
Γ(ci + α−1)

Γ(ci + 1)Γ(α−1)

(
1

1 + αµi

)α−1 (
αµi

1 + αµi

)ci
(4)

Li,target = − logP (ci,target|µi,target, αtarget) (5)

Li,control1 = − logP (ci,control1 |µi,control1 , αcontrol1) (6)

Li,control2 = − logP (ci,control2 |µi,control2 , αcontrol2) (7)

Li = Li,target + Li,control1 + Li,control2 + γR2
i,target + γR2

i,control1 + γR2
i,control2 (8)

where Γ(x) is the gamma function and γ is the L2 regularization rate. This negative binomial
regression can be further extended with other covariates such as enrichment in other negative control
pans, other target pans, compound synthesis yield, and reaction type. For our experiments, we used
13 negative control pans. During validation and inference for virtual screening, we used our de-noised
enrichment value Ri,target to rank compounds.

Cross Library Validation

After training on Lib1, we validated our models on Lib2 which had proxy binding affinity measure-
ments. Binding affinity of a compound to a target can be measured by the equilibrium disassociation
constant Kd and corresponding negative log value pKd. Lib2 was used in a set of target titration
panning experiments[3] where corresponding curves are fitted to produce a predicted titration-based
pKds (t-pKds). A small portion of these t-pKds were validated with off-DNA pKd measurements
(R2 = 0.84). We measured model performance by calculating the Spearman correlation coefficient
between model predictions and the t-pKds. This metric aligned with our intended use of the models
to rank VLs for candidate selection.

TheRtarget predicted by our regression model had a 0.41 (95% CI [0.40, 0.43]) Spearman correlation
with t-pKds (Fig 2.A). This exceeds both a Random Forest classification baseline (0.28) and our GNN
classification model (0.35 (95% CI [.34,.37])) (Fig 2.B). Furthermore, both the GNN regression and
GNN classification models trained from Lib1 showed better correlation with t-pKds from Lib2 than
UMI counts from a single pan of Lib2. This illustrates both the high noise in the raw UMI output
from a single panning experiment and our models’ ability to generalize. Finally, we compared the
two GNN models’ retrieval rates for strong binders in their top prediction results. The regression
model had more binders in its top prediction results than the classification model (Fig 2.C).

4



Figure 2: A. Bivariate histogram showing correlation between predicted enrichment (Rtarget) from
GNN regression model and t-pKds derived from protein titration. Regression line is plotted in orange.
B. Spearman correlation between model predictions and t-pKds. For RF Classification and GNN
Classification, predicted probability of the binder class is used for ranking. “Single Pan” represents
the UMI counts from a single panning experiment done with Lib2 at the same target concentration
as experiments with Lib1. Error bars on GNN Regression and Classification represents the 95%
confidence interval as estimated by three model replicates. C. Venn diagram showing number of
compounds with t-pKds >= 8 (n=1327) retrieved in the top 10K of the GNN Regression versus the
GNN Classification model.

Virtual Screening

We used our regression model to perform a virtual screen of 3.7 billion compounds in Enamine and
WuXi’s VLs. We then thresholded the regression model’s output to select a limited number of top
scoring compounds for analysis. We established the threshold using a quantitative analysis of the
enrichment distribution in both the validation and inference sets (Fig 3.A). We clustered this top set
using Taylor-Butina clustering[1] with a similarity cut-off of 0.6. Structural similarity was calculated
via Jaccard similarity of Morgan fingerprints. This clustering yielded 26 clusters, and we selected top
scoring compounds from each cluster for testing. These selected compounds are structurally diverse
(Fig 3.C).

Figure 3: Regression models pick diverse compounds from the VLs. A. Histogram of predicted
enrichment for the overlapping region between binders and non-binders on the validation set (Lib2).
B. Histogram of Jaccard similarities for inference compounds with predicted enrichment >10 to their
closest neighbor in the training set (Lib1). C. Heatmap of pairwise Jaccard similarities between
compounds with predicted enrichment >10.

Conclusion

DEL experiments yield datasets with low signal-to-noise ratio. In our work, we show a novel
regression technique for modeling DEL sequencing counts that accounts for various sources of
variation, such as media binding and differences in initial load. Our model’s predicted enrichment
values have better correlation with proxy binding affinities than those of baseline classification models
or experimental values from a single panning experiment. Finally, we demonstrate that our model
retrieves diverse compounds during virtual screening.
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